
Extractors for Low-Weight Affine Sources

Anup Rao∗

Institute for Advanced Study

arao@ias.edu

November 19, 2007

Abstract

We give polynomial time computable extractors for low-weight affince sources. A distribution
is affine if it samples a random points from some unknown low dimensional subspace of F

n
2
. A

distribution is low weight affine if the corresponding linear space has a basis of low-weight vectors.
Low-weight affine sources are thus a generalization of the well studied models of bit-fixing sources
(which are just weight 1 affine sources).

For universal constants c, ε, our extractors can extract almost all the entropy from weight kε

affine sources of dimension k, as long as k > logc n, with error 2−k
Ω(1)

. This gives new extractors
for low entropy bit-fixing sources with exponentially small error, a parameter that is important for
the application of these extractors to cryptography.

Our techniques involve constructing new condensers for affine somewhere random sources.

Keywords: Extractors, Affine Sources, Exposure Resilient Cryptography

∗Supported by the National Science Foundation under agreement No. CCR-0324906.

Electronic Colloquium on Computational Complexity, Report No. 15 (2008)

ISSN 1433-8092

1 Introduction

Fix a vector space over a finite field F
n. Then an affine source with entropy k is a distribution which

is uniform over some k-dimensional affine subspace of F
n.

Definition 1.1 (Affine Source). A distribution X is an entropy k affine source if there exist linearly
independent vectors v0, . . . ,vk ∈ F

n such that X is sampled by picking x1, . . . , xk ∈ F uniformly at
random and computing vo +

∑

i xivi.

An extractor for entropy k affine sources is a function AffExt : F
n → {0, 1}m such that for any such

source X, the distribution of AffExt(X) is close to the uniform distribution in statistical distance. The
distance from uniform is called the error of the extractor. It is easy to show that a random function
that outputs m bits is an extractor for affine sources with high probability, as long as k > 2 log n and
m < k−O(1). In this paper we present work towards the goal of constructing an explicit, polynomial
time computable function AffExt which is an extractor for affine sources. We focus on the case of small
fields, when F is GF (2).

Affine sources are a generalization of another class of sources called bit-fixing1 sources, introduced
by Chor et al. [CFG+85]. A bit-fixing source is a source giving a point in {0, 1}n where some n − k
of the bits are fixed to arbitrary values, and the remaining k of the bits are distributed independently
and uniformly. Thus a bit-fixing source samples a random point from an affine subspaces where every
vector v1, . . . ,vk in the basis for the source is a weight 1 vector. A weight w affine source is an affine
source in which every basis vector other than the shift v0 has at most w non-zero coordinates.

Definition 1.2 (Low-Weight Affine Source). A distribution X is a weight w, entropy k affine source if
there exist linearly independent vectors v0, . . . ,vk ∈ F

n such that v1, . . . ,vk all have weight at most
w, and X is sampled by picking x1, . . . , xk ∈ F uniformly at random to get the sample vo +

∑

i xivi.

In this paper we give new constructions of extractors for low-weight affine sources. While our
techniques do not yet give extractors for general affine sources, we hope that the tools we develop here
will eventually be useful in constructing such an extractor.

1.1 Applications to Cryptography

Explicit extractors for bit-fixing sources were partly motivated by applications in cryptography [CFG+85].
In normal cryptographic schemes, the security of the scheme is guaranteed as long as secret keys used
in the scheme remain secret. It is natural to ask if we can guarantee security even if the adversary
learns a part of the secret key. All-or-nothing transforms, introduced by Rivest [Riv97], are functions
that can be used to solve this problem. These are functions that are easy to invert given the en-
tire output, but very hard to invert given anything significantly less than the entire output. Apart
from the application mentioned above, these functions have been used to give efficient block ciphers
[JSY99, Bla96].

Constructions of all-or-nothing transforms appeared in [Boy99, CDH+00]. Canetti et al. [CDH+00]
reduced the task of constructing these functions to the task of constructing extractors for bit-fixing
sources (though there these functions are called “exposure resilient functions”). This reduction was
even extended to the adaptive setting, where the adversary can decide which bit of the input to see
based on the output bits that he reads. There has been a significant body of work applying extractors
for bit-fixing sources to problems in cryptography [Dod00, DKM+06] and we refer the interested

1In this paper we only deal with oblivious bit-fixing sources.

