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Abstract

The sign-rankof a matrix A = [Ajj] with +1 entries is the least rank
of a real matrixB = [B;;] with A;jjBj; > 0 for all i, j. We obtain the first
exponential lower bound on the sign-rank of a functiod&’. Namely, let
f(xy) = AL, \/rj”:zl(xij A yij). We show that the matrixf[(x, y)]x, has sign-
rank 2XM_ This in particular implies thaS® ¢ UPP®C, which solves a long-
standing open problem posed by Babai, Frankl, and Simor6)198

Our result additionally implies a lower bound in learningahy. Specif-
ically, let ¢1,...,¢r : {0,1}" — R be functions such that every DNF
formula f : {0,1}" — {-1,+1} of polynomial size has the representation
f = sign@u¢s + - + a¢r) for some realsy, ..., a,. We prove that then
r > 220"°) which essentially matches an upper bound 82 due to
Klivans and Servedio (2001).

Finally, our work yields the first exponential lower bound the size
of threshold-of-majorityircuits computing a function iAC°. This substan-
tially generalizes and strengthens the results of KrauddPamllak (1997).
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1 Introduction

The sign-rank of a real matrixA = [Ajj] with nonzero entries is the least rank
of a matrix B = [B;j;] with A;jBj; > O for all i, j. In other words, the sign-
rank measures the stability of the rankAfs its entries undergo arbitrary sign-
preserving perturbations. This fundamental notion has lsedied in contexts
as diverse as matrix analysis, communication complexitguit complexity, and
learning theory [3,5, 12,13, 23, 29, 38,45, 48]. We will givdetailed overview of
these applications shortly as they pertain to our work.

Despite its importance, progress in understanding thersigk has been slow
and dificult. Indeed, we are aware of only a few nontrivial results tbis
subject. Alon et al. [3] obtained strong lower bounds on flga-sank of random
matrices. In a breakthrough result, Forster [12] provednsirlower bounds on
the sign-rank of Hadamard matrices (more generally, Fdsstesult applies to
any +1 matrix with small spectral norm). Several extensions afthements of
Forster's method were proposed in subsequent work [139]4,More recently,
Sherstov [48] obtained near-tight estimates of the sig-far all matrices of the
form [D(IXA yl)]x,, whereD : {0,1,...,n} — {-1,+1} is given andx, y range over
{0, 1}".

This paper focuses 0AC®, a prominent class whose sign-rank has seen no
progress in previous work. For notational convenience, iew Boolean functions
as mappings intd—-1, +1}, as opposed to the usual ranf@ 1}. The central
objective of our study is to estimate the maximum sign-rarkmatrix [f (X, y)]x,.
wheref : {0, 1}" x {0, 1})" — {1, +1} a function inAC°. An obvious upper bound
is 2", while the best lower bound prior to this paper was quasipmtyiall Our
main result considerably tightens the gap by improving ¢ineer bound to g(n').

Theorem 1.1 (Main result). Let fn(X,y) = ALy \/T‘:Zl(xij A yij). Then the matrix
[fm(X, ¥)]x, has sign-rankeMm.

It is not difficult to show that the matrix in Theorem 1.1 has sign-raf#"9m
i.e., the lower bound we prove is almost tight. (See Rematkfér details.)
Moreover, it is essential that the circuit in question hastidat least 3: one readily
verifies thatAC? circuits of depth 1 or 2 lead to at most polynomial sign-rank.
Our main result states thaC® contains matrices whose rank is rather stable
in that it cannot be reduced belo®®") by any sign-preserving changes to the
matrix entries. We proceed to discuss applications of tis fo communication
complexity, learning theory, and circuits.

1The quasipolynomial lower bound is immediate from Forsterork [12] and the fact thakC°
can computenNer ProbucT MopULO 2 0N lod n variables, for every constant> 1.



1.1 Communication Complexity

The study of the sign-rank is synonymous with the studyunlbounded-error
communication complexitg, rich model introduced by Paturi and Simon [38]. Fix
a functionf : X x Y — {0, 1}, whereX andY are some finite sets. Alice receives
an inputx € X, Bob receiveg, € Y, and their objective is to computgx, y) with
minimal communication. The two parties each have an urdidtrivate source of
random bits which they can use in deciding what messagestb $&eir protocol
is said tocompute fif on every input &, y), the output is correct with probability
greater than /2. Thecostof a protocol is the worst-case number of bits exchanged
on any input &, y). Theunbounded-error communication complexafyf, denoted
U(f), is the least cost of a protocol that compufes

The unbounded-error model occupies a special place inldg sf communi-
cation because it is more powerful than almost any othedaramodel (determin-
istic, nondeterministic, randomized, quantum with or withentanglement). More
precisely, the unbounded-error complexity{f) can be only negligibly greater
than the complexity of in any of these models—and oftdd(f) is exponentially
smaller. We defer exact quantitative statements to AppefdiThe power of the
unbounded-error model resides in its very liberal accemtamiterion: it sffices
to produce the correct output with probability even sliglgteater than 12 (say,
by an exponentially small amount). This contrasts with #deo models, where the
correct output is expected with probability at leags.2

Also unlike other models of communication, the unboundedremodel has
an exact matrix-analytic formulation. Lét: XxY — {0, 1} be a given function and
M = [(~1) )] yex yev its communication matrix. Paturi and Simon [38] showed
that

U(f) = logsign-rankM) = O(1).

In other words, unbounded-error complexity and sign-rarekessentially equiva-
lent notions. In this light, our main result gives the firstypmmial lower bound
on the unbounded-error complexity AC°:

Corollary 1.2 (Unbounded-error communication complexity of AC?). Let
(% ) = Al VT1(%5 A ). Then W) = Q(m).

Corollary 1.2 also solves a long-standing problem in comication com-
plexity. Specifically, the only models for which simulatiimn the unbounded-
error model were unknown had been developed in the semimedrdzy Babai,
Frankl, and Simon [4]. These models are based on alternatich mimicry
classePH and PSPACE, and Babai et al. asked [4, last par. on p. 345] whether
X5° C UPP. Forster [12] made substantial progress on this questiawjqy that



PSPACE®® ¢ UPP®C. We resolve the original question completely: Corollary 1.2
immediately implies thaES® ¢ UPP,

1.2 Learning Theory

In a seminal paper [52], Valiant formulated tpeobably approximately correct
(PAC) model of learning, now the primary model in computagiblearning theory.
Research has shown that PAC learning is surprisingiycdit. (By “PAC learn-
ing,” we shall always mean PAC learning under arbitraryriigtions.) Indeed,
the learning problem remains unsolved for such natural goinclasses as DNF
formulas of polynomial size and intersections of two hadfsgs, whereas hardness
results and lower bounds are abundant [11, 20, 22, 24—26].

