Fast Integer Multiplication Using Modular Arithmetic

Anindya De, Piyush P Kurur, Chandan Saha
Dept. of Computer Science and Engineering
Indian Institute of Technology Kanpur
Kanpur, UP, India, 208016
anindya, ppk, csaha@cse.iitk.ac.in
Ramprasad Saptharishi ${ }^{\dagger}$
Chennai Mathematical Institute
Plot H1, SIPCOT IT Park
Padur PO, Siruseri 603103, India
ramprasad@cmi.ac.in

November 18, 2007

Abstract

We give an $O\left(N \cdot \log N \cdot 2^{O\left(\log ^{*} N\right)}\right)$ algorithm for multiplying two N bit integers using modular computation that matches the running time of the current best algorithm due to Fürer Fur07]. Fürer uses arithmetic over complex numbers whereas the best known algorithm using modular computation has a complexity of $O(N \cdot \log N \cdot \log \log N)$ SS71. Hence, in the modular setting, our algorithm is an improvement over Schönage-Strassen SS71. We also argue that our algorithm can be viewed as a p-adic version of Fürer's algorithm. Thus, the two seemingly different paradigms of computation, modular and complex arithmetic, are essentially similar in the context of integer multiplication.

[^0]
1 Introduction

Given two N-bit integers a and b, computing their product is an important algorithmic problem in number theory and algebra. Karatsuba and Ofman KO63] gave the first non-trivial integer multiplication algorithm with a running time of $O\left(N^{\log _{2} 3}\right)$. Shortly afterwards, Toom Too63 showed that for any $\varepsilon>0$, integer multiplication can be done in $O\left(N^{1+\varepsilon}\right)$ time.

In a major breakthrough, Schönage and Strassen [S71] devised an $O(N$. $\log N \cdot \log \log N)$ algorithm for integer multiplication. Despite many efforts, this remained the best until Fürer Fur07 gave an algorithm which runs in $O\left(N \cdot \log N \cdot 2^{O\left(\log ^{*} N\right)}\right)$ time. Though the main ingredient in both these algorithms is a reduction to polynomial multiplication and subsequent use of Fast Fourier transform (FFT), they differ in their choice of the base ring. While the former used polynomials over $\mathbb{Z} /\left(2^{k}+1\right) \mathbb{Z}$ and modular arithmetic, the later used polynomials over rings of the form $\mathbb{C}[\alpha] /\left(\alpha^{m}+1\right)$ with approximate arithmetic over \mathbb{C}.

Our Contribution

In this paper, we give an $O\left(N \cdot \log N \cdot 2^{O\left(\log ^{*} N\right)}\right)$ algorithm that uses modular arithmetic. An advantage of using modular arithmetic over complex arithmetic is that the error analysis is simplified (Section (6). However, there is a slight complication in choosing a suitable modulus as explained below.

We follow the general paradigm of reducing the task to polynomial multiplication. The integers are encoded as polynomials over the ring $\mathcal{R}=$ $\mathbb{Z}[\alpha] /\left(p^{c}, \alpha^{m}+1\right)$ for appropriate c, m and a prime p, and multiplied as polynomials. Multiplication of polynomials using FFT requires a suitable root of unity in \mathcal{R}. This imposes a constraint $p \equiv 1(\bmod 2 M)$, where the degrees of the polynomials are less than M. A naive search for such a prime will impose an overhead of $O\left(N^{1+\varepsilon}\right)$ for some $\varepsilon>0$. Therefore, it is not sufficient to just replace the ring $\mathbb{C}[\alpha] /\left(\alpha^{m}+1\right)$, used in Fürer's algorithm, by $\mathbb{Z}[\alpha] /\left(p^{c}, \alpha^{m}+1\right)$.

One possible way to avoid this overhead is to pick p randomly. In fact, using the Extended Riemann Hypothesis (ERH), one can give such a randomized algorithm with the same expected running time (Section 5.11). However, this is unsatisfactory because the algorithm is both randomized and conditional. We circumvent this difficulty of picking the prime p by considering multivariate polynomials and using an appropriate FFT.

Our algorithm crucially depends on the the choice of the base ring with
the help of a special prime, and computation of roots of unity in the ring. The following section is devoted to the study of these objects.

