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Abstract

The sign-rankof a matrix A = [Ai j ] with ±1 entries is the least rank
of a real matrixB = [Bi j ] with Ai j Bi j > 0 for all i, j. We obtain the first
exponential lower bound on the sign-rank of a function inAC0. Namely, let
f (x, y) =

∧m
i=1

∨m2

j=1(xi j ∧ yi j ).We show that the matrix [f (x, y)]x,y has sign-
rank 2Ω(m). This in particular implies thatΣcc

2 * UPPcc, which solves a long-
standing open problem posed by Babai, Frankl, and Simon (1986).

Our result additionally implies a lower bound in learning theory. Specif-
ically, let φ1, . . . , φr : {0, 1}n → R be functions such that every DNF
formula f : {0, 1}n → {−1,+1} of polynomial size has the representation
f ≡ sign(a1φ1 + · · · + arφr ) for some realsa1, . . . , ar . We prove that then
r > 2Ω(n1/3), which essentially matches an upper bound of 2Õ(n1/3) due to
Klivans and Servedio (2001).

Finally, our work yields the first exponential lower bound onthe size
of threshold-of-majoritycircuits computing a function inAC0. This substan-
tially generalizes and strengthens the results of Krause and Pudlák (1997).
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1 Introduction

The sign-rankof a real matrixA = [Ai j ] with nonzero entries is the least rank
of a matrix B = [Bi j ] with Ai j Bi j > 0 for all i, j. In other words, the sign-
rank measures the stability of the rank ofA as its entries undergo arbitrary sign-
preserving perturbations. This fundamental notion has been studied in contexts
as diverse as matrix analysis, communication complexity, circuit complexity, and
learning theory [3,5,12,13,23,29,38,45,48]. We will givea detailed overview of
these applications shortly as they pertain to our work.

Despite its importance, progress in understanding the sign-rank has been slow
and difficult. Indeed, we are aware of only a few nontrivial results onthis
subject. Alon et al. [3] obtained strong lower bounds on the sign-rank of random
matrices. In a breakthrough result, Forster [12] proved strong lower bounds on
the sign-rank of Hadamard matrices (more generally, Forster’s result applies to
any±1 matrix with small spectral norm). Several extensions and refinements of
Forster’s method were proposed in subsequent work [13, 14, 29]. More recently,
Sherstov [48] obtained near-tight estimates of the sign-rank for all matrices of the
form [D(|x∧ y|)]x,y, whereD : {0, 1, . . . , n} → {−1,+1} is given andx, y range over
{0, 1}n.

This paper focuses onAC0, a prominent class whose sign-rank has seen no
progress in previous work. For notational convenience, we view Boolean functions
as mappings into{−1,+1}, as opposed to the usual range{0, 1}. The central
objective of our study is to estimate the maximum sign-rank of a matrix [f (x, y)]x,y,

where f : {0, 1}n × {0, 1}n → {−1,+1} a function inAC0. An obvious upper bound
is 2n, while the best lower bound prior to this paper was quasipolynomial.1 Our
main result considerably tightens the gap by improving the lower bound to 2Ω(n1/3):

Theorem 1.1 (Main result). Let fm(x, y) =
∧m

i=1
∨m2

j=1(xi j ∧ yi j ). Then the matrix

[ fm(x, y)]x,y has sign-rank2Ω(m).

It is not difficult to show that the matrix in Theorem 1.1 has sign-rank 2O(mlogm),

i.e., the lower bound we prove is almost tight. (See Remark 6.1 for details.)
Moreover, it is essential that the circuit in question has depth at least 3: one readily
verifies thatAC0 circuits of depth 1 or 2 lead to at most polynomial sign-rank.

Our main result states thatAC0 contains matrices whose rank is rather stable
in that it cannot be reduced below 2Θ(n1/3) by any sign-preserving changes to the
matrix entries. We proceed to discuss applications of this fact to communication
complexity, learning theory, and circuits.

1The quasipolynomial lower bound is immediate from Forster’s work [12] and the fact thatAC0

can compute   2 on logc n variables, for every constantc > 1.
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1.1 Communication Complexity

The study of the sign-rank is synonymous with the study ofunbounded-error
communication complexity,a rich model introduced by Paturi and Simon [38]. Fix
a function f : X × Y → {0, 1}, whereX andY are some finite sets. Alice receives
an inputx ∈ X, Bob receivesy ∈ Y, and their objective is to computef (x, y) with
minimal communication. The two parties each have an unlimited private source of
random bits which they can use in deciding what messages to send. Their protocol
is said tocompute fif on every input (x, y), the output is correct with probability
greater than 1/2. Thecostof a protocol is the worst-case number of bits exchanged
on any input (x, y). Theunbounded-error communication complexityof f , denoted
U( f ), is the least cost of a protocol that computesf .

The unbounded-error model occupies a special place in the study of communi-
cation because it is more powerful than almost any other standard model (determin-
istic, nondeterministic, randomized, quantum with or without entanglement). More
precisely, the unbounded-error complexityU( f ) can be only negligibly greater
than the complexity off in any of these models—and often,U( f ) is exponentially
smaller. We defer exact quantitative statements to Appendix A. The power of the
unbounded-error model resides in its very liberal acceptance criterion: it suffices
to produce the correct output with probability even slightly greater than 1/2 (say,
by an exponentially small amount). This contrasts with all other models, where the
correct output is expected with probability at least 2/3.

Also unlike other models of communication, the unbounded-error model has
an exact matrix-analytic formulation. Letf : X×Y→ {0, 1} be a given function and
M = [(−1)f (x,y)]x∈X, y∈Y its communication matrix. Paturi and Simon [38] showed
that

U( f ) = log sign-rank(M) ± O(1).

In other words, unbounded-error complexity and sign-rank are essentially equiva-
lent notions. In this light, our main result gives the first polynomial lower bound
on the unbounded-error complexity ofAC0:

Corollary 1.2 (Unbounded-error communication complexity of AC0). Let
fm(x, y) =

∧m
i=1

∨m2

j=1(xi j ∧ yi j ). Then U( fm) = Ω(m).

