
Fast Integer Multiplication Using Modular

Arithmetic

Anindya De, Piyush P Kurur∗, Chandan Saha

Dept. of Computer Science and Engineering

Indian Institute of Technology Kanpur

Kanpur, UP, India, 208016

anindya,ppk,csaha@cse.iitk.ac.in

Ramprasad Saptharishi†

Chennai Mathematical Institute

Plot H1, SIPCOT IT Park

Padur PO, Siruseri 603103, India

ramprasad@cmi.ac.in

November 18, 2007

Abstract

We give an O(N ·log N ·2O(log∗ N)) algorithm for multiplying two N -
bit integers using modular computation that matches the running time
of the current best algorithm due to Fürer [Fur07]. Fürer uses arith-
metic over complex numbers whereas the best known algorithm using
modular computation has a complexity of O(N ·log N ·log log N) [SS71].
Hence, in the modular setting, our algorithm is an improvement over
Schönage-Strassen [SS71]. We also argue that our algorithm can be
viewed as a p-adic version of Fürer’s algorithm. Thus, the two seem-
ingly different paradigms of computation, modular and complex arith-
metic, are essentially similar in the context of integer multiplication.

∗Research supported through Research I Foundation project NRNM/CS/20030163
†Research done while visiting IIT Kanpur under Project FLW/DST/CS/20060225

1

Electronic Colloquium on Computational Complexity, Report No. 23 (2008)

ISSN 1433-8092

1 Introduction

Given two N -bit integers a and b, computing their product is an important
algorithmic problem in number theory and algebra. Karatsuba and Of-
man [KO63] gave the first non-trivial integer multiplication algorithm with
a running time of O(N log2 3). Shortly afterwards, Toom [Too63] showed that
for any ε > 0, integer multiplication can be done in O(N1+ε) time.

In a major breakthrough, Schönage and Strassen [SS71] devised an O(N ·
log N · log log N) algorithm for integer multiplication. Despite many efforts,
this remained the best until Fürer [Fur07] gave an algorithm which runs in
O(N · log N · 2O(log∗ N)) time. Though the main ingredient in both these
algorithms is a reduction to polynomial multiplication and subsequent use
of Fast Fourier transform (FFT), they differ in their choice of the base
ring. While the former used polynomials over Z/(2k + 1)Z and modular
arithmetic, the later used polynomials over rings of the form C[α]/(αm + 1)
with approximate arithmetic over C.

Our Contribution

In this paper, we give an O(N ·log N ·2O(log∗ N)) algorithm that uses modular
arithmetic. An advantage of using modular arithmetic over complex arith-
metic is that the error analysis is simplified (Section 6). However, there is
a slight complication in choosing a suitable modulus as explained below.

We follow the general paradigm of reducing the task to polynomial mul-
tiplication. The integers are encoded as polynomials over the ring R =
Z[α]/(pc, αm + 1) for appropriate c, m and a prime p, and multiplied as
polynomials. Multiplication of polynomials using FFT requires a suitable
root of unity in R. This imposes a constraint p ≡ 1 (mod 2M), where the
degrees of the polynomials are less than M . A naive search for such a prime
will impose an overhead of O(N1+ε) for some ε > 0. Therefore, it is not
sufficient to just replace the ring C[α]/(αm + 1), used in Fürer’s algorithm,
by Z[α]/(pc, αm + 1).

One possible way to avoid this overhead is to pick p randomly. In fact,
using the Extended Riemann Hypothesis (ERH), one can give such a ran-
domized algorithm with the same expected running time (Section 5.1). How-
ever, this is unsatisfactory because the algorithm is both randomized and
conditional. We circumvent this difficulty of picking the prime p by consid-
ering multivariate polynomials and using an appropriate FFT.

Our algorithm crucially depends on the the choice of the base ring with

2

the help of a special prime, and computation of roots of unity in the ring.
The following section is devoted to the study of these objects.