1

reader to [Dod00] for a survey of the subject. A crucial parameter for these applications is the error
of the extractor. If cryptographic schemes are to remain secure, it is important that the error of the
extractors they rely on is negligible.

2 Previous Work and Our Results

Construction Min-Entropy Error Output Length Ref

Extractor for bit-fixing
sources over GF (2)

any k 1/poly(k) log k
4 [KZ07]

Extractor for bit-fixing
sources over GF (2)

k >
√

n 2−Ω(k2/n) Ω(k2/n) [KZ07]

Extractor for bit-fixing
sources over GF (2)

k > logc(n) for some
constant c

1/poly(k) k − o(k) [GRS04]

Extractor for bit-fixing
sources over GF (2)

k >
√

n 2−Ω(k2/n) k − o(k) [GRS04]

Extractor for affine
sources over GF (2)

(0.5 + α)n, for posi-
tive constant α

2−Ω(n) Ω(n) [KZ]

Extractor for affine
sources over a large field,
|F| > n20

Any k 1/poly(|F|) k − 1 field elements [GR05]

Disperser for affine
sources over GF (2)

δn for any constant
δ

Any constant Θ(1) [BKS+05]

Extractor for affine
sources over GF (2)

δn for any constant
δ

2−Ω(n) Ω(n) [Bou07]

Extractor for low-weight
affine sources over GF (2)

k > logc(n) for some
constant c

2−kΩ(1)
k − o(k) This work

Table 1: Performance of extractors for affine and bit-fixing sources

Table 1 highlights some previous work for this type of problem. When the field is polynomially
large in n, Gabizon and Raz [GR05] show how to extract many random bits, even when the dimension
of the source is just 1.

The best known affine source extractor for constant sized fields is due to Bourgain, who gives an
extractor for any linear min-entropy with exponentially small error over GF(2). Better constructions
are known for the case of bit-fixing sources [KZ07, GRS04], but no extractor with negligible error for
entropy k <

√
n and many output bits was known even in this case.

The main result in this paper is:

Theorem 2.1. There exist constants d, c, ε s.t. for every k(n) > logc n, there exists a polynomial time

computable function AffExt : {0, 1}n → {0, 1}m that is an extractor for weight w < kε affine sources

over GF (2) with min-entropy k, output length m = k − o(k) and error 2−kd
.

Our results are an improvement to the best known extractors for bit-fixing sources, giving extractors
that output almost all of the bits of entropy with negligible error, as long as k is polylogarithmically
large in n, answering an open question of [KZ07].

2

3 Techniques

Our techniques are analogous to the techniques used to get extractors for independent sources in
[Rao06].

We make progress by considering a more restricted class of affine sources, called somewhere random

affine sources. A source is t× r affine somewhere random, if it is a distribution on t× r matrices over
GF (2) that is affine and one of the rows of the matrix is distributed uniformly. We will think of the
number of rows of an affine somewhere random source as a measure of the quality of the source. The
fewer the number of rows, the better the quality is. We will iteratively improve the quality (reduce
the number of rows) of the somewhere random sources that we are working with until extracting
randomness from them becomes easy. In addition to Bourgain’s extractor for linear min-entropy
discussed above, our construction relies on two kinds of objects:

• Our construction will use linear strong seeded extractors as a basic tool. These are functions
Ext : {0, 1}n×{0, 1}d → {0, 1}m that have the property that for every fixed y ∈ {0, 1}d, Ext(·, y)
is a linear function and for any fixed source X with min-entropy k, most y’s are such that
Ext(X, y) is close to uniform. A strong seeded extractor can be viewed as a small family of
deterministic functions (each function in the family indexed by a unique seed), such that for
any fixed adversarially chosen source of randomness, almost all functions from the family are
good extractors for that source. Linear strong seeded extractors simply give a family of linear

functions with the same property. One example of a good linear strong seeded extractor is
Trevisan’s extractor [Tre01].

• Another basic tool we will use is a good parity check matrix. This is a linear map P : {0, 1}n →
{0, 1}t with the property that P (c) = 0 if and only if c is 0 or has weight larger than d. We shall
need to construct such P with d maximized and t minimized.

Given these two basic tools, we can describe some basic observations that go into the construction.
We will then show how to put these together to get the high level view of our extractor construction.

