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Abstract

Given a set of observed economic choices, can one infer preferences and/or utility functions for the
players that are consistent with the data? Questions of thistype are calledrationalizationor revealed
preferenceproblems in the economic literature, and are the subject of arich body of work.

From the computer science perspective, it is natural to study the complexity of rationalization in var-
ious scenarios. We consider a class of rationalization problems in which the economic data is expressed
by a collection of matchings, and the question is whether there exist preference orderings for the nodes
under which all the matchings arestable.

We show that the rationalization problem for one-one matchings is NP-complete. We propose two
natural notions of approximation, and show that the problemis hard to approximate to within a constant
factor, under both. On the positive side, we describe a simple algorithm that achieves a3/4 approxima-
tion ratio for one of these approximation notions. We also prove similar results for a version of many-one
matching.

∗Supported by NSF CCF-0346991, BSF 2004329 and a Graduate Research Fellowship from the Social and Information Sciences
Laboratory (SISL) at Caltech.

†Supported by NSF CCF-0346991, BSF 2004329, a Sloan ResearchFellowship, and an Okawa Foundation research grant.

1

Electronic Colloquium on Computational Complexity, Report No. 21 (2008)

ISSN 1433-8092




1 Introduction

Given a set of consumption choices in a market, it is natural to try to infer information about the players’
preferences or utility functions. This branch of consumer demand theory is known asrevealed preference
theorybecause consumers, by dint of the choices they make, “reveal” their preferences for various outcomes
[Afr67, Die73, Sam48, Ech06, FST04, Var82, Spr00]. It constitutes a major tool in econometric analysis
used to estimate aggregate consumer demand [Afr67, Var06].From the Computer Science perspective, this
is a learning problem, and recent work initiated a study of its PAC-learnability [BV06].

Some classes of data cannot always be explained, orrationalizedby simple (say, linear) utility func-
tions, or even any reasonable utility function. Such settings are interesting to economists, because it be-
comes possible, in principle, to “test” various assumptions (e.g. that the players are maximizing a simple
utility function). Several (classical and recent) results[Afr67, Var82, FST04, Ech06] in the economic lit-
erature establish criteria for when data isalwaysrationalizable, thus delineating the limits of the “testable
implications” of such data.

There is an important role for Computer Science in these questions, as the feasibility of performing such
tests depends on being able to answer the rationalizabilityquestionefficiently. In other words, given a type of
economic data, and a target form for an “explanation” (preference profile, a class of utility functions, etc...),
we wish to understand thecomplexityof deciding whether the data can be rationalized by an explanation of
the prescribed form. To our knowledge these sort of problemshave not been studied before.

Among rationalization problems, one can identify at least two broad classes of problems. Some, such as
inferring utility functions from consumption data, are rather easily solved efficiently using linear program-
ming [Afr67, Var82]. Others are more combinatorial in nature, and their complexity is not at all obvious.
One recent example is the problem of inferring costs from observations of spanning trees being formed to
distribute some service, say power [Özs06].

Among the combinatorial-type rationalization problems, one of the most natural is the matchings prob-
lem that we study in this paper. Here we are given a set of bipartite matchings, and we wish to determine if
there are preferences for the nodes under which all of the given matchings are stable. Matchings, or more
precisely “two-sided matching markets,” are a central abstraction in economics, investigated in relation to
the similar “marriage models” in auction and labor markets [RS90, Fle03, EO04, EY07] and from the point
of view of mechanism design [Sön96] and related strategic issues [STT01]. They are also a fundamental
combinatorial abstraction from the computational perspective.

1.1 Our results

Given two sets of nodes,M (“men”) andW (“women”), together with preferences for each node, the famous
algorithm of Gale and Shapley [GS62] obtains astable matching. We will be interested in the “reverse”
question: given a set of matchings, are there preferences under which they are simultaneously stable? One
may wonder why we should be given a collection of matchings instead of a single instance of a matching
between the set of men and women. Indeed, we think of the men (and women) as representing instances
of different typesor populations that are matched differently in each matching and we are interested in
determining the preference profiles that define these types based on the observed set of matchings. Before
stating our results, we formalize the problem and introducesome terminology.

Definition 1.1. Let M,W be disjoint sets of equal cardinality. Aone-one matchingµ is a bijectionµ :
M ∪ W → M ∪ W , such that for allm ∈ M , µ(m) ∈ W , for all w ∈ W , µ(w) ∈ M , and for all
m ∈ M,w ∈ W , µ(m) = w ⇔ µ(w) = m.
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In the problems we consider, we will be seeking preferences for the elements ofM andW , which are
expressed as follows:

Definition 1.2. A preference order for m ∈ M (resp. w ∈ W ) is a linear ordering ofW (resp. M ). We
write m : w > w′ to mean thatw occurs beforew′ in the preference order form. A preference profile is a
collection of preference orders for eachm ∈ M andw ∈ W .

The “stability” of a matching with respect to a preference profile depends on the crucial notion ofblock-
ing pair:

Definition 1.3. A blocking pair with respect to a matchingµ and a preference profileP is a pair (m,w) :
m ∈ M,w ∈ W such thatµ(m) 6= w and

m : w > µ(m) andw : m > µ(w).

Matchingµ is stablewith respect toP if there is no blocking pair with respect toµ andP.

In other words, in a blocking pair(m,w) with respect toµ andP, both people are “unhappy” with their
current partner inµ and would instead prefer to be matched to each other.

Our first result is that rationalizing matchings is hard.

Theorem 1.4. Given a collection of one-one matchingsH on the setsM and W , it is NP-complete to
determine if there exists a preference profileP such that everyµ ∈ H is stable with respect toP.

