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Abstract

We provide a non-explicit separation of the number-on{iessl communication complexity classes
RP and NP when the number of players is u@tdogn for any d < 1. Recent lower bounds on Set-
Disjointness [10, 7] provide an explicit separation betwteese classes when the number of players is
only up too(loglogn).

1 Introduction

In the number-on-forehead (NOF) model of communication glemity, k players are trying to evaluate a
functionF defined orkn bits. The input ofF is partitioned intdk pieces ofn bits each, call themy,. .., Xk,
andx; is placed, metaphorically, on the forehead of plaiyeihus, each player se¢k — 1)n of the kn
input bits. The players communicate by writing bits on a ellaslackboard in order to compule This
model was introduced by [5] and it has many applicationdugting circuit lower bounds [9, 11], time/space
tradeoffs for Turing Machines, pseudo-random number gdoes for space-bounded Turing Machines [2],
and proof system lower bounds [4].

In this model, a protocol is said to be “efficient” if it has cplexity (logn)°Y). CorrespondinglyP¢S, RPES,
BPPL® and NP are the classes of functions having efficient deterministiee-sided-error randomized,
(two-sided-error) randomized and nondeterministic prols respectively. The usual inclusions between
these classes apply, §§° C RP® C NP and RPi® C BPPC. One of the most fundamental questions
in NOF communication complexity is to provide separatioesaeen these classes. In [3], Beame et al.
show thatRPE® # PEC for k < n®) players. Recently, [7, 10] show th&tPf® ¢ BPPE® (and thus, that
NPC = RP) for k < o(loglogn) players. Our main result in this paper is the following.

Theorem 1.1(Main Theorem) NP:¢ ¢ BPP° (and thus NPEC £ RP;°) for all & < 1 and all k< & - logn.

Until very recently, it was far from clear how to obtain commzation complexity lower bounds in the
number-on-forehead model for any function that could sseanondeterministic from randomized com-
plexity. The difficulty can be described as follows. The omigthod currently known for obtaining multi-
party NOF lower bounds is the discrepancy method [2, 13, 8jvér bounds using discrepancy are obtained
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by showing that the function in question has small discrepanith respect to some distribution. Unfortu-
nately, it is not hard to see that every function with smahdeterministic complexity has high discrepancy
with respect to every distribution (see, for example, Len8rfain [7].) Thus, the discrepancy method
seemed doomed to failure and new techniques seemed to beecequ

However, in very recent work, these difficulties were ovenedo obtain a surprisingly elegant lower bound
for the Set-Disjointness function [7, 10]. The idea behimgirt proofs as well as ours is as follows.

In a recent paper, Sherstov [15] (and implicitly also in Rapl [14]) applied the discrepancy method in
a more general way for the 2-player model in order to overctimeabove difficulties. Theeneralized
discrepancy method was adapted to the number-on-foreheddlim [7, 10] and can be described at a high
level as follows. Start with some candidate functi®rwhereF has small nondeterministic complexity, and
we want to prove thaf has high randomized communication complexity. Now come ith & function

G and a distributiomA such that: (1 andG are highly correlated with respect &g and (2)G has small
discrepancy with respect . It is not hard to see that if such@can be found, then sind® has small
discrepancy, it requires large randomized complexity, @odeover sincé& andG are very correlated, this
in turn implies lower bounds on the randomized complexit¥ afs well.

Thus, to use the generalized discrepancy method, the pnablee come up with the functior’s andG. To
accomplish this, we will use another wonderful idea due terStov [16], and substantially generalized to
apply to the number-on-forehead setting by Chattopadh§hywye consider special functions of the form
F®. This will be a function onk+ 1)n bits, computed bk -+ 1 players. Player O receives arbit vector

x. Playeri, for 1 <i < k gets ann-bit vectory;. The functiong takes as inpuys,...,yx and outputs an
n-bit string z, wherez has exactlyn 1's. We will view ¢ a selectingm bits/indices of Player Q's inpuk.
The functionF ¢ will be the OR function applied to the bits of x as specified by(y1,...yk). (In earlier
terminology, thek+ 1 players will apply the OR function to Player Qismaskednput.)

