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Abstract

Recently, an extension of the standard data stream model has been introduced in which
an algorithm can create and manipulate multiple read/write streams in addition to its input
data stream. Like the data stream model, the most important parameter for this model is
the amount of internal memory used by such an algorithm. The other key parameters are the
number of streams the algorithm uses and the number of passes it makes on these streams. We
consider how the addition of these multiple read/write streams impacts the ability of algorithms
to approximate the frequency moments of the input stream.

We show that any randomized read/write stream algorithm with a fixed number of streams
and a sublogarithmic number of passes that approximates the k-th frequency moment Fk of
an input sequence of length of at most N from {1, . . . , N} within a constant factor requires
space Ω(N1−4/k−δ) for any δ > 0. For comparison, it is known that with a single read-only
data stream there is a randomized constant-factor approximation for Fk using Õ(N1−2/k) space
and that there is a deterministic algorithm computing Fk exactly using 3 read/write streams,
O(log N) passes, and O(log N) space. Our lower bounds also apply to (1 + ε)-approximations
of Fk for ε ≥ 1/N .

1 Introduction

The development of efficient on-line algorithms for computing various statistics on streams of data
has been a remarkable success for both theory and practice. The main model has been the data
stream model in which algorithms with limited storage access the input data in one pass as it
streams by. This model is natural for representing many problems in monitoring web and other
transactional traffic.

The data stream model really took off with a groundbreaking paper by Alon, Matias, and
Szegedy [AMS99] which showed that one-pass randomized algorithms with surprisingly small space
requirements can approximately determine the frequency moments of data streams. The k-th
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frequency moment, Fk, is the sum of the k-th powers of the frequencies with which elements occur
in a data stream. F1 is simply the length of the data stream; F0 is the number of distinct elements
in the stream; if the stream represents keys of a database relation then F2 represents the size of
the self-join on that key. The methods in [AMS99] also yielded efficient randomized algorithms for
approximating F ∗

∞, the largest frequency of any element in the stream. These results have been
extended and improved to apply to many other problems, including approximating arbitrary join
sizes, computation of `p differences between data streams, and computations over sliding windows
(see surveys [Mut06, BBD+02]). The best one-pass algorithms for frequency moments approximate
Fk within a (1 + ε) factor on streams of length N using Õ(N1−2/k) space [IW05, BGKS06].

Along with designing algorithms for approximating Fk, Alon, Matias, and Szegedy showed that
their algorithms were not far from optimal in the one-pass model; in particular, they showed that Fk

requires Ω(N1−5/k) space to approximate by randomized one-pass algorithms. They derived their
lower bounds by extending bounds [Raz92] for the randomized 2-party communication complexity
for a promise version of the set disjointness problem from 2 to p players, where each of the p players
has access to its own private portion of the input. (The model is known as the p-party number-in-
hand communication game.) A series of papers [SS02, BYJKS04, CKS03] has improved the space
lower bound to an essentially optimal Ω̃(N1−2/k) by improving the lower bound for the promise
disjointness problem for p-party randomized number-in-hand communication games; thus Fk for
k > 2 requires polynomial space in the data stream model1.

However, as Grohe and Schweikardt [GS05] observed, in many natural situations for which the
data stream model has been studied, the computation also has access to auxiliary external memory
for storing intermediate results. In this situation, the lower bounds for the data stream model no
longer apply. This motivated Grohe and Schweikardt to introduce a model, termed the read/write
streams model in [BJR07], to capture this additional capability. In the read/write streams model, in
addition to the input data stream, the computation can manipulate multiple sequentially-accessed
read/write streams.

As noted in [GS05], the read/write streams model is substantially more powerful than the ordi-
nary data stream model since read/write stream algorithms can sort lists of size N with O(log N)
passes and space using 3 streams and hence compute any Fk exactly using only O(log N) passes,
O(log N) space, and 3 streams. Unfortunately, given the large values of N involved, Θ(log N)
passes through the data is a very large cost. For sorting, lower bounds given in [GS05, GHS06]
show that such small space read/write stream algorithms are not possible using fewer passes; more-
over, [GHS06, BJR07] show lower bounds for the related problems of determining whether two sets
are equal and of determining whether or not the input stream consists of distinct elements.

However, these bounds say very little about the problem of approximating frequency moments,
which has much less stringent requirements than the above problems. Can read/write stream
algorithms approximate larger frequency moments more efficiently than single pass algorithms
can? It seems plausible that read/write stream algorithms might be able to compute Fk efficiently
for larger k than is possible for data stream algorithms.

We show that the ability to augment the data stream model with computations using multiple
read/write streams does not produce significant additional efficiency in approximating frequency
moments. In particular, any randomized read/write stream algorithm with a fixed number of

1The Ω(1/ε2) dependence of the space on the error in the approximation has also been shown to be optimal for
one-pass algorithms [IW03, Woo04] though by considering a different two-party communication complexity problem
– approximate Hamming distance
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streams and o(log N) passes that approximates the k-th frequency moment Fk of an input sequence
of length of at most N from {1, . . . , N} within a constant factor requires space Ω(N1−4/k−δ) for any
δ > 0. This lower bound is very similar to the upper bound even for standard single pass read-only
data streams (and is larger than the original lower bound in [AMS99] for ordinary data streams).

The major difficulty in developing lower bounds for the read/write streams model, in contrast
to the data streams model, is that an easy reduction to number-in-hand multiparty communication
complexity game breaks down. This easy reduction is compromised in the read/write stream model
because of the repeated access to the data and the ability of different parts of the computation to
communicate with each other via the multiple read/write streams. Nowhere is this more evident
than in the complexity of the p-party disjointness promise problem in the read/write streams model.
This problem, which is the basis for the lower bounds for approximating frequency moments in the
data streams model, can be easily solved by read/write stream algorithms using only 3 passes, 2
streams and O(log N) space.

Moreover, the amount of data written on the streams also prevents the use of traditional time-
space tradeoff lower bound methods, which are the other obvious tools to consider. As a result,
previous work on lower bounds in the read/write streams model has developed special-purpose
combinatorial methods designed especially for the model.

Grohe, Hernich, and Schweikardt [GS05, GHS06] found certain structural properties of the
executions of read/write stream algorithms, their skeletons, and used these skeletons together with
cut-and-paste arguments to show the existence of certain combinatorial rectangles on which the
algorithms’ answers must be constant. As a result they were able to show that deterministic and
randomized algorithms with o(log N) passes and one-sided error are unable to sort efficiently or to
determine whether or not two input sets are equal. Based on these bounds they also derived lower
bounds for one-sided error randomized algorithms for a number of other problems.