Corollary 1.2 also solves a long-standing problem in communication com-
plexity. Specifically, the only models for which simulations in the unbounded-
error model were unknown had been developed in the seminal paper by Babai,
Frankl, and Simon [4]. These models are based on alternationand mimicry
classesPH andPSPACE, and Babai et al. asked [4, last par. on p. 345] whether
Σcc

2 ⊆ UPPcc. Forster [12] made substantial progress on this question, proving that

2



PSPACEcc * UPPcc. We resolve the original question completely: Corollary 1.2
immediately implies thatΣcc

2 * UPPcc.

1.2 Learning Theory

In a seminal paper [52], Valiant formulated theprobably approximately correct
(PAC) model of learning, now the primary model in computational learning theory.
Research has shown that PAC learning is surprisingly difficult. (By “PAC learn-
ing,” we shall always mean PAC learning under arbitrary distributions.) Indeed,
the learning problem remains unsolved for such natural concept classes as DNF
formulas of polynomial size and intersections of two halfspaces, whereas hardness
results and lower bounds are abundant [11,20,22,24–26].

One concept class for which efficient PAC learning algorithms are available
is the class ofhalfspaces,i.e., functions f : Rn → {−1,+1} representable as
f (x) ≡ sign(a1x1+ · · ·+anxn−θ) for some realsa1, . . . , an, θ. Halfspaces constitute
one of the most studied classes in computational learning theory [6,31,35,44] and a
major success story of the field. Indeed, a significant part ofcomputational learning
theory attempts to learn rich concept classes by reducing them to halfspaces. The
reduction works as follows. LetC be a givenconcept class,i.e., a set of Boolean
functions{0, 1}n → {−1,+1}. One seeks functionsφ1, . . . , φr : {0, 1}n → R such
that every f ∈ C has the representationf (x) ≡ sign(a1φ1(x) + · · · + arφr (x)) for
some realsa1, . . . , ar . This process is technically described asembeddingC in
halfspaces of dimension r. Once this is accomplished,C can clearly be learned
in time polynomial inn andr by any halfspace-learning algorithm.

For this approach to be practical, the numberr of real functions needs to be
reasonable (ideally, polynomial inn). It is therefore of interest to determine what
natural concept classes can be embedded in halfspaces of lowdimension [5, 25].
For brevity, we refer to the smallest dimension of such a representation as the
dimension complexityof a given class. Formally, the dimension complexity dc(C)
of a given classC of functions {0, 1}n → {−1,+1} is the leastr for which there
exist φ1, . . . , φr : {0, 1}n → R such that everyf ∈ C is expressible asf (x) ≡
sign(a1φ1(x) + · · · + arφr(x)) for some realsa1, . . . , ar . To relate this discussion to
sign-rank, letMC = [ f (x)] f∈C, x∈{0,1}n be the characteristic matrix ofC. A moment’s
reflection reveals that dc(C) = sign-rank(MC), i.e., the dimension complexity of
a concept class is precisely the sign-rank of its characteristic matrix. Indeed, the
term “dimension complexity” has been used interchangeablywith sign-rank in the
recent literature [45, 50], which does not lead to confusionsince concept classes
are naturally identified with their characteristic matrices.

Thus, the study of sign-rank yields nontrivial PAC learningalgorithms. In
particular, the current fastest algorithm for learning polynomial-size DNF for-
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mulas, due to Klivans and Servedio [23], was obtained precisely by placing an
upper bound of 2Õ(n1/3) on the dimension complexity of that concept class, with the
functionsφi corresponding to the monomials of degree up toÕ(n1/3).

Klivans and Servedio also observed that their 2Õ(n1/3) upper bound is best
possible when the functionsφi are taken to be the monomials up to a given degree.
Our work gives a far-reaching generalization of the latter observation: we prove
the same lower bound without assuming anything whatsoever about the embedding
functionsφi . That is, we have:

Corollary 1.3 (Dimension complexity of DNF). LetC be the set of all read-once
(hence, linear-size) DNF formulas f : {0, 1}n → {−1,+1}. ThenC has dimension
complexity2Ω(n1/3).

Proof. Let fm(x, y) be the function from Theorem 1.1, wherem= bn1/3c. Then for
any fixedy, the resulting functionfy(x) = ¬ fm(x, y) is a read-once DNF formula.

�

Learning polynomial-size DNF formulas was the original challenge posed in
Valiant’s paper [52]. More than twenty years later, this challenge remains a central
open problem in computational learning theory despite active research [7, 23, 51].
To account for this lack of progress, several hardness results have been obtained
based on complexity-theoretic assumptions [2,22]. Corollary 1.3 complements that
line of work by exhibiting a concretestructural barrier to the efficient learning of
DNF formulas. In particular, it rules out a 2o(n1/3)-time learning algorithm based on
dimension complexity.

While restricted, the dimension-complexity paradigm is quite rich and captures
many efficient PAC learning algorithm designed to date, with the notable exception
of learning low-degree polynomials over GF(p). It is also worth noting [21, p. 124]
that an unconditional superpolynomial lower bound for learning polynomial-size
DNF formulas in thestandardPAC model would imply thatP , NP; thus, such a
result is well beyond the reach of the current techniques.

1.3 Threshold Circuits

Recall that athreshold gateg with Boolean inputsx1, . . . , xn is a function of the
form g(x) = sign(a1x1 + · · · + anxn − θ), for some fixed realsa1, . . . , an, θ. Thus, a
threshold gate generalizes the familiarmajoritygate. A major unsolved problem in
computational complexity is to exhibit a Boolean function that requires a depth-2
threshold circuit of superpolynomial size.

Communication complexity has been crucial to the progress on this problem.
Through randomized communication complexity, many explicit functions have
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been found [15, 16, 33, 46, 47] that requiremajority-of-thresholdcircuits of ex-
ponential size. This solves an important case of the generalproblem. Lower
bounds for the unbounded-error model (or, equivalently, onthe sign-rank) cover
another important case [13], that ofthreshold-of-majoritycircuits. The following
statement is immediate from our main result, in view of the work by Forster et
al. [13, Lem. 5]:

Corollary 1.4 (Threshold circuits). Let fm(x, y) =
∧m

i=1
∨m2

j=1(xi j ∧ yi j ). Let C
be a depth-2 threshold circuit, with arbitrary weights at the top gate and integer
weights of absolute value6 w at the bottom gates. If C computes fm, then it has
size2Ω(m)/w.