2 The Ring, the Prime and the Roots of Unity

Given an N -bit integer a, we encode it as a multivariate polynomial over
the ring R = Z[α]/(pc, αm + 1) for m = O(log N), a constant c and a
prime p. Elements of R are thus m − 1 degree polynomials over α each
of whose coefficients are elements of Z/pcZ. By construction, α is a 2m-th
root of unity and multiplication of any element in R by any power of α
can be achieved by shifting operations — this property is crucial in making
some multiplications less costly. The number a is converted into a k-variate
polynomial over R with degree in each variable less than M . The parameter

M is chosen such that the total degree Mk of the polynomial is Θ
(

N
log2 N

)

.

2.1 Encoding Integers into k-variate Polynomials

The number a < 2N , given in binary, is first converted into base p. The
choice of parameters (see Section 5) ensures that the total number of digits
would be tm

2 ·Mk where t is a constant. We divide these digits into Mk blocks

of tm
2 digits. This corresponds to a representation of a in base q = p

tm

2 . Let

a = a0 + . . . + aMk−1q
Mk−1 where ai < q. Every qi is converted into a

monomial as follows:

1. Express i in base M as i = i1 + i2M + · · · + ikM
k−1.

2. Encode each term aiq
i as the monomial ai ·Xi1

1 Xi1
2 · · ·Xik

k . As a result,

the number a gets converted to the polynomial a(X) =
∑Mk−1

i=0 ai ·
Xi1

1 · · ·Xik
k .

The next step is to convert each ai into an element in the ring R. This
is done by representing each ai in base pt and interpreting the number as a
polynomial in α of degree less than m/2 evaluated at α = pt. The polyno-
mials are then padded with zeroes to stretch their degrees to less than m.

Our algorithm proceeds as follows: Given integers a and b, each of N bits,
we encode them as polynomials a(X) and b(X) and compute the product
polynomial using FFT. The product a · b can be recovered by substituting
Xs by qMs−1

, for 1 ≤ s ≤ k, and α by pt in the polynomial a(X) · b(X).

3

The coefficients in the product polynomial could be as large as p2t ·m2 ·Mk

and hence to avoid overflows we consider them as elements of Z/pcZ instead
of Z/ptZ for some constant c > t. The precise values of the parameters are
given in Section 5.

Polynomial multiplication using FFT requires a principal 2M -th root of
unity in R.

Definition 1. An n-th root of unity ζ ∈ R is said to be primitive if it
generates a cyclic group of order n under multiplication. Furthermore, it is
said to be principal if n is coprime to the characteristic of R and ζ satisfies
∑n−1

i=0 ζij = 0 for all 0 < j < n.

In Z/pcZ, a 2M -th root of unity is principal if and only if 2M | p − 1
(see also Section 6). As a result, we need to choose the prime p from the
arithmetic progression {1 + i · 2M}i>0, which is the main bottleneck of our
approach.

2.2 Finding the Prime

An upper bound for the least prime in an arithmetic progression is given by
the following theorem [Lin44]:

Theorem 2.1 (Linnik). There exist absolute constants ` and L such that for
any pair of coprime integers d and n, the least prime such that p ≡ d mod n
is less than `nL.

Heath-Brown [HB92] showed that L ≤ 5.5. If we choose k = 1, that
is if we use univariate polynomials to encode integers, then the parameter

M = Θ
(

N
log2 N

)

. Hence the least prime p ≡ 1 (mod 2M) could be as large

as NL, which implies that a naive search is infeasible. However, by choosing
a larger k we can ensure that the least prime p ≡ 1 (mod 2M) is O(N ε) for
some constant ε < 1.

Remark 2.2. If k ≥ L + 1, then ML = O
(

N
L

L+1

)

and hence the least

prime p ≡ 1 (mod 2M) can be found in o(N) time.

2.3 The Root of Unity

We require a principal 2M -th root of unity ρ(α) in R to compute the Fourier
transforms. This root ρ(α) should also have the property that an appropriate
power of it is α so as to make some multiplications in the FFT efficient.
The root ρ(α) can be computed by interpolation in a way similar to that in

4

Fürer’s algorithm [Fur07, Section 3], except that we need a principal 2M -th
of unity ω in Z/pcZ to start with. To obtain such a root, we first obtain a

(p−1)-th root of unity ζ in Z/pcZ by lifting a generator of F∗
p. The

(

p−1
2M

)

-th

power of ζ gives us the required 2M -th root of unity ω. A generator of F∗
p

can be computed by bruteforce, as p is sufficiently small. Having obtained
a generator, we use Hensel Lifting [NZM91, Theorem 2.23].

