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Abstract

We obtain the first nontrivial time-space lower bound for quantum algorithms solving prob-
lems related to satisfiability. Our bound applies to MajSAT and MajMajSAT, which are com-
plete problems for the first and second levels of the counting hierarchy, respectively. We prove
that for every real d and every positive real ε there exists a real c > 1 such that either:

• MajMajSAT does not have a quantum algorithm with bounded two-sided error that runs
in time nc, or

• MajSAT does not have a quantum algorithm with bounded two-sided error that runs in
time nd and space n1−ε.

In particular, MajMajSAT cannot be solved by a quantum algorithm with bounded two-sided
error running in time n1+o(1) and space n1−ε for any ε > 0.

The key technical novelty is a time- and space-efficient simulation of quantum computations
with intermediate measurements by probabilistic machines with unbounded error. We also
develop a model that is particularly suitable for the study of general quantum computations
with simultaneous time and space bounds. However, our arguments hold for any reasonable
uniform model of quantum computation.

1 Introduction

Satisfiability, the problem of deciding whether a given Boolean formula has at least one satisfying
assignment, has tremendous practical and theoretical importance. It emerged as a central problem
in complexity theory with the advent of NP-completeness in the 1970’s. Proving lower bounds on
the complexity of satisfiability remains a major open problem. Complexity theorists conjecture
that satisfiability requires exponential time and linear space to solve in the worst case. Despite
decades of effort, the best single-resource lower bounds for satisfiability on general-purpose models
of computation are still the trivial ones – linear for time and logarithmic for space. However, since
the late 1990’s we have seen a number of results that rule out certain nontrivial combinations of
time and space complexity.

One line of research [6, 7, 19, 5, 20], initiated by Fortnow, focuses on proving stronger and
stronger time lower bounds for deterministic algorithms that solve satisfiability in small space. For
subpolynomial (i.e., no(1)) space bounds, the current record states that no such algorithm can run in
time nc for any c < 2 cos (π/7) ≈ 1.8019. A second research direction aims to strengthen the lower
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bounds by considering more powerful models of computation than the standard deterministic one.
Diehl and Van Melkebeek [5] initiated the study of lower bounds for problems related to satisfiability
on randomized models with bounded error. They showed that for every integer ` ≥ 2, Σ`SAT
cannot be solved in time nc by subpolynomial-space randomized algorithms with bounded two-
sided error for any c < `, where Σ`SAT denotes the problem of deciding the validity of a given fully
quantified Boolean formula with ` alternating blocks of quantifiers beginning with an existential
quantifier. Σ`SAT represents the analogue of satisfiability for the `th level of the polynomial-
time hierarchy; Σ1SAT corresponds to satisfiability. Proving nontrivial time-space lower bounds
for satisfiability on randomized algorithms with bounded two-sided error remains open. Allender
et al. [2] considered the even more powerful (but physically unrealistic) model of probabilistic
algorithms with unbounded error1. They settled for problems that are even harder than Σ`SAT for
any fixed `, namely MajSAT and MajMajSAT, the equivalents of satisfiability and Σ2SAT in the
counting hierarchy. MajSAT is the problem of deciding whether a given Boolean formula is satisfied
for at least half of the assignments to its variables. MajMajSAT is the problem of deciding whether
a given Boolean formula ϕ on disjoint variable sets x and y has the property that for at least half of
the assignments to x, ϕ is satisfied for at least half of the assignments to y. Recall that Toda [16]
proved that the polynomial-time hierarchy reduces to the class PP, which represents polynomial-
time probabilistic computations with unbounded two-sided error and forms the first level of the
counting hierarchy. Apart from dealing with harder problems, the quantitative strength of the lower
bounds by Allender et al. is also somewhat weaker. In particular, they showed that no probabilistic
algorithm can solve MajMajSAT in time n1+o(1) and space n1−ε for any positive constant ε. We
refer to [13] for a detailed survey of the past work on time-space lower bounds for satisfiability
and related problems, including a presentation of the Allender et al. lower bound that is slightly
different from the original one.

In this paper we study the most powerful model that is considered physically realistic, namely
quantum algorithms with bounded error. We obtain the first nontrivial time-space lower bound
for quantum algorithms solving problems related to satisfiability. In the bounded two-sided error
randomized setting, the reason we can get lower bounds for Σ`SAT for ` ≥ 2 but not for ` = 1 relates
to the fact that we know efficient simulations of such randomized computations in the second level
of the polynomial-time hierarchy but not in the first level. In the quantum setting the situation
is worse: we know of no efficient simulations in any level of the polynomial-time hierarchy. The
best simulations to date are due to Adleman et al. [1], who showed that polynomial-time quantum
computations with bounded two-sided error can be simulated in PP. Building on this connection,
we bring the lower bounds of Allender et al. to bear on bounded-error quantum algorithms. Our
main result shows that either a time lower bound holds for quantum algorithms solving MajMajSAT
or a time-space lower bound holds for MajSAT.

Theorem 1. For every real d and every positive real ε there exists a real c > 1 such that either:

• MajMajSAT does not have a quantum algorithm with bounded two-sided error that runs in

time nc, or

• MajSAT does not have a quantum algorithm with bounded two-sided error that runs in time

nd and space n1−ε.

1Throughout this paper, we use the word “randomized” for the bounded-error setting and “probabilistic” for the
unbounded-error setting.
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As a corollary, we obtain a single time-space lower bound for MajMajSAT.

Corollary 1. MajMajSAT cannot be solved by a quantum algorithm with bounded two-sided error

running in time n1+o(1) and space n1−ε for any ε > 0.

Unlike in the deterministic and randomized cases, it is not obvious how to define a model
of quantum computation that allows us to accurately measure both time and space complexity.
The existing models give rise to various issues. For example, intermediate measurements play a
critical role as they are needed for time-space efficient simulations of randomized computations by
quantum computations. Several of the known models only allow measurements at the end of the
computation but not during the computation. As another example, the classical time-space lower
bounds hold for models with random access to the input and memory. This makes the lower bounds
more meaningful as they do not exploit artifacts due to sequential access. Extending the standard
quantum Turing machine model [3] to accommodate random access leads to complications that
make the model inconvenient to work with. In Section 2 we discuss these and other issues in detail,
and we survey the known models from the literature. We present a model that addresses all issues
and is capable of efficiently simulating all other uniform models that may be physically realizable
in the foreseeable future. Thus, lower bounds in our model reflect true problem hardness.

The main technical novelty for establishing Theorem 1 consists of an improved time- and space-
efficient simulation of quantum computations by unbounded-error probabilistic computations. The
previously known simulations, such as the one by Adleman et al., do not deal with intermediate
measurements in a space-efficient way. We show how to cope with intermediate measurements in
a space-efficient way and without loss in running time. Our construction works even when the
sequence of local quantum operations can depend on previous measurement outcomes; i.e., we
handle more powerful models than uniform quantum circuits. Our simulation makes use of a result
on approximating quantum gates due to Solovay and Kitaev [11]. Theorem 1 follows from our
simulation and the Allender et al. lower bound. The quantitative strength of our lower bound
derives from the latter; our translation does not induce any further weakening.

The rest of this paper is organized as follows. We start with a discussion of the model in
Section 2, we derive our results in Section 3, and we conclude with some open problems in Section
4. Throughout we assume basic background in quantum computation; see for example [14, 12].

2 Models of Quantum Computation

In this section we develop the model that we use for the exposition of our arguments. Section 2.1
contains a discussion of the issues that arise in choosing a model of quantum computation that
accurately reflects time and space complexity. In Section 2.2 we describe how previously studied
models fit into our taxonomy. We motivate and precisely define our chosen model in Section 2.3.
Although we consider the development of such a model as a contribution of our paper, the crux of
our main result can be understood at an abstract level. As such, a reader who would like to quickly
get to the heart of our paper can skip Section 2.

2.1 Issues

Our model should capture the notion of a quantum algorithm as viewed by the computer science
and physics communities and allow us to accurately measure the resources of time and space. For
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example, the model should allow us to express important quantum algorithms such as Shor’s [15]
and Grover’s [9] in a way that is natural and faithfully represents their complexities. This forms
the overarching issue in choosing a model. Below we discuss eight specific aspects of quantum
computation models and describe how the corresponding issues are handled in the classical setting.