We call such a preference profile arationalizationof the matchingsH. The main gadget we use in the
reduction is distilled from some fairly involved necessaryand sufficient conditions for a preference profile
to be a rationalization, discovered by Echenique [Ech06]. We describe the full conditions in Section 2. Our
gadget is a configuration across two matchings, that looks like this:

�m
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� w

�

w′

� z

�m

µ′

�

m′

� w

�

w′

	 z

A preference profileP rationalizes the matchings containing this configuration only if eitherm : w > w′

andm′ : z > w, or m : w′ > w andm′ : w > z. Conversely, if these conditions hold (together with
additional conditions concerning the remainder of the matchings) thenP rationalizes the set of matchings.
We use this gadget fundamentally as a Boolean choice gadget (eitherm prefersw overw′ or w′ overw),
and as part of a scheme to ensure consistency (since the choice ofm is tied to the choice ofm′).

Having ascertained that rationalizing a collection of matchings is NP-complete, we would next want to
know how hard it is to solve the problem approximately. In this context, we first need to decide what exactly
we mean by ‘approximate’ rationalization. Two notions are of particular interest: on the one hand, we can
think of identifying a preference profile that rationalizesthe maximum number of matchings.
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Problem 1 (MAX -STABLE-MATCHINGS). Given a collection of matchingsH on setsM,W , find a prefer-
ence profileP that maximizes the number of matchings inH that are simultaneously rationalized byP .

This problem is hard to approximate to within some constant factor:

Theorem 1.5. There is a constantε > 0 for which it is NP-hard to approximateMAX -STABLE-MATCHINGS

to within a factor of(1 − ε).

A second natural notion of approximation attempts to maximize “stability” among the given set of
matchings at a more fine-grained level, by maximizing the number of non-blocking pairs across all match-
ings.

Some effort is required to make this notion of approximationmeaningful. In a typical instance there will
be many pairs(m,w) for which m is not matched tow in anyof the given matchings. We say such a pair
is non-activeand pairs that are matched in some matching areactive. It is easy to ensure that all non-active
pairs are non-blocking pairs with respect to any matching, by requiring the preference profile to bevalid:

Definition 1.6. A preference profileP is valid with respect to a collection of matchingsH if for every
m ∈ M , m : w > w′ if (m,w) is active and(m,w′) is not active, and for everyw ∈ W , w : m > m′ if
(m,w) is active and(m′, w) is not active.

In other words, each manm prefers women that he is matched to in some matching over women that
he is never matched to, and similarly for each womenw. We argue that to have a meaningful notion of
maximizing non-blocking pairs, one should consider only valid preference profiles, and therefore attempt
to maximize the number of non-blocking pairsamong the active pairs(since a valid preference profile
automatically takes care of all of the non-active pairs). Weare led to define the following optimization
problem:

Problem 2 (MAX -STABILITY ). Given a collection of matchingsH on setsM,W , find a valid preference
profile P for M,W that maximizes:

|{(m,w, µ) : (m,w) is active

and is not a blocking pair with respect toµ,P}|.

This problem is also hard to approximate to within some constant factor:

Theorem 1.7. There is a constantε > 0 for which it is NP-hard to approximateMAX -STABILITY to within
a factor of(1 − ε).

Our proof uses the overall structure of the reduction used toprove Theorem 1.4 together with an explicit
constant-degree expander to make aspects of the reduction robust enough to be gap-preserving.

An approximation of3/4 is achievable (in expectation) for this problem by a simple randomized assign-
ment of preferences. Derandomizing via the method of conditional expectations yields:

Theorem 1.8. There is a deterministic, polynomial-time approximation algorithm for MAX -STABILITY that
achieves an approximation factor of 3/4.

Finally, we turn to a generalization of the one-one matchings we have been considering:
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Definition 1.9. LetF,W be disjoint sets. Aone-many matchingis a pair of functions(µ, τ) with µ : F →
2W , andτ : W → F for which

∀w ∈ µ(f), τ(w) = f and∀w ∈ W,w ∈ µ(τ(w)).

Typically in economics literature, one-to-many matchingsare spoken of in reference to firms and work-
ers (or, similarly, hospitals and interns) and hence the notation ofF,W is more prevalent. However, since
this problem is so closely tied in with our discussion of one-to-one matchings we will continue to use the
notation of “men”M and “women”W when we mention one-to-many matchings in the rest of the paper.
One-many matching models have been widely studied [Rot82, Rot85].

In a one-many matching, preference order and preference profile are defined in the same way as for
one-one matchings, except that eachm has a linear ordering of2W instead of justW . Also analogous to
the blocking pair for one-to-one matchings, we can define ablocking setand a notion of stability [EO04] for
one-to-many matchings:

Definition 1.10. A blocking setwith respect to a one-many matching(µ, τ) and a preference profileP is a
pair (m,B) : m ∈ M,B ⊆ W such thatµ(m) ∩ B = ∅ and

∃A ⊆ µ(m) such that

m : A ∪ B > µ(m) and∀w ∈ B w : m > τ(w).

Matching(µ, τ) is stable∗ with respect toP if there is no blocking set with respect to(µ, τ) andP.

The rationalization problem for one-many matchings is not likely to even bein NP, because a witness
(preference profile) entails listing preference over2W , which is exponentially large. We are then led to
consider a restricted version of the problem in which we onlyallow m ∈ M to be matched to a set of
cardinality at most some constant parameter`. We call such matchingsone-̀ matchings.

The resulting rationalization problem is in NP and, we show,NP-complete:

Theorem 1.11.For every fixed̀ , given a collection of one-` matchingsH on the setsM andW , it is NP-
complete to determine if there exists a preference profileP such that everyµ ∈ H is stable∗ with respect to
P.

We can define the notion of an active pair(m,B) for one-̀ matchings in analogy with active pairs, and
also valid preference profiles as in Definition 1.6.