One concept class for whichfeient PAC learning algorithms are available
is the class ohalfspacesi,i.e., functionsf : R" — {-1,+1} representable as
f(X) = sign@ix1+- - - +apnX, — 6) for some realsy, . . ., a,, . Halfspaces constitute
one of the most studied classes in computational learnegry{6,31,35,44] and a
major success story of the field. Indeed, a significant parbofputational learning
theory attempts to learn rich concept classes by reducing tio halfspaces. The
reduction works as follows. L&t be a givenconcept classi.e., a set of Boolean
functions{0, 1}" — {-1, +1}. One seeks functiongs, ..., ¢, : {0,1}" —» R such
that everyf € C has the representatiol(xX) = sign@i¢1(X) + - - - + a; ¢ (X)) for
some realsa,...,a. This process is technically described embeddingC in
halfspaces of dimension ©Once this is accomplished; can clearly be learned
in time polynomial inn andr by any halfspace-learning algorithm.

For this approach to be practical, the numbeif real functions needs to be
reasonable (ideally, polynomial m). It is therefore of interest to determine what
natural concept classes can be embedded in halfspaces dirension [5, 25].
For brevity, we refer to the smallest dimension of such aesgmtation as the
dimension complexitgf a given class. Formally, the dimension complexity@c(
of a given clasg of functions{0,1}" — {-1,+1} is the leastr for which there
exist¢1,...,¢r : {0,1}" — R such that everyf € C is expressible ag(x) =
sign@ig1(X) + - - - + a;¢r (X)) for some realsy, . .., a,. To relate this discussion to
sign-rank, letM¢ = [ f(X)] tec, xeo,1n b€ the characteristic matrix 6f A moment’s
reflection reveals that d€j = sign-rank(M¢), i.e., the dimension complexity of
a concept class is precisely the sign-rank of its charatieninatrix. Indeed, the
term “dimension complexity” has been used interchangeuaiitly sign-rank in the
recent literature [45, 50], which does not lead to confusimte concept classes
are naturally identified with their characteristic matsce

Thus, the study of sign-rank yields nontrivial PAC learnigigorithms. In
particular, the current fastest algorithm for learningypoimial-size DNF for-



mulas, due to Klivans and Servedio [23], was obtained pedcisy placing an
upper bound of 9" on the dimension complexity of that concept class, with the
functions¢; corresponding to the monomials of degree upta'’3).

Klivans and Servedio also observed that theé¥"?) upper bound is best
possible when the functiong are taken to be the monomials up to a given degree.
Our work gives a far-reaching generalization of the lattesesvation: we prove
the same lower bound without assuming anything whatsoégrtahe embedding
functionsg;. That is, we have:

Corollary 1.3 (Dimension complexity of DNF). LetC be the set of all read-once
(hence, linear-si2eDNF formulas f: {0,1}" — {-1, +1}. ThenC has dimension
complexity2®(™?),

Proof. Let fm(X, y) be the function from Theorem 1.1, whare= |n'/3]. Then for
any fixedy, the resulting functiorf,(x) = - fn(X, y) is a read-once DNF formula.
O

Learning polynomial-size DNF formulas was the original lrege posed in
Valiant’s paper [52]. More than twenty years later, thisligrge remains a central
open problem in computational learning theory despitevactsearch 7,23, 51].
To account for this lack of progress, several hardnessteelale been obtained
based on complexity-theoretic assumptions [2,22]. Cargll.3 complements that
line of work by exhibiting a concretstructural barrier to the &icient learning of
DNF formulas. In particular, it rules out &9 time learning algorithm based on
dimension complexity.

While restricted, the dimension-complexity paradigm igcich and captures
many dficient PAC learning algorithm designed to date, with the bletaxception
of learning low-degree polynomials over Gij(It is also worth noting [21, p. 124]
that an unconditional superpolynomial lower bound for iéagy polynomial-size
DNF formulas in thestandardPAC model would imply thaP # NP; thus, such a
result is well beyond the reach of the current techniques.

1.3 Threshold Circuits

Recall that ahreshold gatey with Boolean inputs«, ..., X, is a function of the
form g(x) = sign@uXxi + - - - + ayxn — 0), for some fixed realgy, ..., a,, 6. Thus, a
threshold gate generalizes the familiaajority gate. A major unsolved problem in
computational complexity is to exhibit a Boolean functitwattrequires a depth-2
threshold circuit of superpolynomial size.

Communication complexity has been crucial to the progresthis problem.
Through randomized communication complexity, many expfienctions have



been found [15, 16, 33, 46, 47] that requirejority-of-thresholdcircuits of ex-
ponential size. This solves an important case of the gemeaddlem. Lower
bounds for the unbounded-error model (or, equivalentlythensign-rank) cover
another important case [13], that thireshold-of-majoritycircuits. The following
statement is immediate from our main result, in view of thekuay Forster et
al. [13, Lem. 5]:

Corollary 1.4 (Threshold circuits). Let fn(x.y) = A, \/'J-Tfl(xij A yij). Let C
be a depth2 threshold circuit, with arbitrary weights at the top gatedaimteger
weights of absolute valug w at the bottom gates. If C computeg, then it has
size2m /),

This is the first exponential lower bound ftireshold-of-majoritycircuits
computing a function imCP. It substantially generalizes and strengthens an earlier
result of Krause and Pudlak [27, Thm. 2], who proved an egptal lower bound
for threshold-of-MOD circuits (for any constant > 2) computing a function
in AC®. Our work also complements exponential lower boundsrf@jority-of-
thresholdcircuits computing functions iC°, obtained recently by Buhrman et
al. [8] and Sherstov [47,49].

Theorem 1.1 immediately implies lower bounds for other sgasof depth-2
circuits, e.g., those with a threshold gate receiving isfitdm arbitrary symmetric
gates. Rather than formulate these statements as theosermefer the reader to
the work by Forster et al. [136] for details on how the sign-rank relates to those
other circuit models.