Beame, Jayram, and Rudra [BJR07] used the skeleton characterization and the existence of
combinatorial rectangles as shown in [GS05, GHS06], together with additional combinatorial rea-
soning to show how standard properties used for lower bounding randomized two-party commu-
nication complexity, namely discrepancy and corruption over rectangles, could be used to derive
lower bounds for randomized read/write streams with two-sided error. Using this approach they
gave some general methods for obtaining lower bounds for two-sided error randomized read/write
stream algorithms. In particular they showed that with o(log N/ log log N) passes and O(N1−δ)
space, randomized read/write stream algorithms with two-sided error cannot determine whether or
not two input sets are disjoint. This yielded a number of other lower bounds, including an Ω(N1−δ)
lower bound on the space for computing a 2-approximation of F ∗

∞ with o(log N/ log log N) passes
and a similar lower bound for exact computation of F0. However, the methods of [BJR07] do not
yield lower bounds on the approximate computation of frequency moments Fk for any other values
of k. In particular it was consistent with their work that read/write algorithms could compute
constant factor approximations to any such Fk using o(log N) passes, O(log N) space, and only 2
streams.

We take a quite different approach to lower bounds in the read/write streams model from
those in [GS05, GHS06, BJR07]. Despite the failure of the standard reduction, we are able to
characterize read/write stream algorithms by developing a novel direct simulation of read/write
stream algorithms by p-party communication protocols. Though quite different in the overall
structure of the argument, this reduction does make use of a simplified variant of the skeletons
defined in [GS05, GHS06]. Our method may have many other applications.
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For the specific case of approximating frequency moments we derive our lower bounds by apply-
ing our simulation to a blocked and permuted version of the promise p-party disjointness problem
(with p depending on N and k). The problem is a generalization of one considered in [BJR07]
extended to the case of p sets. This allows us to obtain the Ω(N1−4/k−δ) space lower bounds for
computing Fk using a sublogarithmic number of passes and a constant number of streams.

Although this nearly matches the best lower bounds for the data stream model, there is still a gap
between our read/write streams lower bounds and the data stream upper bounds because our lower
bounds are limited by the relationship between the number of blocks and the number of sets in the
permuted disjointness problem we consider. We also show that modifying this relationship cannot
improve the lower bound for constant factor approximations for k < 3.5 by showing that for any
relationship that would give a better bound for these values of k there is a deterministic read/write
stream algorithm with three passes, two streams and only O(log N) space that can compute the
value of the blocked and permuted p-party disjointness problem. To derive this algorithm we show
a novel property on the lengths of common subsequences in sets of permutations that is interesting
in its own right.

2 Preliminaries

In the read/write streams model, the streams are represented as t read/write Turing machine tapes.
The input stream is given as the contents of the first such tape; the other streams/tapes are used for
working storage. Passes through the data in a stream correspond to reversals on the corresponding
Turing machine tape; the number of passes is one more than the number of reversals. The internal
memory of read/write streams allows random access.

The three resource parameters that are important to a read/write stream algorithm A are (1)
the number of external read/write tapes t that A uses, (2) the maximum space s that A uses, and
(3) the maximum number of reversals r made by A on all the external tapes.

Since we will primarily focus on lower bounds, we define a nonuniform version of the read/write
stream model since lower bounds for this model are more general than those that only apply to
the uniform case. Fix an input alphabet Σ and tape alphabet Γ. An (r, s, t)-read/write stream
algorithm A on ΣN is an automaton with 2s states with one read/write head on each of t tapes. It
begins with its input v ∈ ΣN on the first tape and the remaining tapes blank. In each step, based
on the current state and currently scanned symbols, one of its heads writes a new symbol from Γ
in its currently scanned tape cell and moves one cell left or right. On any input v ∈ ΣN it reverses
the direction of movement of its heads at most r times before it halts.

For functions r, s : N → N and t ∈ N, a (nonuniform) (r(·), s(·), t)-read/write stream algorithm
on Σ∗ is a family of algorithms {AN}N∈N where for each N , AN is an (r(N), s(N), t)-read/write
stream algorithm and all AN have the same input and tape alphabets. Randomized and nondeter-
ministic algorithms are defined analogously.

For integer m ≥ 1 denote {1, . . . ,m} by [m]. For a set T , we write ST to denote the set of
strings of length |T | that are permutations of T . A string s of length |s| is said to be the interleaving
of another set of strings {s1, . . . , st} if there is a partition of {1, . . . , |s|} into t subsets {q1, . . . , qt}
such that for every 1 ≤ i ≤ t, s|qi

= si, where s|qi
denotes the string obtained from s projected on

coordinates in qi only, and for every j ∈ qi, the j-th entry of s is said to be assigned to si.
For any m ≥ 1 and permutation φ of [m], define the sortedness of φ, denoted by sortedness(φ),

to be the length of the longest monotone subsequence of (φ(1), . . . , φ(m)). For any m, p ≥ 1 and a
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sequence Φ = (φ1, φ2, . . . , φp) of permutations of [m], define the relative sortedness of Φ, denoted
by relsorted(Φ), to be maxi6=j∈[p](sortedness(φiφ

−1
j )).

Lemma 2.1 (cf. [Ste97]; Lemma 1.4.1). Let φ be a randomly and uniformly chosen permutation
of [m], then Pr[sortedness(φ) ≥ 2e

√
m] < 2 exp(−2e

√
m).

Corollary 2.2. If p = mc for some constant c > 0 and m is sufficiently large there exists a sequence
Φ = (φ1, φ2, . . . , φp) of permutations of [m] such that relsorted(Φ) < 2e

√
m.

For a given p polynomial in m, we let Φ∗ denote a sequence that is guaranteed to exist by
Corollary 2.2.

The k-th frequency moment Fk of a sequence a1, . . . , an ∈ [m] is
∑

j∈[m] f
k
j where fj = #{i |

ai = j}. We will typically consider the problem when m = n. Also write F ∗
∞ for maxj∈[m] fj

For 2 ≤ p < n, we define the promise problem pDisjn,p : {0, 1}np 7→ {0, 1} as follows: For
x1, . . . , xp ∈ {0, 1}n we interpret each xi as the characteristic function of a subset of [n]. If these
subsets are pair-wise disjoint then pDisj(x1, . . . , xp) = 0; if there is a unique element a ∈ [n] such
that xi ∩ xj = a for all i, j ∈ [p] then pDisj(x1, . . . , xp) = 1; otherwise, the function is undefined.