Idea 1: There is a simple linear condenser for low-weight affine sources. If P is the linear function
(the parity check matrix) described above, and X is any weight w affine source, P (X) is another
affine source with entropy roughly d/w − 1. To see this, observe that P is an injective function
over any low-weight subspace of X of dimension w, since any such subspace only has vectors of
weight a most (d/w − 1)w < d. Thus the dimension of P (X) must be at least w.

Idea 2: We can extract random bits from affine somewhere random sources. This is a source sampling
a boolean matrix, where one row is uniform, and every other row is dependent on the uniform
row in affine ways. It turns out that we can extract from affine somewhere random sources when
the source has very few rows relative to the length of each of the rows. In the extreme case,
when the somewhere random source has just one row, it is a uniformly random string. When
the number of rows is only a constant, we can simply use Bourgain’s extractor Theorem 4.7 to
get random bits. We will show how to build extractors for affine somewhere random sources
even when the number of rows is polynomially related to the length of each row. We obtain
the extractor by building a condenser for such somewhere random sources. Given an affine
somewhere random source, the condenser transforms it into another affine somewhere random
source with fewer rows. Here we shall be able to use the structure of the source to guarantee
that parts of the source we are working with behave as if they are independent, even though

3

they are not. Repeatedly applying the condenser reduces the number of rows until we are left
with uniformly random bits.

Idea 3: The quality of affine somewhere random sources can be transferred, even when they are
dependent (in affine ways). A single affine somewhere random source S with t rows can be used
to convert another affine source into an affine somewhere random source with t rows, even if the
two sources are dependent, as long as the number of bits that S gives is less than the entropy of
the other source. We simply use the t rows of S as seeds with a linear strong seeded extractor
to extract from each of the other affine sources. Although the sources are dependent, we can
show that the second affine source can be written as the sum of two affine sources, one of which
is independent of S. With high probability, the random row of S is a good seed to extract from
this independent affine source. It turns out that the output we obtain in this way is close to a
convex combination of affine somewhere random sources, each with t rows.

Our extractor is then built in the following way:

1. Use Idea 1 to convert the input affine source into a much shorter affine source which still has
entropy.

2. Use a linear strong seeded extractor to convert this short affine source into an affine somewhere
random source with few (� k) rows.

3. Use Idea 3 to transfer the quality of this affine somewhere random source back to the original
affine source to get a new affine source whose rows are much longer than the length of each row.

4. Use Idea 2 to extract from the new high quality affine somewhere random source.

The only part of the proof that uses the low-weight property of the sources we are working with is
the first step.

4 Building Blocks

To save space, we defer the preliminaries of this paper to the appendix in Appendix A.
In this section we discuss the building blocks from other works that we rely on. The first concept

we need is that of a linear seeded extractor.

Definition 4.1 (Linear Strong Seeded Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a
strong seeded extractor for min-entropy k and error ε if for every min-entropy k source X,

Pr
u←RUd

[|Ext(X,u)− Um| ≤ ε] ≥ 1− ε

where Um is the uniform distribution on m bits. We say that the function is a linear strong seeded

extractor if the function Ext(·, u) is a linear function over GF(2), for every u ∈ {0, 1}d.

It turns out that when such extractors are used with affine sources, the output has the nice property
that most of the time the error is 0. This property is not crucial to our work, but it does simply the
discussion to have it.

4

Proposition 4.2. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong linear seeded extractor with error

ε < 1/2. Let X be any affine source with entropy k. Then,

Pr
u←RUd

[|Ext(X,u)− Um| = 0] ≥ 1− ε

Proof. Note that if X is an affine source, for every linear function L : {0, 1}n → {0, 1}m, L(X) is also
an affine source. Thus we have that |L(X) − Um| = 0 or |L(X) − Um| ≥ 1/2. Since for every fixed u,
Ext(·, u) is a linear function, this implies that:

Pr
u←RUd

[|Ext(X,u) − Um| = 0]

= Pr
u←RUd

[|Ext(X,u) − Um| < 1/2]

≥ Pr
u←RUd

[|Ext(X,u) − Um| < ε]

≥ 1− ε

Next we list the previous constructions of seeded extractors that we will use in this paper. The
following theorem was proved by Raz et al. [RRV02] building on the work of Trevisan [Tre01]:

Theorem 4.3 ([Tre01, RRV02]). For every n, k,m ∈ N and ε > 0, such that m ≤ k ≤ n, there is an

explicit (k, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O
(

log2(n/ε)
log(k/m)

)

.