The two approximation problems arising with respect to one-` matchings are hard to approximate to
within some constant factor, just as in the one-one case:

Theorem 1.12. There is a constantε > 0 for which it is NP-hard to approximateMAX -STABLE-ONE-`-
MATCHINGS to within a factor of(1 − ε).

Theorem 1.13. There is a constantε > 0 for which it is NP-hard to approximateMAX -ONE-`-STABILITY

to within a factor of(1 − ε).

2 Preliminaries

In this section, we encapsulate the working of the result forone-one matchings due to Echenique [Ech06]
and provide the necessary and sufficient conditions for the existence of a preference profile that rationalizes
a given collection of matchings. We start with some definitions and notations.

5



Definition 2.1. For any two matchingsµ, µ′ ∈ H, a (µ, µ′)-pivot is a w ∈ W such that there exist some
mk,m` ∈ M such thatµ(mk) = µ′(m`) = w.

The key to proving Theorem 1.4 is a result due to Echenique [Ech06] which we encapsulate in Lemma
2.3 which sets down necessary and sufficient conditions for the existence of a preference profile that ratio-
nalizes a given collection of matchings. We first introduce some notation that will be necessary to describe
Lemma 2.3. Consider the directed graphGij with M as vertex set andEij as edge-set where(m,m′) ∈ Eij

if µi(m) = µj(m
′). Let C(µi, µj) denote the set of all connected components ofGij . We will denote the

analogous graph obtained by considering as vertex setW asHij. The following proposition now follows
from our notation and establishes a correspondence betweenGij andHij.

Proposition 2.2. (Echenique [Ech06])C is a connected component ofGij iff µi(C) is a connected compo-
nent ofHij. Furthermore,µi(C) = µj(C).

Echenique [Ech06] showed the following lemma to be true.

Lemma 2.3. (Echenique [Ech06]) LetH = {µ1, . . . , µ`} be rationalized by preference profileP. Consider,
for all µi, µj ∈ H the graphGij and allC ∈ Cij. Then, exactly one of (1) or (2) must be true:

m : µi(m) > µj(m) for all m ∈ C and

w : µj(w) > µi(w) for all w ∈ µi(C) (1)

m : µi(m) < µj(m) for all m ∈ C and

w : µj(w) < µi(w) for all w ∈ µi(C) (2)

Conversely, ifP is a preference profile such that for allµi, µj ∈ H andC ∈ C(µi, µj), exactly one of (1)
or (2) holds, thenP rationalizesH.

3 Hardness of rationalizability of matchings

We are given two setsM,W with |M | = |W | = N and a setH of s matchingsµ1, . . . , µs : M → W .
We show that the problem of determining whether there existsa preference profile that rationalizesH is
NP-complete by reducing fromNAE-3SAT.

3.1 Proof outline

We give below a broad overview of the reduction used to prove Lemma 3.2. Our objective is to start with a
set of clauses and construct matchings corresponding to them in such a way that the all-equal assignment to
variables in a clause would lead to a conflicting preference relation for some element in the set of matchings.
With this in mind, we build ‘matching gadgets’ corresponding to a given Boolean formula.

By way of example, consider a single clauseC1 = (x1 ∨ x̄2 ∨ x̄3). We associate with each variablexi,
the elementsm1i ∈ M1, w1i, w

′
1i ∈ W1. We will subsequently padM1 with dummy elements to ensure that

|M1| = |W1|. For such a clause, we look up Table 4 (in Appendix??) to construct10 partial matchings
µ1, . . . , µ10 involving M1 = {m1i|i = 1, 2, 3} ∪ {u1} andW1 = {w1i, w

′
1i|i = 1, 2, 3} ∪ {y1, z1}. Our

encoding of the truth assignment to a variablexi in clauseC1 will then correspond tom1i preferringw′
1i

overw1i, i.e. m1i : w′
1i > w1i iff xi = 1. The claim below gives a flavor of how the entire reduction works.

Claim 3.1. There exists a rationalizable preference profile forM1,W1 for the matchings described in Table
4 iff there exists a not-all-equal satisfying assignment for C1.
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Proof. (Sketch)Suppose there exists a not-all-equal satisfiable assignment to C1. Then, in order to show
that the corresponding preference profile obtained is rationalizable, we will show that it satisfies the condi-
tions in Lemma 2.3. We fix the preference for eachm1i betweenw1i andw′

1i based on the assignment to
xi for i = 1, 2, 3. We setm1i : w′

1i > w1i if xi = 1 andm1i : w1i > w′
1i otherwise. Note that since an

assignment(0, 1, 1) or (1, 0, 0) to (x1, x2, x3) is ruled out, the matchings in Table 4 ensure that there will
be no “cycles” in the preference orders ofm11,m12,m13. Furthermore, an assignment tox1, x2, x3 only
fixes a preference order for allm ∈ M1 and so we can fix a preference order forw ∈ W1 so that there is no
conflict in the preference orders for allm,w and that the conditions in Lemma 2.3 are satisfied.

The converse is immediate because for a rationalizable preference profile form ∈ M1, w ∈ W1, Lemma
2.3 holds and hence an all-equal assignment toC1 is not allowed. For instance, suppose(x1, x2, x3) were
assigned(0, 1, 1) then using Lemma 2.3 to draw up all the preference relations we would obtain a conflict,
i.e. m11 : w12 > w′

11 (applying Lemma 2.3 toµ11, . . . , µ18) andm11 : w12 < w′
11 (applying Lemma 2.3 to

µ19, µ110). Therefore, setting each of thexi to the values obtained depending on the preference relationfor
m1i betweenw1i andw′

1i as delineated above is a not-all-equal satisfying assignment.

