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Abstract. We consider unbounded fanin depth-2 circuits with arbitrary boolean functions
as gates. We define the entropy of an operator f : {0, 1}n → {0, 1}m as the logarithm of the
maximum number of vectors distinguishable by at least one special subfunction of f .

Our main result is that every depth-2 circuit for f requires at least entropy(f) wires.
This gives an information-theoretic explanation of why some operators require many wires.
We use this to prove a tight estimate Θ(n3) of the smallest number of wires in any depth-2
circuit computing the product of two n by n matrices over any finite field. Previously known
lower bound for this operator was Ω(n2 log n).

1. Introduction

One of the challenges in circuit complexity is to prove a nonlinear lower bound for log-
depth circuits computing an explicitly given boolean operator f : {0, 1}n → {0, 1}n. This
corresponds to simultaneous computation of the sequence of boolean functions fj : {0, 1}n →
{0, 1}, where fj(x) is the j-th coordinate of the vector f(x). An important result of Valiant
[20] reduces this problem to proving a lower bound Ω(n1+ε) on the number of wires in a depth-
2 circuit computing a linear operator y = Ax over GF2, where we allow arbitrary boolean
functions as gates. Note that in this case the phenomenon which causes complexity of circuits
is information transfer instead of information processing in the case of single functions. It
is therefore important to understand what properties of operators do force high information
transfer in their depth-2 circuits.

A depth-2 circuit for f : {0, 1}n → {0, 1}m is a directed acyclic graph with n input nodes
x1, . . . , xn, and m output nodes z1, . . . , zm. Every noninput node computes an arbitrary

boolean function of its inputs, and there is no bound on the fanin or on the fanout. The size

of a circuit is the total number of wires in it. Without loss of generality, we may assume that
there are no direct wires from inputs to outputs: this can be easily achieved by adding at
most n new wires.

Let s2(f) denote the minimum size of a depth-2 circuit computing f . Note that s2(f) ≤ n2

for every operator f : {0, 1}n → {0, 1}n.
Superlinear lower bounds of the form s2(f) = Ω(n log n) were obtained using graph-

theoretic arguments by analyzing some superconcentration properties of the circuit as a graph
[6, 9, 12, 11, 15]. Unfortunately, the approach based on superconcentrators cannot lead to
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lower bounds for depth-2 circuits larger than Ω(n log2 n), since there are depth-2 supercon-
centrators with O(n log2 n) [10], and even O(n log2 n/ log log n) [14] edges.

The (numerical) limitation of the graph-theoretic lower bounds comes from their power:
they show much more than that the number of wires must be large—they also provide an
information about the structure of the underlying graphs. It is therefore natural to expect to
prove larger lower bounds, if we only care about the number of wires in a circuit, not about its
structure. Such a direct approach has already led Cherukhin [5] to the highest known lower

bound s2(f) = Ω(n3/2) for an explicit boolean operator f—cyclic convolution computing n
special bilinear forms x>Ay over GF2. (Recall that such a bound for a linear operator Ax

would already imply nonlinear lower bound for log-depth circuits.)
In this paper we prove a general lower bound s2(f) ≥ entropy(f), where the entropy of

f : {0, 1}n → {0, 1}m is just the logarithm of the maximum number of vectors distinguishable
by at least one special subfunction of f . This gives a simple explanation of what operators
and, more importantly, why require many wires. The bound itself is reminiscent of a classical
lower bound of Nechiporuk [8] on the formula size of a boolean function as the logarithm of
the number of its subfunctions.

Since entropy(f) is relatively easy to compute, this gives us a handy tool to prove large
lower bounds for a whole string of explicit operators. We demonstrate this by a tight estimate
Θ(n3) of the smallest number of wires in any depth-2 circuit computing the product of two n
by n matrices over any finite field. This improves the highest previously known lower bound
s2(f) = Ω(n2 log n) for this operator derived in [15] using a technical lemma from [11] and
graph-theoretic arguments.

2. Results

In this section we first introduce the notion of entropy of operators, and state some its
basic properties. Then we prove our main result—a general lower bound on the number of
wires in depth-2 circuits in terms of the entropy (Lemma 3 and Theorem 4).