Sublinear space bounds. Many algorithms have the property that the amount of work space
needed is less than the size of the input. Models such as one-tape Turing machines do not allow
us to accurately measure the space usage of such algorithms because they charge for the space
required to store the input. In the deterministic and randomized settings, sublinear space bounds
are accommodated by considering Turing machines with a read-only input tape that does not count
toward the space bound and read-write work tapes that do. In the quantum setting, we need a
model with an analogous capability.

Random access to the input and memory. In order to accurately reflect the complexity of
computational problems, our model should include a mechanism for random access, i.e., the ability
to access any part of the input or memory in a negligible amount of time (say, linear in the length
of the address). For example, there is a trivial algorithm for the language of palindromes that runs
in quasilinear time and logarithmic space on standard models with random access, but the time-
space product of any traditional sequential-access Turing machine deciding palindromes is at least
quadratic. The latter result does not reflect the complexity of deciding palindromes, but rather
exploits the fact that sequential-access machines may have to waste a lot of time moving their tape
heads back and forth. Classical Turing machines can be augmented with a mechanism to support
random access; our quantum model should also have such a mechanism.

Intermediate measurements. Unlike the previous two issues, intermediate measurements are
specific to the quantum setting. In time-bounded quantum computations, it is customary to as-
sume that all measurements occur at the end. This is because intermediate measurements can
be postponed by introducing ancilla qubits to store what would be the result of the measurement,
thus preventing computation paths with different measurement outcomes from interfering with each
other. However, this has a high cost in space – a computation running in time t may make up to
t measurements, so the space overhead could be as large as t, which could be exponential in the
original space bound. Hence, to handle small space bounds our model should allow intermediate
measurements. Indeed, this is crucial for our model to meet the expectation of being at least as
strong as randomized algorithms with comparable efficiency parameters; the standard way to “flip
a coin” in the quantum setting is to apply a Hadamard gate to a qubit in a basis state and then
measure it. Also, many quantum algorithms, such as Shor’s factoring algorithm, are naturally
described using intermediate measurements.

We also need to decide which measurements to allow. Projective measurements in the com-
putational basis are the most natural choice. Should we allow projective measurements in other
bases? How about fully general measurements (see Section 2.2.3 in [14]), where the measurement
operators need not be projections? General measurements can be performed by introducing ancilla
qubits (at a cost in space), performing a change of basis (at a cost in time), and doing a projec-
tive measurement in the computational basis, one qubit at a time. It is reasonable to charge the
complexity of these operations to the algorithm designer, so we are satisfied with allowing only
single-qubit measurements in the computational basis.
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Obliviousness to the computation history. Computations proceed by applying a sequence of
local operations to data. We call a computation nonoblivious if at each step, which local operation
to use and which operands to apply it to may depend on the computation history. A generic
deterministic Turing machine computation is nonoblivious. We can view each state as defining an
operation on a fixed number of tape cells, where the operands are given by the tape head locations.
In each step, the outcome of the applied operation affects the next state and tape head locations,
so both the operation and the operands can depend on the computation history. In contrast, a
classical circuit computation is oblivious because neither the operation (gate) nor the operands
(wires connected to the gate inputs) depend on the computation history (values carried on the
wires).

In the randomized and quantum settings, the notion of a computation history becomes more
complicated because there can be many computation paths. In the randomized setting, applying
a randomized operation to a configuration may split it into a distribution over configurations, and
the randomized Turing machine model allows the next state and tape head locations to depend
on which computation path was taken. In the quantum setting, applying a quantum operation to
a basis state may split it into a superposition over several basis states, and general nonoblivious
behavior would allow the next operation and operands to depend on which computation path was
taken. However, it is unclear whether such behavior is physically realizable, as currently envisioned
technologies all select quantum operations classically. An intermediate notion of nonobliviousness,
where the operations and operands may depend on previous measurement outcomes but not on the
quantum computation path, does seem physically realistic.

Classical control. There is a wide spectrum of degrees of interaction between a quantum com-
putation and its classical control. On the one hand, one can imagine a quantum computation
that is entirely “self-sufficient,” other than the interaction needed to provide the input and observe
the output. On the other hand, one can imagine a quantum computation that is guided classi-
cally every step of the way. Self-sufficiency is inherent to computations that are nonoblivious to the
quantum computation path, whereas measurements are inherently classically controlled operations.
Incorporating intermediate measurements into computations that are nonoblivious to the quantum
computation path would require some sort of global coordination among the quantum computation
paths to determine when a measurement should take place.

Syntax. Our model should be syntactic, meaning that identifying valid programs in the model
is decidable. If we are interested in bounded-error computations, then we cannot hope to decid-
ably distinguish programs satisfying the bounded-error promise from those that do not. However,
we should be able to distinguish programs that evolve according to the postulates of quantum
mechanics from those that do not. Allowing nonobliviousness to the quantum computation path
complicates this syntax check. If different components of the superposition can undergo different
unitary operations then the overall operation is not automatically unitary, due to interference.
Extra conditions on the transition function are needed to guarantee unitarity.

Complexity of the transition amplitudes. Care should be taken in specifying the allowable
transition amplitudes. In the randomized setting, it is possible to solve undecidable languages
by encoding the characteristic sequences of these languages in the transition probabilities. This
problem is usually handled by using a certain universal set of elementary randomized operations,
e.g., an unbiased coin flip. In the quantum setting, the same problem arises with unrestricted
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amplitudes. Again, one can solve the problem by restricting the elementary quantum operations
to a universal set. However, unlike in the randomized setting, there is no single standard universal
set like the unbiased coin flip with which all quantum algorithms are easy to describe. Algorithm
designers should be allowed to use arbitrary local operations provided they do not smuggle hard-
to-compute information into the amplitudes.

Absolute halting. In order to measure time complexity, we should use a model that naturally
allows any algorithm to halt absolutely within some time bound t. In the randomized setting, one
can design algorithms whose running times are random variables and may actually run forever. We
can handle such algorithms by clocking them, so that they are forced to halt within some fixed
number of time steps. Our quantum model should provide a similar mechanism.

2.2 Earlier Models

Now that we have spelled out the relevant issues and criteria, we consider several previously studied
models as candidates.

Bernstein and Vazirani [3] laid the foundations for studying quantum complexity theory using
quantum Turing machines. Their model uses a single tape and therefore cannot handle sublinear
space bounds. Like classical one-tape Turing machines, their model is sequential-access. It does
not allow intermediate measurements. On the other hand, their model is fully nonoblivious: the
transition function produces a superposition over basis configurations, and the state and tape head
location may be different for different components of the superposition. Their model represents the
self-sufficient extreme of the classical control spectrum. In their paper, Bernstein and Vazirani prove
that their model is syntactic by giving a few orthogonality constraints on the entries of the transition
function table that are necessary and sufficient for the overall evolution to be unitary. These
conditions are somewhat unnatural, and can be traced back to the possibility of nonobliviousness
to the quantum computation path. Bernstein and Vazirani restrict the transition amplitudes by
requiring that the first k bits of each amplitude are computable deterministically in time poly(k).
Their model is nontrivial to clock; they require that the transition function be designed in such
a way that the machine always halts, meaning that it reaches a superposition in which all non-
halting basis configurations have zero amplitude. Bernstein and Vazirani detail how to design such
mechanisms.

In [18], Watrous considers a model similar to Bernstein and Vazirani’s, but with one read-
write work tape and a read-only input tape not counting toward the space bound. The model
naturally allows for sublinear space bounds, but it is still sequential-access. It allows intermediate
measurements but only for the halting mechanism: a special register is measured after each time
step, with the outcome indicating “halt and output 1”, “halt and output 0”, or “continue”. The
model is nonoblivious like the Bernstein-Vazirani model. It has more classical interaction due to
the halting mechanism, but this is arguably not “classical control.” The syntax conditions on the
transition function are similar to those for the Bernstein-Vazirani model. The results in [18] require
the transition amplitudes to be rational, which is somewhat unappealing since one may often wish
to use Hadamard gates, which have irrational amplitudes. Similar to the Bernstein-Vazirani model,
the model is nontrivial to clock. In fact, the results in [18] rely on counting an infinite computation
as a rejection.