In a Boolean formula withm clauses, we repeat the exercise above but use disjoint setsM`,W` for
each clauseC` to avoid conflicting preference ordersacrossclauses. This makes it necessary for us to
enforce consistency between the preference relations form`i and w`i, w

′
`i for all ` = 1, . . . ,m and the

assignment toxi. To this end, we use additional matching gadgets from Table 5and an auxiliary element
vi. Again applying Lemma 2.3, we see that forx1 occurring in clausesC1, C2 say, we must have that
m11 : w′

11 > w11 ⇐⇒ m21 : w′
21 > w21.

Note that in the manner our construction of matching gadgetsis set up, it is necessary for our purposes
to reduce fromNAE-3SAT as opposed to 3SAT because, if an all-false assignment to a clause were to lead
to a conflict in preference relation for somem,w,w′, then by symmetry an all-true assignment would also
lead to a contradictory preference relation.

3.2 Proof of Theorem 1.4.

The proof for Theorem 1.4 automatically follows from Lemma 3.2 which we formally state and prove below.

Lemma 3.2. LetZ be an instance ofNAE-3SAT overn variablesx1, . . . , xn andm clausesC0, . . . , Cm−1.
Then, there exists an instanceZ ′ of O(m) matchings between setsM andW , |M | = |W | = O(m+n) such
that there exists a rationalizable preference profile for all m ∈ M,w ∈ W iff there exists a not-all-equal
satisfiable assignment tox1, . . . , xn. Furthermore, these matchings can be constructed in polynomial time.

Proof. Consider a clauseC` involving xi, xj , xk. ForC`, we consider the following sets of men and women:
M` = M` ∪M ′

`∪B`∪U`∪V`∪T`,W` = W`∪W ′
` ∪G`∪Y`∪V ′

` ∪Z`. Each ofM`,W` comprises3 men
and women{m`i,m`j ,m`k} and{w`i, w`j , w`k} respectively. The remaining sets are similarly constructed
with each containing3 elements. We then look up the corresponding table from Tables 1 through 4 and
construct10 partial matchings. In addition, we consider the singleton elementv` which is used in matchings
in Table 5. Note that eachm ∈ M` corresponds to a variable occurring inC`. We will usev`i to match, say,
m`i ∈ M` for consistency in the assignment made to the variablexi occurring in the first clauseCr, r > `.
This gives rise to4 matchings for each clause. LetM = ∪m

`=1M`,W = ∪m
`=1W`. Furthermore, we will

denoteR(C`) to be the set of all matchingsµ associated with clauseC` as described above.
We now describe in detail the complete set of matchings betweenM` andW`. The idea is to make sure

that every elementm ∈ M` not already matched according to the tables is matched to some w ∈ W`. We
use the following rules:
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Table 1: ForC` = (xi + xj + xk), (x̄i + x̄j + x̄k):
µ`1: (mi, w

′
i) (mj, wi)

µ`2: (mi, wi) (mj, y`)

µ`3: (mj , w
′
j) (mk, wj)

µ`4: (mj , wj) (mk, z`)

µ`5: (mk, w
′
k) (u`, wk)

µ`6: (mk, wk) (u`, wj)

µ`7: (u`, wk) (mi, wj)
µ`8: (u`, wj) (mi, w

′
i)

µ`9: (mk, z`) (mi, wj)
µ`10: (mk, wj) (mi, wi)

Table 2:C` = (xi + xj + x̄k), (x̄i + x̄j + xk)

µ`1: (mi, w
′
i) (mj, wi)

µ`2: (mi, wi) (mj, y`)

µ`3: (mj , w
′
j) (mk, wj)

µ`4: (mj , wj) (mk, z`)

µ`5: (mk, w
′
k) (u`, wk)

µ`6: (mk, wk) (u`, w
′
i)

µ`7: (u`, wk) (mi, w
′
i)

µ`8: (u`, w
′
i) (mi, wk)

µ`9: (mk, z`) (mi, wj)
µ`10: (mk, wj) (mi, wi)

1. Form`i, µ(m`i) = φ, we matchm`i to g`i ∈ G` andw`i to b`i ∈ B`.

2. Form`′i, `
′ 6= ` matchm`′i to g`′i ∈ G`′ andw`′i to b`′i ∈ B`′ . Matchm′

`′i ∈ M′
`′ to w′

`′i ∈ W ′
`′ .

Matchu`′i to y`′i, v`′i to v′`′i andt`′i to z`′i.

3. LetB′
` = {b`k|µ(b`k) = φ}, G′

` = {g`r|µ(g`r) = φ}. Note that by the structure of our matching rules
in Tables 1 through 4,1 ≤ |B′

`| ≤ |G′
`| ≤ 2. For eachb`k ∈ B` we match tog`r ∈ G` in ascending

order ofk, r.

4. If after (3), there is someg`r ∈ G`, µ(g`r) = φ match the firstm′
`k ∈ M ′

`, µ(m′
`k) = φ to g`r.

5. For allm′
`i ∈ M ′

`, µ(m′
`i) = φ, matchm′

`i to the firstw′
`j , µ(w′

`j) = φ. Similarly with u`i, t`i and
z`i, y`i.

6. Finally, for allv`i, µ(v`i) = φ matchv`i to v′`i.

This specifies a complete matchingµ : M → W . We have10 such matchings for each clause, and at
most4 matchings for each variable in a clause to ensure consistency of assignment. Therefore, the total
number of matchings is at most22m. The claims below demonstrate how our reduction works.
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Table 3: ForC` = (xi + x̄j + xk), (x̄i + xj + x̄k)

µ`1: (mi, w
′
i) (mj, wi)

µ`2: (mi, wi) (mj, y`)

µ`3: (mj , w
′
j) (mk, wj)

µ`4: (mj , wj) (mk, z`)

µ`5: (mk, w
′
k) (u`, wk)

µ`6: (mk, wk) (u`, wi)

µ`7: (u`, wi) (mi, wk)
µ`8: (u`, wk) (mi, wi)

µ`9: (mk, z`) (mi, wj)
µ`10: (mk, wj) (mi, w

′
i)