Lemma 2.3. Let ζs be a primitive (p − 1)-th root of unity in Z/psZ. Then
there exists a unique primitive (p− 1)-th root of unity ζs+1 in Z/ps+1Z such

that ζs+1 ≡ ζs (mod ps). This unique root is given by ζs+1 = ζs − f(ζs)
f ′(ζs)

where f(X) = Xp−1 − 1.

3 Integer Multiplication Algorithm

We are given two integers a, b < 2N to multiply. We fix constants k and c
whose values are given in Section 5. The algorithm is as follows:

1. Choose M and m as powers of 2 such that Mk = Θ
(

N
log2 N

)

and

m ≈ 2 log N . Find the least prime p ≡ 1 (mod 2M) (Remark 2.2).

2. Encode the integers a and b as k-variate polynomials a(X) and b(X)
respectively over the ring R = Z[α]/(pc, αm + 1) (Section 2.1).

3. Compute the root ρ(α) (Section 2.3).

4. Use ρ(α) as the pricipal 2M -th root to compute the Fourier transform
of the k-variate polynomials a(X) and b(X). Multiply component-
wise and take the inverse Fourier transform to obtain the product
polynomial.

5. Evaluate the product polynomial at appropriate powers of p to recover
the integer product and return it (Section 2.1).

The only missing piece is the Fourier transforms for multivariate poly-
nomials. The following section gives a group theoretic description of FFT.

4 Fourier Transform

A convenient way to study polynomial multiplication is to interpret it as
multiplication in a group algebra.

5

Definition 2 (Group Algebra). Let G be any group. The group algebra
of G over a ring R is the set of formal sums

∑

g∈G αgg where αg ∈ R
with addition defined point-wise and multiplication defined via convolution
as follows

(

∑

g

αgg

)(

∑

h

βhh

)

=
∑

u

∑

gh=u

αgβh

u

Multiplying univariate polynomials over R of degree less than n can be
seen as multiplication in the group algebra R[G] where G is the cyclic group
of order 2n. Similarly multiplying k-variate polynomials of degree less than
n in each variable can be seen as multiplying in the group algebra R[Gk],
where Gk denotes the k-fold product group G × . . . × G.

In this section, we study the Fourier transform over the group algebra
R[E] where E is an additive abelian group. Most of this, albeit in a different
form, is well known in the literature but is provided here for completeness.
[Sha99, Chapter 17]

In order to simplify our presentation, we will fix the base ring to be C, the
field of complex numbers. Let n be the exponent of E, that is the maximum
order of any element in E. Then a similar approach can be followed for any
other base ring as long as it has a principal n-th root of unity.

We consider C[E] as a Hilbert space with orthonormal basis {x}x∈E and
use the Dirac notation to represent elements of C[E] — the vector |x〉, x in
E, denotes the element 1.x of C[E].

Definition 3 (Characters). Let E be an additive abelian group. A character
of E is a homomorphism from E to C∗.

An example of a character of E is the trivial character, which we will
denote by 1, that assigns to every element of E the complex number 1. Let
χ1 and χ2 be two characters of E then their product χ1.χ2 is defined as
χ1.χ2(x) = χ1(x)χ2(x).

Proposition 4.1. [Sha99, Chapter 17, Theorem 1] Let E be an additive
abelian group with exponent n. Then the values taken by any character of E
is an n-th root of unity. Furthermore, the characters form a multiplicative
abelian group Ê which is isomorphic to E.

An important property that the characters satisfy is the following [Isa94,
Corollary 2.14].

6

Proposition 4.2 (Schur’s Orthogonality). Let E be an additive abelian
group. Then

∑

x∈E

χ(x) =

{

0 if χ 6= 1,

#E otherwise
and

∑

χ∈Ê

χ(x) =

{

0 if x 6= 0,

#E otherwise.