2 The Ring, the Prime and the Roots of Unity

Given an N-bit integer a, we encode it as a multivariate polynomial over the ring $\mathcal{R}=\mathbb{Z}[\alpha] /\left(p^{c}, \alpha^{m}+1\right)$ for $m=O(\log N)$, a constant c and a prime p. Elements of \mathcal{R} are thus $m-1$ degree polynomials over α each of whose coefficients are elements of $\mathbb{Z} / p^{c} \mathbb{Z}$. By construction, α is a $2 m$-th root of unity and multiplication of any element in \mathcal{R} by any power of α can be achieved by shifting operations - this property is crucial in making some multiplications less costly. The number a is converted into a k-variate polynomial over \mathcal{R} with degree in each variable less than M. The parameter M is chosen such that the total degree M^{k} of the polynomial is $\Theta\left(\frac{N}{\log ^{2} N}\right)$.

2.1 Encoding Integers into k-variate Polynomials

The number $a<2^{N}$, given in binary, is first converted into base p. The choice of parameters (see Section (5) ensures that the total number of digits would be $\frac{t m}{2} \cdot M^{k}$ where t is a constant. We divide these digits into M^{k} blocks of $\frac{t m}{2}$ digits. This corresponds to a representation of a in base $q=p^{\frac{t m}{2}}$. Let $a=a_{0}+\ldots+a_{M^{k}-1} q^{M^{k}-1}$ where $a_{i}<q$. Every q^{i} is converted into a monomial as follows:

1. Express i in base M as $i=i_{1}+i_{2} M+\cdots+i_{k} M^{k-1}$.
2. Encode each term $a_{i} q^{i}$ as the monomial $a_{i} \cdot X_{1}^{i_{1}} X_{2}^{i_{1}} \cdots X_{k}^{i_{k}}$. As a result, the number a gets converted to the polynomial $a(X)=\sum_{i=0}^{M^{k}-1} a_{i}$. $X_{1}^{i_{1}} \cdots X_{k}^{i_{k}}$.

The next step is to convert each a_{i} into an element in the $\operatorname{ring} \mathcal{R}$. This is done by representing each a_{i} in base p^{t} and interpreting the number as a polynomial in α of degree less than $m / 2$ evaluated at $\alpha=p^{t}$. The polynomials are then padded with zeroes to stretch their degrees to less than m.

Our algorithm proceeds as follows: Given integers a and b, each of N bits, we encode them as polynomials $a(X)$ and $b(X)$ and compute the product polynomial using FFT. The product $a \cdot b$ can be recovered by substituting X_{s} by $q^{M^{s-1}}$, for $1 \leq s \leq k$, and α by p^{t} in the polynomial $a(X) \cdot b(X)$.

The coefficients in the product polynomial could be as large as $p^{2 t} \cdot \frac{m}{2} \cdot M^{k}$ and hence to avoid overflows we consider them as elements of $\mathbb{Z} / p^{c} \mathbb{Z}$ instead of $\mathbb{Z} / p^{t} \mathbb{Z}$ for some constant $c>t$. The precise values of the parameters are given in Section 5

Polynomial multiplication using FFT requires a principal $2 M$-th root of unity in \mathcal{R}.

Definition 1. An n-th root of unity $\zeta \in \mathcal{R}$ is said to be primitive if it generates a cyclic group of order n under multiplication. Furthermore, it is said to be principal if n is coprime to the characteristic of \mathcal{R} and ζ satisfies $\sum_{i=0}^{n-1} \zeta^{i j}=0$ for all $0<j<n$.

In $\mathbb{Z} / p^{c} \mathbb{Z}$, a $2 M$-th root of unity is principal if and only if $2 M \mid p-1$ (see also Section (6). As a result, we need to choose the prime p from the arithmetic progression $\{1+i \cdot 2 M\}_{i>0}$, which is the main bottleneck of our approach.

2.2 Finding the Prime

An upper bound for the least prime in an arithmetic progression is given by the following theorem Lin44:

Theorem 2.1 (Linnik). There exist absolute constants ℓ and L such that for any pair of coprime integers d and n, the least prime such that $p \equiv d \bmod n$ is less than ℓn^{L}.

Heath-Brown HB92 showed that $L \leq 5.5$. If we choose $k=1$, that is if we use univariate polynomials to encode integers, then the parameter $M=\Theta\left(\frac{N}{\log ^{2} N}\right)$. Hence the least prime $p \equiv 1(\bmod 2 M)$ could be as large as N^{L}, which implies that a naive search is infeasible. However, by choosing a larger k we can ensure that the least prime $p \equiv 1(\bmod 2 M)$ is $O\left(N^{\varepsilon}\right)$ for some constant $\varepsilon<1$.