Note that regardless of what functignis chosenF ¢ will have a small nondeterministic protocol. Player
0 simply guesses an indgxthat is one of the indices chosen py and then any of the other players can
easily verify whether or nog; is 1 in that position. Whemw is the bitwise AND function, thei? is the
Set-Disjointness function. We will show that for almost @Jithe randomized communication complexity
of F? is large as long ak is at most a constant times IlngBecause we will be working with a random
as a bonus, our argument is substantially simpler that #nqurs bounds obtained for Set-Disjointness.

2 Definitions and Notation

2.1  Communication Complexity

In the number-on-forehead (NOF) multiparty communicattomplexity game [5] there ateplayers that
are trying to collaborate to compute a functibn X; x ... x Xx — {0,1} where eaclX; = {0,1}". Thekn
input bits are partitioned intk sets, each of size For(xy,...,%) € {0,1}¥", and for each, playeri knows
the values of all of the inputs except fgr(which conceptually is thought of as being placed on plaiger
forehead).

The players exchange bits according to an agreed-uponcatotny writing them on a public blackboard.
A protocol specifies, for every possible blackboard contents, wheihe&ot the communication is over,
the output if over and the next player to speak if not. A protaiso specifies what each player writes as



a function of the blackboard contents and of the inputs seethdt player. Thecostof a protocol is the
maximum number of bits written on the blackboard.

In adeterministic protocglthe blackboard is initially empty. Aandomized protocobf costc is simply a
probability distribution over deterministic protocols adstc, which can be viewed as a protocol in which
the players have access tetsredrandom string. Anon-deterministic protocds one where an initial guess
string appears on the blackboard at the beginning of th@gobtand the players are trying to verify that
the output of the function is 1 in the usual sense: there®gigiuess string where the output of the protocol
is 1 if and only if the output of the function is 1.

The deterministic communication complexity of Written Dy(F ), is the minimum cost of a deterministic
protocol forF that always outputs the correct answer. Fer< 1/2, letR¢ ¢ (F) denote the minimum cost
of a randomized protocol fdf which, for every input, makes an error with probability atste (over the
choice of the deterministic protocols). Ttievo-sided-error) randomized communication complexitly @&
R«(F) = R¢1/3(F). Let Rig(F) denote the minimum cost of a randomized protocolFawhich is correct
on all O-inputs, and for every 1-input, it makes an error witbbability at moste. The one-sided-error
randomized communication complexity ofRL(F) = R§.1/3(F). The non-deterministic communication
complexity of FwrittenNy(F ), is the minimum cost of a non-deterministic protocol FarWe usually drop
the subscripk when the number of players is clear from the context.

Since any functiori, on kn bits can be computed using ontybits of communication, following [1], for
sequences of functiors = (F,)nen, protocols are considered “efficient” or “polynomial” if lynpolylog-
arithmically many bits are exchanged. Accordingly, #¢, RP°, BPP® and NP° denote the classes of
function familiesF for which Dy(Fn), RE(Fn), Re(Fn) andNi(Fy) are (logn)©@, respectively.

Even though the standard communication complexity defimitiabove are given for functions with range
{0,1}, we find it more convenient to work with the ran§e 1,1}. We transform the former into the latter
by mapping 0— 1 (representindalse and 1— —1 (representindgrue). Thus, for example, when the range
of F is {—1,1}, in a non-deterministic protocol the players are tryingeafy that the output oF is -1.

The most important method to prove lower bounds for randechizommunication complexity uses the
concept of discrepancy. Arcylinder I'j in Xp x ... x X is @ set such that for alh € Xa,...,x € X, X € X
we have(xy,...,Xi,...,X) € ['i if and only if (x,...,X,...,%) € I'i. A cylinder intersectioris a set of the
form n};lri where eacli'j is ani-cylinder inX; x --- x Xi. For a sef, let 1g be its characteristic function,
which is 1 if the input is inSand 0 otherwise. Let be a distribution on the inputs &f. Thediscrepancy
of F onT underA is disq, (F) = |Ex2[F(X)1r (X)]|. Thediscrepancy of F unden is disg (F) =
max- disd; ,(F). Thestandard discrepancy methd#d] connects the discrepancy of a functibrnwith its

randomized communication complexity as follows: for evéistributionA, R ¢(F) > log <ﬁf‘(€F))