We use the usual definition of p-party number-in-hand communication complexity. A series of
communication complexity lower bounds [AMS99, SS02, BYJKS04, CKS03] for pDisjn,p in this
number-in-hand model has resulted in essentially optimal lower bounds for computing frequency
moments in the data stream model, even allowing multiple passes on the input stream. The
strongest of these bounds [CKS03] shows that any p-party public-coin randomized number-in-hand
communication protocol for pDisjn,p must have complexity at least Ω( n

p log p). (The bound is an
even stronger Ω(n/p) for one-way communication.)

However, as noted in the introduction, for any n and p, there is a simple (2, log2 n + O(1), 2)
read/write stream algorithm for computing pDisjn,p: Simply copy the bits of x1 from the input
tape to the second tape and, after traversing the bits of x2 in the input tape, reverse the heads
on both tapes and compare x2 on the first tape bit-by-bit to x1 on the second tape. We therefore
will need a modified function in order to obtain our lower bounds for approximating frequency
moments.

Let N > p ≥ 2 and let Π = (π1, . . . , πp) be a sequence of permutations on [N ]. We define
the promise problem pDisj

Π
N,p : {0, 1}Np 7→ {0, 1} by pDisj

Π
N,p(y1, . . . , yp) = pDisjN,p(x1, . . . , xp)

where the j-th bit of xi is the π−1
i (j)-th bit of yi. The relationship between xi and yi is equivalent

to requiring that yij = xiπi(j).
We first observe that the same reduction idea given by [AMS99] yields lower bounds for Fk

given lower bounds for pDisj
Π
N,p for suitable choices of p.

Lemma 2.3. Let N > 1 and 1/2 > δ ≥ 0.

(a) Let k > 1, 1 ≥ ε > 41/(k−1)/N , and p ≥ (4εN)1/k. If there is a randomized (r, s, t)-read/write
stream algorithm that outputs an approximation of Fk within a (1+ ε)-factor on a sequence of
at most N elements in the range [N ] with probability at least 1− δ then there is a randomized
(r + 2, s + O(log N),max(t, 2))-read/write stream algorithm with error at most δ that solves
pDisj

Π
N,p for any Π.

(b) Let k < 1, 1/2 > ε ≥ 0, and let p − pk ≥ 2εN . If there is a randomized (r, s, t)-read/write
stream algorithm that outputs an approximation of Fk within a (1+ ε)-factor on a sequence of
at most N elements in the range [N ] with probability at least 1− δ then there is a randomized
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(r + 2, s + O(log N),max(t, 2))-read/write stream algorithm with error at most δ that solves
pDisj

Π
N,p for any Π.

Proof. We show part (a) first. Given an input v to pDisj
Π
N,p, the read/write stream algorithm

reads its bits from left to right to convert it on the second tape to the appropriate input v′ for the
Fk problem in the obvious way: Read v from left to right, for every bit that is as 1 in position
i ∈ [N ] in the input, Write i to v′. While doing this also use the state to record the number N ′ ≤ N
of 1’s in the input. If N ′ > N then output 1 and halt. Otherwise copy tape 2 to tape 1, erasing
tape 2. By the promise, when pDisj

Π
N,p = 0, we have Fk(v

′) = N ′ ≤ N ; when pDisj
Π
N,p = 1, we

have

Fk(v
′) = N ′ − p + pk

≥ N ′ + 4εN − (4εN)1/k

≥ (1 + ε)2N ′ + εN − (4εN)1/k

> (1 + ε)2N ′

where the second inequality follows because ε ≤ 1 and the third follows because ε > 41/(k−1)/N .
The algorithm for pDisj

Π
N,p will output 1 if the value returned for Fk is greater than (1 + ε)N ′ and

output 0 otherwise.
For part (b) which has k < 1, we apply the same algorithm as in part (a), except that the

input promises yield different implications for the relative values of Fk and therefore the output
condition will be different. If pDisj

Π
N,p(v) = 0 then Fk(v

′) = N ′ ≤ N as before but, since k < 1, if

pDisj
Π
N,p(v) = 1 then Fk(v

′) < N ′. In particular, Fk(v
′) = N ′−p+pk < N ′/(1+ε)2 if p−pk ≥ 2εN

since 2ε > 2ε+ε2

1+2ε+ε2
for 1 ≥ ε ≥ 0. The algorithm for pDisj

Π
N,p will output 1 if the value returned

for Fk is smaller than N ′/(1 + ε) and output 0 otherwise.

In our lower bound argument we will find it convenient to work with a special case of pDisj
Π
N,p

in which the sequence of permutations Π is of a special form. Let p ≥ 2 and N = mn where m and n
are integers. A sequence Π = (π1, . . . , πp) of permutations on [N ] has (monotone) block-size m if and
only if there is a sequence Φ = (φ1, . . . , φp) of permutations on [m] such that πi(j) = (φi(j

′)−1)n+j′′

where j = (j′ − 1)n + j′′ with j′′ ∈ [n]. That is each permutation πi permutes blocks of length n in
[N ] but leaves each block intact. In this case, we write pDisj

m,Φ
n,p for pDisj

Π
N,p.

Note that the function pDisj
m,Φ
n,p can be viewed as the logical ∨ of m independent copies of

pDisjn,p in which the input blocks for the different functions have been permuted by Φ. In particu-
lar, using an extension of the notation of [BJR07], we see that pDisj

m,Φ
n,p = f∨

Φ where f = pDisjn,p,
and f∨

Φ(v11, . . . ,v1m, . . . ,vp1, . . . ,vpm) =
∨

j∈[m] f(v1φ1(j), . . . ,vpφp(j)).

3 Information flow in the read/write streams model

In this section we prove several results about the “information flow” in an algorithm’s execution
in the read/write streams model. These results capture the information flow among the tapes in
various stages of the computation. In this section, we only consider deterministic (r, s, t)-read/write
stream algorithms.

Information flow in a read/write stream algorithm’s execution is captured via an object called
a dependency graph which shows the dependence of portions of the tapes on a given input string
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at various stages of a computation. This notion of dependency graphs is adapted from and simpler
than the concept of skeletons that is used in [GS05, GHS06, BJR07]; although much simpler, it
suffices for our purposes.