This is the first exponential lower bound forthreshold-of-majoritycircuits
computing a function inAC0. It substantially generalizes and strengthens an earlier
result of Krause and Pudlák [27, Thm. 2], who proved an exponential lower bound
for threshold-of-MODr circuits (for any constantr > 2) computing a function
in AC0. Our work also complements exponential lower bounds formajority-of-
thresholdcircuits computing functions inAC0, obtained recently by Buhrman et
al. [8] and Sherstov [47,49].

Theorem 1.1 immediately implies lower bounds for other classes of depth-2
circuits, e.g., those with a threshold gate receiving inputs from arbitrary symmetric
gates. Rather than formulate these statements as theorems,we refer the reader to
the work by Forster et al. [13,§6] for details on how the sign-rank relates to those
other circuit models.

1.4 Our Proof and Techniques

Figure 1 illustrates the main components of our proof. A starting point in our
study is an elegant result due to Minsky and Papert [31], who constructed a linear-
size DNF formula that cannot be sign-represented by polynomials of low degree.
Minsky and Papert’s observation has played an important role in several other
works [27,36,47,49].

Second, we revisit a fundamental technique from approximation theory, the
interpolation bound,which bounds a univariate polynomialp ∈ Pd on an interval
based on the values ofp at d + 1 distinct points. By combining the interpolation
bound with an adapted version of Minsky and Papert’s argument, we establish a key
intermediate result (Lemma 3.3). This result concerns multivariate polynomials
that have nonnegligible agreement with the Minsky-Papert function and constrains
their behavior on a large fraction of the inputs.

We proceed by deriving a Fourier-theoretic property commonto all low-degree
multivariate polynomials on{0, 1}n: we show that their values on{0, 1}n can
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Figure 1: Proof outline.

be conveniently bounded in terms of their behavior on certain small subcubes
(Lemma 3.2). In light of this Fourier-theoretic observation, our intermediate result
on multivariate polynomials takes on a much stronger form. Namely, we prove
that multivariate polynomials with any nontrivial agreement with the Minsky-
Papert function are highly constrainedthroughoutthe hypercube (Theorem 3.4).
With some additional work in Section 4, we are able to deduce the existence of a
smooth distribution on{0, 1}n with respect to which the Minsky-Papert function is
orthogonal to all low-degree polynomials. From this, we obtain our main result by
suitably modifying the analysis in Forster’s fundamental paper on sign-rank (see
Section 5 and Appendix B).

The techniques of our proof seem to be of independent interest. Multivariate
polynomials on{0, 1}n arise frequently in the complexity literature and pose a
considerable analytical challenge. A solution that we introduce is to project a
multivariate polynomial in several ways to univariate polynomials, study the latter
objects, and recombine the results using Fourier-theoretic tools (see Section 3). To
our knowledge, this approach is novel and shows promise in more general contexts.
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2 Preliminaries

All Boolean functions in this paper are represented as mappings{0, 1}n→ {−1,+1},
where−1 corresponds to “true.” Forx ∈ {0, 1}n, we define|x| = x1 + x2 + · · · + xn.

The symbolPd stands for the set of all univariate real polynomials of degree up to
d. By the degree of amultivariatepolynomial, we will always mean its total degree,
i.e., the greatest total degree of any monomial. The notation [n] refers to the set
{1, 2, . . . , n}. Set membership notation, when used in the subscript of an expectation
operator, means that the expectation is taken with respect to theuniformly random
choice of an element from the indicated set.

2.1 Matrix Analysis

The symbolRm×n refers to the family of allm× n matrices with real entries. The
(i, j)th entry of a matrixA is denoted byAi j . We frequently use “generic-entry”
notation to specify a matrix succinctly: we writeA = [F(i, j)] i, j to mean that the
(i, j)th entry ofA is given by the expressionF(i, j). In most matrices that arise in
this work, the exact ordering of the columns (and rows) is irrelevant. In such cases
we describe a matrix by the notation [F(i, j)] i∈I , j∈J, whereI andJ are some index
sets.

Let A = [Ai j ] ∈ Rm×n be given. We let‖A‖∞
def
= maxi, j |Ai j | and denote the

singular values ofA byσ1(A) > σ2(A) > · · · > σmin{m,n}(A) > 0. The notation‖ · ‖2
refers to the Euclidean norm of vectors. Recall that thespectral norm, trace norm,
andFrobenius normof A are given by

‖A‖ = max
x∈Rn, ‖x‖2=1

‖Ax‖2 = σ1(A),

‖A‖Σ =
∑

σi(A),

‖A‖F =
√

∑

A2
i j =

√

∑

σi(A)2.

An essential property of these norms is their invariance under orthogonal transfor-
mations on the left and on the right, which incidentally explains the alternative
expressions for the spectral and Frobenius norms given above. The following
relationship follows at once by the Cauchy-Swartz inequality:

‖A‖Σ 6 ‖A‖F
√

rank(A) (A ∈ Rm×n). (2.1)

For A, B ∈ Rm×n, we write 〈A, B〉 def
=

∑

i, j Ai j Bi j . A useful consequence of the
singular value decomposition is:

〈A, B〉 6 ‖A‖ ‖B‖Σ (A, B ∈ Rm×n). (2.2)
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TheHadamard productof A andB is the matrixA ◦ B = [Ai j Bi j ]. The symbolJ
stands for the all-ones matrix, whose dimensions will be apparent from the context.
The notationA > 0 means that all the entries inA are nonnegative. The shorthand
A , 0 means as usual thatA is not the zero matrix.

2.2 The Fourier Transform over Zn
2

Consider the vector space of functions{0, 1}n → R, equipped with the inner
product

〈 f , g〉 def
= 2−n

∑

x∈{0,1}n
f (x)g(x).