Remark 2.2. If $k \geq L+1$, then $M^{L}=O\left(N^{\frac{L}{L+1}}\right)$ and hence the least prime $p \equiv 1(\bmod 2 M)$ can be found in $o(N)$ time.

2.3 The Root of Unity

We require a principal $2 M$-th root of unity $\rho(\alpha)$ in \mathcal{R} to compute the Fourier transforms. This root $\rho(\alpha)$ should also have the property that an appropriate power of it is α so as to make some multiplications in the FFT efficient. The root $\rho(\alpha)$ can be computed by interpolation in a way similar to that in

Fürer's algorithm [Fur07, Section 3], except that we need a principal $2 M$-th of unity ω in $\mathbb{Z} / p^{c} \mathbb{Z}$ to start with. To obtain such a root, we first obtain a $(p-1)$-th root of unity ζ in $\mathbb{Z} / p^{c} \mathbb{Z}$ by lifting a generator of \mathbb{F}_{p}^{*}. The $\left(\frac{p-1}{2 M}\right)$-th power of ζ gives us the required $2 M$-th root of unity ω. A generator of \mathbb{F}_{p}^{*} can be computed by bruteforce, as p is sufficiently small. Having obtained a generator, we use Hensel Lifting [NZM91, Theorem 2.23].

Lemma 2.3. Let ζ_{s} be a primitive $(p-1)$-th root of unity in $\mathbb{Z} / p^{s} \mathbb{Z}$. Then there exists a unique primitive $(p-1)$-th root of unity ζ_{s+1} in $\mathbb{Z} / p^{s+1} \mathbb{Z}$ such that $\zeta_{s+1} \equiv \zeta_{s}\left(\bmod p^{s}\right)$. This unique root is given by $\zeta_{s+1}=\zeta_{s}-\frac{f\left(\zeta_{s}\right)}{f^{\prime}\left(\zeta_{s}\right)}$ where $f(X)=X^{p-1}-1$.

3 Integer Multiplication Algorithm

We are given two integers $a, b<2^{N}$ to multiply. We fix constants k and c whose values are given in Section 廌 The algorithm is as follows:

1. Choose M and m as powers of 2 such that $M^{k}=\Theta\left(\frac{N}{\log ^{2} N}\right)$ and $m \approx 2 \log N$. Find the least prime $p \equiv 1(\bmod 2 M)($ Remark [2.2).
2. Encode the integers a and b as k-variate polynomials $a(X)$ and $b(X)$ respectively over the ring $\mathcal{R}=\mathbb{Z}[\alpha] /\left(p^{c}, \alpha^{m}+1\right)$ (Section 2.11).
3. Compute the root $\rho(\alpha)$ (Section [2.3).
4. Use $\rho(\alpha)$ as the pricipal $2 M$-th root to compute the Fourier transform of the k-variate polynomials $a(X)$ and $b(X)$. Multiply componentwise and take the inverse Fourier transform to obtain the product polynomial.
5. Evaluate the product polynomial at appropriate powers of p to recover the integer product and return it (Section 2.1).

The only missing piece is the Fourier transforms for multivariate polynomials. The following section gives a group theoretic description of FFT.

4 Fourier Transform

A convenient way to study polynomial multiplication is to interpret it as multiplication in a group algebra.

Definition 2 (Group Algebra). Let G be any group. The group algebra of G over a ring R is the set of formal sums $\sum_{g \in G} \alpha_{g} g$ where $\alpha_{g} \in R$ with addition defined point-wise and multiplication defined via convolution as follows

$$
\left(\sum_{g} \alpha_{g} g\right)\left(\sum_{h} \beta_{h} h\right)=\sum_{u}\left(\sum_{g h=u} \alpha_{g} \beta_{h}\right) u
$$

Multiplying univariate polynomials over R of degree less than n can be seen as multiplication in the group algebra $R[G]$ where G is the cyclic group of order $2 n$. Similarly multiplying k-variate polynomials of degree less than n in each variable can be seen as multiplying in the group algebra $R\left[G^{k}\right]$, where G^{k} denotes the k-fold product group $G \times \ldots \times G$.

In this section, we study the Fourier transform over the group algebra $R[E]$ where E is an additive abelian group. Most of this, albeit in a different form, is well known in the literature but is provided here for completeness. Sha99, Chapter 17]

In order to simplify our presentation, we will fix the base ring to be \mathbb{C}, the field of complex numbers. Let n be the exponent of E, that is the maximum order of any element in E. Then a similar approach can be followed for any other base ring as long as it has a principal n-th root of unity.