Table 4: ForC` = (xi + x̄j + x̄k), (x̄i + xj + xk):
µ`1: (mi, w

′
i) (mj, wi)

µ`2: (mi, wi) (mj, y`)

µ`3: (mj , w
′
j) (mk, wj)

µ`4: (mj , wj) (mk, z`)

µ`5: (mk, w
′
k) (u`, wk)

µ`6: (mk, wk) (u`, wj)

µ`7: (u`, wk) (mi, wj)
µ`8: (u`, wj) (mi, wi)

µ`9: (mk, z`) (mi, wj)
µ`10: (mk, wj) (mi, w

′
i)

Table 5: Consistency matching forxp occurring in clausesCi, Cj :
µ′

p1: (mip, w
′
ip) (vip, wip)

µ′
p2: (mip, wip) (vip, w

′
jp)

µ′
p3: (vip, wip) (mjp, w

′
jp)

µ′
p4: (vip, w

′
jp) (mjp, wjp)

9



Claim 3.3. Suppose there exists a not-all-equal satisfying assignment to an instance inm clausesC1, . . . , Cm

and n variablesx1, . . . , xn. Then, there exists a rationalizing preference profileH for the corresponding
instance of matchings betweenM andW .

Proof. We construct a valid preference profile and hence will only consider active pairs. Note that by the
structure of our reduction setting up the matchings, eachm ∈ M`, w ∈ W` has at most five elements that it
is matched to. In order to satisfy conditions in Lemma 2.3 we will construct these preference orders so that
for every active pair, one of (1) or (2) holds.

Note that the only connected components possible in any graph Gµ1µ2
constructed from matchings

µ1, µ2 are either a cycle or a self-loop (when an elementm is matched to the samew in bothµ1 andµ2).
Consider the variablexj and the set of matchingsµ, µ′ wherem`j is matched tow`j andw′

`j respectively.
Note that by consequence of our construction of the matchings, for any elementm ∈ M` (resp.w ∈ W`)
m (resp.w) occurs in a cycle in only those graphs involving at least oneof µ, µ′. For all other such pairs of
matchings,m occurs in a self-loop becausem is connected to the same element in both such matchings. We
look at the graphGµµ′ .

For a cycleC in Gµµ′ involving m`j, the preference order is dictated byxj ’s assignment:xj = 1 ⇔
m`j : w′

`j > w`j. To satisfy Lemma 2.3, we will ensure in the preference orderfor all elementsm occurring
in C thatm : µ′(m) > µ(m) and similarly, for all elementsw occurring inµ(C) in the graphHµµ′ that
w : µ(w) > µ′(w).

A preference order constructed as above will lead to a conflict in two possible ways. Firstly, there may
exist a blocking pair(m,w) for someµ. Since our preference profile is a valid preference profile, there must
exist someµ′ such thatµ′(m) = w. Then,w is a(µ, µ′)-pivot for m andµ(w) = m′ say. But we ensured
that for such a pair of matchings(µ, µ′) eitherm : w > µ(m) andw : µ′(w) > m or m : µ(m) > w and
w : m > µ′(w) and hence(m,w) cannot be a blocking pair.

Secondly, there may exist somem ∈ M` (resp.w ∈ W`) for which some preference is contradictory,
i.e. for instance whenm : w > w′ andm : w′ > w. For a not-all-equal satisfiable assignment to any clause
C` containingxj , it is easy to check given Tables 1 through 5 exhaustively amongst allw that m can be
matched to that this is not the case. Furthermore, since eachclauseC` has a different set ofM`,W` from
which the matchings are constructed, no contradictory preference order existsacrossany two clauses.

Finally, we remark since we wish to construct a valid preference profile, for all elementsw for which
(m,w) is not active, our preference order form will havem : w′ > w for all w′ such that(m,w′) is active.
This completes the proof of the claim.

Claim 3.4. Let H be a rationalizing preference profile for the above instanceof matchings. Then, the
assignment

xi =

{

1 ∀`,m`i : w′
`i > w`i

0 otherwise.

for all i is a not-all-equal satisfying assignment.

Proof. We first point out that the consistency matchings involvingv` andm`i, i = 1, . . . , n ensure that
any rationalizing preference profileH must satisfy either(m`i : w′

`i > w`i) or (m`i : w`i > w′
`i) for all

` = 1, . . . ,m. This means that a truth assignment tox1, . . . , xn will be consistent in all clausesC1, . . . , Cm.
Consider an arbitrary clauseC`. We show that ifH is a rationalizing preference profile, then it is not

possible to have an all-equal assignment made to variables in someC`. Suppose, by way of contradiction
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that there existed such an assignment. Depending on the order and number of variables that appear negated
in C`, we look up one of Tables 1 through 4. Then, as illustrated in Claim 3.1, we would obtain a conflict in
preference orders for somem thereby giving a contradiction.

This completes the proof of the Lemma.

4 Hardness of approximate rationalizability of matchings

Our next step in exploring the computational aspects of rationalizability of matchings will be to look at the
complexity of ‘approximate’ rationalizability.

4.1 Maximizing the number of rationalizable matchings

In the first setting, we wish to maximize the number of matchings that can be completely rationalized as
stable by a preference profile. Theorem 1.5 states that this is hard to approximate within a constant factor.

Theorem 1.5 (restated). There is a constantε > 0 for which it is NP-hard to approximateMAX -STABLE-
MATCHINGS to within a factor of(1 − ε).

To prove the theorem we show that it is NP-hard to rationalizeany fixed set of matchings as captured in
the lemma below.

Lemma 4.1. Given a collection of matchingsH = {µ1, . . . , µk} betweenM andW wherek is some fixed
constant, it is NP-hard to determine if there exists preferences form ∈ M,w ∈ W for which each ofµ ∈ H
is a stable matching.