For S ⊆ [n], defineχS : {0, 1}n → {−1,+1} by χS(x) = (−1)
∑

i∈S xi . Then{χS}S⊆[n]

is an orthonormal basis for the inner product space in question. As a result, every
function f : {0, 1}n→ R has a unique representation of the form

f (x) =
∑

S⊆[n]

f̂ (S)χS(x),

where f̂ (S)
def
= 〈 f , χS〉. The realsf̂ (S) are called theFourier coefficients of f. The

following fact is immediate from the definition of̂f (S):

Proposition 2.1. Let f : {0, 1}n→ R be given. Then

max
S⊆[n]
| f̂ (S)| 6 2−n

∑

x∈{0,1}n
| f (x)|.

2.3 Symmetric Functions

Let Sn denote the symmetric group onn elements. Forσ ∈ Sn and x ∈ {0, 1}n,
we denote byσx the string (xσ(1), . . . , xσ(n)) ∈ {0, 1}n. A function φ : {0, 1}n →
R is calledsymmetricif φ(x) = φ(σx) for every x ∈ {0, 1}n and everyσ ∈ Sn.

Equivalently,φ is symmetric ifφ(x) is uniquely determined by|x|. Observe that for
everyφ : {0, 1}n→ R (symmetric or not), the derived function

φsym(x)
def
= E

σ∈Sn

[

φ(σx)
]

is symmetric. The symmetric functions on{0, 1}n are intimately related to uni-
variate polynomials, as demonstrated by Minsky and Papert’s symmetrization
argument:
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Proposition 2.2 (Minsky & Papert [31]). Letφ : {0, 1}n→ R be representable by
a real n-variate polynomial of degree r. Then there is a polynomial p∈ Pr with

E
σ∈Sn

[

φ(σx)
]

= p(|x|) ∀x ∈ {0, 1}n.

Minsky and Papert’s observation has seen numerous uses in the literature [1,34,37].
We will need the following straightforward generalization.

Proposition 2.3. Let n1, . . . , nk be positive integers with n
def
= n1 + · · · + nk. Let

φ : {0, 1}n → R be representable by a real n-variate polynomial of degree r.Write
x ∈ {0, 1}n as x = (x(1), . . . , x(k)), where x(i) = (xn1+···+ni−1+1, . . . , xn1+···+ni ). Then
there is a polynomial p onRk of degree at most r such that

E
σ1∈S1,...,σk∈Sk

[

φ(σ1x(1), . . . , σkx(k))
]

= p
(

|x(1)|, . . . , |x(k)|
)

∀x ∈ {0, 1}n.

2.4 Sign-rank

Thesign-rankof a real matrixA = [Ai j ] is the least rank of a matrixB = [Bi j ] such
thatAi j Bi j > 0 for all i, j with Ai j , 0. (Note that this definition generalizes the one
given above in the abstract and introduction, which appliedonly to matricesA with
nonzero entries.) In a breakthrough result, Forster [12] proved the first nontrivial
lower bound on the sign-rank of an explicit±1 matrix. The centerpiece of Forster’s
argument is the following theorem, which is a crucial starting point for our work.

Theorem 2.4 (Forster [12], implicit). Let X,Y be finite sets and M= [Mxy]x∈X,y∈Y
a real matrix (M , 0). Put r = sign-rank(M). Then there is a matrix R=
[Rxy]x∈X,y∈Y such that:

rank(R) = r,

M ◦ R> 0,

‖R‖∞ 6 1,

‖R‖F =
√
|X| |Y|/r .

Appendix B provides a detailed explanation of how Theorem 2.4 is implicit in
Forster’s work.
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2.5 Pattern Matrices

Pattern matricesarose in earlier works by Sherstov [47, 49] and proved usefulin
obtaining strong lower bounds on communication complexity. Relevant definitions
and results from [49] follow.

Let n andN be positive integers withn | N. Split [N] into n contiguous blocks,
with N/n elements each:

[N] =
{

1, 2, . . . ,
N
n

}

∪
{

N
n
+ 1, . . . ,

2N
n

}

∪ · · · ∪
{

(n− 1)N
n

+ 1, . . . ,N

}

.

LetV(N, n) denote the family of subsetsV ⊆ [N] that have exactly one element
from each of these blocks (in particular,|V| = n). Clearly, |V(N, n)| = (N/n)n. For
a bit stringx ∈ {0, 1}N and a setV ∈ V(N, n), define theprojection of x onto Vby

x|V
def
= (xi1, xi2, . . . , xin) ∈ {0, 1}

n,

wherei1 < i2 < · · · < in are the elements ofV.

Definition 2.5 (Pattern matrix). Forφ : {0, 1}n → R, the (N, n, φ)-pattern matrix
is the real matrixA given by

A =
[

φ(x|V ⊕ w)
]

x∈{0,1}N , (V,w)∈V(N,n)×{0,1}n
.

In words,A is the matrix of size 2N by (N/n)n2n whose rows are indexed by strings
x ∈ {0, 1}N, whose columns are indexed by pairs (V, w) ∈ V(N, n) × {0, 1}n, and
whose entries are given byAx,(V,w) = φ(x|V ⊕ w).

The logic behind the term “pattern matrix” is as follows: a mosaic arises from
repetitions of a pattern in the same way thatA arises from applications ofφ to
various subsets of the variables. We will need the followingexpression for the
spectral norm of a pattern matrix.

Theorem 2.6 (Sherstov [49, Thm. 4.3]).Let φ : {0, 1}n → R be given. Let A be
the(N, n, φ)-pattern matrix. Then

‖A‖ =
√

2N+n
(N

n

)n

max
S⊆[n]

{

|φ̂(S)|
( n
N

)|S|/2}

.
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3 A Result on Multivariate Approximation

The purpose of this section is to establish a certain property of low-degree polyno-
mials onRm (Theorem 3.4). This property is the backbone of our main proof.

