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Abstract

We consider unbounded fanin depth-2 circuits with arbitrary boolean functions as
gates. The entropy of an operator f : {0, 1}n → {0, 1}m is defined as the logarithm of the
maximum number of vectors distinguishable by at least one special subfunction of f .

We prove that every depth-2 circuit for f requires at least entropy(f) wires. This
generalizes and substantially simplifies the argument used by Cherukhin in 2005 to de-
rive the highest known lower bound Ω(n3/2) for the operator of cyclic convolutions. We
then show that the multiplication of two n1/2 by n1/2 matrices over any finite field has
entropy Ω(n3/2).

1 Introduction

One of the challenges in circuit complexity is to prove a nonlinear lower bound for log-
depth circuits computing explicitly given boolean operator f : {0, 1}n → {0, 1}n. This cor-
responds to simultaneous computation of the sequence f = (f1, . . . , fn) of boolean functions
fj : {0, 1}n → {0, 1}, where fj(x) is the j-th coordinate of the vector f(x). An important
result of Valiant [19] reduces this problem to proving a lower bound Ω(n1+ε) on the number
of wires in a depth-2 circuit computing a linear transformation y = Ax over GF2, where we
allow arbitrary boolean functions as gates. Note that in this case the phenomenon which
causes complexity of circuits is information transfer instead of information processing in the
case of single functions.

A depth-2 circuit for f : {0, 1}n → {0, 1}m is a directed acyclic graph with n input nodes
x1, . . . , xn, and m output nodes y1, . . . , ym. Every noninput node computes an arbitrary

boolean function of its inputs, and there is no bound on the fanin or on the fanout. The size

of a circuit is the total number of wires in it. Without loss of generality, we may assume that
there are no direct wires from inputs to outputs.

Let s2(f) denote the minimum size of a depth-2 circuit computing f .
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Superlinear lower bounds for s2(f) were obtained using graph-theoretic arguments by an-
alyzing some superconcentration properties of the circuit as a graph [7, 8, 11, 10, 14]. Unfor-
tunately, the approach based on superconcentrators cannot lead to lower bounds for depth-2
circuits larger than Ω(n log2 n), since there are depth-2 superconcentrators with O(n log2 n)
[9], and even with O(n log2 n/ log log n) [13] edges.

The (numerical) limitation of these results comes from their power: they show much more
than that the number of wires must be large—they also provide an information about the
structure of the underlying graphs. It is therefore natural to expect to prove larger lower
bounds, if we only care about the number of wires in a circuit, not about its structure.

And indeed, such a direct approach has led Cherukhin [5] to the highest known lower
bound s2(f) = Ω(n3/2) for an explicit boolean operator f—cyclic convolution computing n
special bilinear forms x>Ay over GF2. (Recall that such a bound for a linear operator Ax
would imply nonlinear lower bound for log-depth circuits.)

In this note we take a look at Cherukhin’s argument from a more general and more simple
perspective. This leads to a general lower bound s2(A) ≥ entropy(f) for depth-2 circuits
in terms of the entropy of the computed operators. The bound is very easy to prove and
easy to apply. More importantly, it gives a simple explanation of why some operators require
many wires. Since we allow arbitrary gates, the reason (quite naturally) turns out to be of
information-theoretic nature: large number of wires is forced by the high entropy of operators,
where the entropy on an arbitrary mapping g : A → B is defined as the maximum of log2 |S|
over all subsets S ⊆ A on which g is injective.

Amazing simplicity of the proof itself indicates that this (high entropy) is a fundamental
reason causing complexity in depth-2 circuits. Since entropy(f) is easy to compute, this gives
us a handy tool to prove large lower bounds for a whole string of operators. We demonstrate
this by a few-lines proof that the operator f(X,Y ) = X · Y computing the product of two√

n ×√
n matrices over an arbitrary finite field has entropy Ω(n3/2).