It follows from Schur’s orthogonality that the collection of vectors |χ〉 =
1√
#E

∑

x χ(x) |x〉 forms a orthonormal basis of C[E]. We will call the basis

|χ〉 the Fourier basis of C[E].

Definition 4 (Fourier Transform). Let E be an additive abelian group and
let x 7→ χx be an isomorphism between E and Ê. The Fourier transform
over E is the linear (in fact unitary) map from C[E] to C[E] that sends |x〉
to |χx〉.

Thus Fourier transform is a change of basis from the point basis {|x〉}x∈E

to the Fourier basis {|χx〉}x∈E .

Remark 4.3. The Fourier transform is unique only upto the choice of the
isomorphism x 7→ χx. Given an element |f〉 ∈ C[E], to compute its Fourier
transform it is sufficient to compute the Fourier coefficients {〈χ|f〉}

χ∈Ê
.

4.1 Fast Fourier Transform

We now describe the Fast Fourier Transform for general abelian groups in
the character theoretic setting. For the rest of the section fix an additive
abelian group E over which we would like to compute the Fourier transform.
Let A be any subgroup of E and let B = E/A. For any such pair of abelian
groups A and B we have an appropriate Fast Fourier transformation which
we describe in the rest of the section. We need the following property about
characters of an abelian group.

Proposition 4.4. 1. Every character λ of B can be “lifted” uniquely to
a character of E (which will also be denoted by λ) defined as follows
λ(x) = λ(x + A).

2. Let χ1 and χ2 be two characters of E that when restricted to A are
identical. Then χ1 = χ2λ for some character λ of B.

3. The group B̂ is (isomorphic to) a subgroup of Ê with the quotient
group Ê/B̂ being (isomorphic to) Â.

7

We now consider the task of computing the Fourier transform of an
element |f〉 =

∑

fx |x〉 presented as a list of coefficients {fx} in the point
basis. For this it is sufficient to compute the Fourier coefficients {〈χ|f〉} for
each character χ of E (Remark 4.3). To describe the Fast Fourier transform
we fix two sets of cosets representatives, one of B in E and one of Â in Ê
as follows.

1. For each b ∈ B, b being a coset of A, fix a coset representative xb ∈ E
such b = xb + A.

2. For each character ϕ of A fix a character χϕ of E such that χϕ resricted
to A is the character ϕ. The characters {χϕ} form (can be thought of
as) a set of coset representatives of the the quotient group Â = Ê/B̂
in Ê.

Since {xb}b∈B forms a set of coset representatives, any |f〉 ∈ C[E] can
be written uniquely as |f〉 =

∑

fb,a |xb + a〉.

Proposition 4.5. Let |f〉 =
∑

fb,a |xb + a〉 be an element of C[E]. For each

b ∈ B and ϕ ∈ Â let |fb〉 ∈ C[A] and |fϕ〉 ∈ C[B] be defined as follows.

|fb〉 =
∑

a∈A

fb,a |a〉 ; |fϕ〉 =
∑

b∈B

χϕ(xb)〈ϕ|fb〉 |b〉 (1)

Then for any character χ = χϕλ of E the Fourier coefficient 〈χ|f〉 = 〈λ|fϕ〉.

We are now ready to describe the Fast Fourier transform given an element
|f〉 =

∑

fx |x〉.

1. Compute for each b ∈ B the Fourier transforms of |fb〉. This requires
#B many Fourier transforms over A.

2. As a result of the previous step we have for each b ∈ B and ϕ ∈ Â the
Fourier coefficients 〈ϕ|fb〉. Compute for each ϕ the vectors |fϕ〉. This
requires #Â.#B = #E many multiplications by roots of unity.

3. For each ϕ ∈ Â compute the Fourier transform of |fϕ〉. This requires
#Â = #A many Fourier transforms over B.

4. Any character χ of E is of the form χϕλ for some ϕ ∈ Â and λ ∈ B̂.
Using Proposition 4.5 we have at the end of Step 3 all the Fourier
coefficients 〈χ|f〉 = 〈λ|fϕ〉.