A starting point in our discussion is aninterpolation bound,i.e., a bound
on the values of a polynomial on an interval given its values on a finite set of
points. Results of this general form arise routinely in approximation theory. To
prove the specific statement of interest to us, we follow the classical technique of
interpolating the polynomial at strategically chosen nodes. For other uses of this
technique, see Cheney [9,§7, Lem. 1] and Rivlin [43, Thm. 3.9].

Lemma 3.1 (Interpolation bound). Let I ⊂ R be an interval of length L. Let p be
a polynomial of degree d6 L such that

|p(xi)| 6 1 (i = 0, 1, . . . , d),

where x0, x1, . . . , xd ∈ I are some points with pairwise distances at least1. Then

max
x∈I
|p(x)| 6 2d

(

L
d

)

.

Proof. Without loss of generality, assume thatx0 < x1 < · · · < xd. Fix x ∈ I . For
anyk ∈ {0, 1, . . . , d}, we have:

d
∏

i=0
i,k

|x− xi | 6 L(L − 1) · · · (L − d + 1)

and (since|xi − xk| > |i − k|)
d

∏

i=0
i,k

|xk − xi | > k!(d − k)!.

Therefore,
d

∏

i=0
i,k

|x− xi |
|xk − xi |

6
L(L − 1) · · · (L − d + 1)

k!(d − k)!
=

(

L
d

)(

d
k

)

.

It remains to substitute this estimate in the Lagrange interpolation formula:

|p(x)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d
∑

k=0

p(xk)
d

∏

i=0
i,k

x− xi

xk − xi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6

(

L
d

) d
∑

k=0

(

d
k

)

= 2d
(

L
d

)

. �

11



We now establish another auxiliary fact. It provides a convenient means to
bound a function whose Fourier transform is supported on low-order characters, in
terms of its behavior on low-weight inputs.

Lemma 3.2. Let k be an integer,0 6 k 6 n− 1. Let f : {0, 1}n → R be given with
f̂ (S) = 0 for |S| > k. Then

| f (1n)| 6 2k
(

n
k

)

max
|x|6k
| f (x)|.

Proof. Define the symmetric functiong : {0, 1}n → R by g(x) = χ[n](x)p(|x|),
where

p(t)
def
=

∏

k<i<n

t − i
n− i
.

The following properties ofg are immediate:

g(1n) = (−1)n, (3.1)

g(x) = 0 (k < |x| < n), (3.2)

ĝ(S) = 0 (|S| 6 k). (3.3)

Furthermore,

∑

|x|6k

|g(x)| =
k

∑

t=0

(

n
t

)

|p(t)| =
k

∑

t=0

(

n
t

)(

n− t − 1
n− k− 1

)

6 2k
(

n
k

)

. (3.4)

We are now prepared to analyzef . By (3.3),
∑

x∈{0,1}n
f (x)g(x) = 0. (3.5)

On the other hand, (3.1) and (3.2) show that
∑

x∈{0,1}n
f (x)g(x) = (−1)n f (1n) +

∑

|x|6k

f (x)g(x). (3.6)

The lemma follows at once from (3.4)–(3.6). �

We are now in a position to study the approximation problem ofinterest to us.
Define the sets

Z = {0, 1, 2, . . . , 4m2}m, Z+ = {1, 2, . . . , 4m2}m.

12



DefineF : Z→ {−1,+1} by

F(z) =















−1 if x ∈ Z+,

1 otherwise.

For u, z ∈ Z, let ∆(u, z) = |{i : ui , zi}| be the ordinary Hamming distance. We
shall prove the following intermediate result, inspired byMinsky and Papert’s
analysis [31] of the threshold degree of CNF formulas.

Lemma 3.3. Let Q be a degree-d real polynomial in m variables, where d6 m/3.
Assume that

F(z)Q(z) > −1 (z ∈ Z). (3.7)

Then |Q(z)| 6 2m+2d at every point z∈ Z+ with ∆(u, z) < m/3, where u =
(12, 32, 52, . . . , (2m− 1)2) ∈ Z+.

Proof. Fix z ∈ Z+ with ∆(u, z) < m/3. Definep ∈ P2d by

p(t) = Q(p1(t), p2(t), . . . , pm(t)),

where

pi(t) =















(t − 2i + 1)2 if zi = ui (equivalently,zi = (2i − 1)2),

zi otherwise.

Letting S = {i : ui = zi}, inequality (3.7) implies that

p(2i − 1) > −1 (i ∈ S), (3.8)

p(2i) 6 1 (i = 0, 1, . . . ,m). (3.9)

Claim 3.3.1. Let i ∈ S. Then|p(ξ)| 6 1 for someξ ∈ [2i − 2, 2i − 1].

Proof. The claim is trivial if p vanishes at some point in [2i − 2, 2i − 1]. In the
contrary case,p maintains the same sign throughout this interval. As a result, (3.8)
and (3.9) show that min{|p(2i − 2)|, |p(2i − 1)|} 6 1. �

Claim 3.3.1 provides|S| > 2m/3 > 2d > deg(p) points in [0,m], with pairwise
distances at least 1, at whichp is bounded in absolute value by 1. By Lemma 3.1,

max
06t6m

|p(t)| 6 2deg(p)
(

m
deg(p)

)

6 2m+2d.

This completes the proof sinceQ(z) = p(0). �
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Finally, we remove the restriction on∆(u, z), thereby establishing the main
result of this section:

Theorem 3.4.Let Q be a degree-d real polynomial in m variables, where d< m/3.
Assume that

F(z)Q(z) > −1 (z ∈ Z).

Then
|Q(z)| 6 8m (z ∈ Z+).

Proof. As before, putu = (12, 32, 52, . . . , (2m− 1)2). Fix z ∈ Z+ and define the
“interpolating” function f : {0, 1}m→ R by

f (x) = Q(x1z1 + (1− x1)u1, . . . , xmzm+ (1− xm)um).