2 Entropy of function sets

Let D be a finite set with d = |D| elements, and H some set of functions h : Dn → D. Say
that H separates a set of vectors Ω ⊆ Dn if each pair of vectors in Ω is separated by at
least one function in H, that is, if for every pair a 6= b ∈ Ω there exists h ∈ H such that
h(a) 6= h(b). In other words, a set of functions H separates Ω if the corresponding operator
is injective on Ω. The maximum bit size logd |Ω| of a set Ω separated by H is the entropy of
H, and is denoted by entropy(H). Note that we always have entropy(H) ≤ n.

Our argument is based on the following two obvious facts.

Proposition 1. If H contains r single variables, then entropy(H) ≥ r.

Proof. If H contains x1, . . . , xr, then any set Ω ⊆ Dn of |D|r vectors, having the same values
on all remaining n − r variables, is separated by H.

Say that a function h can be computed from a set of functions G if there exists a function
ϕ : Dk → D such that h = ϕ(g1, . . . , gk) for some functions g1, . . . , gk in G.

Proposition 2. For every set H of functions h : Dn → D, we have entropy(H) ≤ min{n, |H|}.
If all functions in H can be computed from the functions in G, then |G| ≥ entropy(H).
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Proof. To prove the first claim, let h1, . . . , ht be the functions in H, and assign to each vector
a ∈ Dn its code H(a) = (h1(a), . . . , ht(a)) in Dt, t = |H|. If a set of vectors Ω ⊆ Dn is
separated by H, then each vector a in Ω must receive its own code H(a), implying that
|Ω| ≤ dt, and hence, |H| = t ≥ logd |Ω|.

For the second claim, just observe that G(a) = G(b) implies H(a) = H(b). Hence, any set
of vectors separated by H must be also separated by G.

3 Entropy and depth-2 circuits

Let D be an arbitrary finite set, e.g., some fixed finite field. We only require that D contains
at least two elements, say, 0 and 1 (any other two distinct elements would work.)

Let f = (f1, . . . , fm) be a sequence of functions over the set D, all on the same set of
variables. Fix some subset of variables X = {x1, . . . , xn}, and let Y be the set of the remaining
variables (these are free variables). The lower bound below holds for any choice of X.

With each subset of inputs I ⊆ [n] = {1, . . . , n} and each subset of outputs J ⊆ [m] we
associate the set of subfunctions

f [I, J ] = {fj(ei, Y ): i ∈ I, j ∈ J},

where ei ∈ {0, 1}X is the vector ei = (0, . . . , 0, 1, 0, . . . , 0) with precisely one 1 in the i-th
coordinate. Hence, f [I, J ] is the set of all (at most |I ×J |) functions h : DY → D in variables
Y such that h(Y ) can be obtained from some function fj with j ∈ J by setting precisely one
of the variables xi with i ∈ It to 1 and the rest to 0. Recall that entropy(f [I, J ]) ≥ r if we
can obtain r different single-variable functions h(Y ) = yk in this way. Define the entropy of
the operator f as

entropy(f) = max
p

∑

t=1

entropy(f [It, Jt]),

where the maximum is over all partitions I1, . . . , Ip of inputs [n] and all partitions J1, . . . , Jp

of outputs [m].

Theorem 3. s2(f) ≥ entropy(f).

Proof. Since the total number of wires in a depth-2 circuit is just the number of wires incident
to its input or output nodes, it is enough to prove the following Lemma.

For any set I of inputs and any set J of outputs in a depth-2 circuit, let WI be the set of
all wires leaving I, and WJ be the set of all wires entering J .

Lemma 4. |WI | + |WJ | ≥ entropy(f [I, J ]).

To prove the lemma, let U be the set of all nodes on the middle layer, and let gu(X,Y )
denote the function computed at a node u ∈ U . For each node i ∈ I ∪ J , let Ui ⊆ U be the
set its neighbors in U . With each input i ∈ I and output j ∈ J we associate the following
sets of subfunctions

Gi = {gu(ei, Y ):u ∈ Ui} and Hj = {gu(0, Y ):u ∈ Uj}.