We consider $\mathbb{C}[E]$ as a Hilbert space with orthonormal basis $\{x\}_{x \in E}$ and use the Dirac notation to represent elements of $\mathbb{C}[E]$ - the vector $|x\rangle, x$ in E, denotes the element $1 . x$ of $\mathbb{C}[E]$.

Definition 3 (Characters). Let E be an additive abelian group. A character of E is a homomorphism from E to \mathbb{C}^{*}.

An example of a character of E is the trivial character, which we will denote by 1 , that assigns to every element of E the complex number 1 . Let χ_{1} and χ_{2} be two characters of E then their product $\chi_{1} \cdot \chi_{2}$ is defined as $\chi_{1} \cdot \chi_{2}(x)=\chi_{1}(x) \chi_{2}(x)$.

Proposition 4.1. [Sha99, Chapter 17, Theorem 1] Let E be an additive abelian group with exponent n. Then the values taken by any character of E is an n-th root of unity. Furthermore, the characters form a multiplicative abelian group \hat{E} which is isomorphic to E.

An important property that the characters satisfy is the following 【Isa94, Corollary 2.14].

Proposition 4.2 (Schur's Orthogonality). Let E be an additive abelian group. Then

$$
\sum_{x \in E} \chi(x)=\left\{\begin{array}{ll}
0 & \text { if } \chi \neq 1, \\
\# E & \text { otherwise }
\end{array} \quad \text { and } \quad \sum_{\chi \in \hat{E}} \chi(x)= \begin{cases}0 & \text { if } x \neq 0 \\
\# E & \text { otherwise }\end{cases}\right.
$$

It follows from Schur's orthogonality that the collection of vectors $|\chi\rangle=$ $\frac{1}{\sqrt{\# E}} \sum_{x} \chi(x)|x\rangle$ forms a orthonormal basis of $\mathbb{C}[E]$. We will call the basis $|\chi\rangle$ the Fourier basis of $\mathbb{C}[E]$.

Definition 4 (Fourier Transform). Let E be an additive abelian group and let $x \mapsto \chi_{x}$ be an isomorphism between E and \hat{E}. The Fourier transform over E is the linear (in fact unitary) map from $\mathbb{C}[E]$ to $\mathbb{C}[E]$ that sends $|x\rangle$ to $\left|\chi_{x}\right\rangle$.

Thus Fourier transform is a change of basis from the point basis $\{|x\rangle\}_{x \in E}$ to the Fourier basis $\left\{\left|\chi_{x}\right\rangle\right\}_{x \in E}$.

Remark 4.3. The Fourier transform is unique only upto the choice of the isomorphism $x \mapsto \chi_{x}$. Given an element $|f\rangle \in \mathbb{C}[E]$, to compute its Fourier transform it is sufficient to compute the Fourier coefficients $\{\langle\chi \mid f\rangle\}_{\chi \in \hat{E}}$.

4.1 Fast Fourier Transform

We now describe the Fast Fourier Transform for general abelian groups in the character theoretic setting. For the rest of the section fix an additive abelian group E over which we would like to compute the Fourier transform. Let A be any subgroup of E and let $B=E / A$. For any such pair of abelian groups A and B we have an appropriate Fast Fourier transformation which we describe in the rest of the section. We need the following property about characters of an abelian group.

Proposition 4.4. 1. Every character λ of B can be "lifted" uniquely to a character of E (which will also be denoted by λ) defined as follows $\lambda(x)=\lambda(x+A)$.
2. Let χ_{1} and χ_{2} be two characters of E that when restricted to A are identical. Then $\chi_{1}=\chi_{2} \lambda$ for some character λ of B.
3. The group \hat{B} is (isomorphic to) a subgroup of \hat{E} with the quotient group \hat{E} / \hat{B} being (isomorphic to) \hat{A}.

We now consider the task of computing the Fourier transform of an element $|f\rangle=\sum f_{x}|x\rangle$ presented as a list of coefficients $\left\{f_{x}\right\}$ in the point basis. For this it is sufficient to compute the Fourier coefficients $\{\langle\chi \mid f\rangle\}$ for each character χ of E (Remark 4.3). To describe the Fast Fourier transform we fix two sets of cosets representatives, one of B in E and one of \hat{A} in \hat{E} as follows.