Recall that the input is a string v ∈ {0, 1}∗ which is written on the first tape and that at
any step only one of the t heads moves. Assume without loss of generality that the read/write
stream algorithm A makes a total of r reversals on input v. The dependency graph corresponding
to v, denoted by σ(v), has r+2 levels – level 0 corresponds to the beginning of the computation and
level r + 1 corresponds the end of the computation. Level k for 1 ≤ k ≤ r encodes the dependency
on the input of each of the t tapes immediately before the k-th reversal in the following manner:
For 0 ≤ k ≤ r + 1 there is one node at level k of σ(v) for each tape cell that either contained a
symbol of input v or was visited at some time during the computation on input v before the k-th
reversal, or before the end of the computation for k = r + 1. The nodes at level k are ordered
according to their positions on their corresponding cells on the tapes. Because of this we can view
nodes of the dependency graph, interchangeably, as tape cells. There are pointers to each node at
level k from each of the nodes in level k − 1 that it depends on.

The crucial observation made in [GS05] about read/write stream algorithms is the following:
When a symbol is written in a particular cell by the read/write stream algorithm between its k−1-
st and k-th reversal (i.e, at level k of σ(v)), what is being written in that cell can only depend on
the current state and the t symbols currently being scanned by the read/write heads. However,
the values of these t symbols were determined before the k − 1-st reversal. This implies that any
cell at level k depends either on t cells in level k − 1 (when it is overwritten in level k) or only on
itself in level k − 1 (when it is intact in level k). The dependency graph thus consists of a layered
directed graph of tape cells of in-degree either t or 1 representing the cell dependencies, where all
the edges connect consecutive layers.

For some b ≥ 1, suppose that v is partitioned into b blocks of consecutive bits: v = (v1, . . . ,vb).
For every cell c in σ(v), we write the input dependency of c as Ĩb(c) ⊂ {1, . . . , b} to denote the set
of input blocks that it depends on (i.e, the set of i, for 1 ≤ i ≤ b, such that there is a path from a
cell in vi at level 0 to c). We note that the set Ĩb(c) depends on how we partition v, which explains
the subscript ‘b’ in the notation. Since in this paper we are only interested in those partitions into
equal-length blocks, this notation suffices; moreover, we will sometimes drop the subscript ‘b’ if it
is clear from the context. It is immediate from the definition that for every cell c in level k for
0 ≤ k ≤ r + 1, |Ĩ(c)| ≤ tk.

For any cell c on a tape, we write r(c) and `(c) for the cells immediately to its right and to its
left, respectively.

Proposition 3.1. Suppose that an input v is partitioned into b blocks: v = (v1, . . . ,vb) for some
b ≥ 1. Let C be the set of cells on any one tape at any level k in σ(v), for 0 ≤ k ≤ r+1. Fixing any
1 ≤ i ≤ b, let S = {c ∈ C | i ∈ Ĩ(c) and i /∈ Ĩ(r(c))} and S′ = {c ∈ C | i ∈ Ĩ(c) and i /∈ Ĩ(`(c))}.
Then |S| = |S′| and |S| ≤ tk.

Proof. The first part is obviously true, so we just prove the second part. We proceed by induction
on k. For k = 0, this is true since the only cell in S is the one at the right boundary of the i-th
input.

For the induction step, consider any k > 0. At level k, a cell gets its input dependency from at
most t cells on t tapes at level k − 1 that it depends on. Thus, for any cell c ∈ S, there must be
some cell c̃ from level k − 1 such that c depends on c̃, i ∈ Ĩ(c̃), and either r(c) depends on r(c̃) and
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i /∈ Ĩ(r(c̃)), or r(c) depends on `(c̃) and i /∈ Ĩ(`(c̃)) (depending on whether c’s tape head direction
and c̃’s tape head direction are the same or not between the (k − 1)-st and k-th reversals). By
induction, this happens at most t · tk−1 = tk times.

Consider the dependency graph σ(v) associated with an input v. For any level k in σ(v) consider
the sequence of nodes in σ(v) corresponding to one of the tapes. An input dependency string C of
this tape is any string in SeI(c1) · · · SeI(cL) where the cells of the tape are c1, . . . , cL in order. For any

cell ci, a string in SeI(ci)
that is a substring of C is called a cell portion of C associated with ci.

Proposition 3.2. Let C be an input dependency string of any one tape at any level k in σ(v), for
0 ≤ k ≤ r + 1. Then C can be written as the interleaving of at most tk monotone sequences so that
for every such sequence s, there is at most one entry in every cell portion of C that is assigned to
s.

Proof. The general idea is taken from [GHS06]. We proceed by induction on k. We will prove a
somewhat stronger inductive claim, namely that the property above also holds for more general
strings, namely those strings C in

⋃
ai≥1 Sa1

eI(c1)
· · · SaL

eI(cL)
, which we call the set of extended dependency

sequences for a tape with cells c1, . . . , cL. Note that each of these strings can be partitioned into∑L
i=1 ai cell portions, each of which corresponds to a string in SeI(ci)

for some 1 ≤ i ≤ L.

For k = 0, the only non-empty tape is the input tape and C itself is a monotone sequence. Thus
this is true for k = 0.

For the induction step, suppose the tape we are considering is the j-th tape, where 1 ≤ j ≤ t.
We note that at level k the algorithm overwrites a subset of consecutive cells in the tape and the
remaining cells are kept intact. Thus C can be written as C = C ′DC ′′, where C ′ and C ′′ correspond
to those cells that are intact from level k−1 and D corresponds to those cells that are overwritten.
For each of those former cells, its input dependency is unchanged from level k − 1, and for each
of those latter cells, its input dependency is the union of those of the t cells it depends on. Thus
D can be written as the interleaving of t sequences D1, . . . ,Dt, where sequence Di for 1 ≤ i ≤ t
denotes a substring of an extended input dependency of tape i from level k − 1. One observation
here is that C ′DjC

′′ is also a substring of an extended input dependency string of tape j at level
k − 1. By induction, each of D1, . . . ,Dt and C ′DjC

′′ can be written as the interleaving of at most
tk−1 monotone sequences satisfying the requirement. Hence C can be written as the interleaving
of at most tk monotone sequences satisfying the requirement.

Proposition 3.3. Suppose that an input v is partitioned into b blocks v = (v1, . . . ,vb) for some
b ≥ 1. For any cell c (at any level) in σ(v), let H(c) =

{
{i, j} | 1 ≤ i 6= j ≤ b and i, j ∈ Ĩ(c)

}
.

Then | ∪c∈σ(v) H(c)| ≤ t3r+4b.