8

If the quotient group B itself has a subgroup that is isomorphic to A
then we can apply this process recursively on B to obtain a divide and
conquer procedure to compute Fourier transform. In the standard FFT we
use E = Z/2nZ. The subgroup A is 2n−1E which is isomorphic to Z/2Z and
the quotient group B is Z/2n−1Z.

4.2 Analysis of the Fourier Transform

Our goal is to multiply k-variate polynomials over R, with the degree in each
variable less than M . This can be achieved by embedding the polynomials

into the algebra of the product group E =
(

Z

2M ·Z
)k

and multiplying them
as elements of the algebra. Since the exponent of E is 2M , we can use ρ(α)
as the principal root for the Fourier transform over E.

For every subgroup A of E, we have a corresponding FFT. We choose the

subgroup A as
(

Z

2m·Z
)k

, which has exponent 2m. Let B be the quotient group
E/A. Since α is a power of ρ(α), we can use it for the Fourier transform
over A. As multiplications by powers of α are just shifts, this makes Fourier
transform over A efficient.

Let F(M,k) denote the complexity of computing the Fourier transform

over E =
(

Z

2M ·Z
)k

. We have

F(M,k) =

(

M

m

)k

F(m,k) + MkMR + (2m)kF
(

M

m
,k

)

(2)

where MR denotes the complexity of multiplications in R. The first term
comes from the #B many fourier transforms over A (Step 1 of FFT), the
second term corresponds to the multiplications by roots of unity (Step 2) and
the last term comes from the #A many Fourier transforms over B (Step 3).

Since A is a subgroup of B as well, Fourier transforms over B can be re-
cursively computed in a similar way, with B playing the role of E. Therefore,
by simplifying the recurrence we get:

F(M,k) = O

(

Mk log M

mk log m
F(m,k) +

Mk log M

log m
MR

)

Lemma 4.6. F(m,k) = O(mk+1 log m · log p)

Proof. The FFT over a group of size n is traditionally done by taking 2-point
FFT’s followed by n

2 -point FFT’s. This involves O(n log n) operations in the
base ring. Using this method, Fourier transforms over A can be computed
with O(mk log m) multiplications and additions in R. Each multiplication is

9

between an element of R and a power of α, which can be efficiently achieved
through shifting operations. This is dominated by the addition operation,
which takes O(m log p) time, since this involves adding m coefficients from
Z/pcZ.

Therefore,

F(M,k) = O

(

Mk log M · m · log p +
Mk log M

log m
MR

)

(3)

5 Complexity Analysis

The choice of parameters should ensure that the following four constraints
are satisfied:

1. Mk = Θ
(

N
log2 N

)

and m = O(log N). This is to ensure that we get

the desired time complexity.

2. ML = O(N ε) for some constant ε < 1. Recall that this makes picking
the prime by brute force feasible (see Remark 2.2).

3. m = 2 log N and 2N ≤ pMk·t·m

2 . This is required to encode N -bit
integers (see Section 2.1).

4. pc > p2t · Mk · m
2 . This is to prevent overflows during modular arith-

metic (see Section 2.1).

It is straightforward to check that k = bL + 1c, t = k + 1 and c = 3t
satisfy the three constraints.

Let T (N) denote the time complexity of multiplying two N bit integers.
This primarily consists of

1. Time required to pick a suitable prime p,
2. Computing the root ρ(α),
3. Computing the Fourier transforms.

As argued before, prime p can be chosen in o(N) time. To compute
ρ(α), we need to lift a generator of F∗

p to Z/pcZ followed by an interpolation.
Since c is a constant and p is a prime of O(log N) bits, the time required for
Hensel Lifting and interpolation is poly-logarithmic. Both these terms are
dominated by the time required for computing Fourier transform.

10

Time complexity of Fourier transform

In Section 4 we showed that the complexity of Fourier transform is given by

F(M,k) = O

(

Mk log M · m · log p +
Mk log M

log m
MR

)

Proposition 5.1. Multiplication in R reduces to multiplying O(log2 N) bit
integers and hence MR = T

(

O(log2 N)
)

.