2.2 Notation

Throughout this paper, the functions whose communicatmmpdexity we are analyzing are denoted by
capital letters such as. As mentioned in the introduction, we will be restrictingr@itention to certain
functions which are constructed frombasefunction, usually denoted by lower cage and amasking
function, usually denoted by. In generalm denotes the size of the input to the base funcfipand the
range of this function if—1,1}. A specific base function we will work with is the OR functiowhich
takes on the value -1 if and only if any of its input bits is 1.eTthasking functiorp takes as inpuk strings



of n bits each, usually denoted By, ..., Yk, and it's output is am-element subset di,n|]. We always have
m < n. Starting with a base functiofi and a masking functiowp, we construct a function Liftf, ¢) on
(k+ 1)n input bits as follows. Givem-bit inputsx,y,...,Yk, @ is evaluated on the lattérinputs to select
a set ofm bits in x on which we applyf. Formally, Lift(f,®)(X,y1,...,¥) = f(X|@(y1,...,¥)), where
for a setSC [1,n], x|S denotes the substring afindexed by the elements 8 We are interested in the
communication complexity of Liftf, @) in the NOF model wittk + 1 players, where player O getsand
players 1 througlk gety; throughyy, respectively.

2.3 Correlation, Fourier Representation and Degree

Let f,g:{0,1}™ — R. Let u be a distribution on the s¢0,1}™. We define theorrelation between f and

g underp to be cory(f,9) = Ex.u[f(X)g(X)]. Whenever we omit to mention a specific distribution when
computing the correlation, an expected value or a prolghitiis to be assumed that we are talking about
the uniform distribution.

For SC [1,m], let xs(x) = (—1)2i=s% be the Fourier character of the et Let f : {0,1}™ — R and let
fs= corr(f, xs). Thenf(x) = 3 s-1m fsxs(X) is the Fourier representation 6f Theexact degree of fs
the size of the largesi such thatfs is non-zero. The-approximate degree of, flenoted by deg f) is the
smallestd for which there exists a functiogof exact degree such that may f (x) — g(x)| < €.

2.4 Set Families

LetS = (S,...,S) be a multi-set om-element subsets ¢f,n|. Let therangeof S, denoted by J§, be the
set of indices fronj1,n| that appear in at least one sesinLet theboundaryof 8, denoted by, be the set
of indices from[1,n] that appear in exactly one set in the collecton

3 Statement of Results

Our main technical result is the following.

Theorem 3.1. Letd < 1 be a constant. Let = (1—9)/4. Let m=nf and let k< &-logn. There exists a
function ¢ such that R, 1 (Lift (OR, ¢)) > n®,

Proof of Main Theorem 1.1 from Theorem 3Qonsider the functiorp whose existence is guaranteed by
Theorem 3.1. On the one hand, the Theorem implies that@Rtp) ¢ BPPLS ;.

On the other hand, the following is a nondeterministic protdor Lift(OR, ¢): guess an indek € [1,n]
using logn bits; player O (the one holdingon its forehead) locally computeg(y, .. .,yx) and communi-
cates a 1 if belongs to that set; player 1 communicates ax # 1. The cost of this protocol i©(logn).
Easily, Lift((OR, @)(x,y1,...,Yk) = —1 iff there exists a guesssuch that both players communicate a 1.
Thus, Lift(OR, @) € NP{S ;. O



4 Proof of Main Result

We obtain our lower bounds on the bounded-error commupicamplexity of Liff OR, ¢) using an anal-
ysis that follows [7]. In their paper, Chattopadhyay and Adalyze the Set-Disjointness function, and for
that reason, their masking functigmmust be the AND function. In our case, intuitively, we all@guo

be a random function. While our results no longer apply te@sjointness, we still obtain a separation
betweerBPP;® andNP{° because, no matter what masking function is used(@R ¢) always has a cheap
nondeterministic protocol.

At a more technical level, the results of [7] become trividilemk > loglogn because of the relationship
betweem (the size of the input t&) andm (the number of bits the base function OR gets applied to.) For
their analysis to go through, they neee: 22‘m®@. In our casen = m°@ is sufficient, and this allows our
results to be non-trivial fok < dlogn for anyd < 1.

4.1 Overview of Proof

As mentioned earlier, we will start with the base functiba= OR onm input bits,m < n. We lift the base
function f in order to obtain the lifted functiof ¥ = Lift (f,¢). Recall thatF? is a function on(k+ 1)n
inputs with small nondeterministic complexity, and is abtal by applying the base function (in this case
the OR function) to the unmasked bits of Player 0’s input/Ve want to prove that for a randog F? has
high randomized communication complexity.