2.1. Entropy of function sets. Let F = {f1, . . . , fm} be a set of functions fj : {0, 1}n →
{0, 1} on the same set of variables x1, . . . , xn. Say that a set of vectors A ⊆ {0, 1}n is separated

by F , if for every pair of vectors a 6= b ∈ A there is a function f ∈ F with f(a) 6= f(b), that
is, if the corresponding to F operator in injective on A. Define

entropy(F ) = max{log2 |A| : A ⊆ {0, 1}n and F separates A}.
Say that a function f can be computed from a set of functions G if there exists a boolean
function ϕ such that f = ϕ(g1, . . . , gk) for some functions g1, . . . , gk in G. We write F ≤ G if
every function in F can be computed from the functions in G. Note that, in any circuit with
arbitrary boolean functions as gates, every function is computed from the set of functions
computed at its inputs. In particular, every set of functions F on variables x1, . . . , xn is
computatble from G = {x1, . . . , xn}.
Proposition 1. Let F and G be some finite sets of boolean functions in n variables.

(i) Upper bound: entropy(F ) ≤ min{n, |F |}.
(ii) Lower bound: if F contains r single variables, then entropy(F ) ≥ r.
(iii) Main connection: if F ≤ G then entropy(F ) ≤ entropy(G) ≤ |G|.

Proof. (i) The set F = {f1, . . . , fm} defines a natural encoding of vectors a ∈ {0, 1}n by
vectors F (a) = (f1(a), . . . , fm(a)) in {0, 1}m. If a set A ⊆ {0, 1}n is separated by F , then



3

each vector in A must receive its own code, implying that |A| ≤ 2m = 2|F |, and hence,
log2 |A| ≤ |F |.

(ii) Suppose that F contains r single variables x1, . . . , xr. Let A ⊆ {0, 1}n be an arbitrary
set of |A| = 2r vectors having the same values on all remaining n − r variables. Since any
pair of vectors a 6= b ∈ A must differ in at least one of the first r coordinates, each such pair
is separated by at least one of the variables x1, . . . , xr.

(iii) Just observe that then G(a) = G(b) implies F (a) = F (b). Hence, any set separated
by F must be also separated by G, implying that entropy(F ) ≤ entropy(G) ≤ |G|, where the
last inequality follows from (i).

2.2. Entropy of subfunctions and the number of wires. Let F and G be two sets of
boolean functions. We can think of F as a set of functions computed by some circuit at its
output nodes, and G as a set of functions computed at some intermediate nodes. Fix some
set x = (x1, . . . , xn) of variables, and call them main variables. Let y = (y1, . . . , yr) be the
set of the remaining auxiliary variables.

We say that a main variable xi is critical for a function g(x,y) if g(ei,y) 6= g(0,y), where
ei = (0, . . . , 0, 1, 0, . . . , 0) is the vector of length n with precisely one 1 in the i-th coordinate.

Given a subset X ⊆ {x1, . . . , xn} of main variables, let X(g) denote the set of all variables
xi ∈ X which are critical for g. The number of variables in X(g) is the weight of g with
respect to the set of variables X. The weight of a set G of functions, denoted by weightX(G),
is the sum of weights of all its functions. We will see soon (Lemma 3) that, in depth-2 circuits,
weightX(G) lower bounds to the number of wires leaving the inputs in X.

Remark. Recall that a function g(x,y) depends on a variable xi if g(a ⊕ ei,y) 6= g(a,y)
for at least one vector a ∈ {0, 1}n. Hence, in general, the number |X(g)| of variables in
X that are critical for g may be much smaller than the total number of variables in X on
which the function g depends. If, for example, g(x,y) = x1x2 ⊕ y and X = {x1, x2}, then
g(1, 0, 1) = g(0, 1, 1) = 1 6= 0 = g(1, 1, 1), implying that g depends on both variables x1 and
x2. But g(1, 0, y) = g(0, 1, y) = g(0, 0, y) = y implies that X(g) = ∅.

If every function in F can be computed from the functions in G, then Proposition 1(iii)
implies |G| ≥ entropy(F ). To get a similar (entropic) lower bound on weightX(G) we consider
the following set FX of subfunctions of the functions in F .