1.4 Our Proof and Techniques

Figure 1 illustrates the main components of our proof. Atstgrpoint in our

study is an elegant result due to Minsky and Papert [31], vamsitucted a linear-
size DNF formula that cannot be sign-represented by polyalsrmof low degree.
Minsky and Papert’'s observation has played an importam irolseveral other
works [27,36,47,49].

Second, we revisit a fundamental technique from approximaheory, the
interpolation boundwhich bounds a univariate polynomiple Py on an interval
based on the values gfatd + 1 distinct points. By combining the interpolation
bound with an adapted version of Minsky and Papert’s argtimenestablish a key
intermediate result (Lemma 3.3). This result concerns isaulite polynomials
that have nonnegligible agreement with the Minsky-Papgrttion and constrains
their behavior on a large fraction of the inputs.

We proceed by deriving a Fourier-theoretic property comioad! low-degree
multivariate polynomials or0, 1}": we show that their values of0, 1}" can
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Figure 1: Proof outline.

be conveniently bounded in terms of their behavior on certamhall subcubes
(Lemma 3.2). In light of this Fourier-theoretic observatiour intermediate result
on multivariate polynomials takes on a much stronger forramily, we prove
that multivariate polynomials with any nontrivial agrearhavith the Minsky-
Papert function are highly constraingttoughoutthe hypercube (Theorem 3.4).
With some additional work in Section 4, we are able to dedheeekistence of a
smooth distribution orf0, 1}" with respect to which the Minsky-Papert function is
orthogonal to all low-degree polynomials. From this, weadfbbur main result by
suitably modifying the analysis in Forster's fundamentapgr on sign-rank (see
Section 5 and Appendix B).

The techniques of our proof seem to be of independent iritekédgltivariate
polynomials on{0, 1}" arise frequently in the complexity literature and pose a
considerable analytical challenge. A solution that weoidtice is to project a
multivariate polynomial in several ways to univariate paynials, study the latter
objects, and recombine the results using Fourier-theot@is (see Section 3). To
our knowledge, this approach is novel and shows promise e general contexts.



2 Preliminaries

All Boolean functions in this paper are represented as nmgsg0, 1}" — {-1, +1},
where-1 corresponds to “true.” For € {0, 1}", we definglx] = Xg + Xo + -+ + Xn.
The symbolPq stands for the set of all univariate real polynomials of éegup to
d. By the degree of enultivariatepolynomial, we will always mean its total degree,
i.e., the greatest total degree of any monomial. The natdtiprefers to the set
{1,2,...,n}. Set membership notation, when used in the subscript of aacéiion
operator, means that the expectation is taken with respeletiniformly random
choice of an element from the indicated set.

2.1 Matrix Analysis

The symbolR™" refers to the family of alm x n matrices with real entries. The
(i, )th entry of a matrixA is denoted byA;. We frequently use “generic-entry”
notation to specify a matrix succinctly: we wrike= [F(i, j)]i,; to mean that the
(i, )th entry of A is given by the expressioR(i, j). In most matrices that arise in
this work, the exact ordering of the columns (and rows) eléwvant. In such cases
we describe a matrix by the notatioR(f, j)]ici, je3, Wwherel andJ are some index
sets.

Let A = [A;] € R™" be given. We lef|All. def max j |Aij| and denote the
singular values oA by o1(A) > 02(A) > - - - = Tminimn)(A) > 0. The notation| - |2
refers to the Euclidean norm of vectors. Recall thatgbectral norm, trace norm,
andFrobenius nornof A are given by

AL = max [IAXl> = a(A),
XeRM, [IX2=1
IAls =) ai(A),

1A = > A2 = > aar

An essential property of these norms is their invarianceesundhogonal transfor-
mations on the left and on the right, which incidentally exp$ the alternative
expressions for the spectral and Frobenius norms giveneabdhe following
relationship follows at once by the Cauchy-Swartz inedyali

lAlls < [JAllE v/rank(@) (A e R™M), (2.1)

For A, B € R™" we write (A, B) def %.i.j AijBij. A useful consequence of the

singular value decomposition is:

(A.B) < [IAIlBllz (A, BeR™"). (2.2)



The Hadamard producof A andB is the matrixA o B = [AjjBjj]. The symbolJ
stands for the all-ones matrix, whose dimensions will beaagt from the context.
The notationA > 0 means that all the entries &are nonnegative. The shorthand
A # 0 means as usual thAtis not the zero matrix.

2.2 The Fourier Transform over Z5

Consider the vector space of functiof3 1}" — R, equipped with the inner

product
def

(.99 S 27" > 1(Xg(x).
Xe(0,1)n
ForS C [n], defineys : {0, 11" — {=1,+1} by xs(X) = (-=1)%i<sX. Then{ys}scn
is an orthonormal basis for the inner product space in quests a result, every
function f : {0, 1})" — R has a unigue representation of the form

109 = ) f(S)xsM,

Scn]

wheref(S) d:ef<f,)(g>. The realsf(S) are called théourier cogficients of f The
following fact is immediate from the definition df(S):

Proposition 2.1. Let f: {0,1}" — R be given. Then

3 -n
maxf(s) <2 > 1f()
xe{0,1}"

2.3 Symmetric Functions

Let S, denote the symmetric group anelements. Forr € S, andx € {0, 1}",
we denote byrx the string & (1), - - -, X-(n)) € {0,1}". A function¢ : {0,1}" —
R is calledsymmetricif ¢(X) = ¢(ox) for everyx € {0,1}" and everyo € S,.
Equivalently,¢ is symmetric ifg(x) is uniquely determined bj|. Observe that for
every¢ : {0, 1}" — R (symmetric or not), the derived function

def

Psym(¥) = aleESn [‘15(0')()]

is symmetric. The symmetric functions ¢@, 1}" are intimately related to uni-
variate polynomials, as demonstrated by Minsky and Papsythmetrization
argument:



Proposition 2.2 (Minsky & Papert [31]). Let¢ : {0, 1}" — R be representable by
a real n-variate polynomial of degree Then there is a polynomial ¢ P, with

E [#ox]=p(x)  vxeio

Minsky and Papert’s observation has seen numerous useslitetiature [1,34,37].
We will need the following straightforward generalization

Proposition 2.3. Let iy, ..., ng be positive integers with ggf ni +---+ ng. Let
¢ : {0,1}" — R be representable by a real n-variate polynomial of degre&/nite
x € {0,1" as x= (xO,...,x0), where ¥) = (Xn,+.tn_ys1s-- - » Xngstn ). ThEN
there is a polynomial p otk of degree at most r such that

E [p(o1x®, . x®)] = p(IXPL . X9 wxe o, 1"

01€S1,...,0kESK

2.4 Sign-rank

Thesign-rankof a real matrixA = [A;;] is the least rank of a matriB = [B;;] such
thatAjjBjj > O for alli, j with Ajj # 0. (Note that this definition generalizes the one
given above in the abstract and introduction, which appiggt to matricesA with
nonzero entries.) In a breakthrough result, Forster [1@ygu the first nontrivial
lower bound on the sign-rank of an expligil matrix. The centerpiece of Forster’s
argument is the following theorem, which is a crucial steygpoint for our work.