The main issue with the above models for our purposes is their sequential-access nature. It is
possible to handle this problem by imposing a random-access mechanism. However, the conditions
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on the entries of the transition function table characterizing unitary evolution become more com-
plicated and unnatural, making the model inconvenient to work with. Again, the culprit is the
nonobliviousness to the quantum computation path. Since this behavior does not appear to be
physically realizable in the foreseeable future anyway, the complications arising from it are in some
sense unjustified.

In [17], Watrous considers a different model of space-bounded quantum computation. This
model is essentially a classical Turing machine with an additional quantum work tape and a fixed-
size quantum register. Sublinear space bounds are handled by charging for the space of the classical
work tape and the quantum work tape but not the input tape. All three tape heads move sequen-
tially. This model handles intermediate measurements. It is oblivious to the quantum computation
path; the state and tape head locations cannot be in superposition with the contents of the quantum
work tape. However, the computation is nonoblivious to the classical computation history, includ-
ing the measurement outcomes. The finite control is classical; in each step it selects a quantum
operation and applies it to the combination of the qubit under the quantum work tape head together
with the fixed-size register. The register is needed because there is only one head on the quantum
work tape, but a quantum operation needs to act on multiple qubits to create entanglement. The
allowed operations come from the so-called quantum operations formalism (see Chapter 8 of [14]),
which encompasses unitary operations and general measurements, as well as interaction with an
external environment. Each quantum operation produces an output from a finite alphabet – the
measurement outcome in the case of a measurement. This outcome influences the next (classical)
transition. This model is syntactic just like classical Turing machines, with the additional step of
testing that each quantum operation satisfies the definition of a valid quantum operation. For his
constructions, Watrous needs the transition amplitudes to be algebraic. This model is trivial to
clock, since all the control is done classically and thus the machine can halt in a fixed number of
steps, just as in the classical setting.

The latter model is convenient to work with since the essence of the quantum aspects of a
computation are isolated into local operations that are chosen classically and applied to a simple
quantum register. This models the currently envisioned realizations of quantum computers. We
adopt this model for the exposition of our results, but we need to make some modifications in order
to address the following issues.

• Algorithms like Grover’s require quantum access to the input, i.e., an operation that allows
different basis states in a superposition to access different bits of the input simultaneously.
On inputs of length n, this is done with a query gate that effects the transformation |i〉|b〉 7→
|i〉|b ⊕ xi〉 where i ∈ {0, 1}dlog ne, b ∈ {0, 1}, and xi is the ith bit of the input. The model
from [17] does not have such an operation and thus cannot express algorithms like Grover’s.
While this operation seems no more physically realistic than nonobliviousness to the quantum
computation path if we view the input as stored in a classical memory, it does make sense
when the input is actually the output of another computation. For these reasons, we include
such an operation in our model.

• We want our model to have random access to emphasize the fact that our time-space lower
bound does not exploit any model artifacts due to sequential access. We can make the
model from [17] random-access by allowing each of the tape heads to jump in unit time to
a location whose address we have classically computed, just as can be done for deterministic
and randomized Turing machines.
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• The quantum operations used in the model from [17] are more general than we wish to
consider. Since we are focusing on the computational aspects of the model, we choose to
restrict the set of allowed operations to unitary operations and projective measurements in
the computational basis. The quantum operations formalism models the evolution of open
quantum systems, which is of information-theoretic rather than algorithmic concern and can
be simulated with unitary operations by introducing an additional “environment” system at
a cost in space.

• The restriction to algebraic transition amplitudes is unnecessary in the present setting. We
feel that a reasonable way to restrict the amplitudes is the one chosen by Bernstein and
Vazirani; i.e., the first k bits of each amplitude should be computable deterministically in
time poly(k).

2.3 Our Model

For concreteness, we now describe and motivate the particular model we use for the exposition of
our arguments. Our model addresses all the issues listed in Section 2.1, and is an adaptation of
Watrous’s model from [17], as described at the end of Section 2.2.

In terms of obliviousness, our model corresponds to the physically realistic middle ground
where a classical mechanism determines which quantum operation to apply based on the previous
measurement outcomes but independent of the actual quantum computation path. Our arguments
are robust with respect to the details of the model as long as it has the latter property. In particular,
we can handle uniform quantum circuits. Our results also hold for more general models allowing
nonobliviousness to the quantum computation path, but this requires more technical work; see the
remarks in Section 3.4.

2.3.1 Model Definition

We define a quantum Turing machine as follows. There are three semi-infinite tapes: the input
tape, the classical work tape, and the quantum work tape. Each cell on the input tape holds
one bit or a blank symbol. Each cell on the classical work tape holds one bit. Each cell on the
quantum work tape holds one qubit. The input tape contains the input, a string in {0, 1}n, followed
by blanks, and the classical and quantum work tapes are initialized to all 0’s. There are a fixed
number of tape heads, each of which is restricted to one of the three tapes. There may be multiple
heads moving independently on the same tape.

The finite control, the operations on the classical work tape, and all head movements are
classical; each operation on the quantum work tape can be either a unitary operation or a single-
qubit projective measurement in the computational basis. In each step of the computation, the
finite control of the machine is in one of a finite number of states. Each state has an associated
classical function, which is applied to the contents of the cells under the heads on the classical work
tape, and an associated quantum operation, which is applied to the contents of the cells under the
heads on the quantum work tape. The next state of the finite control and the head movements are
determined by the current state, the contents of the cells under the input tape heads and classical
work tape heads at the beginning of the computation step, and the measurement outcome if the
quantum operation was a measurement.

Each head moves left one cell, moves right one cell, stays where it is, or jumps to a new location
at a precomputed address that is written on the classical work tape between two of the classical

8



work tape heads. The latter type of move is classical random access. We also allow “quantum
random access” to the input by optionally performing a query that effects the transformation
|i〉|b〉 7→ |i〉|b ⊕ xi〉 on the qubits between two of the quantum work tape heads, where i ∈ {0, 1}∗
is an address located on the quantum work tape, b ∈ {0, 1}, and xi is the ith bit of the input of
length n or 0 if i > n.

Among the states of the finite control are an “accept” state and a “reject” state, which cause the
machine to halt. Although not needed in this paper, the machine can be augmented with a one-way
sequential-access write-only classical output tape in order to compute nonboolean functions.

Let us motivate our model definition. In terms of physical computing systems, the input tape
corresponds to an external input source, the classical work tape corresponds to classical memory,
and the quantum work tape corresponds to quantum memory. The bits and qubits under the heads
correspond to the data being operated on in the CPU.

We use multiple heads on each tape for several reason. One reason is that creating entanglement
requires multiple-qubit operations and hence multiple quantum work tape heads. Another reason
is that having multiple heads offers a convenient way of formalizing random access. Since we are
studying how algorithm performance scales with the input size, addresses have non-constant length
and thus cannot fit under the tape heads all at once. A number of mechanisms are possible for
indicating where an address is stored for random access. The one we have chosen, namely that the
address is delimited by two tape heads, is artificial and is chosen only for convenience because it
makes the model simple and clean. Another possible mechanism is to associate with each head a
special index tape used for writing addresses; see [13] for a discussion of this type of model.

A minor issue arises with our multiple head approach: an operation on a work tape may not
be well-defined if two of the heads are over the same cell. Rather than requiring programs to avoid
this situation, which would make the model non-syntactic, we can just assume that no operation
is performed on the violating work tape when this situation arises.

We allow the heads to move sequentially because if we only allowed random access, then con-
structing an address would require storing a pointer to the location where that address is stored.
The pointer would have have nonconstant size, so we would need a pointer to that pointer, and so
on. This chicken-and-egg problem does not appear in physical computing systems, and we explicitly
avoid it by allowing sequential traversal of memory without having to “remember” where the head
is.

2.3.2 Complexity Classes

The running time of a quantum Turing machine at input length n is the maximum over all inputs
of length n and over all computation paths of the number of steps before the machine halts. The
space usage is the maximum over all inputs of length n and over all computation paths of the
largest address of a classical work tape head or quantum work tape head during the computation.
Either the time or the space may be infinite. Note that we maximize over all computation paths,
even ones that occur with probability 0 due to destructive interference.