We define the set FX of subfunctions of F with respect to X to be the set of all boolean
functions in variables Y that can be obtained from some function f ∈ F by setting some
variable xi ∈ X to 1 and all the remaining main variables to 0. That is,

FX = {f(ei,y) : f ∈ F, xi ∈ X},
Note that FX may contain up to |X| · |F | different functions.

Lemma 2 (Entropy and weight). If every function in F can be computed from the functions

in G, then

weightX(G) ≥ entropy(FX) − |G|.
Proof. Since the functions in F can be computed from the functions in G, the subfunctions
in FX can be computed from the subfunctions in GX , as well. By Proposition 1(iii), we
have entropy(FX) ≤ entropy(GX). By Proposition 1(i), it remains to show that |GX | ≤
weightX(G) + |G|.

To show this, recall that GX consists of all boolean functions g(ei,y) obtained from some
function g ∈ G by setting some variable xi ∈ X to 1 and the remaining main variables to 0. If
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xi 6∈ X(g), then g(ei,y) = g(0,y). Hence, for each g ∈ G, the set {g(ei,y) : xi ∈ X} consist
of at most |X(g)| functions g(ei,y) with xi ∈ X(g) and just one additional function g(0,y).
Summing over all g ∈ G, we obtain that |GX | ≤ |G| + ∑

g∈G |X(g)| = |G| + weightX(G).

Let now f = (f1, . . . , fm) be an operator and F ⊆ {f1, . . . , fm}. Let also X ⊆ {x1, . . . , xn}
be a subset of main variables. Lemma 2 yields the following basic relation between the entropy
and the number of wires.

Lemma 3 (Entropy and depth-2 complexity). In any depth-2 circuit computing f , the number

of wires leaving the inputs in X or entering the outputs in F must be at least entropy(FX).

Proof. Let M be the set of all nodes on the middle layer joined by a wire with at least one
output in F . Then F must be computable from the set G = {gv : v ∈ M} of boolean functions
computed at the nodes v ∈ M . Since we have |M | ≥ |G| wires entering the outputs in J , it
remains, by Lemma 3, to show that at least weightX(G) wires must leave the inputs in X.

Each node v ∈ M must be connected by a wire with each input xi ∈ X of which the
function gv depends. Hence, at least |X(gv)| wires must go from X to the node v. Since no
wire can go to more than one node, the total number of wires from X to M must be at least
∑

v∈M |X(gv)| = weightX(G).

Define the entropy of an (n,m)-operator f = (f1, . . . , fm) as

(2.1) entropy(f) = max

p
∑

t=1

entropy({fj(ei,y) : i ∈ It, j ∈ Jt}),

where the maximum is over all partitions I1, . . . , Ip of inputs [n] and all partitions J1, . . . , Jp

of outputs [m]. Since the total number of wires in a depth-2 circuit is just the number of
wires incident to its input or output nodes, Lemma 2 directly yields the following

Theorem 4. For every operator f , we have s2(f) ≥ entropy(f).

Remark. Theorem 4 can be readily extended to sequences of functions f : Dn → D for any
finite set D. For this, it is enough to take the logarithm to the basis |D| in Definition ?? of
the entropy. The rest is the same.

Remark. Taking partitions of inputs and outputs in the definition of entropy(f) is not crucial.
For each natural number k, we can define entropyk(f) as the maximum (2.1) over all subsets
I1, . . . , Ip of inputs and all subsets J1, . . . , Jp of outputs such that no element belongs to more
than k of these sets. Hence, taking partitions corresponds to k = 1. Now, if d(i) is the number
of wires leaving the input i, then the sum

p
∑

t=1

∑

i∈It

d(i) =
n

∑

i=1

∑

t:i∈It

d(i) ≤ k
n

∑

i=1

d(i)

is at most k times larger than the total number
∑n

i=1 d(i) of wires leaving the inputs. Since
the same also holds for the number of wires entering the output nodes, Lemma 2 implies

s2(f) ≥ max
k≥1

1

k
· entropyk(f).
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3. Application: matrix multiplication

Theorem 4 allows one to show that s2(f) must be super-linear for many operators f =
(f1, . . . , fm) on two sets of variables X and Y . For this, it is enough that we can split the
set F = {f1, . . . , fm} of functions computed by this operator into some number p of disjoint
sets F1, . . . , Fp such that, for some partition X1, . . . ,Xp of the variables in X, and for each
t = 1, . . . , p, we can obtain each single variable y ∈ Y by taking some function f ∈ Ft and
fixing one its variable x ∈ Xt to 1 and the rest of X to 0. (We say in this case that f isolates

the variable y.) Then, by Proposition 1(ii), the set of subfunctions in each Ft with respect to
the corresponding set of variables Xt must have entropy at least |Y |. By Theorem 4, we then
have s2(f) ≥ p|Y |.