It turns out that the extractor that the theorem gives is actually linear over GF(2). Setting the
parameters appropiately, we get the following corollaries:

Corollary 4.4 ([Tre01, RRV02]). For every n ∈ N, constants r > 0, γ < 1, there is an explicit

(nγ , n−r)-strong linear seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}nγ′

with d = O(log(n)).

Corollary 4.5 ([Tre01, RRV02]). For every n, k ∈ N , there is an explicit (k, ε)-strong linear seeded

extractor Ext : {0, 1}n × {0, 1}d → {0, 1}Ω(k) with d = O(log2(n/ε)).

If we need to get almost all of the randomness in the source out, the following corollary is available.

Corollary 4.6 ([Tre01, RRV02]). For every n, k ∈ N, ε > 0, there is an explicit strong seeded extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}k−O(log3(n/ε)) for min-entropy k and error ε, with d = O(log3(n/ε)).

4.1 Affine Source Extractors

We need the following theorem of Bourgain:

Theorem 4.7 ([Bou07]). For every constant δ > 0, there exist constants γ, β > 0 and a polynomial

time computable function Bou : {0, 1}n → {0, 1}βn s.t. for every affine source X of entropy δn, Bou(X)
is 2−γn-close to uniform.

5

4.2 ε-Biased Spaces

An ε-Biased distribution is a distribution that is pseudorandom for linear functions.

Definition 4.8 (ε-Biased Distribution). A distribution X over {0, 1}n is ε-biased if for every non-zero
element v ∈ {0, 1}n, v ·X is ε-close to uniform.

Another concept we will need is the concept of ε-biased distributions for low weight tests.

Definition 4.9 (ε-Biased for Low-Weight). A distribution X over {0, 1}n is ε-biased for linear tests of

size w if for every non-zero element v of {0, 1}n whose weight is at most w, v ·X is ε-close to uniform.

Explicit constructions of such distributions with very small support have been given in [NN93,
AGHP92]. A construction in [AGHP92] gives a distribution that is ε-biased for weight w tests that
can be generated using a seed of length 2 · dlog(1/ε) + log w + log log ne.

Given any such ε-biased distribution with small seed length, let P : {0, 1}n → {0, 1}t be the linear
map whose i’th bit is the dot product of the input with the i’th element of the ε-biased distribution.
Then we see that if P (x) = 0, x must have weight larger than w. In other words, P is the parity check
of some code of distance larger than w.

5 Condensing Affine Somewhere Random Sources

In this section we prove the following theorem:

Theorem 5.1 (Affine Somewhere Random Extractor). There exists a polynomial time computable

function Ext : {0, 1}rt → {0, 1}r−r0.9
with the property that for every affine t × r somewhere random

source X with t ≤ r0.7, AffineExt(X) is 2−rΩ(1)
-close to uniform.

We shall rely on two earlier works to get our results. The first is a construction of a linear seeded
extractor, mentioned in Corollary 4.6. The second is a construction of an affine source extractor for
any constant entropy rate — Theorem 4.7. We will obtain our extractor by repeatedly condensing the
source we are working with — starting with an affine somewhere random source, we shall iteratively
reduce the number of rows in it until we are left only with random bits. We do this with the following
algorithm:

6

Algorithm 5.2 (AffineCondense(x)).

Input: x — a t× r matrix with t ≤ r0.7.
Output: y — a dt/2e ×m matrix, with m = r − r0.9.

Sub-Routines and Parameters:

Let w = r0.1.
Let Ext : {0, 1}rt × {0, 1}w → {0, 1}m be the strong seeded extractor from Corollary 4.6, set up to

extract m = r − r0.9 bits from a min-entropy r − 100wr0.7 source with error ε = 2−rΩ(1)
.

Let Bou : {0, 1}2w × {0, 1}2w → {0, 1}d be the extractor from Theorem 4.7, set up to extract from
entropy rate 1/2.
Recall the definition of a slice of a somewhere random source — Definition A.6.

1. Let z be the dt/2e× 2r matrix obtained by concatenating pairs of rows in Slice(x,w), i.e., the
i’th row zi is Slice(x,w)2i−1,Slice(x,w)min{2i,t}

2. Let s be the dt/2e × d matrix whose i’th row is Bou(zi).

3. Let y be the dt/2e ×m matrix whose i’th row is Ext(x, si).

We can then show that the output of this algorithm is close to a convex combination of affine
somewhere random sources:

Lemma 5.3. For any affine t×r somewhere random source X, with t ≤ r0.7, then AffineCondense(X)

is 2−rΩ(1)
-close to a convex combination of affine somewhere random sources.