In this notation, we know from Lemma 3.3 that| f (x)| 6 2m+2d for everyx ∈ {0, 1}m
with |x| < m/3, and our goal is to show that| f (1m)| 6 8m. SinceQ has degreed,
the Fourier transform off is supported on characters of order up tod. As a result,

| f (1m)| 6 2d
(

m
d

)

max
|x|6d
| f (x)| by Lemma 3.2

6 2m+3d
(

m
d

)

by Lemma 3.3

6 8m. �

4 A Smooth Orthogonalizing Distribution

An important concept in our work is that of an orthogonalizing distribution. Let
f : {0, 1}n→ {−1,+1} be given. A distributionµ on {0, 1}n is d-orthogonalizingfor
f if

E
x∼µ

[

f (x)χS(x)
]

= 0 (|S| < d).

In words, a distributionµ is d-orthogonalizing for f if with respect toµ, the
function f is orthogonal to every character or order less thand.

This section focuses on the following function from{0, 1}4m3
to {−1,+1}:

MPm(x) =
m
∧

i=1

4m2
∨

j=1

xi, j .
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(Recall that we interpret−1 as “true”.) This function was originally stud-
ied by Minsky and Papert [31] and has played an important rolein later
works [27,36,47,49]. An explicitm-orthogonalizing distribution for MPm is
known [47]. However, our main result requires aΘ(m)-orthogonalizing distribution
for MPm that is additionallysmooth,i.e., places substantial weight on all but a
tiny fraction of the points, and the distribution given in [47] severely violates the
latter property. Proving the existence of a distribution that is simultaneouslyΘ(m)-
orthogonalizing and smooth is the goal of this section (Theorem 4.1).

We will view an inputx ∈ {0, 1}n = {0, 1}4m3
to MPm as composed of blocks:

x = (x(1), . . . , x(m)),where theith block isx(i) = (xi,1, xi,2, . . . , xi,4m2). The proof that
is about to start refers to the setsZ,Z+ and the functionF as defined in Section 3.

Theorem 4.1. There is a1
3m-orthogonalizing distributionµ for MPm such that

µ(x) > 1
28−m 2−n for all inputs x∈ {0, 1}n with MPm(x) = −1.

Proof. Let X be the set of all inputs with MPm(x) = −1, i.e.,

X = {x ∈ {0, 1}n : x(1)
, 0, . . . , x(m)

, 0}.

It suffices to show that the following linear program has optimum at least128−m:

variables: ε > 0; µ(x) > 0 for x ∈ {0, 1}n

maximize: ε

subject to:
∑

x∈{0,1}n
µ(x)MPm(x)χS(x) = 0 for |S| < m/3,

∑

x∈{0,1}n
µ(x) 6 1,

µ(x) > ε2−n for x ∈ X.

(LP1)

For x ∈ {0, 1}n, we letz(x) = (|x(1)|, . . . , |x(m)|); note that MPm(x) = F(z(x)). Since
the function MPm is invariant under the action of the groupS4m2 × · · · × S4m2, in
view of Proposition 2.3, the dual of (LP1) can be simplified asfollows:

variables: a polynomialQ onRm of degree< m/3;

η > 0; δz > 0 for z∈ Z+

minimize: η

subject to:
∑

x∈X
δz(x) > 2n,

F(z)Q(z) > −η for z ∈ Z,

F(z)Q(z) > −η + δz for z ∈ Z+.

(LP2)
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The programs are both feasible and therefore have the same finite optimum. Fix
an optimal solutionη,Q, δz to (LP2). For the sake of contradiction, assume that
η 6 1

28−m. Then|Q(z)| 6 1
2 for eachz ∈ Z+, by Theorem 3.4. From the constraints

of the third type in (LP2) we conclude thatδz 6 1
2+η < 1 (z ∈ Z+). This contradicts

the first constraint. Thus, the optimum of (LP1) and (LP2) is at least1
28−m. �

5 A Generalization of Forster’s Bound

Using Theorem 2.4, Forster gave a simple proof of the following fundamental
result [12, Thm. 2.2]: for any matrixA = [Axy]x∈X, y∈Y with ±1 entries,

sign-rank(A) >

√
|X| |Y|
‖A‖

.

Forster et al. [13, Thm. 3] generalized this bound to arbitrary real matricesA , 0:

sign-rank(A) >

√
|X| |Y|
‖A‖

·min
x,y
|Axy|. (5.1)

Forster and Simon [14,§5] considered a different generalization, inspired by the
notion of matrix rigidity. LetA be a given±1 matrix, and letÃ be obtained fromA
by changing someh entries in an arbitrary fashion (h < |X| |Y|). Forster and Simon
showed that

sign-rank(̃A) >

√
|X| |Y|

‖A‖ + 2
√

h
. (5.2)

The above generalizations are not sufficient for our purposes. Before we can
proceed, we need to prove the following “hybrid” bound, which combines the ideas
of the previous work.

Theorem 5.1.Let A= [Axy]x∈X, y∈Y be a real matrix with s= |X| |Y| entries(A , 0).
Assume that all but h of the entries of A satisfy|Axy| > γ, where h andγ > 0 are
arbitrary parameters. Then

sign-rank(A) >
γs

‖A‖
√

s+ γh
.

Proof. Let r denote the sign-rank ofA. Theorem 2.4 supplies a matrixR = [Rxy]
with

rank(R) = r, (5.3)

A ◦ R> 0, (5.4)

‖R‖∞ 6 1, (5.5)

‖R‖F =
√

s/r. (5.6)
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The crux of the proof is to estimate〈A,R〉 from below and above. On the one hand,

〈A,R〉 >
∑

x,y: |Axy |>γ
AxyRxy by (5.4)

> γ

















∑

x,y

|Rxy| − h

















by (5.4), (5.5)

> γ‖R‖2F − γh by (5.5)

=
γs
r
− γh by (5.6).

On the other hand,

〈A,R〉 6 ‖A‖ · ‖R‖Σ by (2.2)

6 ‖A‖ · ‖R‖F
√

r by (2.1), (5.3)

= ‖A‖
√

s by (5.6).

Comparing these lower and upper bounds on〈A,R〉 yields the claimed estimate of

r = sign-rank(A). �

Remark5.2. Using the method of Theorem 5.1, one can improve (5.2) to

sign-rank(̃A) >
s

‖A‖
√

s+ 2h
,

wheres= |X| |Y| as before. This improvement becomes significant forh� s.