One of the most natural functions isolating all its single variables is a scalar product
function f(x,y) = x1y1+x2y2+· · ·+xryr; then f(ei,y) = yi for all i = 1, . . . , r. Hence, natural
examples of operators of large entropy are sequences of particular scalar products. Many
operators computing sequences of bilinear functions, including that of cyclic n-convolution
considered in [5], fall in this general (scalar product) frame. We illustrate this with one
important example—matrix product.

Given two r × r boolean matrices X = (xi,j) and Y = (yi,j) over a finite field F, our goal
is to compute their product Z = X ·Y over F. The corresponding operator f = multn(X,Y )
has n = 2r2 input variables, arranged in two matrices, and consists of n = r2 scalar products
fi,j =

∑r
k=1 xi,kyk,j corresponding to the entries of the product matrix Z = (zi,j). (This time

indexes of variables as well as of computed functions are pairs of numbers.)

Since multn is just a sequence of r2 scalar products on 2r variables, (2r)r2 = 2n3/2 is a
trivial upper bound, even in depth-1. If we put no restrictions on the depth, then Strassen’s
algorithm [19], improved in [2], gives a circuit of size O(n6/5). The only know lower bound
in the unrestricted case, however, is the lower bound 2.5 · n proved in [4]. A lower bound
s2(multn) = Ω(n log n) for depth-2, as well as nonlinear lower bounds for any constant depth,
were proved in [15] using superconcentrators. For depth-2, entropy arguments yield a tight
estimate s2(multn) = Θ(n3/2).

Lemma 5. entropy(multn) ≥ n3/2.

Proof. Let f = multn, and let ei,k be the boolean r × r matrix with precisely one 1 in the
position (i, k). Since fi,j =

∑r
k=1 xi,kyk,j, we have that fi,j(ei,k, Y ) = yk,j for all j = 1, . . . , r.

That is, for each i, k ∈ [r], the i-th row fi,1(ei,k, Y ), . . . , fi,r(ei,k, Y ) of the product matrix
ei,k · Y is just the k-th row yk,1, . . . , yk,r of Y .

Hence, if we take Xi = {xi,1, . . . , xi,r} (the i-th row of X) and Fi = {fi,1, . . . , fi,r} (the i-th
row of the product matrix), then the corresponding set of subfunctions of Fi with respect to
the variables in Xi,



















fi,1(ei,1, Y ) fi,2(ei,1, Y ) · · · fi,r(ei,1, Y )
fi,1(ei,2, Y ) fi,2(ei,2, Y ) · · · fi,r(ei,2, Y )

...
...

...
fi,1(ei,r, Y ) fi,2(ei,r, Y ) · · · fi,r(ei,r, Y )
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y1,1 y1,2 · · · y1,r

y2,1 y2,2 · · · y2,r
...

...
...

yr,1 yr,2 · · · yr,r



















contains all r2 = n variables of Y . Together with Proposition 1(ii), this implies that, for each
i = 1, . . . , r, the entropy of Fi with respect to Xi is at least n. By Theorem 4, entropy(f) ≥
rn = n3/2.
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Remark (Limitations). How large can entropy of operators be? Recall that in the definition
of entropy(f) of an (n,m)-operator f , we first split the inputs into p blocks I1, . . . , Ip of some
sizes a1 ≤ a2 ≤ . . . ≤ ap, and the outputs into p blocks J1, . . . , Jp of some sizes b1, . . . bp.
Then we just take the sum of the entropies of the corresponding (to these blocks) sets of
subfunctions. Say that a partition is balanced if b1 ≥ b2 ≥ . . . ≥ bp. Note that the partition
(into the rows) which we used for the matrix product is balanced—there all bi’s were even
equal.