Paturi [12] proved that no function that is a sum of low-degFeurier characters can well-approximate the
OR function. This implies that there exists a functipfalso onm bits) and a distributioru over all m-bit
inputs such that the functiomsand f = OR are highly correlated over and furthermoreg is orthogonal to

all small Fourier characters. This is our Lemma 4.1, and & wrginally proved using duality by Sherstov
[15] in the context of 2-player lower bounds for quantum camioation complexity.

Now we lift the functiong in order to get the functio®? = Lift (g, ¢). DefineA to be a distribution over all
(k+ 1)n-bit inputs that is the natural extensionof Sinceg and f = OR are highly correlated over, it is
not hard to see (using the definitions and the fact Ahigtthe natural extension @f to the lifted space) that
the lifted versionsF? andG? are also highly correlated ovar.

By the generalized discrepancy method (Lemma 4.2), in dadprove that the randomized complexity of
F%is high, it suffices to prove th&? has small discrepancy. This final step is accomplished byrhas¥ .4,
4.5, and 4.6, using two important propertiesgand ¢. The crucial property ofj that we exploit is that it
is orthogonal to the space of all small Fourier charactefss property will be used to prove Lemma 4.4.
Secondly, we wang to behave like a random function with respect to all sub-sufféhis second property
is exploited in order to prove Lemma 4.6. We now proceed viighformal proof.

4.2 Proof of Main Theorem

The following lemma is from [15]. Intuitively it shows the lfowing. Let f be a base function om
bits, and with the property that no function in the low-degFeourier subspace can approximdte (We
will be interested inf = OR.) The lemma states that this implies the existence othandtinctiong and
a distributionu such thatg is in the orthogonal subspace of low-degree Fourier chara@ndg well-



approximated .

Lemma 4.1 (Orthogonality Lemma, Lemma 5.1 in [7])f f : {0,1}™ — {—1,1} is a function withd’-
approximate degree d, there exist a function{®,1}™ — {—1,1} and a distributionu on {0,1}™ such
that:

(i) corry(g, f) > d’; and

(ii) for every T C [1,m] with |T| < d and every function h{0,1}Tl — R, E,_,[g(x)-h(X|T)] = 0.
The next lemma is the generalized discrepancy lemma from If73tates that if two functiong and G

are highly correlated, and @ has small discrepancy (and hence high communication coitylethen the
communication complexity df is also high.

Lemma 4.2(Generalized Discrepancy Lemma, Lemma 3.2 in.[Igt Z=2; x--- x Z. Let FG:Z —
{—1,1} and letA be a distribution on Z such thaorr, (G,F) > &'. Then, for everg’ < §'/2,

o —-2.¢
Ree (F) > log (WM;) .

The following lemma is standard and used in every discrgpargument. See [2, 13, 8] for details.

Lemma 4.3(The standard BNS argumentlet Z=X x Yy x --- x Yyand let F: Z — {—1,1}. Letlr CZ
be a cylinder intersection. We writefor (y1,...,yk). Then,

2k
<Ex,y [F (X’ y) 1r (Xa y)] ) < Eyo_yl Ex

F(x,yul,...,y;q] u |

ue{0,1}k

Using the above lemmas, We will now prove Theorem 3.1. By,[@&%; (OR) > c,/m for some constant
c. By Lemma 4.1, applied witi = OR, there exist a functiog and a distributioru such that:

(i) corry(g,0R) >5/6; and
(i) for everyT C [1,m] with T < c/mand every functiom : {0,1}/T/ — R, Ex.,[g(x)h(X|T)] = O.