1. For each $b \in B, b$ being a coset of A, fix a coset representative $x_{b} \in E$ such $b=x_{b}+A$.
2. For each character φ of A fix a character χ_{φ} of E such that χ_{φ} resricted to A is the character φ. The characters $\left\{\chi_{\varphi}\right\}$ form (can be thought of as) a set of coset representatives of the the quotient group $\hat{A}=\hat{E} / \hat{B}$ in \hat{E}.

Since $\left\{x_{b}\right\}_{b \in B}$ forms a set of coset representatives, any $|f\rangle \in \mathbb{C}[E]$ can be written uniquely as $|f\rangle=\sum f_{b, a}\left|x_{b}+a\right\rangle$.

Proposition 4.5. Let $|f\rangle=\sum f_{b, a}\left|x_{b}+a\right\rangle$ be an element of $\mathbb{C}[E]$. For each $b \in B$ and $\varphi \in \hat{A}$ let $\left|f_{b}\right\rangle \in \mathbb{C}[A]$ and $\left|f_{\varphi}\right\rangle \in \mathbb{C}[B]$ be defined as follows.

$$
\begin{equation*}
\left|f_{b}\right\rangle=\sum_{a \in A} f_{b, a}|a\rangle ;\left|f_{\varphi}\right\rangle=\sum_{b \in B} \bar{\chi}_{\varphi}\left(x_{b}\right)\left\langle\varphi \mid f_{b}\right\rangle|b\rangle \tag{1}
\end{equation*}
$$

Then for any character $\chi=\chi_{\varphi} \lambda$ of E the Fourier coefficient $\langle\chi \mid f\rangle=\left\langle\lambda \mid f_{\varphi}\right\rangle$.
We are now ready to describe the Fast Fourier transform given an element $|f\rangle=\sum f_{x}|x\rangle$.

1. Compute for each $b \in B$ the Fourier transforms of $\left|f_{b}\right\rangle$. This requires $\# B$ many Fourier transforms over A.
2. As a result of the previous step we have for each $b \in B$ and $\varphi \in \hat{A}$ the Fourier coefficients $\left\langle\varphi \mid f_{b}\right\rangle$. Compute for each φ the vectors $\left|f_{\varphi}\right\rangle$. This requires $\# \hat{A} . \# B=\# E$ many multiplications by roots of unity.
3. For each $\varphi \in \hat{A}$ compute the Fourier transform of $\left|f_{\varphi}\right\rangle$. This requires $\# \hat{A}=\# A$ many Fourier transforms over B.
4. Any character χ of E is of the form $\chi_{\varphi} \lambda$ for some $\varphi \in \hat{A}$ and $\lambda \in \hat{B}$. Using Proposition 4.5 we have at the end of Step 3 all the Fourier coefficients $\langle\chi \mid f\rangle=\left\langle\lambda \mid f_{\varphi}\right\rangle$.

If the quotient group B itself has a subgroup that is isomorphic to A then we can apply this process recursively on B to obtain a divide and conquer procedure to compute Fourier transform. In the standard FFT we use $E=\mathbb{Z} / 2^{n} \mathbb{Z}$. The subgroup A is $2^{n-1} E$ which is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$ and the quotient group B is $\mathbb{Z} / 2^{n-1} \mathbb{Z}$.

4.2 Analysis of the Fourier Transform

Our goal is to multiply k-variate polynomials over \mathcal{R}, with the degree in each variable less than M. This can be achieved by embedding the polynomials into the algebra of the product group $E=\left(\frac{\mathbb{Z}}{2 M \cdot \mathbb{Z}}\right)^{k}$ and multiplying them as elements of the algebra. Since the exponent of E is $2 M$, we can use $\rho(\alpha)$ as the principal root for the Fourier transform over E.

For every subgroup A of E, we have a corresponding FFT. We choose the subgroup A as $\left(\frac{\mathbb{Z}}{2 m \cdot \mathbb{Z}}\right)^{k}$, which has exponent $2 m$. Let B be the quotient group E / A. Since α is a power of $\rho(\alpha)$, we can use it for the Fourier transform over A. As multiplications by powers of α are just shifts, this makes Fourier transform over A efficient.