Our definition of space usage allows the space to be exponential in the running time, since in
time t a machine can write an address that is exponential in t and move a head to that location
using the random-access mechanism. However, the space usage can be reduced to at most the
running time with at most a polylogarithmic factor increase in the latter by compressing the data
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and using an appropriate data structure to store (old address, new address) pairs. (See Section
2.3.1 of [13] for a similar construction.)

We are now set up to define quantum complexity classes within our model.

Definition. BQTISP(t, s) is the class of languages L such that for some quantum Turing machine

M running in time O(t) and space O(s),

• if x ∈ L then Pr(M accepts x) ≥ 2
3 , and

• if x 6∈ L then Pr(M accepts x) ≤ 1
3 .

We also require that for each entry in the matrix representation of each unitary operation of M in the

computational basis, the first k bits of the real and imaginary parts are computable deterministically

in time poly(k). We define BQTIME(t) similarly but without the space restriction.

As evidence in support of our model of choice, we note that the following results hold in our
model.

• Recall that BPTISP(t, s) is the class of languages solvable in time O(t) and space O(s) by a
randomized algorithm with error probability at most 1/3. Then BPTISP(t, s) ⊆ BQTISP(t, s)
holds because a quantum algorithm in our model can directly simulate a randomized algo-
rithm; the only issue is producing unbiased coin flips. For this, the simulation can apply a
Hadamard gate to one qubit on the quantum work tape and then measure it. This qubit can
be reused to generate as many random bits as needed.

• Grover’s algorithm shows that OR ∈ BQTISP(n1/2 · polylog(n), log n), where OR denotes
the problem of computing the disjunction of the n input bits.

• Shor’s algorithm shows that a nontrivial factor of an integer of bit length n can be computed
in time O(n3 · polylog(n)) and space O(n) with error probability at most 1/3 in our model.

3 Time-Space Lower Bound

In this section we prove our results. Section 3.1 contains an outline of the two main steps of the
proof. In Section 3.2 we argue that we can restrict our attention to a special case of our model
using a finite universal set of gates. We show in Section 3.3 how to efficiently simulate this special
case on unbounded-error probabilistic algorithms.

3.1 Results and Proof Outline

Using the notation introduced in Section 2.3.2, we can formalize Theorem 1 and Corollary 1 as
follows.

Theorem 1 (restated). For every real d and every positive real ε there exists a real c > 1 such

that either:

• MajMajSAT 6∈ BQTIME(nc), or

• MajSAT 6∈ BQTISP(nd, n1−ε).
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Corollary 1 (restated). For all ε > 0, MajMajSAT 6∈ BQTISP(n1+o(1), n1−ε).

Theorem 1 follows immediately from the following two results. The first gives a lower bound for
MajSAT and MajMajSAT on unbounded-error probabilistic algorithms, and the second translates
this lower bound to the quantum setting by giving a time- and space-efficient simulation of quantum
algorithms by unbounded-error probabilistic algorithms. Recall that PTISP(t, s) denotes the class
of languages decidable by unbounded-error probabilistic algorithms running in time O(t) and space
O(s).

Lemma 1 (Allender et al. [2]). For every real d and every positive real ε there exists a real

c > 1 such that either:

• MajMajSAT 6∈ PTIME(nc), and

• MajSAT 6∈ PTISP(nd, n1−ε).

Lemma 2. For all sufficiently constructible t ≥ log n and s ≥ log n,

BQTISP(t, s) ⊆ PTISP(t · polylog(t), s+ polylog(t)).

Lemma 2 is our main technical contribution, and its proof occupies the remainder of Section 3.
The first step is to show that we can assume without loss of generality that our model only uses a
certain finite universal set of quantum gates. A key ingredient is the Solovay-Kitaev theorem [11],
which shows how to approximate any single-qubit unitary gate to within ε in the 2-norm sense using
only polylog(1/ε) gates from a finite universal set. The efficiency afforded by the Solovay-Kitaev
theorem is critical for obtaining our lower bound.

The second step is to simulate this special case of our model time- and space-efficiently with
unbounded-error probabilistic algorithms. Our strategy builds on known simulations of quantum
computations without intermediate measurements by probabilistic machines with unbounded error
[1, 8]. The basic idea of these simulations is to write the final amplitude of a basis state as a
simple linear combination of #P functions, where each #P function counts the number of quantum
computation paths leading to that state with a certain path amplitude. Taking advantage of our
choice of universal set, we can use simple algebraic manipulations to express the probability of
acceptance as the difference between two #P functions, up to a simple common scaling factor.
Standard techniques then result in a time- and space-efficient simulation by an unbounded-error
probabilistic machine.

The above approach only handles unitary operations with one final measurement. To handle
intermediate measurements, we first adapt this approach to capture the probability of observing any
particular sequence of measurement outcomes. The acceptance probability can then be expressed as
a sum over all sequences of measurement outcomes that lead to acceptance, where each term is the
scaled difference of two #P functions. We can combine those terms into a single one using the closure
of #P under uniform exponential sums. However, the usual way of doing this – nondeterministically
guess and store a sequence and then run the computation corresponding to that sequence – is too
space-inefficient. To address this problem, we note that the crux of the construction corresponds to
multiplying two #P functions on the same input. The standard approach runs the two computations
in sequence, accepting iff both accept. We argue that we can run these two computations in parallel

and keep them in synch so that they access each bit of the guessed sequence at the same time,
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allowing us to reference each bit only once. We can then guess each bit when needed during the
final simulation and overwrite it with the next guess bit, allowing us to meet the space constraint.

Regarding the conditions in Lemma 2, we assume t and s are at least logarithmic so that they
dominate any logarithmic terms arising from indexed access to the input. We henceforth ignore
the technical constructibility constraints on t and s. For Theorem 1, we only need to consider
“ordinary” polynomially-bounded functions, which are computable in time polynomial in the length
of the output written in binary, which is sufficient for our purposes.

3.2 Efficient Approximation With a Universal Set

A BQTISP(t, s) computation can be viewed as applying a sequence of O(t) classically selected
quantum gates to a register of O(s) qubits. There are three types of gates:

• Unitary gates selected from a finite library of gates associated with the machine.

• Query gates, which effect the transformation |i〉|b〉 7→ |i〉|b⊕ xi〉, where i is an index into the
input x.

• Measurement gates, which perform a single-qubit projective measurement in the computa-
tional basis.

The first step in the proof of Lemma 2 is to show that we can restrict our attention to ma-
chines whose library is a fixed universal set. It is well-known that every unitary transformation
can be effected exactly using CNOT gates and single-qubit gates. Defining BQTISP′(t, s) to be
BQTISP(t, s) with the restriction that each gate in the library either is CNOT or acts on only one
qubit, we have the following.

Lemma 3. For all t and all s,

BQTISP(t, s) = BQTISP′(t, s).

For completeness, we sketch a proof of Lemma 3 in Appendix B.
It is also well-known that finite universal sets exist which can approximate any unitary operation

to arbitrary accuracy. We say that a single-qubit unitary operation Ũ ε-approximates a single-qubit
unitary operation U if ||Ũ − eiθU || ≤ ε for some (irrelevant) global phase factor eiθ. We say that a
set S of single-qubit unitary gates is universal for single-qubit unitary gates if for all single-qubit
unitary gates U and all ε > 0 there is a sequence Ũ1, . . . , Ũ` of gates from S such that the operation
Ũ1 · · · Ũ` ε-approximates U .

We use the fact that the set {F,H} is universal for single-qubit unitary gates2, where H is the
Hadamard gate and

F =

[
1 0
0 3

5 + 4
5 i

]

in the computational basis. We can restrict our attention to quantum Turing machines with library
{CNOT, F,H} by replacing each single-qubit gate in the library of a BQTISP′ machine with an
approximation using F and H gates.

2This is shown on page 196 in [14] with a relative phase shift by π/4 instead of the F gate; however, F is a relative
phase shift by an irrational multiple of 2π and hence can approximate the π/4 phase shift to arbitrary accuracy.
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We need to satisfy the following requirements:

• The transformation should not increase the number of gates applied by too much.

• The new sequence of gates should still be efficiently computable by a classical algorithm.

• The probability an input x is accepted should not change by too much when we apply the
transformation.

The following key theorem allows us to meet these constraints.