Theorem 2.4 (Forster [12], implicit). Let X Y be finite sets and M [My,]xex yey
a real matrix (M # 0). Put r = sign-rank{(M). Then there is a matrix R
[Rey]xexyey Such that:

rankR) =r,
MoR> 0,
IRl < 1,

IRllF = VIXITYI/r.

Appendix B provides a detailed explanation of how Theoremi&.implicit in
Forster’s work.



2.5 Pattern Matrices

Pattern matricesarose in earlier works by Sherstov [47,49] and proved useful
obtaining strong lower bounds on communication complextylevant definitions
and results from [49] follow.

LetnandN be positive integers with | N. Split [N] into n contiguous blocks,
with N/n elements each:

[N]={LZ,...,N}U{N+1,...,ﬁ}u---u{(n_l)N +1,...,N}.
n n n

n

Let V(N, n) denote the family of subse¥ C [N] that have exactly one element
from each of these blocks (in particulév] = n). Clearly,|'V(N, n)] = (N/n)". For
a bit stringx € {0, 1}N and a seV € V(N, n), define theprojection of x onto \by

def
XlV :e (Xil, Xi27 LR Xin) € {0’ 1}n’

wherei; < is < --- < ip are the elements &f

Definition 2.5 (Pattern matrix). For¢ : {0, 1}" — R, the (N, n, ¢)-pattern matrix
is the real matrixA given by

A= [¢(X|V ® w)]xe{o,l}N,(V,w)e(V(N,n)x{O,l}" :

In words, A is the matrix of size ® by (N/n)"2" whose rows are indexed by strings
x € {0, 1}V, whose columns are indexed by paiké) € V(N,n) x {0,1}", and
whose entries are given By ) = ¢(Xlv & w).

The logic behind the term “pattern matrix” is as follows: agsair arises from
repetitions of a pattern in the same way thaarises from applications af to
various subsets of the variables. We will need the followéxgression for the
spectral norm of a pattern matrix.

Theorem 2.6 (Sherstov [49, Thm. 4.3])Let¢ : {0,1}" — R be given. Let A be
the (N, n, ¢)-pattern matrix. Then

Al = y2en (R gng?n>]<{|$(8)|(§)'s'/2}.

10



3 A Result on Multivariate Approximation

The purpose of this section is to establish a certain prpmétow-degree polyno-
mials onR™ (Theorem 3.4). This property is the backbone of our mainfproo

A starting point in our discussion is anterpolation bound,.e., a bound
on the values of a polynomial on an interval given its valupsadfinite set of
points. Results of this general form arise routinely in agpmation theory. To
prove the specific statement of interest to us, we follow thesical technique of
interpolating the polynomial at strategically chosen reodeor other uses of this
technique, see Cheney [§, Lem. 1] and Rivlin [43, Thm. 3.9].

Lemma 3.1 (Interpolation bound). Let | c R be an interval of length LLet p be
a polynomial of degree & L such that

Ip(xi)l < 1 (i=01,....d),

where ¥, X1, ..., X4 € | are some points with pairwise distances at lehsthen

max|p(x)| < Zd(L).
Xel d

Proof. Without loss of generality, assume that< x; < --- < Xg. Fix X € 1. For
anyk € {0,1,...,d}, we have:

d
[ [Ix=xl<LL-1)--(L-d+1)

i=0
i#k

and (sincgx; — Xg| = i — k)

[ Tixe = %1 > kid - Ky,

Therefore,
4 X=Xl _LL-1)(L-d+1) _(L\d
L L 1% = xil h Ki(d - k)! “\d\k/)
ik

It remains to substitute this estimate in the Lagrange poletion formula:

d d X=X L d d L
P =) p(X) <( ) ( ): 2"( ) O
k; ka—xi d Z k d

i=0 k=0
izk

11



We now establish another auxiliary fact. It provides a coiwet means to
bound a function whose Fourier transform is supported ordoer characters, in
terms of its behavior on low-weight inputs.

Lemma 3.2. Let k be an integef < k< n-1 Let f: {0,1}" - R be given with
f(S) = 0for |S| > k. Then

(1M < 2k(E) max| f(¥).

IxI<k

Proof. Define the symmetric functiop : {0,1}" — R by g(X) = xy(X)p(IX),
where

def t—i
p(t) = —.
k<i<n n-I
The following properties o§ are immediate:
g(1") = (-1)", (3.1)
g(x)=0 k<Ix<n), (3.2)
g9(8)=0 (S| < k). (3.3)
Furthermore,
S K n\(n—t-1 n
_ _ —i- k
Yo=Y (o= (Tl <2 e
X<k t=0 t=0
We are now prepared to analyte By (3.3),
> f(¥g(x) =0, (3.5)

xe{0,1}"

On the other hand, (3.1) and (3.2) show that

D0 g0 = (1M + D F(g(9). (3.6)
xe{0,1}n [X<k
The lemma follows at once from (3.4)—(3.6). O

We are now in a position to study the approximation problenmtafrest to us.
Define the sets

Z=1{0,1,2,...,4m"", Z*={1,2,...,4m™

12



DefineF : Z — {-1,+1} by
-1 if Z*
F@={  "X°°"
1 otherwise.

Foru,ze Z letA(u,2 = |{i : U # z}| be the ordinary Hamming distance. We
shall prove the following intermediate result, inspired Mynsky and Papert's
analysis [31] of the threshold degree of CNF formulas.

Lemma 3.3. Let Q be a degree-d real polynomial in m variables, wheke /3.
Assume that
F2Q(2 > -1 (ze 2). 3.7)

Then|Q(2)| < 2™ at every point ze Z* with A(u,z2) < m/3, where u =
(12,32,5%,...,(2m—-1)%) € Z*.