Let $\mathcal{F}(M, k)$ denote the complexity of computing the Fourier transform over $E=\left(\frac{\mathbb{Z}}{2 M \cdot \mathbb{Z}}\right)^{k}$. We have

$$
\begin{equation*}
\mathcal{F}(M, k)=\left(\frac{M}{m}\right)^{k} \mathcal{F}(m, k)+M^{k} \mathcal{M}_{\mathcal{R}}+(2 m)^{k} \mathcal{F}\left(\frac{M}{m}, k\right) \tag{2}
\end{equation*}
$$

where $\mathcal{M}_{\mathcal{R}}$ denotes the complexity of multiplications in \mathcal{R}. The first term comes from the \#B many fourier transforms over A (Step \square of FFT), the second term corresponds to the multiplications by roots of unity (Step(2) and the last term comes from the \#A many Fourier transforms over B (Step 3).

Since A is a subgroup of B as well, Fourier transforms over B can be recursively computed in a similar way, with B playing the role of E. Therefore, by simplifying the recurrence we get:

$$
\mathcal{F}(M, k)=O\left(\frac{M^{k} \log M}{m^{k} \log m} \mathcal{F}(m, k)+\frac{M^{k} \log M}{\log m} \mathcal{M}_{\mathcal{R}}\right)
$$

Lemma 4.6. $\mathcal{F}(m, k)=O\left(m^{k+1} \log m \cdot \log p\right)$
Proof. The FFT over a group of size n is traditionally done by taking 2-point FFT's followed by $\frac{n}{2}$-point FFT's. This involves $O(n \log n)$ operations in the base ring. Using this method, Fourier transforms over A can be computed with $O\left(m^{k} \log m\right)$ multiplications and additions in \mathcal{R}. Each multiplication is
between an element of \mathcal{R} and a power of α, which can be efficiently achieved through shifting operations. This is dominated by the addition operation, which takes $O(m \log p)$ time, since this involves adding m coefficients from $\mathbb{Z} / p^{c} \mathbb{Z}$.

Therefore,

$$
\begin{equation*}
\mathcal{F}(M, k)=O\left(M^{k} \log M \cdot m \cdot \log p+\frac{M^{k} \log M}{\log m} \mathcal{M}_{\mathcal{R}}\right) \tag{3}
\end{equation*}
$$

5 Complexity Analysis

The choice of parameters should ensure that the following four constraints are satisfied:

1. $M^{k}=\Theta\left(\frac{N}{\log ^{2} N}\right)$ and $m=O(\log N)$. This is to ensure that we get the desired time complexity.
2. $M^{L}=O\left(N^{\varepsilon}\right)$ for some constant $\varepsilon<1$. Recall that this makes picking the prime by brute force feasible (see Remark [2.2).
3. $m=2 \log N$ and $2^{N} \leq p^{M^{k} \cdot t \cdot \frac{m}{2}}$. This is required to encode N-bit integers (see Section 2.1).
4. $p^{c}>p^{2 t} \cdot M^{k} \cdot \frac{m}{2}$. This is to prevent overflows during modular arithmetic (see Section 2.1).

It is straightforward to check that $k=\lfloor L+1\rfloor, t=k+1$ and $c=3 t$ satisfy the three constraints.

Let $T(N)$ denote the time complexity of multiplying two N bit integers. This primarily consists of

1. Time required to pick a suitable prime p,
2. Computing the root $\rho(\alpha)$,
3. Computing the Fourier transforms.

As argued before, prime p can be chosen in $o(N)$ time. To compute $\rho(\alpha)$, we need to lift a generator of \mathbb{F}_{p}^{*} to $\mathbb{Z} / p^{c} \mathbb{Z}$ followed by an interpolation. Since c is a constant and p is a prime of $O(\log N)$ bits, the time required for Hensel Lifting and interpolation is poly-logarithmic. Both these terms are dominated by the time required for computing Fourier transform.

Time complexity of Fourier transform

In Section 4 we showed that the complexity of Fourier transform is given by

$$
\mathcal{F}(M, k)=O\left(M^{k} \log M \cdot m \cdot \log p+\frac{M^{k} \log M}{\log m} \mathcal{M}_{\mathcal{R}}\right)
$$

Proposition 5.1. Multiplication in \mathcal{R} reduces to multiplying $O\left(\log ^{2} N\right)$ bit integers and hence $\mathcal{M}_{\mathcal{R}}=T\left(O\left(\log ^{2} N\right)\right)$.