Let G =
⋃

i∈I Gi and H =
⋃

j∈J Hj. Note that |Gi| ≤ |Ui| (resp., |Hj| ≤ |Uj |) is at most
the number of wires leaving i (resp., entering j). Hence, |G| ≤ |WI | and |H| ≤ |WJ |. By
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Proposition 2, it remains to show that each function fj(ei, Y ) can be computed from functions
in Gi ∪ Hj.

Inputs of the j-th output gate are precisely the nodes in Uj . Hence, the function fj

computed at the j-th output gate must be computable from the functions gu with u ∈ Uj . This
means that also the subfunction fj(ei, Y ) can be computed from the subfunctions gu(ei, Y )
with u ∈ Uj. If u ∈ Uj ∩ Ui, then the function gu(ei, Y ) belongs to Gi by the definition of
Gi. If u ∈ Uj \ Ui, then there is no wire between i and u, meaning that the value of gu does
not depend on the i-th variable xi. In this case we have gu(ei, Y ) = gu(0, Y ), implying that
gu(ei, Y ) belongs to Hj. Hence, fj(ei, Y ) can be computed from the functions in Gi ∪ Hj.

This completes the proof of Lemma 4, and thus, the proof of Theorem 3.

Theorem 3 allows one to show that s2(f) must be super-linear for many operators f =
(f1, . . . , fm) on two sets of variables X and Y . For this, it is enough that we can split the
set F = {f1, . . . , fm} of functions computed by this operator into some number p of disjoint
sets F1, . . . , Fp such that, for some partition X1, . . . ,Xp of the variables in X, and for each
t = 1, . . . , p, we can obtain each single variable y ∈ Y by taking some function f ∈ Ft and
fixing one its variable x ∈ Xt to 1 and the rest to 0. (We say in this case that f isolates the
variable y.) By Proposition 2, we then have entropy(Ft) ≥ |Y |, implying that s2(f) ≥ p|Y |.

One of the most natural functions isolating all single variables is a scalar product function
f(x, y) = x1y1 + x2y2 + · · · + xryr; then f(ei, y) = yi for all i = 1, . . . , r. Hence, natural
examples of operators of large entropy are sequences of particular scalar products. Many
operators computing sequences of bilinear functions, including that of cyclic n-convolution
considered in [5], fall in this general (scalar product) frame. We illustrate this with one
important example—matrix product.

Example 5 (Entropy of matrix product). Given two r × r boolean matrices X = (xi,j) and
Y = (yi,j) over a finite field D, our goal is to compute their product Z = X · Y over D.
The corresponding operator f = multn(X,Y ) has n = 2r2 input variables, arranged in two
matrices, and consists of n = r2 scalar products fi,j =

∑r
k=1 xi,kyk,j, corresponding to the

entries of the product matrix Z = (zi,j). (This time indexes of variables as well as of computed
functions are pairs of numbers.) Since multn is just a sequence of r2 scalar products on 2r
variables, (2r)r2 = 2n3/2 is a trivial upper bound, even in depth-1. If we put no restrictions
on the depth, then Strassen’s algorithm [18], improved in [2], gives a circuit of size O(n6/5).
The only know lower bound in the unrestricted case, however, is the lower bound 2.5 · n [4].
A lower bound s2(multn) = Ω(n log n) for depth-2, as well as nonlinear lower bounds for any
constant depth, were proved in [14] using superconcentrators. For depth-2, entropy arguments
yield much higher lower bound.

Lemma 6. entropy(multn) = Ω(n3/2).

Proof. Let f = multn, and let ei,k be the boolean r × r matrix with precisely one 1 in the
position (i, k). Since fi,j =

∑r
k=1 xi,kyk,j, we have that fi,j(ei,k, Y ) = yk,j for all j = 1, . . . , r.

