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Abstract

The parallel repetition theorem states that for any two-prover game, with value
1 − ε (for, say, ε ≤ 1/2), the value of the game repeated in parallel n times is at
most (1 − εc)Ω(n/s), where s is the answers’ length (of the original game) and c is
a universal constant [R95]. Several researchers asked wether this bound could be
improved to (1 − ε)Ω(n/s); this question is usually referred to as the strong parallel

repetition problem. We show that the answer for this question is negative.
More precisely, we consider the odd cycle game of size m; a two-prover game with

value 1 − 1/2m. We show that the value of the odd cycle game repeated in parallel
n times is at least 1 − (1/m) · O(

√
n). This implies that for large enough n (say,

n ≥ Ω(m2)), the value of the odd cycle game repeated in parallel n times is at least
(1 − 1/4m2)O(n). Thus:

1. For parallel repetition of general games: the bounds of (1−εc)Ω(n/s) given in [R95,
Hol07] are of the right form, up to determining the exact value of the constant
c ≥ 2.

2. For parallel repetition of XOR games, unique games and projection games: the
bounds of (1 − ε2)Ω(n) given in [FKO07] (for XOR games) and in [Rao07] (for
unique and projection games) are tight.

3. For parallel repetition of the odd cycle game: the bound of 1 − (1/m) · Ω̃(
√

n)
given in [FKO07] is almost tight.

A major motivation for the recent interest in the strong parallel repetition problem
is that a strong parallel repetition theorem would have implied that the unique game

conjecture is equivalent to the NP hardness of distinguishing between instances of Max-
Cut that are at least 1 − ε2 satisfiable from instances that are at most 1 − (2/π) · ε
satisfiable. Our results suggest that this cannot be proved just by improving the known
bounds on parallel repetition.

1 Introduction

In a two-prover (alternatively, two-player) game, a referee chooses questions (x, y) according
to a (publicly known) distribution, and sends x to the first player and y to the second player.
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The first player responds by a = a(x) and the second by b = b(y) (without communicating
with each other). The players jointly win if a (publicly known) predicate V (x, y, a, b) holds.
The value of the game is the maximal probability of success that the players can achieve,
where the maximum is taken over all protocols a = a(x), b = b(y).

Roughly speaking, a parallel repetition of a two-prover game is a game where the players
try to win n copies of the original game simultaneously. More precisely, the referee generates
questions x = (x1, . . . , xn), y = (y1, . . . , yn), where each pair (xi, yi) is chosen independently
according to the original distribution. The players respond by a = (a1, . . . , an) = a(x) and
b = (b1, . . . , bn) = b(y). The players win if they win simultaneously on all the coordinates,
that is, if for every i, V (xi, yi, ai, bi) holds.

The parallel repetition theorem states that for any two-prover game, with value ≤ 1 − ε
(for, say, ε ≤ 1/2), the value of the game repeated in parallel n times is

≤ (1 − εc)Ω(n/s), (1)

where s is the answers’ length of the original game, and c is a universal constant [R95].
The constant c implicit in [R95] is c = 32. A beautiful recent result by Holenstein simplifies
the proof of [R95] and gives an improved constant of c = 3 [Hol07]. Another beautiful very
recent result by Rao gives for the special case of, so called, unique and projection games,
improved bounds of

(1 − ε2)Ω(n).

(Previously, such bounds were known for the special case of, so called, XOR games; see [FKO07]).

Several researchers asked wether or not these bounds could be improved to

(1 − ε)Ω(n/s),

for general two-prover games, or at least for interesting special cases, such as, projection
games, unique games, or XOR games; this question is usually referred to as the strong
parallel repetition problem. The problem appeared as an open problem in [FKO07] and the
answer was conjectured in [SS07] to be positive for certain special cases.

We show that the, so called, odd cycle game is an example for a two-prover game, with
value ≤ 1 − ε, such that, (for large enough n), the value of the game repeated in parallel n
times is

≥ (1 − ε2)O(n).

Since the odd cycle game is a projection game, a unique game, and a XOR game, this answers
negatively all versions of the strong parallel repetition problem.