Proof. Fix ze Z* with A(u, 2) < m/3. Definep € Pyg by

p(t) = Q(p1(1), p2(1), ..., Pm(1)),

where

(0) = (t-2i+1) if z = u (equivalently,z = (2i — 1)?),
b= zZ otherwise.

Letting S = {i : u; = z}, inequality (3.7) implies that

pRi-1)> -1 (i€9), (3.8)
p(2i) < 1 (i=01,...,m. (3.9)

Claim 3.3.1. Leti € S. Then|p(¢)| < 1 for somef € [2i — 2,2i — 1].

Proof. The claim is trivial if p vanishes at some point ini[2 2,2i — 1]. In the
contrary casep maintains the same sign throughout this interval. As a te&uB)
and (3.9) show that m{tp(2i - 2)|, |p(2i - 1)} < 1. o

Claim 3.3.1 provides$S| > 2m/3 > 2d > deg(p) points in [Q M|, with pairwise
distances at least &t whichp is bounded in absolute value byBy Lemma 3.1,

o<t<m deg()
This completes the proof sin€g(z) = p(0). O

max |p(t)] < 2deg(p)( m ) < 2mad,
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Finally, we remove the restriction of(u, z), thereby establishing the main
result of this section:

Theorem 3.4.Let Q be a degree-d real polynomial in m variables, wherem/3.
Assume that

F(29Q@3@ > -1 (ze 2).

Then
1Q(2)l < 8™ (ze Z%).

Proof. As before, putu = (12,3%,5%,...,(2m - 1)?). Fix z € Z* and define the
“interpolating” functionf : {0, 1}™ — R by

f(X) = Q(X1z1 + (1 — X1)U1, . .., XmZm + (1 — Xm)Um).

In this notation, we know from Lemma 3.3 tH&{x)| < 2™24 for everyx € {0, 1}™
with |X| < m/3, and our goal is to show that(1™)| < 8™. SinceQ has degred,
the Fourier transform of is supported on characters of order ugtés a result,

1F(A™) < Zd(m) max| f (X)| by Lemma 3.2
d/ Ix<d
< 2’“*30'(:'1) by Lemma 3.3
<8 o

4 A Smooth Orthogonalizing Distribution

An important concept in our work is that of an orthogonaligziistribution. Let
f :{0,1}" — {-1, +1} be given. A distribution: on {0, 1}" is d-orthogonalizingfor
fif

E [f(xxs(®]=0 (Sl < d).

X~

In words, a distributionu is d-orthogonalizing forf if with respect tou, the
function f is orthogonal to every character or order less ttian
This section focuses on the following function frgy 1}4m3 to{-1,+1}:

m 4mP

MPm(x) = A\ \/ xij.

i=1 j=1

14



(Recall that we interpret-1 as “true”.) This function was originally stud-
ied by Minsky and Papert [31] and has played an important ioldater
works [27,36,47,49]. An explicitm-orthogonalizing distribution for MR is
known [47]. However, our main result require®@m)-orthogonalizing distribution
for MP, that is additionallysmooth,i.e., places substantial weight on all but a
tiny fraction of the points, and the distribution given irv[4severely violates the
latter property. Proving the existence of a distributioat ils simultaneousi¥(m)-
orthogonalizing and smooth is the goal of this section (Taen4.1).

We will view an inputx € {0, 1}" = {0, 1}4m3 to MP, as composed of blocks:
x=(x®,..., xXM) where théth block isX") = (X 1, X 2, .. ., X 4ne)- The proof that
is about to start refers to the s@&Z* and the functiorF as defined in Section 3.

Theorem 4.1. There is a%m-orthogonalizing distributiornu for MPy,, such that
©(X) > $8-m2" for all inputs xe {0, 1}" with MPp(x) = —1.

Proof. Let X be the set of all inputs with MR{X) = -1, i.e.,
X={xe(0,":xD 20, ..., XMzo0)

It suffices to show that the following linear program has optimumaai;ﬂ%S‘m:

variables: €>0; u(x) > 0forxe {0,1}"
maximize: €
subject to: Z HOIMPRH(X)xs(X) = 0 for|S| < m/3,

xe(0.) (LP1)
D, HY<L
Xe(0.L)"
u(x) > e2™" for x e X.
For x € {0,1)", we letz(x) = (IXY),...,|XM)); note that MR\(X) = F(z(x)). Since

the function MR, is invariant under the action of the gro®,;2 X - -+ X Sypp, iN
view of Proposition 2.3, the dual of (LP1) can be simplifiedakbws:

variables: a polynomiaD onR™ of degree< m/3;
n>0; ¢6,>0forzeZzZ*

minimize: n

subject to: Z Sz = 2", (LP2)
xeX
F(9Q®@ > -n forze z,
F(9Q@ > -n+4; forze Z*.
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The programs are both feasible and therefore have the saitgediptimum. Fix

an optimal solutiom, Q, 6, to (LP2). For the sake of contradiction, assume that
n< %8"“. Then|Q(2)| < % for eachz € Z*, by Theorem 3.4. From the constraints
of the third type in (LP2) we conclude thét < %+77 < 1(ze Z*). This contradicts
the first constraint. Thus, the optimum of (LP1) and (LP2)tilzeast%8‘m. ]

5 A Generalization of Forster’'s Bound

Using Theorem 2.4, Forster gave a simple proof of the folhgniundamental
result [12, Thm. 2.2]: for any matrid = [Ay,]xex yev With +1 entries,

. VIXI Y]
sign-rank@) > IX] |.
A
Forster et al. [13, Thm. 3] generalized this bound to arhjtraal matricesA # 0:
. VIXI Y] .
sign-rank@) > I|IA|II| | -rQ|n|AXy|. (5.1)
’y

Forster and Simon [145] considered a dlierent generalization, inspired by the
notion of matrix rigidity. LetA be a givent1 matrix, and lefA be obtained fron\
by changing soma entries in an arbitrary fashiom & |X||Y]). Forster and Simon
showed that

IXITY]
A+ 2vh

The above generalizations are noffsient for our purposes. Before we can
proceed, we need to prove the following “hybrid” bound, whiombines the ideas
of the previous work.

sign-rankf) > (5.2)

Theorem 5.1.Let A= [Ay]xex, yev b€ areal matrix with s= [X] Y| entries(A # 0).
Assume that all but h of the entries of A sati#y,| > y, where h andy > O are
arbitrary parameters. Then

s
Al VS +yh'