For every masking functiomp, let F? = Lift (OR, @) and letG? = Lift(g,¢). As in [7], we define the
distributionA on {0,1} 1" as follows. Fox € {0,1}" andy = (y1,...,yk) € {0, 1}", let

A g — 00

 o(k+n-m”

It can be easily verified that cqrfG?, F¢) = corr, (g,OR) > 5/6. Thus, by Lemma 4.2,

5/6—2(1/3) 1
209 (garon) 0 (@arem) o

Let " be the cylinder intersection that witnesses the discrgpahG?® underA. Then,
disg (G?) = disc, (G?) = |E xy)~r [G?(%,9)1r (V)] = 2™ [Exy [ (X @(¥))9(X| @(¥)) 1r (. )]|

6



where the last equality follows from the connection betwaeand the uniform distribution. Finally, by
Lemma 4.3, we obtain

Yo, (diSC)\ (Gq)))Zk < ZmZkEyo’yl

Ex[ [T H&IOOL - HENIX O Y m

ue{0,1}k

It is at this point that we diverge from the analysis in [7]. tle= A(Y°, ') be the event 3i such that
y? = y&”. Clearly, this event depends only on the choicg/bandy*. By a simple union bound, Rra (Al <
k/2" = 2-"Hogk Furthermore, Ry [A] < 1, and sincéug| < 1, Egpql...|A] < 1. Thus,

K
Ve, (disgy (G?))° < 27 MM Hogk y oM,

|_| X’(p yi I 7yu X‘(p(yu sk ))

ue{0,1}k

Al

For the remaining part of the analysis, we fix the choiceg’aindy! in such a way that the eveAtdoes
not occur. Fou € {0,1}, defineS, = S,(Y°, V%, @) = @(¥i%, ...,V ). Let8 = S(Y°,¥%, @) be the multi-set
(Sy:u € {0,1}%). Even though the se®, and the multi-se8 depend ory®,y* and g, we will usually omit
explicitly indicating this dependence in our proofs in artereduce the clutter. We defirlbe number of
conflicts in8 to beq(8) = m2k—|J$§|. Intuitively, | |J§| measures the range &fwhile m2¥is the maximum
possible value for this range.

We use the following three Lemmas to complete our proof.

Lemma 4.4. For everyy®,y* and ¢, if A(Y°,¥*) and qS(Y°, ¥, @)) < c-/m-2¢/2, then
Ex [ M u(XI&(VO,Vl,¢))g(XI&(7°,Vl,¢))] =0
ue{0,1}k

Lemma 4.5. For everyy?,y* and ¢, if A(Y°,y%),

(8(5°.5".9))

Ex om 2k

u(XI&(7°,71,¢))] Z

ue{0,1}k

Lemma 4.6. For everyy?, !, if A(Y°,y%), wheng is chosen at random,
P m.2k q
Pra(s(5°.5 0) = aAGP ) < (o)

Before proving these Lemmas, we complete the proof of ouniaeorem. Since the bound on gj$6%)
holds for everyp, we can write

Ex| [] H:S)9(IS)

ue{0,1}k

k
Ey [(discA (G?))* } < p-mmEtHogk y MR Al




Moreover,

Epgio|[Bx| [1 HXS)IXS)||[A
ue{0,1}k
< zPr[q(S)—qlﬂ]Eyoyllex[ [1 HXS)9XS) Rq(s):q]
g0 ¢ ue{0,1}k
(by Lemma 4.4) < S Prad) =qAEp;, | [Ex H(XS)9(XSu) Rq(S):q]
g>c,/m2k/2 ¢ ue{0,1}k
(becausegg| =1) < S Pras) =qAEp;, | [Ex H(XS) !Kq(S):q]
azcymek/2 ue{01}k
_. 24
(by Lemma 4.5) < z F(’pr[q(S):q|A]W
q=cy/m2</2
k\ 9 oq
(by Lemma 4.6) < (E) Z_k
n 2m2
g=cy/m2+/2
_ 1 (Y’
om2« e\ N

We have choses = (1—8)/4, so 1- € — & = 3¢. Furthermorem = nf andk < &logn, som2¥/n <
n~1te+0 = n=3¢ < 1/4 whennis large enough. Thusp2*/n < 1/2. UsiNgy q-q, WI =W /(1—w) < 2w/
forw < 1/2, we obtain

2l—cy/m2*/2

Al <

Ex H(X[Su)g(X|S)

ue{0,1}k

|

By g0

Putting everything together,
k
E(p |:(dISCA (G(p))z :| S 2—n+m2k+logk+2m2k2—m2k21—c\/ﬁ12k/2.
For the exponent of the first term, note thatkog m2< andn > 4m2¥, so—n+ m2K+logk < —2m2K, When
mis large enough,—2m2" < —c\/ﬁz"/4. For the exponent of the second term, note thQWkM when
mis large enough, so-4c,/m2k/2 < —c/m2¢/4. Thus, the sum of the two terms is at most®™2/4,
Whenmis large enough, ¥ ¢,/m2</8, so
k
E, [(discA (G?)° } <2 VM8

Therefore, there exists songesuch that disg(G?) < 2-V™8, For thisg,

R(F?) > log )~ > owym=—o(ur > .

disc, (G?)