Previous to our result, an example by Feige and Verbitsky [FV96] shows that the de-
pendency on s in Inequality 1 is necessary. For the case of answers of length 1, we are not
aware of any previous example where the value of the game repeated in parallel n times is
(provenly) larger than (1− ε)n/2. In other words, we are not aware of any previous example
where a protocol for the game repeated in parallel n times saves more than a factor of 2 in
the exponent, over the trivial product protocol.
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A major motivation for the recent interest in the strong parallel repetition problem is
that a positive answer for this problem would have implied that the unique game conjec-
ture [Kho02] is very related to the hardness of approximation of Max-Cut. More precisely, it
was proved in [KKMO04] that the unique game conjecture implies that for any small enough
ε > 0, it is NP hard to distinguish between instances of Max-Cut that are at least 1 − ε2

satisfiable from instances that are at most 1−(2/π)·ε satisfiable. A strong parallel repetition
theorem, or even improving the constant c in the current bounds to anything smaller than 2
(even for the special case of games that are induced by instances of Max-Cut), would have
implied that a reduction in the other direction also holds, that is, that the unique game
conjecture is equivalent to the NP hardness of distinguishing between instances of Max-Cut
that are at least 1 − ε2 satisfiable from instances that are at most 1 − (2/π) · ε satisfiable.
Moreover, this was one of the main directions suggested for proving the unique game con-
jecture: first prove that it is equivalent to the NP hardness of distinguishing these instances
of Max-Cut, and then prove the NP hardness of distinguishing these instances of Max-Cut.
Since our counterexample is induced by an instance of Max-Cut, it suggests that this cannot
be proved just by improving the known bounds on parallel repetition.

2 The Odd Cycle Game

The odd cycle game is a two-prover game, first suggested in [CHTW04] and further studied
in [FKO07, AS08]. Let m ≥ 3 be an odd integer and consider a graph of a single cycle of
length m. Intuitively, the two players are trying to convince the referee that the graph is
2-colorable. With probability one half the referee asks the two players about the color of the
same node in the graph and accepts their answers if they are the same. With probability
one half the referee asks the two players about the colors of two adjacent nodes in the graph
and accepts their answers if they are different.

Formally, the question x is chosen uniformly in {0, . . . ,m − 1} and the question y is
chosen to be: x with probability 1/2, x− 1 with probability 1/4, and x + 1 with probability
1/4 (where x + 1 and x − 1 are taken modulo m). The predicate V (x, y, a, b) holds if both
a, b ∈ {0, 1} and: if x = y then a = b, and if x 6= y then a 6= b. It is easy to see that the
value of the odd cycle game is 1 − 1/2m.

In this paper, we are interested in the value of the odd cycle game repeated in parallel
n times. It was proved in [FKO07] that (for n < m2) the value of the repeated game is at
most

1 − (1/m) · Ω̃(
√

n),

(where Ω̃ is the same as the usual Ω notation, up to poly-logarithmic factors). Our main
result is a probabilistic protocol for the repeated game, that achieves a value of

1 − (1/m) · O(
√

n).

Note that since a probabilistic protocol can be presented as a convex combination of deter-
ministic protocols, the same value can be achieved by a deterministic protocol. Note also
that for large enough n (say, n ≥ Ω(m2)), this also gives a protocol for the repeated game
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that achieves a value of
(1 − 1/4m2)O(n).

This is done as follows: Let α be a small enough constant. Partition [n] into ≈ n
α·m2 blocks

of size at most α · m2 each, and apply the previous protocol on each block separately.

3 A Technical Lemma

Let m = 2k + 1 be an odd integer. For integers i ≤ j, let [i, j] be the set {i, i + 1, . . . , j}.
Let I be the set [−k, k] of size m. Addition and subtraction of elements of I will be taken
modulo m and the result will be viewed as an element of I.
Lemma 3.1. There exists a probability distribution f : I → R, such that:

1. For every i ∈ I, f(i) > 0

2. f(k), f(−k) ≤ O(1/m3)

3.
∑

i∈I

f(i)2

f(i + 1)
+

f(i)2

f(i − 1)
≤ 2 + O(1/m2)

Proof. Define f : I → R by1

f(i) = γ · (k + 1 − |i|)2,

where γ = Θ(1/m3) is a normalization factor that ensures that f is a distribution. The first
and second requirements in the statement of the lemma obviously hold. It remains to prove
the third requirement.