6 Main Result

At last, we are in a position to prove the main result of this work.

Theorem 1.1(Restated from p. 1).Define fm(x, y) =
∧m

i=1
∨m2

j=1(xi j ∧ yi j ). Then

the matrix[ fm(x, y)]x,y has sign-rank2Ω(m).

Proof. Let M be the (N, n,MPm)-pattern matrix, whereN = 106n. Let P be the
(N, n, µ)-pattern matrix, whereµ is the distribution from Theorem 4.1. We are
going to estimate the sign-rank ofM ◦ P.

By Theorem 4.1, all but a 2−Ω(m2) fraction of the inputsx ∈ {0, 1}n satisfy
µ(x) > 1

28−m 2−n. As a result, all but a 2−Ω(m2) fraction of the entries ofM ◦ P are
at least128−m 2−n in absolute value. Theorem 5.1 at once implies that

sign-rank(M) > sign-rank(M ◦ P) > min

{

8−m 2−n√s
4‖M ◦ P‖

, 2Ω(m2)
}

, (6.1)
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wheres= 2N+n
(

N
n

)n
denotes the number of entries inM ◦ P.

We proceed to bound the spectral norm ofM ◦ P. Note first thatM ◦ P is the
(N, n, φ)-pattern matrix, whereφ : {0, 1}n → R is given byφ(x) = MPm(x)µ(x).
Sinceµ is a 1

3m-orthogonalizing distribution for MPm, we have

φ̂(S) = 0 for |S| < 1
3m. (6.2)

Since
∑

x∈{0,1}n |φ(x)| = 1, Proposition 2.1 shows that

|φ̂(S)| 6 2−n for eachS ⊆ [n]. (6.3)

Theorem 2.6 implies, in view of (6.2) and (6.3), that

‖M ◦ P‖ 6
√

s · 2−n
(N

n

)−m/6

= 10−m 2−n√s.

Substituting this estimate in (6.1) shows that the sign-rank of M is at least 2Ω(m). It
remains to note thatM is a submatrix of [fcm(x, y)]x,y,wherec = 4N/n = 4·106. �

Remark6.1. The lower bound in Theorem 1.1 is essentially optimal. To seethis,
note that the matrix [fm(x, y)]x,y has the same sign pattern as the matrix

R=



















1
2
−

m
∏

i=1



















m2
∑

j=1

xi jyi j





































x,y

.

Therefore, the sign-rank of [fm(x, y)]x,y does not exceed

rank(R) 6 1+m2m = 2O(mlogm).

7 Open Problems

Our work is closely related to several natural and importantproblems. The first
is a well-known and challenging open problem in complexity theory. Are there
matrices computable inAC0 that have low spectral norm? More precisely, does
one have‖[ f (x, y)]x∈X,y∈Y‖ 6 2−nΩ(1) √|X| |Y| for some choice of anAC0 function
f : {0, 1}n × {0, 1}n → {−1,+1} and some multisetsX,Y of n-bit Boolean strings?
An affirmative answer to this question would subsume our results and additionally
imply thatAC0 is not learnable in Kearns’ importantstatistical query model[19].
A suitable lower bound on the spectral norm of every such matrix, on the other
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hand, would result in the breakthrough separation ofPHcc andPSPACEcc. See [4,
30,41,45] for relevant background.

The second problem concerns the sign-rank of arbitrary pattern matrices. For
a Boolean functionf : {0, 1}n → {−1,+1}, its threshold degreedeg(f ) is the least
degree of a multivariate polynomialp(x1, . . . , xn) such that f (x) ≡ sign(p(x)).
Let M f denote the (nc, n, f )-pattern matrix, wherec > 1 is a sufficiently large
constant. It is straightforward to verify that the sign-rank of M f does not exceed
nO(deg(f )). Is that upper bound close to optimal? Specifically, doesM f have sign-
rank exp(deg(f )Ω(1)) for every f ? Evidence in this paper and prior work suggests an
answer in the affirmative. For example, our main result confirms this hypothesis for
the Minsky-Papert function,f = MP. For f = PARITY the hypothesis immediately
follows from the seminal work of Forster [12]. More exampleswere discovered
in [48].

In the field of communication complexity, we were able to resolve the main
question left open by Babai, Frankl, and Simon [4], but only in one direction:
PHcc * UPPcc. The other direction remains wide open despite much research,
i.e., no lower bounds are known forPHcc or evenΣcc

2 . The latter question is in
turn closely related to such important concepts asmatrix rigidity [41] andgraph
complexity(e.g., see [17,39,40] and the literature cited therein).
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Sci., 68(2):303–318, 2004.

[24] A. R. Klivans and A. A. Sherstov. Cryptographic hardness for learning intersections
of halfspaces. InProc. of the 47th Symposium on Foundations of Computer Science
(FOCS), pages 553–562, 2006.

[25] A. R. Klivans and A. A. Sherstov. A lower bound for agnostically learning disjunc-
tions. InProc. of the 20th Conf. on Learning Theory (COLT), pages 409–423, 2007.

[26] A. R. Klivans and A. A. Sherstov. Unconditional lower bounds for learning intersec-
tions of halfspaces.Machine Learning, 69(2–3):97–114, 2007.

[27] M. Krause and P. Pudlák. On the computational power of depth-2 circuits with
threshold and modulo gates.Theor. Comput. Sci., 174(1-2):137–156, 1997.

[28] E. Kushilevitz and N. Nisan.Communication complexity. Cambridge University
Press, New York, 1997.

[29] N. Linial, S. Mendelson, G. Schechtman, and A. Shraibman. Complexity measures
of sign matrices.Combinatorica, 2006. To appear. Manuscript athttp://www.cs.
huji.ac.il/˜nati/PAPERS/complexity_matrices.ps.gz.

[30] S. V. Lokam. Spectral methods for matrix rigidity with applications to size-depth
trade-offs and communication complexity.J. Comput. Syst. Sci., 63(3):449–473,
2001.

[31] M. L. Minsky and S. A. Papert. Perceptrons: expanded edition. MIT Press,
Cambridge, Mass., 1988.