Proof. Let Z = Slice(X,w) as in the algorithm. Then note that Slice(·, w) is a linear function. Thus,
by Lemma A.7, there must exist affine sources A,B with X = A+ B, H(B) ≥ r− tw, and Slice(B,w)
is the all zero matrix with probability 1. In particular, this implies that Z = Slice(X,w) = Slice(A,w)
is independent of B.

Now, since X was somewhere random, there must exist an index h for which Zh is an affine source
with min-entropy rate 1/2. Then, if β is the error of Bou, we get that:

|Bou(Zh)− Ud| < β (1)

Since Ext is a linear seeded extractor, for any u ∈ {0, 1}d we have that Ext(X,u) = Ext(A+B,u) =
Ext(A,u) + Ext(B,u). Note that for every fixing of Z, the output the algorithm is a linear function
of the rest of the source. Thus Y |Z = z is affine. All that remains to be shown is that with high
probability over the choice of z ←R Z, the source Y |Z =z is also somewhere random.

By Proposition 4.2, we get that

Pr
u←RUd

[|Ext(B,u)− Um| > 0] < ε

⇒ Pr
sh←RBou(Zh)

[|Ext(B, sh)− Um| > 0] < ε + β (2)

Since B is independent of Z, we have that for any z ∈ supp(Z), u ∈ {0, 1}d, (Ext(X,u)|Z = z) =
Ext(B,u) + (Ext(A,u)|Z = z). Since A is completely determined by Z, Ext(X,u)|Z = z is uniform
exactly when Ext(B,u) is uniform.

7

Pr
z←RZ

[|Ext(X|Z =z,Bou(zh))− Um| > 0]

≤ Pr
z←RZ

[|Ext(B,Bou(zh))− Um| > 0]

< ε + β by Equation 2

= 2−rΩ(1)

This completes the proof.

Given this condenser, we can use it repeatedly to get an extractor.

Algorithm 5.4 (AffineSRExt(x)).

Input: x — a t× r matrix with t ≤ r0.7.
Output: z — an m bit string, with m ≥ r − r0.95.

1. If x has only one row, output x.

2. Else, set y to be the output of AffineCondense(x).

3. Set x = y and go to the first step.

It’s clear that the extractor succeeds. We will need to run AffineCondense at most log t times,
which is insignificant compared to the error in each step and the reduction in the length of each of the
rows. This completes the proof of Theorem 5.1.

6 Converting Low-Weight Affine Sources into Affine Somewhere

Random Sources

In this section, we show how to convert any low-weight affine source, into an affine source over fewer
bits that still has entropy. We simply apply the parity check matrix of a good linear error correcting
code to the sample from the affine source. Suppose we are dealing with an affine source of weight w
and entropy k.

Lemma 6.1. Let 0 < α < 1 be any constant and P : {0, 1}n → {0, 1}t be the parity check function

for any linear error correcting code of distance greater than wkα. Let X be any weight w affine source

with entropy k. Then P (X) is an affine source with entropy at least kα.

Proof. First note that P (X) is clearly an affine source, since it is obtained by applying a linear function
to an affine source. It remains to show that P (X) has the promised entropy. To see this, let v1, . . . , vk

be a weight w basis for X. Then we see that every vector in the span of v1, . . . , vkα has weight at most
wkα. Thus, P is injective over this subspace. P (X) is thus an affine source with a support of size at
least 2kα

, which means that P (X) has entropy at least kα.

8

As our discussion in Section 4 shows, we can set ε = 1/4 to get such a function P with output
length

t = 22dlog(1/ε)+log(wkα)+log log ne ≤ O(w2k2α log2 n)

We can now use a linear seeded extractor to convert a low-weight affine source into an affine
somewhere random source with few rows.

Algorithm 6.2 (LowConvert).

Input: x ∈ {0, 1}n.
Output: z, a

√
k × kΩ(1) boolean matrix.