For j ≥ 2, j2

(j+1)2
+ j2

(j−1)2
= 2 + O (1/j2). Using this equality for j = k + 1 − |i|, we have

for every i ∈ I \ {−k, 0, k},
f(i)2

f(i + 1)
+

f(i)2

f(i − 1)
= f(i) ·

(

f(i)

f(i + 1)
+

f(i)

f(i − 1)

)

= 2f(i) + O(γ)

For i = 0,

f(i)2

f(i + 1)
+

f(i)2

f(i − 1)
= 2f(i) · (k + 1)2

k2
= 2f(i) · (1 + O(1/k)) = 2f(i) + O(1/m2)

For i ∈ {−k, k},
f(i)2

f(i + 1)
+

f(i)2

f(i − 1)
= f(i) · O(1) = O(γ)

Thus,
∑

i∈I

f(i)2

f(i + 1)
+

f(i)2

f(i − 1)
≤ 2 + O(1/m2)

1Our original proof used a more complicated distribution. Following a preliminary version of the paper,
the distribution γ · sin2(πi/m + π/2) was suggested to us by Guy Kindler and Avi Wigderson. Here, we use
the related distribution γ · (k + 1 − |i|)2.
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4 A Protocol for the Repeated Odd Cycle Game

Let m = 2k + 1 be an odd integer. For integers i ≤ j, let [i, j] be the set {i, i + 1, . . . , j}.
Let U be the set [−k, k] of size m. Addition and subtraction of elements of U will be

taken modulo m and the result will be viewed as an element of U . We think of U as the set
of nodes of the cycle of size m. Denote by E = {{i, i + 1} : i ∈ U} the set of edges of the
cycle of size m. We identify the set E with the set [−k, k] by naming every edge in E the
same as the node opposite to it (that is, the edge {i, i + 1} is named by i + (m + 1)/2).

Let x = (x1, . . . , xn) ∈ Un (questions to the first player) be uniformly distributed in Un.
Let y = (y1, . . . , yn) ∈ Un (questions to the second player) be such that each yi is chosen
(independently) as follows: with probability 1/2, yi = xi, with probability 1/4, yi = xi + 1,
and with probability 1/4, yi = xi − 1.

For x, y ∈ Un and a, b ∈ {0, 1}n, let V̄ (x, y, a, b) be the following predicate: for every i,
(xi = yi) ⇐⇒ (ai = bi).
Theorem 1. There exist a, b : Un → {0, 1}n, such that,

Pr
x,y

[V̄ (x, y, a(x), b(y))] ≥ 1 − (1/m) · O(
√

n)

(where the probability is over x = (x1, . . . , xn), y = (y1, . . . , yn), chosen as above).

4.1 Proof of Theorem 1

We will show a probabilistic protocol (a, b), using a shared random string for the two players.
Note that this implies that there exists a deterministic protocol that achieves the same value,
since a probabilistic protocol is just a convex combination of deterministic ones.

Let f : [−k, k] → R be the probability distribution from Lemma 3.1. For every node
u ∈ U , define a probability distribution over edges, Pu : E → R, as follows. For every e ∈ E,

Pu(e) = f(e − u)

(recall that we identify both U,E with the set [−k, k] and additions and subtractions are
taken modulo m in this set).

For every tuple of n nodes, u = (u1, . . . , un) ∈ Un, define a probability distribution over
tuples of n edges, Pu : En → R, as follows. For every e = (e1, . . . , en) ∈ En,

Pu(e1, . . . , en) =
n

∏

i=1

Pui
(ei) =

n
∏

i=1

f(ei − ui)

Consider the two distributions Px, Py, where x, y ∈ Un are the inputs for the two players.
The following lemma bounds the l1 distance of these two distributions.
Lemma 4.1.

Ex,y‖Px − Py‖1 ≤ (1/m) · O(
√

n)
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Proof. Assume without loss of generality that n < α ·m2, for a small enough constant α > 0
(otherwise, (1/m) · √n ≥ Ω(1), and the lemma holds trivially).

First note that by symmetry, Ey‖Px − Py‖1 is the same for every x. Thus, it is enough
to fix x = 0̄ = (0, . . . , 0) and to bound Ez‖P0̄ − Pz‖1, where z = (z1, . . . , zn) ∈ [−1, 1]n is
such that each zi is chosen (independently) as follows: with probability 1/2, zi = 0, with
probability 1/4, zi = 1, and with probability 1/4, zi = −1.