Proof. Note that for any two input blocks vi and vj, if i, j ∈ Ĩ(c) for some cell c at any level

l < r + 1, then i, j ∈ Ĩ(c′) for some cell c′ at level r + 1. Thus it suffices to consider the last level.
Fix any tape j for 1 ≤ j ≤ t. Let C be an input dependency string of tape j at level r + 1.

From Proposition 3.2, C can be decomposed into a set S of tr+1 interleaved monotone sequences
as described there. For any cell c on this tape and for any sequence s ∈ S, we say that c stands at
some stage i in s if the rightmost entry before or in the cell portion of c in C that is assigned to s
is i. Define a table T as follows. The rows of T correspond to the sequences in S and its columns
correspond to the cells in tape j. Thus T has tr+1 rows and a number of columns equal to the
number of cells with nonempty input dependency, where the columns are also placed in left-to-right
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order as their corresponding cells. Each entry in T records the stage at which its corresponding
cell stands in its corresponding sequence. For each column col corresponding to a cell c, we denote

H ′(col) =
{
{Trow,col , Trow′,col} | row 6= row′ and Trow,col 6= Trow′,col

}
.

Obviously H(c) ⊂ H ′(col) and |H ′(col)| ≤ (tr+1)2 = t2r+2.
For any two adjacent columns col and col′ corresponding to two adjacent cells c and c′, respec-

tively, if H ′(col) 6= H ′(col′), then there must be some sequence s ∈ S such that c and c′ stand at
different stages in s. Since s is monotone, this happens at most b times. Since there are at most
tr+1 sequences, there are at most btr+1 different H ′(col) over all columns. Thus

| ∪c∈σ(v) H(c)| ≤ t · t2r+2 · btr+1 = bt3r+4.

Proposition 3.4. Suppose that an input v is partitioned into b = p ·m blocks: v = (v1, . . . ,vpm),
for some p ≥ 2,m ≥ 1. For any sequence of permutations φ1, φ2, . . . , φp on [m], there exists a set
I ⊂ [m] with |I| ≥ m − p · t5r+8

relsorted({φ1, . . . , φp}) satisfying the following property: for every
i ∈ I, let Ji = {φ1(i),m + φ2(i), . . . , (p − 1)m + φp(i)}, then there is no cell c in σ(v) such that

|Ji ∩ Ĩ(c)| > 1.

Proof. This is a generalization of an argument in [GHS06] which gave a proof for the special case
p = 2. As in the previous proposition, it suffices that we consider level r+1 only. Let Q = {i ∈ [m] |
∃c : |Ji ∩ Ĩ(c)| > 1}. Then I = [m]\Q. Thus we need to prove |Q| ≤ p · t5r+8

relsorted({φ1, . . . , φp}).
We partition Q into disjoint subsets such that Q = ∪1≤p1<p2≤pQp1,p2 and Qp1,p2 ⊆ {i ∈ Q | ∃c :

(p1 − 1)m + φp1(i), (p2 − 1)m + φp2(i) ∈ Ĩ(c)} for any 1 ≤ p1 < p2 ≤ p. By Proposition 3.3, there
are at most pt3r+4 nonempty Qp1,p2. Therefore there must be some p1 < p2 ∈ [p] such that Qp1,p2

is of size at least |Q|/
(
t3r+4p

)
. Fix these p1 and p2.

Let Qp1,p2 = {i1, . . . , iq}, where q = |Qp1,p2|. Let C ∈ {1, . . . , pm}∗ obtained by concatenating

the input dependency of all t tapes, so that for any cell c, if Ĩ(c) contains both (p1 − 1)m + φp1(i)
and (p2 − 1)m + φp2(i) for some i ∈ Qp1,p2, then both of them are placed consecutively and in this
order. By Proposition 3.2, C can be decomposed into a set S of t · tr+1 = tr+2 monotone sequences.
Let π be a permutation on {1, . . . , q} so that

(p1 − 1)m + φp1(iπ(1)), (p2 − 1)m + φp2(iπ(1)), . . . , (p1 − 1)m + φp1(iπ(q)), (p2 − 1)m + φp2(iπ(q))

occur in the same order in C. Since there are q entries in input block p1 and each of them must be in
at least one sequence in S, there is some sequence s ∈ S such that there are at least q/|S| = q/tr+2

such entries in s. In other words, there exists a set Q1 ⊂ {1, . . . , q} of size at least q/tr+2 such that
for every j ∈ Q1,

(p1 − 1)m + φp1(iπ(j)) ∈ s,

and since s is monotone, for every j1 < j2 ∈ Q1, either

φp1(iπ(j1)) < φp1(iπ(j1)) or φp1(iπ(j1)) > φp1(iπ(j1)),

depending on the monotony of s. Let the indices in Q1 be j1 < . . . < jq1 . Consider the following
list of entries

(p2 − 1)m + φp2(iπ(j1)), . . . , (p2 − 1)m + φp2(iπ(jq1 )),
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which occurs in this order in C. As before, there must be at least one sequence s′ ∈ S such that
there are at least q1/|S| = q1/t

r+2 such entries in s′. In other words, there exists a set Q2 ⊂ Q1 of
size at least q1/t

r+2 = q/t2r+4 such that for every l ∈ Q2,

(p2 − 1)m + φp2(iπ(l)) ∈ s′,

and hence since s′ is monotone, for every l1 < l2 ∈ Q2, either

φp2(iπ(l1)) < φp2(iπ(l1)) or φp2(iπ(l1)) > φp2(iπ(l1)),

depending on the monotony of s′. Therefore, by definition of sortedness,

relsorted({φ1, . . . , φp}) ≥ sortedness(φp1 , φp2) ≥ q/t2r+4,

which gives q ≤ relsorted({φ1, . . . , φp})t2r+4 and hence concludes the proposition.

4 Simulation of read/write stream algorithms by communication

protocols

Let p ≥ 2,m ≥ 1 and Φ = (φ1, . . . , φp) be a sequence of p permutations defined on [m]. Let X be
a non-empty set and Y = (Y1, . . . , Yp) ∈ Xp.

For each i ∈ [m] and ρ ∈ X(m−1)p, we define Ji = {φ1(i),m + φ2(i), . . . , (p − 1)m + φp(i)}
and v = v(Y, i, ρ,Φ) = (v1, . . . ,vpm) ∈ Xpm such that v(j−1)m+φj (i) = Yj for every j ∈ [p], and
v|{1,...,pm}−Ji

= ρ. Let A be a deterministic read/write stream algorithm defined on Xpm. Let σ(v)
be the dependency graph induced by A on v and Iv ⊆ [m] be the set of input indexes defined by
σ(v) as described in Proposition 3.4.