Proof. Letr denote the sign-rank &k Theorem 2.4 supplies a matik = [Ry,]
with

sign-rank@) >

rankR) =r, (5.3)
AoR>0, (5.4)
IRl < 1, (5.5)

IRIF = Vs/r. (5.6)
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The crux of the proof is to estimaté, R) from below and above. On the one hand,

(AR > > AyRy by (5.4)
Xy |Axy 2y
> V{Z IRy, | — h] by (5.4), (5.5)
Xy
> ylIRI2 - yh by (5.5)
= by (5.6).

r
On the other hand,

(AR < [|AIl - IRl by (2.2)
<A IRlE VF by (2.1), (5.3)
= [|AllVs by (5.6).
Comparing these lower and upper boundgArR) yields the claimed estimate of
r = sign-rankf). O

Remarks.2 Using the method of Theorem 5.1, one can improve (5.2) to
__ s
IAIVS+2h’

wheres = |X||Y| as before. This improvement becomes significanbfet s.

sign-rankf) >

6 Main Result
At last, we are in a position to prove the main result of thiskvo

Theorem 1.1(Restated from p. 1)Define fi(x,y) = A, \/Tfl(xij A yij). Then
the matrix[ fm(X, y)]x, has sign-rankem.

Proof. Let M be the {,n, MP)-pattern matrix, wherd\ = 10°n. Let P be the
(N, n, u)-pattern matrix, where: is the distribution from Theorem 4.1. We are
going to estimate the sign-rank bf o P.

By Theorem 4.1, all but a2™) fraction of the inputsx e {0, 1}" satisfy
u(X) > 38-Mm2-". As a result, all but a 2X™) fraction of the entries oM o P are
at least;8™™ 27" in absolute value. Theorem 5.1 at once implies that
gTm2Tys zn(mz)},

sign-rankM) > sign-rank o P) > min{ (6.1)

4|MoP|”’
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wheres = 2+ ()" denotes the number of entriesfio P
We proceed to bound the spectral normMf P. Note first thatM o P is the
(N, n, ¢)-pattern matrix, where : {0,1}" — R is given by¢(X) = MPm(X)u(X).
Sinceyu is a%m—orthogonalizing distribution for MR, we have
#(S) =0 for |S| < 4m. (6.2)
Since} w01 [4(X)| = 1, Proposition 2.1 shows that
16(S) < 27" for eachS c [n]. (6.3)

Theorem 2.6 implies, in view of (6.2) and (6.3), that

-m/6
IMo Pl < V-2 () —10M2 "5

Substituting this estimate in (6.1) shows that the sigrikafrV is at least 2™ . It
remains to note thatl is a submatrix of fcm(X, y)]x,, wherec = 4N/n = 4.106. o

Remark6.1 The lower bound in Theorem 1.1 is essentially optimal. Tothee
note that the matrixfiy(x, y)]x, has the same sign pattern as the matrix

v o ]S

Therefore, the sign-rank ofi(x, y)]x, does not exceed

X,y

rank®) < 1 + n?™M = 20(mlogm)

7 Open Problems

Our work is closely related to several natural and imporfaoblems. The first

is a well-known and challenging open problem in complexitgary. Are there
matrices computable iAC® that have low spectral norm? More precisely, does
one have|[ f(X, y)]xexyevll < 2-n*® \IX]TY] for some choice of aAC® function
f:{0,1)" x {0,1}" - {-1, +1} and some multisetX, Y of n-bit Boolean strings?
An affirmative answer to this question would subsume our resuttsadditionally
imply that AC? is not learnable in Kearns’ importastatistical query modg9].

A suitablelower bound on the spectral norm of every such matrix, on the other
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hand, would result in the breakthrough separatioRlaf® andPSPACE®. See [4,
30,41, 45] for relevant background.

The second problem concerns the sign-rank of arbitranepathatrices. For
a Boolean functiorf : {0, 1}" — {-1, +1}, its threshold degreéleg(f) is the least
degree of a multivariate polynomigd(xa, ..., Xn) such thatf(x) = sign(p(x)).

Let Ms denote the %, n, f)-pattern matrix, where > 1 is a stfficiently large
constant. It is straightforward to verify that the signkasf M does not exceed
n°deg®) |s that upper bound close to optimal? Specifically, dbgshave sign-
rank exp(deg()®M) for every f? Evidence in this paper and prior work suggests an
answer in the firmative. For example, our main result confirms this hypathies

the Minsky-Papert functiorf, = MP. For f = PARITY the hypothesis immediately
follows from the seminal work of Forster [12]. More examplgsre discovered

in [48].

In the field of communication complexity, we were able to tesdhe main
question left open by Babai, Frankl, and Simon [4], but omlyone direction:
PH®® ¢ UPP®. The other direction remains wide open despite much resgarch
i.e., no lower bounds are known f&H®¢ or evenzgc. The latter question is in
turn closely related to such important conceptsrerix rigidity [41] andgraph
complexity(e.g., see [17, 39, 40] and the literature cited therein).

Acknowledgments

The authors would like to thank Adam Klivans and Yaoyun ShiHelpful feed-
back on an earlier version of this manuscript.

References

[1] S. Aaronson and Y. Shi. Quantum lower bounds for the sioli and the element
distinctness problemsl. ACM 51(4):595-605, 2004.

[2] M. Alekhnovich, M. Braverman, V. Feldman, A. Klivans,@l. Pitassi. Learnability
and automatizability. IrProceedings of the 45th Symposium on Foundations of
Computer Science (FOC004.

[3] N. Alon, P. Frankl, and V. Rodl. Geometrical realizatiof set systems and proba-
bilistic communication complexity. IProc. of the 26th Symposium on Foundations
of Computer Science (FOC®ages 277-280, 1985.

[4] L. Babai, P. Frankl, and J. Simon. Complexity classesommunication complexity
theory. InProc. of the 27th Symposium on Foundations of Computer Eei@grOCS)
pages 337-347, 1986.

19



[5] S.Ben-David, N. Eiron, and H. U. Simon. Limitations o&laing via embeddings in
Euclidean half spaced. Mach. Learn. Res3:441-461, 2003.

[6] A. Blum, A. M. Frieze, R. Kannan, and S. Vempala. A polyriatstime algorithm
for learning noisy linear threshold functiomlgorithmica 22(1/2):35-52, 1998.