Lemma 4 (Solovay and Kitaev [11]). If S is universal for single-qubit unitary gates and is

closed under adjoint, then for all single-qubit unitary gates U and all ε > 0 there is a sequence of at

most polylog(1/ε) gates from S that ε-approximates U . Moreover, such a sequence can be computed

deterministically in time polylog(1/ε) provided the first k bits of the matrix entries of U and the

gates in S are computable in time poly(k).

The proof by Solovay and Kitaev gives an algorithm for computing an approximation in time
polylog(1/ε), ignoring the complexity of arithmetic (see [4] and Section 8.3 of [12]). We cannot do
exact arithmetic since the entries of our gates may require infinitely many bits to specify, but in
each step of the algorithm it suffices to work with poly(ε)-approximations to all of the matrices.
Computing each matrix entry to O(log (1/ε)) bits suffices for this because the matrices have only
constant size. By our complexity constraint on the transition amplitudes and the fact that the
entries of F and H are also efficiently computable, this incurs only a polylog(1/ε) time (and space)
overhead.

We argue that approximating each single-qubit unitary gate to within Θ(1/t) ensures that
the probability of acceptance of a quantum Turing machine running in time t only changes by
a small amount. Note that our model is nonoblivious to measurement outcomes, so there may
be exponentially many classical computation paths corresponding to the different measurement
outcomes. A simple union bound over these paths does not work since it would require exponentially
small precision in the approximations, which we cannot afford. However, the approximation errors
are relative to the probability weights of the paths. As a result, the overall error cannot grow too
large.

Define BQTISP′′(t, s) to be BQTISP(t, s) with the restriction that the library of gates is
{CNOT, F, F †,H, I}. We include “identity gates” I for technical reasons – we need to allow com-
putation steps that do not change the state of the quantum tape. We include F † gates because the
Solovay-Kitaev theorem requires the universal set to be closed under adjoint.

Lemma 5. For all sufficiently constructible t and all s,

BQTISP′(t, s) ⊆ BQTISP′′(t · polylog(t), s+ polylog(t)).

We defer the proof of Lemma 5 to Appendix A.

3.3 Efficient Probabilistic Simulation

We now prove Lemma 2. By Lemmas 3 and 5, it suffices to show that

BQTISP′′(t, s) ⊆ PTISP(t, s+ log t).
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So consider a language L ∈ BQTISP′′(t, s) and an associated quantum Turing machine M . We fix
an arbitrary input x and assume for simplicity of notation that on input x, M uses exactly s qubits
and always applies exactly t quantum gates, exactly m of which are measurements, regardless of the
observed sequence of measurement outcomes. This can be achieved by padding the computation
with gates that do not affect the accept/reject decision of M .

3.3.1 Computation Tree

PP can be characterized as the class of languages consisting of inputs for which the difference of
two #P functions exceeds a certain polynomial-time computable threshold. Thus, we would like
to express the acceptance probability of M on input x as the ratio of the difference of two #P
functions and some polynomial-time computable function. To facilitate the argument, we model
the computation of M on input x as a tree, analogous to the usual computation trees one associates
with randomized or nondeterministic computations. We can express the final amplitude of a basis
state as a linear combination of #P functions, where each #P function counts the number of
root-to-leaf paths in the tree that lead to that basis state and have a particular path amplitude.
The coefficients in this linear combination are the path amplitudes, which are the products of the
transition amplitudes along the path. In order to rewrite the linear combination as a ratio of the
above type, we guarantee certain properties of the transition amplitudes in the tree.

• First, our choice of universal set allows us to cancel a common denominator out of any given
gate in such a way that the numerators become Gaussian integers. We can make the product
of the common denominators the same for all full computation paths, and we will eventually
absorb it in the polynomial-time computable threshold function.

• Second, the Gaussian integers, such as the 3 + 4i numerator in the F gate, are handled by
separating out real and imaginary parts, as well as positive and negative parts, and by mul-
tiplicating nodes such that we effectively only need to consider numerators in {1,−1, i,−i}.
By multiplicating nodes we mean that we allow one node to have multiple children represent-
ing the same computational basis state. For example, the 3 + 4i numerator results in seven
children.

We formally define the computation tree for our fixed input x as follows. It has depth t. Each
level τ = 0, . . . , t represents the state of the quantum tape after the τth gate is applied and before
the (τ + 1)st gate is applied. Each node v has five labels:

• τ(v) ∈ {0, . . . , t}, representing the level of v

• µ(v) ∈ {0, 1}≤m, representing the sequence of measurement outcomes that leads to v

• σ(v) ∈ {0, 1}s, representing a computational basis state

• α(v) ∈ {1,−1, i,−i}, representing the numerator of the amplitude of v

• β(v) ∈ R
+, representing the denominator of the amplitude of v

Note that α(v) will be the product of the numerators of the transition amplitudes along the path
that leads to v, and similarly for β(v). Labels of nodes across a given level need not be unique; if v
and u are at the same level and σ(v) = σ(u) and µ(v) = µ(u), then v and u represent interference.
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We now define the tree inductively as follows. The root node v is at level τ(v) = 0 and has
µ(v) = ε representing that no measurements have been performed yet, σ(v) = 0s representing the
initial state, and α(v) = β(v) = 1 representing that |0s〉 has amplitude 1 initially. Now consider
an arbitrary node v. If τ(v) = t then v is a leaf. Otherwise, v has children at level τ(v) + 1 that
depend on the type and operands of (τ(v) + 1)st gate applied given that µ(v) is observed. Let G
denote this gate.

• IfG = H then v has two children v0 and v1. SupposeG is applied to the jth qubit and let σ(v0)
and σ(v1) be obtained from σ(v) by setting the jth bit to 0 for σ(v0) and to 1 for σ(v1). Let
σ(v)j denote the jth bit of σ(v). If σ(v)j = 0 then put α(v0) = α(v1) = α(v), and if σ(v)j = 1
then put α(v0) = α(v) and α(v1) = −α(v). In each case put β(v0) = β(v1) =

√
2β(v). The 1

and −1 multipliers for the α-labels correspond to the transition amplitudes of G, except that
the common 1/

√
2 has been factored out and absorbed in the β-label.

• If G = F then we consider two cases. Suppose G is applied to the jth qubit. If σ(v)j = 1 then
v has seven children, all with the same σ-label σ(v). Three of the children have α-label α(v)
and the other four have α-label i ·α(v), and all children have β-label 5β(v). This corresponds
to an amplitude of 3+4i

5 , where the numerator 3 + 4i has been spread out across multiple
children so as to maintain the property that all α-labels are in {1,−1, i,−i}. If σ(v)j = 0
then v has five children, again all with the same σ-label σ(v), and now all with the same
α-label α(v) and all with β-label 5β(v). This corresponds to an amplitude of 5/5, so that a
common denominator of 5 can be used for all nodes resulting from the application of G.

• If G = F † then the children of v are constructed as in the case G = F except that the children
with α-label i · α(v) now have α-label −i · α(v).

• If G = I, CNOT, a query gate, or a measurement gate, then applying G to |σ(v)〉 yields
another computational basis state |σ〉, so v has a single child u with σ(u) = σ, α(u) = α(v),
and β(u) = β(v).

For the cases where G is unitary, we put µ(u) = µ(v) for all children u. If G is a measurement
gate then we put µ(u) = µ(v)σ(v)j , where u is the unique child of v and j is the index of the qubit
measured by G.

Note that the denominator β(v) can be written as 5f(v)
√

2
h(v)

, where f(v) denotes the number
of F and F † gates along the path from the root to v, and h(v) the number of H gates. In fact,
f(v) and h(v) can be viewed as functions of τ(v) and µ(v) only, and we will write f(τ, µ) and
h(τ, µ) accordingly. This is because the sequence of gates that leads to a node v only depends on
µ(v) (and on the fixed input x). The latter reflects the obliviousness of the model to the quantum
computation path.