The following theorem will be used to show that by simulating an efficient deterministic read/write
stream algorithm for f∨

Φ , one can derive efficient p-party number-in-hand communication protocols
for a variety of embeddings of f in f∨

Φ .

Theorem 4.1. Let p ≥ 2, m ≥ 1 and Φ = (φ1, . . . , φp) be a sequence of permutations on [m]. Let
X 6= ∅ with n = dlog2(X)e. Given a deterministic (r, s, t)-algorithm A defined on Xpm. Then there
is a constant c > 0 depending on t such that, for each i ∈ [m] and ρ ∈ Xp(m−1) there is a p-party
number-in-hand protocol Pi,ρ in which for each j, player j has access to Yj ∈ X (and implicitly i
and ρ) that communicates at most O(tcrp(s + log pmn)) bits, with the property that there is some
set I ′ ⊆ [m] containing I

v(Y,i,ρ,Φ) such that if i /∈ I ′ then Pi,ρ outputs ”fail” and if i ∈ I ′ then the
protocol outputs the value A(v(Y, i, ρ,Φ)).

Before going to the proof we need the following lemma.

Lemma 4.2. When A terminates, the total length of all tapes used by A is at most 2(r+1)spmn.

Proof. The initial total length is clearly pmn. It is also clear that immediately after each reversal,
the total length is multiplied by at most 2s. The lemma follows.

Proof of Theorem 4.1. We describe and then analyze the protocol. Each player first constructs
v = v(Y, i, ρ,Φ) and then executes A on v. Note that all players can access the whole input v

except for the p blocks holding Y1, . . . , Yp, each of which is known to exactly one player. Since no
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player knows the whole input, in order to correctly simulate A, they need to communicate during
the simulation. Along the way, each player gradually constructs and keeps a copy of σ(v). Each
keeps track of the level (the number of reversals) in σ(v) that A is currently working on and the
machine state of A. Essentially, for every tape cell at every level in σ(v) written by A, the players
record whether (1) the contents of the cell can be computed by everyone, or (2) the contents of the
cell can only by computed by a specific player.

Those cells of type (1) are those cells c such that (j−1)m+φj(i) /∈ Ĩpm(c) for any 1 ≤ j ≤ p. For
each of these cells, each of the players records: the machine state immediately before overwriting
the cell, and the (at most t) cells of the previous level on which this cell depends. Note that those
cells that a cell of type (1) depends on are also type (1) cells. It is clear that by recursion, every
player can compute the contents of each of these cells as needed.

Those cells of type (2) are those that depend on some input held by a particular player. Consider
a cell c such that (j − 1)m + φj(i) ∈ Ĩpm(c) for some j ∈ [p]. Each player records that this cell
depends on player j. We will show later what information player j needs to record so that she can
compute the contents of c herself.

Note that there is another type of cell, whose contents depend on the inputs from more than
one player. As soon as the simulation discovers one of these cells, it will stop and the protocol
outputs “fail”. We will explain more about this point later.

The simulation proceeds as follows. Each player executes A step by step. At every new step in
which all the t tape heads are to read cells of type (1) only, every player can compute the contents
of the t cells without any communication. Since each of them holds the current machine state, they
can compute which one of the t tapes is written and the moves and the content of the write. Each
of them thus records, for the overwritten cell, that it is of type (1) as well as the tape heads and
the machine state. To end this step, each of the players also has the new machine state.

The more interesting case is when at a new step, at least one of the tape heads is to read at
least one cell of type (2) and all of the type (2) cells depend on a player j. All players will then
wait for player j to communicate. Player j will proceed as follows. As long as at least one of the
tape heads still reads a cell depending on her or the algorithm does not make any reversal, she
proceeds with the simulation, and clearly has sufficient information to do so. Along the way, for
every cell she overwrites, she records the machine state and all the tape head positions for that
cell, so that she can compute the cell later when needed. This process stops when the algorithm
comes to a new step in which either all the tape heads are to read a cell of type (1), or at least
one of the tape heads depends on another player, or one of the tape heads reverses its direction.
When this process stops, player j broadcasts: (a) all t updated tape head positions and directions,
and (b) the new machine state. Since there has been no reversal, all other players know precisely
which cells were visited by player j and they mark all those overwritten cells, which are all of the
same level in σ(v), as of type (2) and depending on j. Therefore, all players now have sufficient
information to proceed.

The last case is when at a new step, at least two of the tape heads are to read cells of type (2)
and these two cells depend on two different players. In this case, all players stop the simulation
and output “fail”. It is clear that if i ∈ Iv, by Proposition 3.4, this case will never happen.

When A terminates, the protocol will output exactly as A does. It remains to compute the
communication cost.

We need to bound the cost of each communication and the number of times a communication
occurs. From Lemma 4.2, the cost of one communication is t log(2rspn) + s = O(rs + log pmn),
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where the hidden constant depends on t.
When one player communicates, this means that one of the tape heads has either just moved

out of a cell depending on her to another cell that is not, or has just reversed. The latter means
the algorithm comes to the next level, which happens at most r times. By Proposition 3.1 (where
we set b = p), the former occurs at most tr+1 + tr + . . .+1 times for a single tape and single player.
Summing over all tapes and all p players, this occurs at most ptr+3 times in total.

5 Bounds for Disjointness and Frequency Moments

Using Lemma 2.3 and the fact that pDisj
m,Φ
n,p is a special case of pDisj

Π
N,p where N = mn, we will

lower bound the frequency moment problems by giving lower bounds for the pDisj
m,Φ
n,p problem.

This problem was previously studied in [BJR07] for the special case p = 2; our bounds extend those
in [BJR07] for any p ≥ 2 and also improve the bounds for p = 2.

Lemma 5.1. There is a positive constant c such that given a randomized (r, s, t)-read/write stream al-

gorithm A for pDisj
m,Φ
n,p on Xpm, where X = {0, 1}n and pt5r+8relsorted(Φ)

m = d < 1, with error at
most δ, there is a randomized public-coin p-party number-in-hand protocol P for pDisjn,p of com-
munication complexity O(tcrp(s + log pmn)) with error at most δ + d(1 − δ).

Proof. Suppose that A uses at most Γ random bits in its execution. For any string R ∈ {0, 1}Γ, let
AR denote the deterministic algorithm obtained from A using R as source of randomness.