In order to prove Lemma 4.1 we proceed as before by reducing from NAE-3SAT but we will use a special
variant of theNAE-3SAT problem:NAE-3SAT(k′) which has the property that every variable in the Boolean
formula occurs in exactlyk′ clauses wherek′ ≥ 29 is a constant. Lemma 4.2 below captures this reduction.

Lemma 4.2. LetZ be an instance ofNAE-3SAT(k′) overn variablesx1, . . . , xn andm clausesC0, . . . , Cm−1

wherek′ is some fixed constant. Then, there exists an instanceZ ′ of (10+k′) matchings between setsM and
W , |M | = |W | = O(m+n) such that there exists a rationalizable preference profile for all m ∈ M,w ∈ W
iff there exists a not-all-equal satisfiable assignment tox1, . . . , xn. Furthermore, these matchings can be
constructed in polynomial time.

The following claim is key to proving Lemma 4.2.

Claim 4.3. LetM1, . . . ,Mk;W1, . . . ,Wk be respectivelyk disjoint sets of men and women andµ1, . . . , µk

a collection of matchings withµi : Mi∪Wi → Mi∪Wi. There exists a set of preference ordersP for Mi,Wi

for i = 1, . . . , k that rationalizesµ1, . . . , µk iff there exists a set of preference ordersP ′ that rationalizesµ,
whereµ : M1 ∪ . . . Mk ∪W1 ∪ . . . Wk → M1 ∪ . . . Mk ∪ W1 ∪ . . . Wk is the matching obtained by setting
µ(m) = µi(m) for all m ∈ Mi; i = 1, . . . , k.

Proof. Suppose there exists a preference profileP for µ1, . . . , µk. Then, forµ we constructP ′ by assigning
for m ∈ Mi as sub-ordering overWi, the corresponding preference order form in P. We complete the
preference order form by ranking all otherw ∈ W1 ∪ . . . Wi−1 ∪ Wi+1 . . . Wk below the sub-ordering
for w ∈ Wi. Conversely, for every preference order corresponding to somem ∈ Mi in a rationalizing
preference profileP ′ for µ, we obtain a preference order inP for µi by restricting the order over only
Wi.
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Proof. (Of Lemma 4.2) The proof essentially follows the same technique as that of Lemma 3.2 except that
we need to be careful in our reduction to maintain the number of matchings at a constant. To this end, we
revisit the matchings shown in Tables 1-4. Note that in our previous reduction, we required disjoint sets
of M`,W` to correspond with each clauseC`. Furthermore, each clause corresponds to10 matchings (not
counting those required to ensure consistency). The following proposition allows us to maintain the overall
number of matchings at a constant by merging each of the10 matchingsacrossall the clausesC0, . . . , Cm−1.

Claim 4.3 tells us that we can merge allµ11, µ21, . . . , µm1 into one single matchingµ′
1. We repeat this

for all matchingsµ`i, ` = 1, . . . ,m; i = 2, . . . , 10 to obtain10 new matchingsµ′
1, . . . , µ

′
10.

We now focus on the consistency matchings. We will exploit the fact that each variablexi in Z occurs
in at mostk′ clauses. Therefore, eachxi will correspond to at most2k′ matchings. Appealing once again
to Claim 4.3, we can merge each of these matchings into a collection of 2k′ matchings because eachxi

is associated to a disjoint set of ‘linking’ elementsvi1, . . . , vik′ . Claims 3.3 and 3.4 go through with their
proofs unchanged. This completes the proof for Lemma 4.2, and consequently Lemma 4.1.

From Lemma 4.1 it follows that it is NP-hard to approximateMAX -STABLE-MATCHINGS for H to within
a factor of(1 − ε) whereε = 1/(k + 1).

Note that given a collectionH of any two matchings, it is trivial to construct a (valid) preference pro-
file that rationalizesH by arbitrarily assigning a preference for each element inM matched toW in one
matching over the other and correspondingly assigning the reverse preference for elements inW .

4.2 Maximizing the number of non-blocking pairs

We look at theMAX -STABILITY problem. The motivation in considering this problem as a notion of approx-
imate rationalizability is that we are now striving to ensure that given a collection of matchings between two
setsM andW , there are optimally many different pairs(m,w) for which at least one of them is happy with
their current partner and has no incentive to be matched to the other.

As a preliminary exercise, we ask how well would a simple randomized assignment of preferences to
m ∈ M,w ∈ W perform. It turns out that this would achieve a3/4-approximate solution. This is the
content of Theorem 1.8.

Theorem 1.8 (restated). There is a deterministic, polynomial-time approximation algorithm for MAX -
STABILITY that achieves an approximation factor of 3/4.

Proof. Note that since we are only interested in finding valid preference profiles, we will automatically
accord the least preference for allw ∈ W that m ∈ M is not matched with in any of the matchings.
Subsequently, each such(m,w) is by default a stable pair and is excluded from our estimation. Let P
denote the total number of all remaining pairs for which no preference has been allocated as yet.

We start with an equivalent formulation of the problem. We are given setsM,W such that|M | = |W | =
n, and a collectionH of ` matchingsµ1, . . . , µ`. For somem (similarly, w), we associate a ‘rank’ function
rm : W → [n] (similarly, rw : M → [n]) which would completely describem’s (similarly w’s) preference
order withrm(w) < rm(w′) implying thatm : w > w′. A pair (m,w) then is stable for someµ if either
rm(w) > rm(µ(m)) or rw(m) > rw(µ(w)) is true. LetS = {(m,w, µ)|(m,w) is a stable pair forµ}. Our
objective then is to maximize|S|.