In order to describe how the computation tree reflects the evolution of the quantum tape, we
introduce the following notation:

• Vτ,µ,σ,α = {v : τ(v) = τ, µ(v) = µ, σ(v) = σ, α(v) = α}

• Vτ,µ,σ =
⋃

α Vτ,µ,σ,α

• Vτ,µ =
⋃

σ Vτ,µ,σ
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Suppose we run M but do not renormalize state vectors after measurements. Then after τ gates
have been applied, we have a vector for each sequence of measurement outcomes µ that could have
occurred during the first τ steps. The nodes in Vτ,µ together with their amplitudes

α(v)

5f(τ,µ)
√

2
h(τ,µ)

give the vector for µ, since these are exactly the nodes whose computation paths are consistent
with the measurement outcomes µ1 · · ·µ|µ|. More precisely, an inductive argument shows that the
vector for µ equals ∑

v∈Vτ,µ
α(v)|σ(v)〉

5f(τ,µ)
√

2
h(τ,µ)

.

The squared 2-norm of each such vector equals the probability pµ of observing µ. In particular, at
the end of the computation we obtain the following key property.

Claim 1. For all µ ∈ {0, 1}m,

pµ =

∑
σ∈{0,1}s

∣∣ ∑
v∈Vt,µ,σ

α(v)
∣∣2

25f(t,µ)2h(t,µ)
.

We present a formal proof of Claim 1 in Appendix A.

3.3.2 Machine Construction

With Claim 1 in hand, we now show how to construct a probabilistic machine N running in time
O(t) and space O(s+ log t) such that for all inputs x,

• if Pr(M accepts x) > 1/2 then Pr(N accepts x) > 1/2, and

• if Pr(M accepts x) < 1/2 then Pr(N accepts x) < 1/2.

This suffices to prove Lemma 2.
We first construct nondeterministic machines M1,M−1,Mi,M−i, each taking as input a triple

(x, µ, σ) where x ∈ {0, 1}n, µ ∈ {0, 1}m, and σ ∈ {0, 1}s. (Recall that most of our notation, such
as m and s, is with reference to the particular input x.) For each α ∈ {1,−1, i,−i}, Mα will run in
time O(t) and space O(s+ log t) and satisfy #Mα(x, µ, σ) = |Vt,µ,σ,α|, where #Mα(x, µ, σ) denotes
the number of accepting computation paths of Mα on input (x, µ, σ). Since t is constructible, we
can assume without loss of generality that all machines are constructed so as to have exactly 2g

computation paths for some constructible function g = O(t). This allows us to compare numbers
of accepting paths to numbers of rejecting paths.

We simply have Mα(x, µ, σ) nondeterministically guess a root-to-leaf path in the computation
tree. The only information about the current node v it needs to keep track of is σ(v) and α(v),
taking space O(s). It keeps a pointer into µ, taking space O(log t). It determines the correct
sequence of gates by simulating the classical part of M , taking O(t) time and O(s) space. When
processing a measurement gate G, Mα checks that applying G to the current σ(v) yields the next
bit of µ. It rejects if not and otherwise continues, using that bit of µ as the measurement outcome.
When it reaches a leaf v, Mα checks that σ(v) = σ and α(v) = α and accepts if so and rejects
otherwise. As constructed, Mα has the desired behavior.
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Fix µ ∈ {0, 1}m. By Claim 1, the probability of observing µ satisfies

pµ =
∑

σ∈{0,1}s

∣∣∑
v∈Vt,µ,σ

α(v)
∣∣2

25f(t,µ)2h(t,µ)

=
∑

σ∈{0,1}s

∣∣∑
α α · #Mα(x, µ, σ)

∣∣2

25f(t,µ)2h(t,µ)

=
∑

σ∈{0,1}s

(∑
α #Mα(x, µ, σ)2

)
−

(∑
α #Mα(x, µ, σ) · #M−α(x, µ, σ)

)

25f(t,µ)2h(t,µ)

=
∑

σ∈{0,1}s

#M+(x, µ, σ) − #M−(x, µ, σ)

25f(t,µ)2h(t,µ)
,

where M+ is a nondeterministic machine that guesses α ∈ {1,−1, i,−i} and then runs two copies of
Mα, accepting iff both accept, and M− is a nondeterministic machine that guesses α ∈ {1,−1, i,−i}
and then runs a copy of Mα and a copy of M−α, accepting iff both accept. We run the copies in

parallel, keeping them in synch so that they access each bit of µ at the same time. Note that since
M+ and M− can reject after seeing a single disagreement with µ, the two copies being run will
apply the same sequence of gates and thus access each bit of µ at the same time. It follows that
both M+ and M− need to reference each bit of µ only once. As we show shortly, this is critical for
preserving the space bound. Both M+ and M− run in time O(t) and space O(s+ log t).

In order to capture the probability of acceptance of M , we would like to sum over all complete
sequences of measurement outcomes µ that cause M to accept. We assume without loss of generality
that f(t, µ) and h(t, µ) are independent of µ, say f(t, µ) = f and h(t, µ) = h for all µ, so that the
scaling factor 1/25f(t,µ)2h(µ) can be factored out of this sum. To achieve this, we can modify M
so that it counts the number of F and F † gates and the number of H gates it applies during the
computation and then applies some dummy gates at the end to bring the counts up to the fixed
values f and h.

We construct nondeterministic machines N+ and N−, both running in time O(t) and space
O(s+ log t), such that

#N+(x) =
∑

µ ∈ {0, 1}m causing

M to accept

∑

σ∈{0,1}s

#M+(x, µ, σ)

and
#N−(x) =

∑

µ ∈ {0, 1}m causing

M to accept

∑

σ∈{0,1}s

#M−(x, µ, σ).

We have N+(x) run M+(x, µ, σ) for a nondeterministically guessed µ ∈ {0, 1}m and σ ∈ {0, 1}s

and accept iff M+ accepts and µ causes M to accept, and similarly for N−. Since every accepting
execution of M+ or M− follows an execution of M with measurement outcomes µ, we know at the
end whether µ causes M to accept.

However, letting N+ just nondeterministically guess µ and σ and then run M+(x, µ, σ) does
not work because it takes too much space to store µ. Since M+ and M− were constructed in such
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a way that each bit of µ is only referenced once, we can nondeterministically guess each µj when
needed and overwrite the previous µj−1. The space usage of σ is not an issue, so σ can be guessed
and stored at any time. Constructed in this way, N+ and N− have the desired properties.

It follows that the probability M accepts x is

#N+(x) − #N−(x)

25f2h
.

Thus,

• if Pr(M accepts x) > 1/2 then #N+(x) − #N−(x) > 25f2h−1, and

• if Pr(M accepts x) < 1/2 then #N+(x) − #N−(x) < 25f2h−1.

We can now use a standard technique to obtain the final PTISP simulation N . We assume
without loss of generality that h ≥ 1. Recall that we assume N+ and N− each always have exactly
2g computation paths for some constructible function g = O(t). By nondeterministically pickingN+

or N− to run, and flipping the answer if N− was chosen, we get
(
#N+(x)−#N−(x)

)
+2g accepting

computation paths. We can generate 2g+1 dummy computation paths, exactly 2g + 25f2h−1 of
which reject, to shift the critical number of accepting paths to exactly half the total number of
computation paths. To do this very time- and space-efficiently, we take advantage of our use of
a universal set, which gives the number of rejecting dummy paths a simple form. We have N
nondeterministically guess g+1 bits; if the first bit is 0 it rejects, and otherwise it ignores the next
h− 1 bits, groups the next 6f bits into groups of 6 forming a number in {0, . . . , 31}, accepts if any
group is at least 25, and otherwise rejects iff the remaining guess bits are 0. Since t is constructible,
we can take f = O(t) and h = O(t) to be constructible functions so that N can compute f and h
without affecting the complexity parameters.

As constructed, N runs in time O(t) and space O(s + log t) and accepts x with probability
greater than 1/2 if x ∈ L and with probability less than 1/2 if x 6∈ L. This finishes the proof of
Lemma 2.

3.4 Remarks

Notice that the proof of Lemma 2 shows that the unbounded-error version of BQTISP′′(t, s) is
contained in PTISP(t, s+ log t). Since Theorem 1 only operates at the granularity of polynomial
time and space bounds, it would suffice to have Lemma 5 show that BQTISP′(t, s) is contained in
the unbounded-error version of BQTISP′′(t1+o(1), s + to(1)). This allows us to prove Theorem 1
under a more relaxed definition of BQTISP(t, s):

• We could relax the error probability to 1/2 − 1/poly(t) and relax the time for comput-
ing the first k bits of the amplitudes to 2o(k), since the overhead in computing amplitudes
would still be subpolynomial and the Solovay-Kitaev algorithm could still produce 1/poly(t)-
approximations, for arbitrarily high degree polynomials, in to(1) time. The argument in
Lemma 5 still proves that the error probability remains less than 1/2 in this case.