(Ez‖P0̄ − Pz‖1)
2 =

(

Ez

∑

e∈En

|P0̄(e) − Pz(e)|
)2

=

(

Ez

∑

e∈En

Pz(e) ·
∣

∣

∣

∣

P0̄(e)

Pz(e)
− 1

∣

∣

∣

∣

)2

By Jensen’s inequality,

≤ Ez

∑

e∈En

Pz(e) ·
(

P0̄(e)

Pz(e)
− 1

)2

= Ez

∑

e∈En

(

Pz(e) − 2P0̄(e) +
P0̄(e)

2

Pz(e)

)

By the fact that P0̄, Pz are probability distributions,

= 1 − 2 + Ez

∑

e∈En

P0̄(e)
2

Pz(e)
= −1 + Ez1,...,zn

∑

e1,...,en

n
∏

i=1

f(ei)
2

f(ei − zi)

= −1+
n

∏

i=1

(

Ezi

∑

ei

f(ei)
2

f(ei − zi)

)

= −1+
n

∏

i=1

(

∑

ei

1

2
· f(ei)

2

f(ei)
+

1

4
· f(ei)

2

f(ei + 1)
+

1

4
· f(ei)

2

f(ei − 1)

)

By the fact that f is a probability distribution and by Lemma 3.1,

= −1 +
n

∏

i=1

(

1 + O(1/m2)
)

= O(1/m2) · O(n) = (1/m2) · O(n)

Thus,
Ex,y‖Px − Py‖1 = Ez‖P0̄ − Pz‖1 ≤ (1/m) · O(

√
n)

Assume without loss of generality that n < α · m2, for a small enough constant α > 0
(otherwise, (1/m) · √n ≥ Ω(1), and the theorem holds trivially).

In [Hol07], Holenstein proved the following lemma: Let W be a finite set. Assume that
Alice knows a distribution PA : W → R and Bob knows a distribution PB : W → R, such
that, ‖PA − PB‖1 ≤ δ. Then, using a shared random string, Alice can choose wA ∈ W
distributed according to PA, and Bob can choose wB ∈ W distributed according to PB, such
that, wA = wB with probability of at least 1 − O(δ).

(Roughly speaking, this is done as follows: Alice and Bob interpret the shared random
string as a sequence of pairs (wj, rj), where wj ∈ W is a uniformly distributed random
element and 0 ≤ rj ≤ 1 is a uniformly distributed real number between 0 and 1. Alice
chooses wA to be the first wj such that rj ≤ PA(wj), and Bob chooses wB to be the first wj

such that rj ≤ PB(wj)).
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In our case, the first player knows x and hence Px, and the second player knows y
and hence Py. By Holenstein’s lemma and by Lemma 4.1, the first player can choose
e = (e1, . . . , en) ∈ En distributed according to Px, and the second player can choose
e′ = (e′1, . . . , e

′

n) ∈ En distributed according to Py, such that, e = e′ with probability of
at least 1 − (1/m) · O(

√
n), (where the probability is taken over x, y and over the shared

random string).

By property 2 of Lemma 3.1 and by the union bound, the probability that for some i the
edge ei touches xi is at most O(1/m) (which is negligible). Thus, with probability of at least
1 − (1/m) · O(

√
n), both players got the same e = (e1, . . . , en) ∈ En, such that, for every

i, the edge ei doesn’t touch the node xi. Given such (e1, . . . , en), the two players can easily
give answers a(x), b(y) such that V̄ (x, y, a(x), b(y)) holds. This is done as follows.

For every i, let Ci : U → {0, 1} be the coloring that colors the two nodes that touch
ei by 0 and all other nodes by 0,1 alternately, so that every edge except ei is 2-colored.
For every coordinate i, both players will act according to Ci. Formally, ai(x) = Ci(xi) and
bi(y) = Ci(yi). Since no node xi touches the corresponding edge ei, V̄ (x, y, a(x), b(y)) holds.

Thus, V̄ (x, y, a(x), b(y)) holds with probability of at least 1 − (1/m) · O(
√

n).
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