We consider the following public-coin randomized communication protocol P. On inputs Y =
{Y1, . . . , Yp} ∈ Xp:

1. The players use the public coins to

(a) uniformly and randomly generate ρ ∈ f−1(0)m−1 ⊆ Xp(m−1),

(b) choose 1 ≤ i ≤ m uniformly and randomly,

(c) uniformly and randomly generate a bit string R ∈ {0, 1}Γ,

(d) uniformly and randomly generate a permutation φ : [n] 7→ [n].

2. Each player j computes Y ′
j = φ(Yj).

3. The players run protocol Pi,ρ based on AR on inputs Z = Z(Y ′
1 , . . . , Y

′
p, i, ρ,Φ), as described

in Theorem 4.1.

4. If Pi,ρ outputs “fail” then output 1; else output what Pi,ρ does.

We analyze this protocol P. Let I ′ be the set of input positions induced by AR on Z as described
in Theorem 4.1. The correctness of the protocol depends on whether i ∈ I ′ and whether AR(Z) is
correct.

First we consider the case that the sets Y1, . . . , Yp are not disjoint, i.e pDisjn,p(Y ) = 1. In this
case if Pi,ρ outputs “fail”, the protocol always outputs correctly. Otherwise it will output what A

does. In other words, we have

Pr[P(Y ) = 1 | pDisjn,p(Y ) = 1]

= Pr[P(Y ) = 1 | i /∈ I ′,pDisjn,p(Y ) = 1] · Pr[i /∈ I ′ | pDisjn,p(Y ) = 1]

+ Pr[P(Y ) = 1 | i ∈ I ′,pDisjn,p(Y ) = 1] · Pr[i ∈ I ′ | pDisjn,p(Y ) = 1]

= Pr[i /∈ I ′ | pDisjn,p(Y ) = 1] + Pr[AR(Z) = 1 and i ∈ I ′ | pDisjn,p(Y ) = 1]

≥ Pr[AR(Z) = 1 | pDisjn,p(Y ) = 1] ≥ 1 − δ.
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Next we consider the case the sets Y1, . . . , Yp are disjoint. After being re-mapped by φ, the sets
Y ′

1 , . . . , Y
′
p are also disjoint and uniformly distributed in f−1(0). Hence Z is uniformly distributed

over (f−1(0))m. Therefore I ′ is statistically independent from i. By Theorem 4.1, |I ′| ≥ |IZ | and
by Proposition 3.4, |IZ | is always at least (1−d)m. Thus the probability that i ∈ I ′ is at least 1−d.
Conditioned on this happening, the protocol outputs what A does, and hence errs with probability
δ depending on R only. In other words, we have

Pr[P(Y ) = 0 | pDisjn,p(Y ) = 0]

= Pr[P(Y ) = 0 | i /∈ I ′,pDisjn,p(Y ) = 0] · Pr[i /∈ I ′ | pDisjn,p(Y ) = 0]

+ Pr[P(Y ) = 0 | i ∈ I ′,pDisjn,p(Y ) = 0] · Pr[i ∈ I ′ | pDisjn,p(Y ) = 0]

= Pr[AR(Z) = 0 | i ∈ I ′,pDisjn,p(Y ) = 0] · Pr[i ∈ I ′ | pDisjn,p(Y ) = 0]

≥ (1 − δ) · (1 − d).

This completes the lemma.

Lemma 5.2. Let δ < 1/4, t ≥ 1, 1/2 > β > 0, ε > α > 0, and m,n, p > 1 so that p ≤ m
1
2
−α = nβ.

Let N = mn. Then for large enough N , there is a constant a > 0 with the following property: if

r ≤ a log N and s = o(N1− 4β
2β+1

−ε), then there is no randomized
(
r, s, t

)
-read/write stream algorithm

with error at most δ for pDisj
m,Φ∗

n,p on {0, 1}pmn.

Proof. Suppose by contradiction that there is such an algorithm A. By Lemma 5.1, there is a public-
coin randomized number-in-hand communication protocol for pDisjn,p with complexity O(tcrps)

for some positive constant c with error at most d + (1 − d)δ, where d = pt5r+8
relsorted(Φ∗)

m . Since
r ≤ a log N = a(1 + 1−2α

2β ) log m and relsorted(Φ∗) ≤ 2e
√

m, we have d + (1 − d)δ ≤ 2δ < 1/2 for a
sufficiently small depending on δ, t, and α.

By [CKS03], this communication complexity must be Ω( n
p log p). This gives us, for some constant

ε′′ depending on a and α that s = Ω(n1−2β−ε′′) = Ω(N
(1−2β−ε′′)(1−2α)

1+2β−2α ) = Ω(N1− 4β
2β+1

−ε).

This immediately implies a lower bound on pDisj
Π∗

N,p where Π∗ is the extension of Φ∗ to a
sequence of p permutations on [N ].

Theorem 5.3. Let δ < 1/4, t ≥ 1, ε > 0, and N, p > 1 so that p ≤ Nγ for γ < 1
4 . Then for

large enough N , there exists sequence Π∗ of p permutations on [N ] such that there is no randomized(
o(log N), N1−4γ−ε, t

)
-read/write stream algorithm with error at most δ for pDisj

Π∗

N,p.

Proof. Follows from Lemma 5.2 where we set N = mn, Π∗ = (π∗
1, . . . , π

∗
p) to be the extension of

Φ∗ to p permutations on [N ] as described in Section 2, and set α, β so that 1
γ = 1

β + 2
1−2α and α is

sufficiently small.

By Theorem 5.3 and Lemma 2.3(a) we obtain the following lower bounds for approximating Fk

and F ∗
∞.

Corollary 5.4. Let k > 1, t ≥ 1, η > 0, and 1 ≥ ε ≥ 1/N . Then there is no randomized(
o(log N), O( 1

ε4/k N1− 4
k
−η), t

)
-read/write stream algorithm that with probability at least 3/4 outputs

an approximation of Fk within a factor of (1+ ε) on an input stream of up to N elements from [N ].
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Proof. Let ζ satisfy ε = N−ζ/4. Then setting p = dN (1+ζ)/ke = d(4εN)1/ke and applying
Lemma 2.3(a) and Theorem 5.3 we obtain that no randomized read/write stream algorithm with
o(log N) reversals, t tapes, and space O(N1−4(1−ζ)/k−η) can compute Fk within a (1 + ε) factor as
described. Replacing N−ζ by 4ε yields the claimed bound.

Letting ε = 1 in the above implies that there is no factor 2 approximation to Fk for k > 4 that
uses small space and a small number of reversals in the read/write streams model.