• Alternatively, we could keep the amplitude efficiency at poly(k) and relax the error proba-

bility to 1/2 − 1/2to(1)
; then the Solovay-Kitaev algorithm would need to compute 1/2to(1)

-
approximations, which would still only take to(1) time.
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A natural goal is to strengthen Lemma 2 to unbounded-error quantum algorithms; the problem
is that the error probability gets degraded during the approximation process of Lemma 5 and thus
needs to be bounded away from 1/2 by a nonnegligible amount to begin with.

Finally, we remark that nothing prevents our proof of Lemma 2 from carrying over to any
reasonable model of quantum computation that is nonoblivious to the quantum computation path.
In this case, the sequence of gates leading to a node v in the computation tree does not only depend
on µ(v), but this fact does not present a problem for our proof. However, the proof becomes more
technical since, e.g., approximating each local unitary operation may lead to overall nonunitary
evolution since the local operations are themselves applied in a superposition. These complications
arise for the same reason as the unnatural conditions on the transition function in the models from
[3] and [18]. We feel that working out the details of such a result would not be well-motivated
since the currently envisioned realizations of quantum computers do not support such nonoblivious
behavior.

4 Conclusion

Several questions remain open regarding time-space lower bounds on quantum models of computa-
tion. An obvious goal is to obtain a quantitative improvement to our lower bound. It would be nice
to get a particular constant c > 1 such that MajMajSAT cannot be solved by quantum algorithms
running in nc time and subpolynomial space. The lower bound of Allender et al. does yield this;
however, the constant c is very close to 1, and determining it would require a complicated analysis
involving constant-depth threshold circuitry for iterated multiplication [10]. Perhaps there is a way
to remove the need for this circuitry in the quantum setting.

A major goal is to prove quantum time-space lower bounds for problems that are simpler than
MajMajSAT. Ideally we would like lower bounds for satisfiability itself, although lower bounds
for its cousins in PH and ⊕P would also be very interesting. The difficulty in obtaining such
lower bounds arises from the fact that we know of no simulations of quantum computations in
these classes. The known time-space lower bounds for satisfiability and related problems follow the
indirect diagonalization paradigm, which involves assuming the lower bound does not hold and then
deriving a contradiction with a direct diagonalization result. For example, applying this paradigm
to quantum algorithms solving Σ`SAT would entail assuming that Σ`SAT has an efficient quantum
algorithm. Since Σ`SAT is complete for the class Σ`P under very efficient reductions, this hypothesis
gives a general simulation of the latter class on quantum algorithms. To reach a contradiction with
a direct diagonalization result, we seem to need a way to convert these quantum computations back
into polynomial-time hierarchy computations.

Strengthening Corollary 1 to MajSAT instead of MajMajSAT may currently be within reach.
Recall that the result of [2] only needs the following two types of hypotheses to derive a contradic-
tion:

• MajMajSAT ∈ PTIME(nc), and

• MajSAT ∈ PTISP(nd, n1−ε).

Under the hypothesis MajSAT ∈ BQTISP(n1+o(1), n1−ε), Lemma 2 yields the second inclusion but
not the first. One can use the hypothesis to replace the second majority quantifier of a MajMajSAT
formula with a quantum computation. However, we do not know how to use the hypothesis again
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to remove the first majority quantifier, because the hypothesis only applies to majority-quantified
deterministic computations. Fortnow and Rogers [8] prove that PPBQP = PP, and their proof shows
how to absorb the “quantumness” into the majority quantifier so that we can apply the hypothesis
again. However, their proof critically uses time-expensive amplification and is not efficient enough
to yield a lower bound for MajSAT via the result of [2]. It might be possible to exploit the
space bound to obtain a more efficient inclusion. It might also be possible to exploit more special
properties of the construction in [2] to circumvent the need for the amplification component.
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A Postponing Measurements

In this appendix we describe a framework for analyzing quantum algorithms with intermediate
measurements by implicitly postponing the measurements and tracking the unitary evolution of
the resulting purification. We stress that we are doing so for reasons of analysis only; our actual
simulations do not involve postponing measurements. This framework facilitates the proofs of
Claim 1 and Lemma 5. We first describe the common framework and then use it for those two
proofs.

Consider a quantum Turing machine M running in time t and space s. We fix an arbitrary
input x and assume for simplicity of notation that on input x, M uses exactly s qubits and always
applies exactly t quantum gates, exactly m of which are measurements, regardless of the observed
sequence of measurement outcomes. This can be achieved by padding the computation with gates
that do not affect the accept/reject decision of M .

We conceptually postpone the measurements in the computation by

• introducing m ancilla qubits initialized to all 0’s,

• replacing the ith measurement on each classical computation path by an operation that
entangles the ith ancilla qubit with the qubit being measured (by applying a CNOT to the
ancilla with the measured qubit as the control), and

• measuring the m ancilla qubits at the end.
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In the τth step of the simulation, we apply a unitary operation Uτ on a system of s + m
qubits, where Uτ acts independently on each of the subspaces corresponding to distinct sequences
of measurement outcomes that can be observed before time step τ . More precisely, consider the set
of µ ∈ {0, 1}≤m such that given that µ is observed, the τth gate is applied after µ is observed but
not after the (|µ|+ 1)st measurement gate is applied. Let Uτ be the set of µ such that the τth gate
is unitary, and let Mτ be the set of µ such that the τth gate is a measurement. For ν ∈ {0, 1}m, let
Pν denote the projection on the state space of the ancilla qubits to the one-dimensional subspace
spanned by |ν〉.

For µ ∈ Uτ , let Gτ,µ denote the unitary operator on the state space of s qubits induced by the
τth gate applied given that µ is observed. Then Uτ acts as Gτ,µ ⊗ I on the range of I ⊗ Pµ0m−|µ| .
For each µ ∈ Mτ , Uτ applies an entangling operation Eτ,µ that acts only on the range of I ⊗
(Pµ0m−|µ| + Pµ10m−1−|µ|). The behavior of Uτ on the remaining subspaces does not matter; we can
set it arbitrarily to the identity operator. Thus,

Uτ =
( ∑

µ∈Uτ

Gτ,µ ⊗ Pµ0m−|µ|

)
+

( ∑

µ∈Mτ

Eτ,µ

)
+R,

where R is a term that expresses the behavior on the remaining subspaces.
It is well-known, and can be verified from first principles, that the probability of observing any

sequence of measurement outcomes µ ∈ {0, 1}m when M is run equals the probability of observing
µ after the evolution U = UtUt−1 · · ·U2U1 with all of the ancilla qubits initialized to 0. That is,

Pr(µ observed) =
∣∣∣∣(I ⊗ Pµ)U |0s+m〉

∣∣∣∣2.
We next prove Claim 1 and Lemma 5. These proofs both use the above framework but are

otherwise independent of each other.

A.1 Proof of Claim 1

Recall that we have a tree expressing the computation of M on the fixed input x, and we wish to
show that the probability of observing any complete sequence of measurement outcomes µ ∈ {0, 1}m

satisfies

pµ =

∑
σ∈{0,1}s

∣∣ ∑
v∈Vt,µ,σ

α(v)
∣∣2

25f(t,µ)2h(t,µ)
.

Consider the above postponed measurement framework. The state of the system after τ steps is
given by Uτ · · ·U1|0s+m〉. We can also write this state as a sum of contributions from all nodes in
the τth level of the tree. More precisely, we claim that

Uτ · · ·U1|0s+m〉 =
∑

v∈Vτ

|ψ(v)〉, (1)

where Vτ =
⋃

µ Vτ,µ and for each node v,

|ψ(v)〉 =
α(v)

β(v)
|σ(v)µ(v)0m−|µ(v)|〉 =

α(v)|σ(v)µ(v)0m−|µ(v)|〉
5f(τ(v),µ(v))

√
2

h(τ(v),µ(v))
.