[7]1 N.H. Bshouty. A subexponential exact learning algarittor DNF using equivalence
gueries.Inf. Process. Lett59(1):37-39, 1996.

[8] H. Buhrman, N. K. Vereshchagin, and R. de Wolf. On comfiateand communica-
tion with small bias. IrProc. of the 22nd Conf. on Computational Complexity (CCC)
pages 24-32, 2007.

[9] E. W. Cheney. Introduction to Approximation TheoryChelsea Publishing, New
York, 2nd edition, 1982.

[10] R. de Wolf. Quantum Computing and Communication ComplexiBhD thesis,
University of Amsterdam, 2001.

[11] V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswamiwesults for learning
noisy parities and halfspaces. Rroceedings of the 47th Annual Symposium on
Foundations of Computer Science (FOO®)ges 563-574, 2006.

[12] J. Forster. A linear lower bound on the unbounded errobabilistic communication
complexity.J. Comput. Syst. S¢b5(4):612—-625, 2002.

[13] J. Forster, M. Krause, S. V. Lokam, R. Mubarakzjanov, 3¢hmitt, and H.-U.
Simon. Relations between communication complexity, line@angements, and
computational complexity. IfProc. of the 21st Conf. on Foundations of Software
Technology and Theoretical Computer Science (FST [Tjgzg)es 171-182, 2001.

[14] J. Forster and H. U. Simon. On the smallest possible d#iom and the largest
possible margin of linear arrangements representing giegicept classesTheor.
Comput. Scj.350(1):40-48, 2006.

[15] M. Goldmann, J. Hastad, and A. A. Razborov. Majorityegats. general weighted
threshold gates<Computational Complexify2:277—-300, 1992.

[16] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. fiur&hreshold circuits of
bounded depth]. Comput. Syst. Sci6(2):129-154, 1993.

[17] S. Jukna. On graph complexit€ombinatorics, Probability and Computing5:1—
22, 2006.

[18] B. Kalyanasundaram and G. Schnitger. The probal@legimmunication complexity
of set intersectionSIAM J. Discrete Math5(4):545-557, 1992.

[19] M. Kearns. Hiicient noise-tolerant learning from statistical querigsPtoc. of the
25th Symposium on Theory of Computing (ST@ayes 392—-401, 1993.

[20] M. Kearns and L. Valiant. Cryptographic limitations tearning boolean formulae
and finite automatal. ACM 41(1):67-95, 1994.

20



[21] M. J. Kearns and U. V. VaziranAn Introduction to Computational Learning Theory
MIT Press, Cambridge, 1994.

[22] M. Kharitonov. Cryptographic hardness of distributispecific learning. IfProc. of
the 25th Symposium on Theory of Computepes 372—-381, 1993.

[23] A. R. Klivans and R. A. Servedio. Learning DNF in im&%™. J. Comput. Syst.
Sci, 68(2):303-318, 2004.

[24] A.R. Klivans and A. A. Sherstov. Cryptographic hardsé&s learning intersections
of halfspaces. IProc. of the 47th Symposium on Foundations of Computer &eien
(FOCS) pages 553-562, 2006.

[25] A. R. Klivans and A. A. Sherstov. A lower bound for agrioatly learning disjunc-
tions. InProc. of the 20th Conf. on Learning Theory (COLpages 409-423, 2007.

[26] A.R.Klivans and A. A. Sherstov. Unconditional lowerdrals for learning intersec-
tions of halfspacedMachine Learning69(2—-3):97-114, 2007.

[27] M. Krause and P. Pudlak. On the computational power eptd-2 circuits with
threshold and modulo gateSheor. Comput. S¢il74(1-2):137-156, 1997.

[28] E. Kushilevitz and N. Nisan.Communication complexity Cambridge University
Press, New York, 1997.

[29] N. Linial, S. Mendelson, G. Schechtman, and A. Shraibm@omplexity measures
of sign matricesCombinatorica2006. To appear. Manuscriptlattp: //www.cs.
huji.ac.il/"nati/PAPERS/complexity_matrices.ps.gz.

[30] S. V. Lokam. Spectral methods for matrix rigidity witpglications to size-depth
trade-dfs and communication complexityJ. Comput. Syst. Sci63(3):449-473,
2001.

[31] M. L. Minsky and S. A. Papert. Perceptrons: expanded edition MIT Press,
Cambridge, Mass., 1988.

[32] I. Newman. Private vs. common random bits in commumcatomplexity. Inf.
Process. Lett.39(2):67-71, 1991.

[33] N. Nisan. The communication complexity of thresholdgga InCombinatorics, Paul
Erdds is Eightypages 301-315, 1993.

[34] N. Nisan and M. Szegedy. On the degree of Boolean funstas real polynomials.
Computational Complexity}:301-313, 1994.

[35] A. B. J. Novikat. On convergence proofs on perceptrons.Pioceedings of the
Symposium on the Mathematical Theory of Automedéume Xll, pages 615-622,
1962.

[36] R. O’'Donnell and R. A. Servedio. New degree bounds fdypomial threshold
functions. InProc. of the 35th Symposium on Theory of Computing (STQ¥gjes
325-334, 2003.

21



[37] R. Paturi. On the degree of polynomials that approxensgmmetric Boolean
functions. InProc. of the 24th Symposium on Theory of Compuytiages 468-474,
1992.

[38] R. Paturi and J. Simon. Probabilistic communicatiomptexity. J. Comput. Syst.
Sci, 33(1):106-123, 1986.

[39] P. Pudlak, V. Radl, and P. Savicky. Graph complexificta Inf, 25(5):515-535,
1988.

[40] A. A.Razborov. Bounded-depth formulae over the bg&isb} and some combinato-
rial problems.Complexity Theory and Applied Mathematical Lqogiol. “Problems
of Cybernetics”:146-166, 1988. In Russian, availabletatp: //www.mi.ras.ru/
“razborov/graph.pdf.

[41] A. A. Razborov. On rigid matrices. Manuscript in Russiavailable ahttp://
www.mi.ras.ru/ razborov/rigid.pdf, June 1989.

[42] A. A. Razborov. On the distributional complexity of gigitness. Theor. Comput.
Sci, 106(2):385-390, 1992.

[43] T.J.Rivlin. An Introduction to the Approximation of Functiari3over Publications,
New York, 1981.

[44] F. Rosenblatt. The perceptron: A probabilistic modwl ihformation storage and
organization in the brairPsychological Reviey$5:386—-408, 1958.