Proof. Elements of \mathcal{R} can be seen as polynomials in α over $\mathbb{Z} / p^{c} \mathbb{Z}$ with degree at most m. Given two such polynomials $f(\alpha)$ and $g(\alpha)$ encode them as follows: Replace α by 2^{d}, transforming the polynomials $f(\alpha)$ and $g(\alpha)$ to the integers $f\left(2^{d}\right)$ and $g\left(2^{d}\right)$ respectively. The parameter d is chosen such that the coefficients of the product $h(\alpha)=f(\alpha) g(\alpha)$ can be recovered from the product $f\left(2^{d}\right) \cdot g\left(2^{d}\right)$. For this it is sufficient to ensure that the maximum coefficient of $h(\alpha)$ is less than 2^{d}. Since f and g are polynomials of degree m, we would want 2^{d} to be greater than $m \cdot p^{2 c}$, which can be ensured by choosing $d=\Theta(\log N)$. The integers $f\left(2^{d}\right)$ and $g\left(2^{d}\right)$ are bounded by $2^{m d}$ and hence the task of multiplying in \mathcal{R} reduces to $O\left(\log ^{2} N\right)$ bit integer multiplication.

Therefore, the complexity of our algorithm $T(N)$ is given by,

$$
\begin{aligned}
T(N) & =O(\mathcal{F}(M, k))=O\left(M^{k} \log M \cdot m \cdot \log p+\frac{M^{k} \log M}{\log m} \mathcal{M}_{\mathcal{R}}\right) \\
& =O\left(N \log N+\frac{N}{\log N \cdot \log \log N} T\left(O\left(\log ^{2} N\right)\right)\right)
\end{aligned}
$$

The above recurrence leads to the following theorem.
Theorem 5.2. Given two N bit integers, their product can be computed in $O\left(N \cdot \log N \cdot 2^{O\left(\log ^{*} N\right)}\right)$ time.

5.1 Choosing the Prime Randomly

To ensure that the search for a prime $p \equiv 1(\bmod M)$ does not affect the overall time complexity of the algorithm, we considered multivariate polynomials to restrict the value of M; an alternative is to use randomization.

Proposition 5.3. Assuming $E R H$, a prime $p \equiv 1(\bmod M)$ can be computed by a randomized algorithm with expected running time $\tilde{O}\left(\log ^{3} M\right)$.

Proof. Titchmarsh Tit30 (also referred by Tianxin Tia90]) showed, assuming ERH, that the number of primes less than x in the arithmetic progression $\{1+i \cdot M\}_{i>0}$ is given by,

$$
\pi(x, M)=\frac{L i(x)}{\varphi(M)}+O(\sqrt{x} \log x)
$$

for $M \leq \sqrt{x} \cdot(\log x)^{-2}$, where $\operatorname{Li}(x)=\Theta\left(\frac{x}{\log x}\right)$ and φ is the Euler totient function. In our case, $\varphi(M)=M / 2$ since M is a power of 2 , and hence for $x \geq M^{2} \cdot \log ^{6} M$, we have $\pi(x, M)=\Omega\left(\frac{x}{M \log x}\right)$. Therefore, for any uniformly randomly chosen i in the range $1 \leq i \leq M \cdot \log ^{6} M$, the probability that $i M+1$ is a prime is at least $\frac{d}{\log x}$ for a constant d. Furthermore, primality test of an $O(\log M)$ bit number can be done in $\tilde{O}\left(\log ^{2} M\right)$ time using RabinMiller primality test Mil76 Rab80. Hence, with $x=M^{2} \cdot \log ^{6} M$ a suitable prime for our algorithm can be found in expected $\tilde{O}\left(\log ^{3} M\right)$ time.

6 A Different Perspective

Our algorithm can be seen as a p-adic version of Fürer's integer multiplication algorithm, where the field \mathbb{C} is replaced by \mathbb{Q}_{p}, the field of p-adic numbers (for a quick introduction, see Baker's online notes Bak07). Much like \mathbb{C}, where representing a general element (say in base 2) takes infinitely many bits, representing an element in \mathbb{Q}_{p} takes infinitely many p-adic digits. Since we cannot work with infinitely many digits, all arithmetic has to be done with finite precision. Modular arithmetic in the base ring $\mathbb{Z}[\alpha] /\left(p^{c}, \alpha^{m}+1\right)$, can be viewed as arithmetic in the ring $\mathbb{Q}_{p}[\alpha] /\left(\alpha^{m}+1\right)$ keeping a precision of $\varepsilon=p^{-c}$. Arithmetic with finite precision naturally introduces some error in computation. However, the nature of \mathbb{Q}_{p} makes the error analysis simpler. The field \mathbb{Q}_{p} comes with a norm $|\cdot|_{p}$ called the p-adic norm, which satisfies the stronger triangle inequality $|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right) \quad$ Bak07, Proposition 2.6]. As a result, unlike in \mathbb{C}, the errors in computation do not compound. This makes the precision argument relatively straightforward.