Note that |ψ(v)〉 is the basis state of v multiplied by its amplitude, with the ancilla qubits set to
indicate the sequence of measurement outcomes that leads to v.
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We argue that the decomposition (1) holds by induction on τ = 0, . . . , t. The base case τ = 0
is trivial. For τ > 0, by induction it suffices to show that for each node v ∈ Vτ−1, Uτ |ψ(v)〉 =∑

u∈c(v) |ψ(u)〉, where c(v) denotes the set of children of v. There are two cases. If µ(v) ∈ Uτ then
it can be verified directly from the construction of the tree that

Uτ |ψ(v)〉 =
(
Gτ,µ(v) ⊗ Pµ(v)0m−|µ(v)|

)
|ψ(v)〉 =

∑

u∈c(v)

|ψ(u)〉.

If µ(v) ∈ Mτ then it can be directly verified that Uτ |ψ(v)〉 = Eτ,µ(v)|ψ(v)〉 = |ψ(u)〉, where u is
the child of v. This completes the induction step.

Given decomposition (1) for τ = t, we obtain that for all µ ∈ {0, 1}m,

pµ =
∣∣∣∣(I ⊗ Pµ)U |0s+m〉

∣∣∣∣2 =
∣∣∣
∣∣∣

∑

v∈Vt,µ

|ψ(v)〉
∣∣∣
∣∣∣
2

=

∑
σ∈{0,1}s

∣∣∑
v∈Vt,µ,σ

α(v)
∣∣2

25f(t,µ)2h(t,µ)
.

A.2 Proof of Lemma 5

Consider a language L ∈ BQTISP′(t, s) and an associated quantum Turing machine M ′, and fix
an arbitrary input x. We assume as above that on input x, M ′ uses exactly s qubits and always
applies exactly t gates, exactly m of which are measurements. We transform M ′ into a machine M ′′

running in time t · polylog(t) and space s+ polylog(t) accepting L with error probability bounded
away from 1/2 by a constant. By standard amplification techniques, the error probability can be
made at most 1/3, so L ∈ BQTISP′′(t · polylog(t), s+ polylog(t)).

Using Lemma 4, we have M ′′ run M ′ but replace each single-qubit unitary gate with a 1/20t-
approximation consisting of at most polylog(t) gates from the set {F,F †,H}. The time and space
overhead is polylog(t), so M ′′ runs in time t·polylog(t) and space s+polylog(t) and still operates on
s qubits. We now show that the probability M ′′ accepts x differs from the probability M ′ accepts
x by at most 1/10. This suffices to prove the lemma.

Let U ′ = U ′
t · · ·U ′

1 be the evolution on the state space of s + m qubits obtained by implicitly
postponing measurements in the computation of M ′ as described above, and let the notation Uτ

and Gτ,µ be as above for this computation. Since the value of µ uniquely determines whether M ′

accepts, we have that Pr(M ′ accepts) =
∣∣∣∣PU ′|0s+m〉

∣∣∣∣2, where P denotes sum of I ⊗ Pµ over all µ
consistent with acceptance.

Now let U ′′ = U ′′
t · · ·U ′′

1 be the same evolution as U ′ but where each unitary operation Gτ,µ

is replaced by the operation G̃τ,µ that uses the 1/20t-approximation of the τth gate M ′ applies
given that µ is observed, found by the Solovay-Kitaev algorithm. Since multiplying by global phase
factors does not affect a computation, we can assume that the approximation used in G̃τ,µ is at
distance at most 1/20t from the original gate of M ′. Tensoring with the identity does not change
the 2-norm of an operator, so we also have

∣∣∣∣G̃τ,µ−Gτ,µ

∣∣∣∣ ≤ 1/20t. Now since U ′′ is equivalent to the

postponed measurement transformation applied toM ′′, we have Pr(M ′′ accepts) =
∣∣∣∣PU ′′|0s+m〉

∣∣∣∣2.
By standard applications of the triangle inequality (see Box 4.1 in [14]), we have that

∣∣Pr(M ′′ accepts) − Pr(M ′ accepts)
∣∣ ≤ 2

∣∣∣∣U ′′ − U ′
∣∣∣∣ ≤ 2

t∑

τ=1

∣∣∣∣U ′′
τ − U ′

τ

∣∣∣∣.
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Thus in order to show that the acceptance probability of M ′ and M ′′ on input x differ by at most
1/10, it suffices to show that

∣∣∣∣U ′′
τ − U ′

τ

∣∣∣∣ ≤ 1/20t for all τ . The latter holds since for any unit
vector |ψ〉 in the state space of s+m qubits, we have

∣∣∣
∣∣∣(U ′′

τ − U ′
τ )|ψ〉

∣∣∣
∣∣∣
2

=
∣∣∣
∣∣∣

∑

µ∈Uτ

((
G̃τ,µ ⊗ Pµ0m−|µ|

)
−

(
Gτ,µ ⊗ Pµ0m−|µ|

))
|ψ〉

∣∣∣
∣∣∣
2

=
∑

µ∈Uτ

∣∣∣
∣∣∣
((
G̃τ,µ −Gτ,µ

)
⊗ I

)(
I ⊗ Pµ0m−|µ|

)
|ψ〉

∣∣∣
∣∣∣
2

≤
∑

µ∈Uτ

( 1

20t

)2∣∣∣
∣∣∣
(
I ⊗ Pµ0m−|µ|

)
|ψ〉

∣∣∣
∣∣∣
2

≤
( 1

20t

)2
.

B Decomposing Quantum Gates

In this appendix we prove Lemma 3, which follows from results proven in Chapter 4 of [14]. We
include a proof for reasons of completeness.

For the nontrivial inclusion, consider a language L ∈ BQTISP(t, s) and an associated quantum
Turing machine M . We convert M into another machine M ′ by replacing each application of a
library gate U with a sequence of gates that effects the same operation as U , where each either
is CNOT or acts on only one qubit. Then M ′ accepts an input x with the same probability as
M , so to show that L ∈ BQTISP′(t, s) we just need to check that the efficiency parameters are
only affected by constant factors and that the matrix entries of the new gates are still efficiently
computable in the required sense. The time parameter clearly only goes up by a constant factor
that depends on the gates in the library of M .

The transformation is done in two steps and uses results proven in Sections 4.3 and 4.5 of [14].
First, it is shown in [14] that every unitary gate can be decomposed as the product of unitary gates
each of which acts nontrivially on only two computational basis states (two-level gates). Applying
this transformation to the library gates associated with the family does not affect s. The matrix
entries of these two-level gates are obtained via standard math operations from the matrix entries
of the original gates and are thus efficiently computable.

Second, it is shown in [14] that each two-level gate can be decomposed into a product of CNOTs
and single-qubit gates. This transformation can be done in three steps.

• First, a two-level gate can be decomposed into a product of operations each of which is
a controlled single-qubit operation that conditions on many qubits. This is done by using
controlled X gates to interchange adjacent computational basis states in a Gray code order so
that the two basis states acted on by the two-level gate differ only in a single qubit. Then a
controlled single-qubit gate is used to carry out the nontrivial 2×2 submatrix of the two-level
gate, and then the basis states are mapped back to their original values (Figure 4.16 in [14]).
This does not increase the number of qubits, and all entries in these gates are 0 or 1 or come
from the two-level gate, and are hence efficiently computable.

• Second, each large controlled operation can be reduced to X gates, Toffoli gates, and a
controlled single-qubit gate that conditions on one qubit (Figure 4.10 in [14]). To accomplish
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this, X gates are first used on some of the control qubits to make the controlled operation
condition on all qubits being 1. Then these control qubits are ANDed together into some
ancilla qubits using a series of Toffoli gates, and the heart of the operation is carried out by
a controlled single-qubit gate that conditions on the ancilla qubit holding the AND of the
original control qubits. The ANDing operations are reversed so that the ancilla qubits are
reset to 0 and can hence be reused and only increase the number of qubits by an additive
constant.

• Third, the Toffoli and controlled single-qubit gates can be implemented with special-purpose
circuits using only CNOTs and single-qubit gates (Figures 4.9 and 4.6 in [14]). This does not
increase the number of qubits, and the matrix entries in this implementation of a controlled-U
gate are obtained from the matrix entries for U via standard math operations and are thus
efficiently computable.

This finishes the proof of Lemma 3.
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