Consider the following scheme: for eachm ∈ M,w ∈ W we construct the rank function by assigning
ranks uniformly at random to allw′ ∈ W andm′ ∈ W respectively. The probability that a pair(m,w) is
stable forµ is 3/4 and hence, the expected number of stable pairs denoted byE[|S|] is 3P/4. Furthermore,
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we can easily derandomize this scheme by the method of conditional expectations. At every step when a
value is to be assigned torm(w), we can efficiently calculate the conditional expectation of the number of
non-blocking pairs given the previous values assigned to all w ∈ W and all other rank functionsrm′ (there
are only a polynomial number ofw ∈ W and rank functionsrm′ to consider) and fixrm(w) to be the value
that maximizes the conditional expectation.

It suffices to mention here that a simple randomized preference order for allm ∈ M,w ∈ W achieves the
3/4-approximation factor in expectation and can subsequentlybe derandomized. How much better can we
do than just a random assignment of preferences? Theorem 1.7tells us that a constant-factor approximation
is all we can hope for.

Theorem 1.7 (restated). There is a constantε > 0 for which it is NP-hard to approximateMAX -STABILITY

to within a factor of(1 − ε).

To prove the theorem, we once again construct matchings corresponding to each clause inMAX -NAE-
3SAT instanceZ. Recall that in proving Lemma 3.2 we needed to construct auxiliary matchings to ensure
consistency of assignment to the variables in accordance with the preferences of the corresponding elements
in the matchings. To prove hardness of approximation, we will need to establish a gap-preserving reduction
by boosting therobustnessof these consistency gadgets. We do so by augmenting the number of matchings
corresponding to the consistency and argue subsequently that if there exists a preference profile that achieves
at least a(1− ε′) fraction of stable pairs, then there exists an assignment that would satisfy at least a(1− ε)
fraction of the clauses. Theorem 1.7 then follows from the following Lemma:

Lemma 4.4. LetZ be an instance ofMAX -NAE-3SAT overn variablesx1, . . . , xn andm clausesC0, . . . , Cm−1

wherek′ is some fixed constant. Then, there exists aε′ < 1 and a polynomial time reduction to an instance
Z ′ of MAX -STABILITY of matchings between setsM andW , |M | = |W | = O(m) such that the following
is true:

opt(Z) = 1 =⇒ opt(Z ′) = 1 (3)

opt(Z) < 1 − ε =⇒ opt(Z ′) < 1 − ε′ (4)

Proof. The reduction is similar to what we used to prove Lemma 3.2. Weset up matchings correspond-
ing to the clausesC0, . . . , Cm−1 as before, but now we need to work harder to boost the robustness of the
consistency gadgets. Previously, we used Table 5 to construct additional matchings using auxiliary ele-
ments to ‘link’ different copies ofmji; j = 1, . . . ,m corresponding to a single variablexi. It will help to
conceptualize this as a graph.

For a variablexi which occurs in somet clausesCj1 , . . . , Cjt
, we associate elements fromM,mj1i, . . . ,mjti

and define the consistency graph forxi, Gi to comprise vertex setVi = {mj1i, . . . ,mjti}. An edge exists
between any two vertices(mjpi,mjqi) if they are ‘linked’ together by an auxiliary element.

Then, the consistency matchings described above in Lemma 3.2 correspond to a path inGi. In order to
boost the robustness, we will now replace the path inGi by a constant-degree expander graph ont vertices.
We make use of the edge expansion notion to define an expander graph: an(n, d, λ) expander graph is a
d-regular graph onn vertices with the property that|∂(Y )|/|Y | ≥ d(1− λ)/2 whereY ⊆ Vi, |Y | ≤ |Vi|/2,
∂(Y ) is the set of all edges with exactly one end-point inY andλ is the spectral expansion parameter of the
graph. In particular, the following lemma will be useful (the proof can be found in [DH05]):
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Lemma 4.5. For a (t, d, λ) expander graphG and all δ ≤ (1− λ)/12, upon removing2δt vertices fromG,
there exists a connected component of size at least

(

1 −
4δ

1 − λ

)

t

Note that the total number of occurrences of variables in allthe clauses is at most3m, and further, that in
each clause a variable corresponds to an elementm matched to at most anO(1) elements inW . Therefore,
the total number of pairs for which a matching exists is at most O(m). Since we only consider valid prefer-
ence profiles, this means that the number of active pairs under consideration is alsoO(m) say. Additionally,
the total number of auxiliary elements required to construct the expander graphs in the consistency gadgets
is also at mostO(m) and hence|M | = O(m).

Claim 3.3 from earlier goes through unchanged since our reduction is unchanged in how a satisfying
assignment will correspond to a rationalizing preference profile (and hence, all stable pairs). It remains to
show that (4) holds.

We shall show that if there is a valid preference profile forZ ′ such that there are at most anε′ fraction
of blocking pairs, then there exists an assignment that fails to satisfy at mostε fraction of clauses inZ.

Suppose that there is a valid preference profile that allows at mostε′m blocking pairs. Note that if a pair
(m,w) is a blocking pair for some matchingµ, then Lemma 2.3 breaks down forµ. Since each matching in
Z ′ can be identified with a clause, a blocking pair could result in the clause being unsatisfied.

For a blocking pair(m,w) for some matchingµ in our reduction, we evaluate how many clauses are
affected. Supposeµ corresponds to one of the matchings for clauseC`. If m ∈ M` then m must be
associated with some variablexi occurring inC`, and we will labelC` unsatisfiable. Otherwise,(m,w) has
no effect on the satisfiability ofC`.

Supposeµ corresponds to a matching constructed to ensure consistency. If m ∈ M` for some clauseC`

andxi, then we delete the nodem`i in Gi and as before labelC` as unsatisfiable. However, now we also
need to argue that(m,w) does not cause too many other clauses to be labeled unsatisfiable.