Proof. Elements of R can be seen as polynomials in α over Z/pcZ with
degree at most m. Given two such polynomials f(α) and g(α) encode them
as follows: Replace α by 2d, transforming the polynomials f(α) and g(α) to
the integers f(2d) and g(2d) respectively. The parameter d is chosen such
that the coefficients of the product h(α) = f(α)g(α) can be recovered from
the product f(2d)·g(2d). For this it is sufficient to ensure that the maximum
coefficient of h(α) is less than 2d. Since f and g are polynomials of degree
m, we would want 2d to be greater than m · p2c, which can be ensured by
choosing d = Θ (log N). The integers f(2d) and g(2d) are bounded by 2md

and hence the task of multiplying in R reduces to O(log2 N) bit integer
multiplication.

Therefore, the complexity of our algorithm T (N) is given by,

T (N) = O(F(M,k)) = O

(

Mk log M · m · log p +
Mk log M

log m
MR

)

= O

(

N log N +
N

log N · log log N
T (O(log2 N))

)

The above recurrence leads to the following theorem.

Theorem 5.2. Given two N bit integers, their product can be computed in
O(N · log N · 2O(log∗ N)) time.

5.1 Choosing the Prime Randomly

To ensure that the search for a prime p ≡ 1 (mod M) does not affect the
overall time complexity of the algorithm, we considered multivariate poly-
nomials to restrict the value of M ; an alternative is to use randomization.

Proposition 5.3. Assuming ERH, a prime p ≡ 1 (mod M) can be com-
puted by a randomized algorithm with expected running time Õ(log3 M).

11

Proof. Titchmarsh [Tit30] (also referred by Tianxin [Tia90]) showed, assum-
ing ERH, that the number of primes less than x in the arithmetic progression
{1 + i · M}i>0 is given by,

π(x,M) =
Li(x)

ϕ(M)
+ O(

√
x log x)

for M ≤ √
x · (log x)−2, where Li(x) = Θ(x

log x
) and ϕ is the Euler totient

function. In our case, ϕ(M) = M/2 since M is a power of 2, and hence

for x ≥ M2 · log6 M , we have π(x,M) = Ω
(

x
M log x

)

. Therefore, for any

uniformly randomly chosen i in the range 1 ≤ i ≤ M ·log6 M , the probability
that iM+1 is a prime is at least d

log x
for a constant d. Furthermore, primality

test of an O(log M) bit number can be done in Õ(log2 M) time using Rabin-
Miller primality test [Mil76,Rab80]. Hence, with x = M2 · log6 M a suitable
prime for our algorithm can be found in expected Õ(log3 M) time.

6 A Different Perspective

Our algorithm can be seen as a p-adic version of Fürer’s integer multiplica-
tion algorithm, where the field C is replaced by Qp, the field of p-adic num-
bers (for a quick introduction, see Baker’s online notes [Bak07]). Much like
C, where representing a general element (say in base 2) takes infinitely many
bits, representing an element in Qp takes infinitely many p-adic digits. Since
we cannot work with infinitely many digits, all arithmetic has to be done
with finite precision. Modular arithmetic in the base ring Z[α]/(pc, αm +1),
can be viewed as arithmetic in the ring Qp[α]/(αm +1) keeping a precision of
ε = p−c. Arithmetic with finite precision naturally introduces some error in
computation. However, the nature of Qp makes the error analysis simpler.
The field Qp comes with a norm | · |p called the p-adic norm, which satisfies

the stronger triangle inequality |x + y|p ≤ max
(

|x|p , |y|p
)

[Bak07, Propo-

sition 2.6]. As a result, unlike in C, the errors in computation do not com-
pound. This makes the precision argument relatively straightforward.