Sub-Routines and Parameters:

Let α ∈ (0, 1) be some constant that we shall set soon. Let P : {0, 1}n → {0, 1}O(w2k2α log2 n) be as
in the discussion above.
Let Ext : {0, 1}t × {0, 1}O(log t) → {0, 1}kΩ(1)

be the linear seeded extractor for min-entropy kα

promised by Corollary 4.4. We can set w = kΩ(1) and α to be small enough so that the seed length
is less than log k/2 and the error of the extractor is less than 1/2.

1. For every seed i ∈ {0, 1}d, let zi = Ext(P (x), i).

Lemma 6.3. There exists a constant β < 1/2 such that if X is any weight kβ affine source with

entropy k, LowConvert(X) is a
√

k × kβ affine somewhere random source.

Proof. By our discussion above, P (X) is an affine source with entropy at least kα. Thus the prop-
erties of Ext guarantee that one of the rows in the output is close to uniform, which implies (by
Proposition 4.2) that this row is uniform.

Unfortunately, this affine somewhere random source is not good enough, since its rows are not
long enough for us to apply the extractor from Theorem 5.1. Still, we can use this source to turn our
original source into a somewhere random source of the right shape via the following algorithm:

Algorithm 6.4 (AffineConvert).

Input: x ∈ {0, 1}n.
Output: z, a

√
k ×m boolean matrix with m = k − o(k).

Sub-Routines and Parameters:

Let LowConvert, β be as in Lemma 6.3, set up to work with entropy k.
Let Ext : {0, 1}n × {0, 1}kβ → {0, 1}m be the linear seeded extractor from Corollary 4.6 set up to
extract k − kγ bits from entropy k − k1/2+β with error 2−kγ

for some constant γ > 0.

1. Let z be the matrix whose i’th row is Ext(x,L(x)i)

We will then prove the following theorem:

9

Theorem 6.5. Let X be a weight kβ affine source over {0, 1}n with entropy k. Then

AffineConvert(X) is 2−kΩ(1)
-close to being a convex combination of affine somewhere random sources.

Note that L(X)i is not independent of X, in fact it is completely determined by X! Thus it seems
strange that we can prove anything about the distribution of Z. The key point is that L(X)i is a
linear function of X. We can use this to show that even though these two are not independent, we
can analyze them as if they are independent.

Proof. We will use Lemma A.7. By the lemma, we can write X = A + B where H(B) ≥ k − k1/2+l,
and B is completely independent of L(X) = L(A).

Note that for any fixing of L(X) = L(A) = s, the output of our algorithm is an affine source.
Let h be an index such that L(X)h is uniformly random. Then we see that

Pr
s←RL(A)

[|Ext(B, s)− Um| = 0] < 2−kΩ(1)

But this implies that

Pr
s←RL(X)

[|Ext(X, s)|L(X) = s− Um| = 0] < 2−kΩ(1)

since Ext(X, s) = Ext(A, s) + Ext(B, s) and so is uniform as long as Ext(B, s) is uniform.

Thus for 1− 2−kΩ(1)
fraction of s, the output is a somewhere random affine source.

7 The Extractor

To get the final extractor, we simply compose the algorithm from the last section with our extractor
for somewhere random sources, which we discussed in Section 5.

This gives us the following theorem:

Theorem 7.1. There exist constants α, β > 0 and a polynomial time computable function AffineExt :
{0, 1}n → {0, 1}m which is an extractor for affine sources with entropy k, weight kβ , error 2−kΩ(1)

and

output length k − k1−α.

References

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of al-
most k-wise independent random variables. Random Structures and Algorithms, 3(3):289–
304, 1992.

[BKS+05] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simu-
lating independence: New constructions of condensers, Ramsey graphs, dispersers, and
extractors. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
pages 1–10, 2005.

[Bla96] Matt Blaze. High-bandwidth encryption with low-bandwidth smartcards. Lecture Notes

in Computer Science, 1039:33–??, 1996.

10

[Bou07] Jean Bourgain. On the construction of affine-source extractors. Geometric and Functional

Analysis, 1:33–57, 2007.

[Boy99] Victor Boyko. On the security properties of OAEP as an all-or-nothing transform. Lecture

Notes in Computer Science, 1666:503–518, 1999.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In Bart Preneel, editor, Advances in

Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science,
pages 453–469. Springer-Verlag, May 2000.