From Lemma 4.5 we know that deleting at most a constant fraction of vertices fromGi will result
in a connected component of size at least(1 − 4δ

(1−λ))t. Taking the aggregate for every variablexi and

after deleting at mostε′m vertices from all the consistency graphsGi together, the total sum of the largest
connected components amongst allGi will be some(1 − ε)m whereε is determined byε′, λ and the total
number of occurrences of all variables in all the clauses. Therefore, at mostεm of these occurrences in
clauses will be discarded and the correspondingεm clauses labeled as unsatisfiable.

MAX -NAE-3SAT is known to beAPX-complete [PY91] and not approximable to within 0.917 [Zwi98].

5 Rationalizing one-many matchings

For the generalized instance of rationalizing one-many matchings, the problem seems considerably harder.
To begin with, since the preference order for anym ∈ M is over2W , given sets of lengthn, expressing the
preference order alone takes exponential time.

However, for a specific restriction of the problem where we allow m ∈ M to be matched with at most`
elementsw ∈ W the problem is in NP and, in fact, NP-complete.
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Theorem 1.11 (restated).For every fixed̀ , given a collection of one-` matchingsH on the setsM andW ,
it is NP-complete to determine if there exists a preference profile P such that everyµ ∈ H is stable∗ with
respect toP.

Proof. Let Z be an instance of a collectionHZ = {µ1, . . . , µr} of one-to-one matchings betweenMZ and
WZ . We need to construct an instanceZ ′ of many-to-one matchings such that a stable preference profile for
Z exists iff a stable* preference profile exists forZ ′. Indeed, we show thatZ ′ = Z is itself such an instance.
In other words,MZ′ = MZ ;WZ′ = WZ ;HZ′ = HZ .

Claim 5.1. Suppose there exists a stable preference profile forZ, then there exists a stable* preference
profile forZ ′.

Proof. A stable preference profile forZ gives preference orders for allm ∈ MZ (w ∈ WZ) overw ∈ WZ

(m ∈ MZ ). Consider the following preference profile forZ ′: for eachm ∈ MZ′ , we construct a preference
order over allB ⊆ WZ′ where |B| ≤ ` as follows: we look at all singleton setsB ⊆ WZ′ and affix
preferences identical to the preference order form ∈ MZ overw ∈ WZ . Therefore, form ∈ Z ′, m : w1 >
w2 ⇔ for m ∈ Z, m : {w1} > {w2}. We fix preference for all other subsetsB ⊆ WZ′ below the singleton
sets and in some consistent order (say lexicographic). It isnot hard to see that by virtue of our construction,
the preference profile outlined above form ∈ MZ′ is stable* if the corresponding preference profile for
m ∈ MZ is stable.

Claim 5.2. If there exists a stable* preference profile forZ ′, then there exists a stable preference profile for
Z.

Proof. We construct the preference order form ∈ MZ as follows: we look at the preference order of
the correspondingm ∈ MZ′ and extract the partial order comprisingm’s preference for all{w} ⊆ WZ′ .
Suppose that there is a blocking pair(m′, w′) in Z. Then, this would imply that(m′, {w′}) is a blocking set
in Z ′ which is a contradiction.

Claims 5.1 and 5.2 give us Theorem 1.11.

Given how the two problems of rationalizability are so naturally related, it is not surprising then to
observe that the one-` matchings problem would have a similar hardness of approximation performance
with respect to both analogs of the optimization problem in the case of the one-one matchings.

Theorem 1.12 (restated).There is a constantε > 0 for which it is NP-hard to approximateMAX -STABLE-
ONE-`-MATCHINGS to within a factor of(1 − ε).

The proof follows immediately by combining Lemma 4.1 and Theorem 1.11.

Theorem 1.13 (restated). There is a constantε > 0 for which it is NP-hard to approximateMAX -ONE-`-
STABILITY to within a factor of(1 − ε).

The theorem follows from the lemma below.

Lemma 5.3. Let Z be an instance of theMAX -STABILITY problem for a collection of matchings. Then,
there exists anε < 1 and a polynomial-time reduction to an instanceZ ′ of MAX -ONE-`-STABILITY of one-̀
matchings such that the following is true:

opt(Z) = 1 =⇒ opt(Z ′) = 1

opt(Z) < 1 − ε =⇒ opt(Z ′) < 1 − ε
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Proof. As in proving Theorem 1.11, we will use exactlyZ as our instance for theMAX -ONE-`-STABILITY

problem. This means automatically that

opt(Z) = 1 =⇒ opt(Z ′) = 1

Note that we are looking at valid preference profiles. SinceZ ′ matches allm ∈ M exclusively to singleton
elements in2W , these singleton elements are assigned preference over subsetsB ⊆ W, |B| ≥ 2. Hence, our
estimate of the optimal number of stable sets will only include the pairs(m, {w}) which is the same as the
optimal number of stable pairs inZ.

Suppose there exists a valid preference profile forZ ′ for which there are at mostε fraction of blocking
sets. Then, each of these blocking sets also corresponds exactly to a blocking pair inZ and there cannot be
any blocking pair inZ that does not have an equivalent blocking set inZ ′ for the same reasons as mentioned
above in proving Theorem 1.11. Therefore, there are at mostε fraction of blocking pairs inZ hence giving
us a contradiction and completing the proof to the lemma and the theorem.

6 Conclusions and Future work

There are many interesting opportunities for extensions toour work on the rationalization problem for
matchings. It would be interesting to tighten the constant factor in Lemma 4.1: is it hard even to rationalize
three matchings? It would also be satisfying to tighten the hardness of approximation result in Theorem
1.7. We can additionally look at other (restricted) variants of the matchings problem such as many-many
matchings and pose the related complexity questions.

On a more general note, the question of rationalizability per se is very tantalizing because of the mutually
interesting perspectives it offers within both economics and theoretical computer science.

Acknowledgments. We are indebted to Federico Echenique for numerous invaluable discussions and
for getting us started on this work.
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