This implies that the i-th row fi,1(ei,k, Y ), . . . , fi,r(ei,k, Y ) of the product matrix ei,k · Y is
just the k-th row yk,1, . . . , yk,r of Y . Hence, if we take It = Jt = {(t, 1), . . . , (t, r)} (the
t-th row), then the set f [It, Jt] = {fb(ea, Y ): a ∈ It, b ∈ Jt} contains all r2 = n variables
of Y . By Proposition 1, we have entropy(f [It, Jt]) ≥ n for each t = 1, . . . , r, implying that
entropy(f) ≥ rn = Ω(n3/2).
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Remark 7 (Limitations). How large can entropy of operators be? Recall that in the definition
of entropy(f) of an (n,m)-operator f : Dn → Dm, we first split the inputs into p blocks
I1, . . . , Ip of some sizes a1 ≤ a2 ≤ . . . ≤ ap, and the outputs into p blocks J1, . . . , Jp of some
sizes b1, . . . bp. Then we just take the sum of the entropies of the corresponding (to these
blocks) sets of subfunctions. Say that a partition is balanced if b1 ≥ b2 ≥ . . . ≥ bp. Note that
the partition (into the rows) which we used for the matrix product is balanced—there all bi’s
were even equal.

Since in each set f [Ii, Ji] we can have at most |Ii × Ji| = aibi functions, the entropy of
this set cannot exceed aibi. If the partition is balanced, then Chebyshev’s inequality yields

entropy(f) ≤
p

∑

i=1

aibi ≤
1

p

( p
∑

i=1

ai

)( p
∑

i=1

bi

)

≤ nm

p
.

On the other hand, we have a trivial upper bound entropy(f) ≤ pn. Substituting p ≥
entropy(f)/n in the previous inequality, we obtain that entropy(f) ≤ n

√
m. Thus, at

least with respect to balanced partitions, the entropy of any (n,m)-operator does not ex-
ceed n

√
m. In particular, for such partitions, matrix multiplication has the largest possible

entropy Θ(n3/2) among all (n, n)-operators.

4 Concluding remarks and open problems

A natural question is to extend the entropic approach to circuits of depth d ≥ 3. It is clear
that the entropy of the sets of functions computed at each level can only increase when going
from outputs to inputs. The problem is to relate the entropy with the number of wires
between these layers, like we have done this for depth two. At this point note that the proof
of Lemma 4 also holds for circuits of any depth: it is enough to replace the setWJ by the set
PJ of paths (not just wires) starting in the first (next to the inputs) layer and entering nodes
in J . This yields

|WI | + |PJ | ≥ entropy(f [I, J ]).

For depth-3 circuits (d = 3) this version of Lemma 4 can be used to derive lower bounds
of the form Ω(n log n). Such a lower bound for cyclic convolution is already proved in a
forthcoming paper [6]. So, we only sketch how the same lower bound can be derived for the
matrix multiplication using the entropy.

Let WI is the number of wires between the nodes in the output and the first layer. The
number of the remaining wires is

∑m
i=1 di, where d1 ≥ d2 ≥ . . . ≥ dm are the degrees of the

the nodes on the third (next to the outputs) layer. The squares of these numbers give us a
trivial upper bound |PJ | ≤

∑m
i=1 d2

i on the number of paths between the first and the output
layer. Knowing that this sum of squares must be large, at least entropy(f [I, J ]) − |WI |, it
remains then to show that the sum

∑m
i=1 di of the numbers themselves must be large. This

can be done by using the following consequence of an interesting technical lemma from [10].

Lemma 8. Let a1 ≥ . . . ≥ am be a sequence of real numbers in some interval [0, R] summing

up to A. Then
∑m

i=1
√

ai ≥ ε
√

A · ln(A/R), where ε > 0 is an absolute constant.

Proof. Let p be the maximal number such that the sum ap+1 + · · ·+ am of all but the first p
numbers is smaller than A/(p + 1). Lemma 4 of [10] implies that then

∑p
i=1

√
ai ≥ ε

√
A · ln p.