Recall that FFT crucially depends upon a special kind of principal $2 M$ th root of unity in $\mathbb{Q}_{p}[\alpha] /\left(\alpha^{m}+1\right)$. Such a root is constructed with the help of a primitive $2 M$-th root of unity in \mathbb{Q}_{p}. The field \mathbb{Q}_{p} has an $2 M$-th primitive root of unity if and only if $2 M$ divides $p-1$ Bak07, Theorem 5.12], which gives an alternate reason for choosing $p \equiv 1(\bmod 2 M)$. Also, if $2 M$ divides $p-1$, a $2 M$-th root can be obtained from a $(p-1)$-th root
of unity by taking a suitable power. A primitive ($p-1$)-th root of unity in \mathbb{Q}_{p} can be constructed, to sufficient precision, using Hensel Lifting starting from a generator of \mathbb{F}_{p}^{*}.

7 Conclusions

There are two paradigms for multiplying integers, one using arithmetic over complex numbers, and the other using modular arithmetic. Using complex numbers, Schönage and Strassen [SS71] gave an $O(N \cdot \log N$. $\left.\log \log N \ldots 2^{O\left(\log ^{*} N\right)}\right)$ algorithm. Fürer Fur07 improved this complexity to $O\left(N \cdot \log N \cdot 2^{O\left(\log ^{*} N\right)}\right)$ using some special roots of unity. The other paradigm, modular arithmetic, can be seen as arithmetic in \mathbb{Q}_{p} with certain precision. A direct adaptation of Schönage-Strassen algorithm in the modular paradigm leads to an $O\left(N \cdot \log N \cdot \log \log N \ldots 2^{O\left(\log ^{*} N\right)}\right)$ algorithm. However in the same paper, Schönage-Strassen also gave a modular algorithm with time complexity $O(N \cdot \log N \cdot \log \log N)$. In this paper, we showed that by choosing an appropriate prime and a special root of unity, a running time of $O\left(N \cdot \log N \cdot 2^{O\left(\log ^{*} N\right)}\right)$ can also be achieved through modular arithmetic. Therefore, in a way, we have unified the two paradigms.

References

[Bak07] Alan J. Baker. An introduction to p-adic numbers and p-adic analysis. Online Notes, 2007. http://www.maths.gla.ac.uk/ajb/dvips/padicnotes.pdf.
[Fur07] Martin Furer. Faster Integer Multiplication. Proceedings of the $48^{\text {th }}$ ACM Symposium on Theory of Computing, pages 57-66, 2007.
[HB92] D. R. Heath-Brown. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. In Proceedings of the London Mathematical Society, 64(3), pages 265-338, 1992.
[Isa94] I. Martin Isaacs. Character theory of finite groups. Dover publications Inc., New York, 1994.
[KO63] A Karatsuba and Y Ofman. Multipication of multidigit numbers on automata. English Translation in Soviet Physics Doklady, 7:595-596, 1963.
[Lin44] Yuri V. Linnik. On the least prime in an arithmetic progression, I. The basic theorem, II. The Deuring-Heilbronn's phenomenon. Rec. Math. (Mat. Sbornik), 15:139-178 and 347-368, 1944.
[Mil76] G. L. Miller. Riemann's hypothesis and tests for primality. Journal of Computer and System Sciences, 13:300-317, 1976.
[NZM91] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery. An Introduction to the Theory of Numbers. John Wiley and Sons, Singapore, 1991.
[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12:128-138, 1980.
[Sha99] Igor R. Shafarevich. Basic Notions of Algebra. Springer Verlag, USA, 1999.
[SS71] A Schonage and V Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281-292, 1971.
[Tia90] Cai Tianxin. Primes representable by polynomials and the lower bound of the least primes in arithmetic progressions. Acta Mathematica Sinica, New Series, 6:289-296, 1990.
[Tit30] E. C. Titchmarsh. A divisor problem. Rend. Circ. Mat. Palerme, 54:414-429, 1930.
[Too63] A L. Toom. The complexity of a scheme of functional elements simulating the multiplication of integers. English Translation in Soviet Mathematics, 3:714-716, 1963.

[^0]: *Research supported through Research I Foundation project NRNM/CS/20030163
 ${ }^{\dagger}$ Research done while visiting IIT Kanpur under Project FLW/DST/CS/20060225