[CFG+85] Benny Chor, Joel Friedman, Oded Goldreich, Johan H̊astad, Steven Rudich, and Roman
Smolensky. The bit extraction problem or t–resilient functions. In Proceedings of the 26th

Annual IEEE Symposium on Foundations of Computer Science, pages 396–407, 1985.

[Dod00] Yevgeniy Dodis. Exposure-resilient cryptography. PhD thesis, Massachusetts Institute of
Technology, Dept. of Electrical Engineering and Computer Science, 2000.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Serge Vaudenay, edi-
tor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 486–503.
Springer, 2006.

[GR05] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields.
In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science,
2005.

[GRS04] Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for bit-fixing sources
by obtaining an independent seed. In Proceedings of the 45th Annual IEEE Symposium

on Foundations of Computer Science, 2004.

[JSY99] Markus Jakobsson, Julien P. Stern, and Moti Yung. Scramble all, encrypt small. Lecture

Notes in Computer Science, 1636:95–111, 1999.

[KZ] Jesse Kamp and David Zuckerman. Deterministic extractors for affine sources from bent
functions. Manuscript.

[KZ07] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM Journal on Computing, 36(5):1231–1247, 2007.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, August 1993.

[Rao06] Anup Rao. Extractors for a constant number of polynomially small min-entropy indepen-
dent sources. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
2006.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing
the error in trevisan’s extractors. jcss, 65(1):97–128, 2002.

[Riv97] Ronald Rivest. All-or-nothing encryption and the package transform. Lecture Notes in

Computer Science, 1267:210–??, 1997.

11

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages
860–879, 2001.

A Preliminaries

Definition A.1. Let D and F be two distributions on a set S. Their statistical distance is

|D − F | def
= max

T⊆S
(|D(T)− F (T)|) =

1

2

∑

s∈S

|D(s)− F (s)|

If |D − F | ≤ ε we shall say that D is ε-close to F .

This measure of distance is nice because it is robust in the sense that if two distributions are close
in this distance, then applying any functions to them cannot make them go further apart.

Proposition A.2. Let D and F be any two distributions over a set S s.t. |D − F | ≤ ε. Let g be any

function on S. Then |g(D)− g(F)| ≤ ε.

Definition A.3 (Min-Entropy). The min-entropy of a distribution X (denoted by H∞(X)) is said to
be k if the heaviest point in its support has probability 2−k.

Definition A.4 (Affine Source). A source X is called an affine source if it gives uniformly random
point in some affine subspace V ⊂ F

n of a vector space over a finite field F.

Note that for an affine source X, H∞(X) = H(X), i.e., the min-entropy and entropy are the same.

Definition A.5 (Affine Somewhere Random Source). A source X is called an affine t× r somewhere

random source if it is a an affine source giving samples which are t × r matrices with entries from a
finite field F, such that one row Xi of the source is uniformly distributed.

Sometimes our constructions will need to take a small subset of the bits of a somewhere random
source, called a slice:

Definition A.6. Given ` strings of length n, x = x1, . . . , x`, define Slice(x,w) to be the string
x′ = x′1, . . . , x

′
` such that for each i x′i is the prefix of xi of length w.

The following basic lemma will be key to our results about affine sources:

Lemma A.7 (Affine Conditioning). Let X be any affine source on {0, 1}n with entropy k. Let L :
{0, 1}n → {0, 1}m be any linear function. Then there exist independent affine sources A,B such that:

• H(A) ≤ m.

• H(B) ≥ k −m.

• X = A + B.

• For every b ∈ supp(B), L(b) = 0.

Proof. Without loss of generality, assume the support of X is a linear subspace (if not, we can do
the analysis for the corresponding linear subspace). Let B be the linear source whose support is
{x ∈ supp(x) : L(x) = 0}. Let b1, . . . , bt be a basis for B. Then we can complete this basis to get a
basis for X. Let A be the span of the basis vectors in the completed basis that are not in B. Thus
X = B + A.

Note that H(A) ≤ H(L(A)) since L(a) 6= 0 for every a ∈ supp(A). Thus, H(A) ≤ m. This then
implies that H(B) ≥ H(X)−H(A) ≥ k −m.

12

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Applications to Cryptography

	Previous Work and Our Results
	Techniques
	Building Blocks
	Affine Source Extractors
	-Biased Spaces

	Condensing Affine Somewhere Random Sources
	Converting Low-Weight Affine Sources into Affine Somewhere Random Sources
	The Extractor
	Preliminaries