Since each of the sets {fj(ei,y) : i ∈ It, j ∈ Jt} can have at most |Ii × Ji| = aibi functions,
Proposition 1(i) implies that the entropy of this set cannot exceed aibi. If the partition is
balanced, then Chebyshev’s inequality yields

entropy(f) ≤
p

∑

i=1

aibi ≤
1

p

( p
∑

i=1

ai

)( p
∑

i=1

bi

)

≤ nm

p
.

On the other hand, we have a trivial upper bound entropy(f) ≤ pn. Substituting p ≥
entropy(f)/n in the previous inequality, we obtain that entropy(f) ≤ n

√
m. Thus, at

least with respect to balanced partitions, the entropy of any (n,m)-operator does not ex-
ceed n

√
m. In particular, for such partitions, matrix multiplication has the largest possible

entropy Θ(n3/2) among all (n, n)-operators.

4. Open problems

As mentioned in the introduction, a lower bound Ω(n1+ε) on the number of wires in a
depth-2 circuit, computing an explicit linear operator Ax over GF2, would yield a nonlinear
lower bound for log-depth circuits. To approach this problem, it is natural to first prove such
a bound for linear depth-2 circuits, where we only allow linear functions (sums mod 2) as
gates. It is well known that matrices A requiring Ω(n2/ log n) wires in this restricted model
exist. The situation with explicit bounds is, however, much worse. For circuits over the real
field a lower bound Ω(n3/2) was proved in [17]. However in their result it is essential that
they use large integers in the matrix. It remains an open problem to prove such a bound for
0-1 matrices. For GF2 the largest bound is Ω(n log3/2 n) [1, 11, 13]. In would be therefore
interesting to extend the entropic approach to depth-2 circuits computing linear operators.

A less famous problem about depth-2 circuits, related to another old problem in circuit
complexity (proving lower bounds for ACC circuits), is the following one.

A symmetric depth two circuit is a depth two circuit, where the gates on the middle layer
compute ORs of their inputs, and each output gate computes the same symmetric function
of its inputs. That is, each output gate gives the value 1 iff the number of 1’s in its input
belongs to some specified (for the whole circuit) subset S of natural numbers. We also assume
that there are no direct wires from an input to an output node.

Say that a circuit computing a set F = {f1, . . . , fn} of boolean functions represents a given
boolean n × n matrix A = (aij) if, for every i and j, fi(ej) = aij. That is, the circuit is only
required to be correct on inputs with precisely one 1. Let sym2(A) be the minimum number
of nodes on the middle layer in a symmetric depth-2 circuit representing A. That is, now we
count nodes, not wires.

Remark. Note that the fact, that the circuit is allowed to output arbitrary values on inputs x

with more than one 1, is crucial. So, for example, every circuit computing the linear operator
Ax over GF2 or a set F = {f1, . . . , fn} of boolean functions fi(x) =

∨n
j=1 aijxj (a (∧,∨)-

boolean matrix-vector product Ax) represents the matrix A. By Proposition 1(iii), each such
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circuit must have at least entropy(F ) nodes on the middle layer. Hence, already the identity
matrix A requires then n nodes even if arbitrary boolean functions can be used as gates.

Simple counting shows that matrices with sym2(A) = Ω(n) exist. The problem, due to
Yao [21], is to exhibit an explicit boolean matrix A with large sym2(A). In terms of set
intersection representations of matrices, this problem was re-stated by Pudlák and Rödl in [13]
(see Problem 10). To see the equivalence between sym2(A) and their measure, just associate
with each output node i and each input node j the sets Ui and Vj of all their neighbors on
the middle layer. Then aij = fi(ej) = 1 iff |Ui ∩ Vj| ∈ S.

What we need is an explicit boolean n×n matrix A with sym2(A) = 2(log log n)ω(1)
. Together

with the results of Yao [21], and Beigel and Tarui [3], this would yield a super-polynomial
lower bound for ACC circuits. These are constant depth unbounded fanin circuits over a basis
consisting of AND, OR and a finite number of modulo-counting functions: each such function
gives the value 1 iff the number of 1’s in the input is not divisible by p. When p is a prime,
exponential lower bounds were proved by Razborov [16] and Smolensky [18]. However, the
case of composite moduli p (even when one moduli p = 6 is allowed) remains widely open.
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