Recall that FFT crucially depends upon a special kind of principal 2M -
th root of unity in Qp[α]/(αm + 1). Such a root is constructed with the
help of a primitive 2M -th root of unity in Qp. The field Qp has an 2M -th
primitive root of unity if and only if 2M divides p − 1 [Bak07, Theorem
5.12], which gives an alternate reason for choosing p ≡ 1 (mod 2M). Also,
if 2M divides p − 1, a 2M -th root can be obtained from a (p − 1)-th root

12

of unity by taking a suitable power. A primitive (p − 1)-th root of unity in
Qp can be constructed, to sufficient precision, using Hensel Lifting starting
from a generator of F∗

p.

7 Conclusions

There are two paradigms for multiplying integers, one using arithmetic
over complex numbers, and the other using modular arithmetic. Using
complex numbers, Schönage and Strassen [SS71] gave an O(N · log N ·
log log N . . . 2O(log∗ N)) algorithm. Fürer [Fur07] improved this complexity
to O(N · log N · 2O(log∗ N)) using some special roots of unity. The other
paradigm, modular arithmetic, can be seen as arithmetic in Qp with cer-
tain precision. A direct adaptation of Schönage-Strassen algorithm in the
modular paradigm leads to an O(N · log N · log log N . . . 2O(log∗ N)) algo-
rithm. However in the same paper, Schönage-Strassen also gave a modular
algorithm with time complexity O(N · log N · log log N). In this paper, we
showed that by choosing an appropriate prime and a special root of unity, a
running time of O(N ·log N ·2O(log∗ N)) can also be achieved through modular
arithmetic. Therefore, in a way, we have unified the two paradigms.

References

[Bak07] Alan J. Baker. An introduction to p-adic numbers and p-adic anal-
ysis. Online Notes, 2007. http://www.maths.gla.ac.uk/ajb/dvi-
ps/padicnotes.pdf.

[Fur07] Martin Furer. Faster Integer Multiplication. Proceedings of the
48th ACM Symposium on Theory of Computing, pages 57–66,
2007.

[HB92] D. R. Heath-Brown. Zero-free regions for Dirichlet L-functions,
and the least prime in an arithmetic progression. In Proceedings
of the London Mathematical Society, 64(3), pages 265–338, 1992.

[Isa94] I. Martin Isaacs. Character theory of finite groups. Dover publi-
cations Inc., New York, 1994.

[KO63] A Karatsuba and Y Ofman. Multipication of multidigit num-
bers on automata. English Translation in Soviet Physics Doklady,
7:595–596, 1963.

13

[Lin44] Yuri V. Linnik. On the least prime in an arithmetic progression,
I. The basic theorem, II. The Deuring-Heilbronn’s phenomenon.
Rec. Math. (Mat. Sbornik), 15:139–178 and 347–368, 1944.

[Mil76] G. L. Miller. Riemann’s hypothesis and tests for primality. Journal
of Computer and System Sciences, 13:300–317, 1976.

[NZM91] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery. An
Introduction to the Theory of Numbers. John Wiley and Sons,
Singapore, 1991.

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality.
Journal of Number Theory, 12:128–138, 1980.

[Sha99] Igor R. Shafarevich. Basic Notions of Algebra. Springer Verlag,
USA, 1999.

[SS71] A Schonage and V Strassen. Schnelle Multiplikation grosser
Zahlen. Computing, 7:281–292, 1971.

[Tia90] Cai Tianxin. Primes representable by polynomials and the lower
bound of the least primes in arithmetic progressions. Acta Math-
ematica Sinica, New Series, 6:289–296, 1990.

[Tit30] E. C. Titchmarsh. A divisor problem. Rend. Circ. Mat. Palerme,
54:414–429, 1930.

[Too63] A L. Toom. The complexity of a scheme of functional elements
simulating the multiplication of integers. English Translation in
Soviet Mathematics, 3:714–716, 1963.

14

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	The Ring, the Prime and the Roots of Unity
	Encoding Integers into k-variate Polynomials
	Finding the Prime
	The Root of Unity

	Integer Multiplication Algorithm
	Fourier Transform
	Fast Fourier Transform
	Analysis of the Fourier Transform

	Complexity Analysis
	Choosing the Prime Randomly

	A Different Perspective
	Conclusions