5 Proofs of Lemmas

Proof of Lemma 4.4We write S, for S,(Y°,y*, @) and 8 for $(Y°,¥*, @). Assumeq(8) < cy/m2k/2. Let
r(8) =|U8| be the size of the range &f and letb(8) = |d§| be the size of the boundary 8f Note that
r(8) —b(8) < q(8) because every € US\ 98 occurs in at least 2 sets B thus contributes at least 1 to
q(8). Furthermorer (8) +q(8) = m2<. Then,b(8) >r(8) —q(8) = m2k—2q(8) > (m—c,/m)2X. There are
2% sets in the multi-se$ so by the pigeonhole principle, there existsuch thatS, N 48| > m—c/m. We
can write

Ex

u(X!SJ)g(X!SJ)] =Exs, [u(X\S«)g(X\S«)Eme\a |_|K N(X!SJ)Q(X\SJ)” :
ue{0,1}K,u£v

Let T =S,\98. So|T|<cym. Leth=Eyyns, [[MuaM(XS)9(X|S)]. Note thath is a function that
depends only o®|T. Then, by the property (i) of andyt, Eys, [ (X|S,)9(X|S,)h(x|T)] = 0. O

ue{0,1}k

Proof of Lemma 4.5We write S, for S,(Y°,¥*, @) ands$ for §(y°, %, ). We see that

Ex MEE

ue{0,1}k

H(XSu)

ue{0,1}k

=Eyqamus |Exus

] :EX\US “(X|Sd)] :

ue{0,1}k

Everyu € {0,1}* can be interpreted as an integer in the rafige® — 1]. With this in mind, for 0< j <
2€—1, let 8 be the sub-multi-set o consisting of the sets up to and includisg §; = (S, .. .,Sj). So,
8 = 8x_q. DefineS_; =0. For0< j<2(—1, letGj = Ex\usj[l_lij:oll(x\S)] and letH;(x|S; \ 98j) =
Exsnos; [M(X/S)]. LettingG_1 = 1, observe that, for & j < 2¢—1,

-1
Gj = Equs;_, [(I_LH(XIS)> H; (XIS \081)] < (max(Hj)) - Gj-1.

To obtain a bound on mé&k;), consider an arbitrary partition ¢f, m into two setsE,F. Letv be a dis-
tribution on[1,m], and leto(X E) = Exg [v(X)]. Then,p(X|E) = ¢ 2 Flv(x) =27 Flg,r v(x) <27 Fl =
2/EI=m simply using the fact that is a probability distribution. Thus, méh;) < 2/S\98i-™ Inductively,

k
237 5'151\98j|

Ex o

== GZk—l S

k-1
|:L H(XS)

Consider some indexe |J§. Suppose this index appearslisetsS,,...,S; from 8, with j; <--- < jj.
Then, this index contributes exactly- 1 to the expressiorsz:})ﬂsj \ d8j|, once for everyj = jo,..., ]
(for j = j1, z€ 98 because no set befo containsz) Since this holds for every index we see that
25151\ 08 = a(8) and thereforaiy| [y oy« H(x|Su)] < 2982 0

Proof of Lemma 4.6Fix y°,y such thai. The multi-setS is constructed from the se& = @(y}*,....Y)

for u € {0,1}%. SinceA did not occur, the '2 points whereg gets evaluated are distinct. Furthermore,
@ is chosen at random, which is equivalent to choosifigaddomm-element subsets df,n]. We can
overestimate the number of conflicts $nas follows. Instead of choosing, for each subseilements



from [1, n] withoutreplacement, suppose we chose theith replacement. The number of conflicts we will
obtain can only be larger than in the original experimenequivalently, the probability of obtaining a fixed
number of conflicts can only be greater in the second expetinféhe maximum range & is m2¥. Every
conflict in § arises when we select a previously selected point frbm|. Thus, the probability of each
conflict is independently at most2¢/n. The probability of obtaining conflicts is at mosfm2¢/n)d. [
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