Since A/2 ≤ A − A/(p + 1) ≤ ∑p
i=1 ai ≤ pR implies p ≥ A/2R, we are done.
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For the operator f = multn in 2n variables computing the product of two r × r matrices
(n = r2) this yields a lower bound of the form r · Ω(

√
n ln r) = Ω(n log n). Can this be

improved to Ω(n1+ε)?
Actually, even the power of depth-2 circuits is far from being understood. As mentioned

in the introduction, a lower bound Ω(n1+ε) on the number of wires in a depth-2 circuit,
computing an explicit linear transformation Ax over GF2, would yield a nonlinear lower
bound for log-depth circuits. To approach this problem, it is natural to first prove such a
bound for linear depth-2 circuits, where we only allow linear functions (sums mod 2) as gates.
For circuits over the real field a lower bound Ω(n3/2) was proved in [16]. However in their
result it is essential that they use large integers in the matrix. It remains an open problem to
prove such a bound for 0-1 matrices. For GF2 the largest bound is Ω(n log3/2 n) [1, 10, 12]. In
would be therefore interesting to extend the entropic approach to depth-2 circuits computing
linear operators.

A less famous problem about depth-2 circuits, related to another old problem in circuit
complexity (proving lower bounds for ACC circuits), is the following one.

A symmetric depth two circuit is a depth two circuit, where the gates on the middle layer
compute ORs of their inputs, and each output gate computes the same symmetric function
of its inputs. That is, each output gate gives the value 1 iff the number of 1’s in its input
belongs to some specified (for the whole circuit) subset S of natural numbers. We also assume
that there are no direct wires from an input to an output node.

For a boolean n × n matrix A = (aij), let fA = (f1, . . . , fn) be a sequence of boolean
functions with fi(x) =

∨n
j=1 aijxj. That is, fA(x) computes a (∧,∨)-boolean matrix-vector

product Ax. Let sym2(A) be the minimum number of nodes on the middle layer in a sym-
metric depth-2 circuit computing fA. That is, now we count nodes, not wires.

Simple counting shows that matrices with sym2(A) = Ω(n) exist. The problem, due
to Yao [20], is to exhibit an explicit boolean matrix A with large sym2(A). In terms of set
intersection representations of matrices, this problem was re-stated by Pudlák and Rödl in [12]
(see Problem 10). To see the equivalence between sym2(A) and their measure, just associate
with each output node i and each input node j the sets Ui and Vj of all their neighbors on
the middle layer. Then aij = fi(ej) = 1 iff |Ui ∩ Vj| ∈ S.

What we need is an explicit boolean n× n matrix A with sym2(A) = exp((log log n)ω(1)).
Together with the results of Yao [20], and Beigel and Tarui [3], this would yield a super-
polynomial lower bound for ACC circuits. These are constant depth unbounded fanin circuits
over a basis consisting of AND, OR and a finite number of modulo-counting functions: each
such function gives the value 1 iff the number of 1’s in the input is not divisible by p. When p
is a prime, exponential lower bounds were proved by Razborov [15] and Smolensky [17].
However, the case of composite moduli p (even when one moduli p = 6 is allowed) remains
widely open.
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[12] P. Pudlák, V. Rödl, Some combinatorial-algebraic problems from complexity theory, Discrete
Math. 136 (1994) 253-279.

[13] J. Radhakrishnan, A. Ta-Shma, Bounds for dispersers, extractors, and depth-two superconcen-
trators, SIAM J. Discrete Math. 13(1) (2000) 2-24.

[14] R. Raz, A. Shpilka, Lower bounds for matrix product in bounded depth circuits with arbitrary
gates, SIAM J. Comput. 32(2) (2003) 488-513.

[15] A. A. Razborov, Bounded-depth formulae over the basis {&,⊕} and some combinatorial problem,
in: S.I. Adian (ed.), Problems of Cybernetics, Complexity Theory and Applied Mathematical
Logic (1988) 149–166 (in Russian).

[16] V. Shoup, R. Smolensky, Lower bounds for polynomial evaluation and interpolation problems,
Comput. Complexity 6(4) (1997) 301-311.

[17] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity,
in: Proc. 19th STOC (1987) 77–82.

[18] V. Strassen, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von In-
terpoliationskoefizienten, Numer. Math. 20 (1973) 238-251.

[19] L. Valiant, Graph-theoretic methods in low-level complexity, in: Proc. 6th MFCS, Springer Lect.
Notes in Comput. Sci. 53 (1977) 162-176.

[20] A. C. Yao, On ACC and threshold circuits, in: Proc. 31th FOCS (1990) 619–627.

7

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