[32] I. Newman. Private vs. common random bits in communication complexity. Inf.
Process. Lett., 39(2):67–71, 1991.

[33] N. Nisan. The communication complexity of threshold gates. InCombinatorics, Paul
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A More on the Unbounded-Error Model

Readers with background in communication complexity will note that the
unbounded-error model is exactly the same as theprivate-coin randomized
model [28, Chap. 3], with one exception: in the latter case the correct answer
is expected with probability at least 2/3, whereas in the former case the success
probability need onlyexceed1/2 (say, by an exponentially small amount). This
difference has far-reaching implications. For example, the fact that the parties
in the unbounded-error model do not have ashared source of random bits is
crucial: allowing shared randomness would make the complexity of every function
a constant, as one can easily verify. By contrast, introducing shared randomness
into the randomized model has minimal impact on the complexity of any given
function [32].

As one might expect, the weaker success criterion in the unbounded-error
model also has a drastic impact on the complexity of certain functions. For
example, the well-known function on n-bit strings has complexity
O(logn) in the unbounded-error model andΩ(n) in the randomized model [18,42].
Furthermore, explicit functions are known [8,45] with unbounded-error complexity
O(logn) that requireΩ(

√
n) communication in the randomized model to even

achieve advantage 2−
√

n/5 over random guessing.
More generally, the unbounded-error complexity of a function f : X × Y →

{0, 1} is never much more than its complexity in the other standard models. For
example, it is not hard to see that

U( f ) 6 min{N0( f ),N1( f )} +O(1)

6 D( f ) +O(1),

whereD, N0, andN1 refer to communication complexity in thedeterministic,0-
nondeterministic,and 1-nondeterministicmodels, respectively. Continuing,

U( f ) 6 R1/3( f ) +O(1)

6 O
(

Rpub
1/3( f ) + log log [|X| + |Y|]

)

,

where R1/3 and Rpub
1/3 refer to theprivate- and public-coin randomizedmodels,

respectively. As a matter of fact, one can show that

U( f ) 6 O
(

Q∗1/3( f ) + log log [|X| + |Y|]
)

,

whereQ∗1/3 refers to thequantum model with prior entanglement. An identical
inequality is clearly valid for the quantum modelwithout prior entanglement.
See [10, 28] for rigorous definitions of these various models; our sole intention
was to point out that the unbounded-error model is at least aspowerful.
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B Details on Forster’s Method

The purpose of this section is to explain in detail how Theorem 2.4 is implicit in
Forster’s work.

Recall that vectorsv1, . . . , vn in Rr are said to bein general positionif no r
of them are linearly dependent. Forster proved that any set of vectors in general
position can be balanced in a useful way:

Theorem B.1 (Forster [12, Thm. 4.1]).Let U ⊂ Rr be a finite set of vectors in
general position,|U | > r. Then there is a nonsingular transformation A∈ Rr×r

such that
∑

u∈U

1

‖Au‖2
(Au)(Au)T =

|U |
r

Ir .

(The vector norm‖ · ‖ above and throughout this section is the Euclidean norm
‖ · ‖2.) Theorem B.1 is the main technical tool needed to establish the statement of
interest to us (cf. [12, Thm. 2.2]):

Theorem 2.4(Restated from p. 9).Let X,Y be finite sets and M= [Mxy]x∈X,y∈Y a
real matrix(M , 0). Put r = sign-rank(M). Then there is a matrix R= [Rxy]x∈X,y∈Y
such that:

rank(R) = r, (B.1)

M ◦ R> 0, (B.2)

‖R‖∞ 6 1, (B.3)

‖R‖F =
√
|X| |Y|/r . (B.4)

Proof. SinceM , 0, it follows that r > 1. Fix a matrixQ = [Qxy] of rank r such
that

QxyMxy > 0 whenever Mxy , 0. (B.5)

Write
Q =

[

〈ux, vy〉
]

x∈X, y∈Y

for suitable collections of vectors{ux} ⊂ Rr and {vy} ⊂ Rr . If the vectors{ux :
x ∈ X} are not already in general position, we can replace them withtheir slightly
perturbed versions{ũx} thatare in general position. Provided that the perturbations
are small enough, property (B.5) will still hold, i.e., we will have 〈ũx, vy〉Mxy > 0
wheneverMxy , 0. As a result, we can assume w.l.o.g. that{ux} are in general
position. Furthermore, a moment’s reflection reveals that the vectors{vy} can be
assumed to be all nonzero.
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Since sign-rank(M) 6 rank(M), we infer that|X| > r. Theorem B.1 is therefore
applicable to the set{ux} and yields a nonsingular matrixA with

∑

x∈X

1

‖Aux‖2
(Aux)(Aux)

T =
|X|
r

Ir . (B.6)

Define

R=

[ 〈ux, vy〉
‖Aux‖ ‖(A−1)Tvy‖

]

x∈X, y∈Y
.

It remains to verify properties (B.1)–(B.4). Property (B.1) follows from the
representationR = D1QD2, whereD1 andD2 are diagonal matrices with strictly
positive diagonal entries. By (B.5), we know thatRxyMxy > 0 wheneverMxy , 0,
which immediately gives us (B.2). Property (B.3) holds because

|〈ux, vy〉|
‖Aux‖ ‖(A−1)Tvy‖

=
|〈Aux, (A−1)Tvy〉|
‖Aux‖ ‖(A−1)Tvy‖

6 1.

Finally, property (B.4) will follow once we show that
∑

x R2
xy = |X|/r for every

y ∈ Y. So, fixy ∈ Y and consider the unit vectorv = (A−1)Tvy/‖(A−1)Tvy‖.We have:

∑

x∈X
R2

xy =
∑

x∈X

〈ux, vy〉2

‖Aux‖2 ‖(A−1)Tvy‖2

=
∑

x∈X

(vTyA
−1)(Aux)(Aux)T(A−1)Tvy

‖Aux‖2 ‖(A−1)Tvy‖2

= vT















∑

x∈X

1

‖Aux‖2
(Aux)(Aux)

T















v

=
|X|
r

by (B.6). �
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