[45] A. A. Sherstov. Halfspace matrices. roc. of the 22nd Conf. on Computational
Complexity (CCC)pages 83-95, 2007.

[46] A. A. Sherstov. Powering requires threshold depthiff. Process. Lett.102(2—
3):104-107, 2007.

[47] A. A. Sherstov. SeparatingC® from depth-2 majority circuits. I®roc. of the 39th
Symposium on Theory of Computing (STOQf2ges 294-301, 2007.

[48] A. A. Sherstov. Unbounded-error communication comiteof symmetric func-
tions. Technical Report TR-07-53, The Univ. of Texas at Ayddept. of Computer
Sciences, September 2007.

[49] A. A. Sherstov. The pattern matrix method for lower bdamn quantum communi-
cation. InProc. of the 40th Symposium on Theory of Computing (ST@ED8. To
appear.

[50] N. Srebro and A. Shraibman. Rank, trace-norm and maranén Proc. of the 18th
Conf. on Learning Theory (COLTpages 545-560, 2005.

[51] J. Tarui and T. Tsukiji. Learning DNF by approximatimgiusion-exclusion formu-
lae. InProc. of the 14th Conf. on Computational Complexitgges 215-221, 1999.

[52] L. G. Valiant. A theory of the learnabl€ommun. ACM27(11):1134-1142,1984.

22



A More on the Unbounded-Error Model

Readers with background in communication complexity wibten that the
unbounded-error model is exactly the same as phgate-coin randomized
model [28, Chap. 3], with one exception: in the latter case theemtranswer
is expected with probability at leasf2 whereas in the former case the success
probability need onlyexceedl/2 (say, by an exponentially small amount). This
difference has far-reaching implications. For example, thetfat the parties
in the unbounded-error model do not havestaared source of random bits is
crucial: allowing shared randomness would make the coritplekevery function

a constant, as one can easily verify. By contrast, intradushared randomness
into the randomized model has minimal impact on the complexd any given
function [32].

As one might expect, the weaker success criterion in the wmdex-error
model also has a drastic impact on the complexity of certairctions. For
example, the well-knowmissomntness function onn-bit strings has complexity
O(log n) in the unbounded-error model afxgn) in the randomized model [18,42].
Furthermore, explicit functions are known [8,45] with unbded-error complexity
O(logn) that requireQ(+/n) communication in the randomized model to even
achieve advantage "5 over random guessing.

More generally, the unbounded-error complexity of a funrectf : X XY —

{0, 1} is never much more than its complexity in the other standaodeis. For
example, it is not hard to see that

U(f) < min{N(f), N1(f)} + O(1)

<
< D(f) + O(1),

whereD, N9, andN? refer to communication complexity in thaeterministic,0-
nondeterministicand Enondeterministianodels, respectively. Continuing,

U(f) < R1/3(f) + O(l)

< O(REU(f) + log log X + [¥[]).

where Rz and RE%’ refer to theprivate- and public-coin randomizednodels,

respectively. As a matter of fact, one can show that

U(f) < O(Q;5(f) +loglog X| +[¥1]),

where Qi3 refers to thequantum model with prior entanglemenfn identical
inequality is clearly valid for the quantum modelithout prior entanglement.
See [10, 28] for rigorous definitions of these various madels sole intention
was to point out that the unbounded-error model is at leagoagrful.
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B Details on Forster's Method

The purpose of this section is to explain in detail how Theo&4 is implicit in
Forster’s work.

Recall that vectorss,...,vs in R" are said to beén general positionif no r
of them are linearly dependent. Forster proved that anyfsetaiors in general
position can be balanced in a useful way:

Theorem B.1 (Forster [12, Thm. 4.1]).Let U c R be a finite set of vectors in
general position|U| > r. Then there is a nonsingular transformation AR"™"
such that 1 U

> (AW(AU)" = |r_|'f'

2
Zd A

(The vector norn| - || above and throughout this section is the Euclidean norm
| - ll.) Theorem B.1 is the main technical tool needed to estalflisistatement of
interest to us (cf. [12, Thm. 2.2]):

Theorem 2.4(Restated from p. 9)Let XY be finite sets and M [My,]xex ey @
real matrix(M # 0). Put r = sign-rankM). Then there is a matrix B [Ry,]xex yey
such that:

rankR) =r, (B.1)
MoR>0, (B.2)
IR < 1, (B.3)

IRIF = VIXIIYI/T. (B.4)

Proof. SinceM # 0, it follows thatr > 1. Fix a matrixQ = [Qy,] of rankr such
that
QuMy, >0  whenever My, #0. (B.5)

Write
Q = [(Ux, Uy>]X€X,y€Y

for suitable collections of vectori,} c R" and{v,} c R'. If the vectors{uy :

x € X} are not already in general position, we can replace themtivitn slightly
perturbed versionfiy} thatare in general position. Provided that the perturbations
are small enough, property (B.5) will still hold, i.e., welMiave ({y, v,)My, > 0
wheneverM,, # 0. As a result, we can assume w.l.o.g. that} are in general
position. Furthermore, a moment’s reflection reveals thatvectorsjy,} can be
assumed to be all nonzero.
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Since sign-rank{l) < rank(M), we infer thatX| > r. Theorem B.1 is therefore
applicable to the sdti} and yields a nonsingular matriwith

2

XeX

X

(Au)(Au)" = ==

1
l,. B.6
A2 ' (B.6)

Define

_ [ <uXa Uy> ]
AU IICA) ol [ ex yey'
It remains to verify properties (B.1)—(B.4). Property (Bfbllows from the
representatiolR = D;QD,, whereD; andD» are diagonal matrices with strictly

positive diagonal entries. By (B.5), we know th&, My, > 0 wheneveiMy, # 0,
which immediately gives us (B.2). Property (B.3) holds hesea

Kou)l  KAwo (AT
AU Aoyl AU TICA)Toy |

Finally, property (B.4) will follow once we show thg, R§y = |X|/r for every
y € Y. So, fixy € Y and consider the unit vector= (A1)To, /|(A™1)Tv,|I. We have:

B (Ux, Uy>2
Z Ry = Z AUIIZ (I(A1)To, |12

xeX xeX

(v, A1) (Au) (Au) (AT,

; AU 2 [I((A=1)To, |2
1
=0’ (Au)(Au)" |v
; AP

_

. by (B.6). O
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