Corollary 5.5. Let k > 4, t ≥ 1, and η > 0. Then there is no randomized
(
o(log N), O(N1− 4

k
−η), t

)
-

read/write stream algorithm that with probability at least 3/4 outputs an approximation of Fk within
a factor of 2 on an input stream of up to N elements from [N ].

By similar means we can derive improved lower bounds for computing F ∗
∞.

Corollary 5.6. Let t ≥ 1, and η > 0. Then there is no randomized
(
o(log N), O(N1−η), t

)
-

read/write stream algorithm that with probability at least 3/4 outputs an approximation of F ∗
∞

within a factor of 2 on an input stream of up to N elements from [N ].

We also derive lower bounds for the case that k < 1 using Theorem 5.3 and Lemma 2.3(b).

Corollary 5.7. Let k < 1, t ≥ 1, η > 0, and 1/N ≤ ε < 1/N3/4+η. Then there is no randomized(
o(log N), O( 1

ε4N3+η ), t
)
-read/write stream algorithm that with probability at least 3/4 outputs an

approximation of Fk within a factor of (1 + ε) on an input stream of up to N elements from [N ].

Proof. Define ζ so that ε = N−ζ/3. Then for N sufficiently large as a function of k, if p = N1−ζ =
3εN then p − pk ≥ 2εN so Lemma 2.3(b) and Theorem 5.3 imply that no randomized read/write
stream algorithm with o(log N) reversals, t tapes, and space O(N1−4(1−ζ)−η) can compute Fk

within a (1 + ε) factor as described. Replacing N−ζ by 3ε yields the claimed bound.

Our lower bound for pDisj
Π
N,p is only interesting when N = ω(p4).2 This is because in order

for the reduction from pDisj
m,Φ
n,p to work (Lemma 5.2), we need N = nm and both n = ω(p2) and

m = ω(p2). The condition n = ω(p2) is induced by the communication complexity lower bound for
pDisjn,p, which is optimal up to a logarithmic factor. The following lemma shows that a condition
requiring m to be polynomially larger than p is also necessary and that the above technique cannot
yield bounds for constant factor approximations for k < 3.5.

Lemma 5.8. For integer m < p3/2/64, any integer n, and for any Φ = (φ1, . . . , φp) defined on
[m], there is a deterministic (2, O(log(mnp)), 2)-read/write stream algorithm computing pDisj

m,Φ
n,p .

To produce the algorithm claimed in Lemma 5.8, we need to show the following property of
permutations that does not appear to have been considered previously. Its proof is inspired by
Seidenberg’s proof of the well-known theorem of Erdös and Szekeres (cf. [Ste95]) which shows that
any pair of permutations must have relative sortedness at least

√
m. The difference is that with

three permutations we can now ensure that the sequences appear in the same order in two of them
rather than one possibly being reversed.

2Note that if N is O(p2) there is a simple deterministic algorithm for pDisj
Π
N,p for any Π. The algorithm first

checks that the total size of the p subsets is at most N ; otherwise it outputs 1. Then it scans for a subset of size s at
most N/p = O(p) and looks for these p elements in each of the other subsets in turn. It then splits these s elements
into p − 1 groups of consecutive elements of constant size and looks for the elements in the i-th group in the i-th of
the other subsets. It is clear that the algorithm can be implemented using only two tapes, O(log n) space, and O(1)
reversals.
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Lemma 5.9. Let φ1, φ2, and φ3 be permutations on [m]. Then there is some pair 1 ≤ a < b ≤ 3
such that φa(1), . . . , φa(m) and φb(1), . . . , φb(m) have a common subsequence of length at least m1/3.

Proof. Suppose by contradiction that there are no such a and b. For every i ∈ [m], let `i ∈ [m′]3,
where m′ = dm1/3−1e, be defined as follows: `i[1] is the length of the longest common subsequence
of φ1(1), . . . , φ1(s) and φ2(1), . . . , φ2(t), where φ1(s) = φ2(t) = i, and `i[2] and `i[3] are defined
analogously for the other two pairs φ2, φ3, and φ1, φ3, respectively.

Now for any i 6= j ∈ [m], we must have `i 6= `j. This is because there must be some pair, say
φ1 and φ2, such that either i occurs before j in both sequences or j occurs before i in both. In the
first case `i[1] < `j [1] and in the second case `i[1] > `j [1].

However since m′ < m1/3, the number of different `i over all i ∈ [m] is strictly less than m
which is a contradiction.

The above lemma is tight, even for any four permutations. An example of four permutations
φ1,φ2, φ3, and φ4 of [m] with the longest common subsequence between each pair being at most m1/3

is as follows: φ1 is the identity permutation, φ2 is the increasing sequence of decreasing subsequences
each of length m2/3, φ3 is the decreasing sequence of increasing sequences each of length m1/3, and φ4

is the decreasing sequence of increasing sequences of m1/3 decreasing sequences each of length m1/3.
For example when m = 8, the sequences are (1, 2, 3, 4, 5, 6, 7, 8), (4, 3, 2, 1, 8, 7, 6, 5), (7, 8, 5, 6, 3, 4, 1, 2),
and (6, 5, 8, 7, 2, 1, 4, 3).

Proof of Lemma 5.8. Given Φ there exist J1, J2, . . . , Jp/3 defined as follows: J1 is a common subse-

quence of two of φ1, φ2, and φ3, indexed length at least m1/3 given by Lemma 5.9; J2 is a common
subsequence of two of φ4, φ5, and φ6 that is disjoint from J1 and of length at least (m − |J1|)1/3;
J3 is a common subsequence of two of φ7, φ8, and φ9 disjoint from J1 ∪ J2 and of length at least
(m − |J1| − |J2|)1/3, and so on, with no index i ∈ [m] appearing in more than one sequence. For
each of the Jj let aj and bj denote the indices of the two permutations having the common sub-
sequence Jj . The number of elements that do not appear in J1, . . . , J` is at most m` where m`

is defined by the recurrence with m0 = m and mj+1 = mj − dm1/3
j e for j > 0. If m < p3/2/64,

then p ≥ (64m)2/3 = 16m2/3. Now if mp/8 > m/8 then at least (m/8)1/3 = m1/3/2 elements have

been removed for each of p/8 = 2m2/3 steps which implies mp/8 = 0, which is a contradiction.

Repeating this argument reduces mj to at most m/64 after another 2(m/8)2/3 = m2/3/2 = p/32
steps. Repeating this eventually yields that mp/3 = 0, which implies that every i ∈ [m] is in exactly
one J sequence.

The algorithm copies the input to tape 2 leaving both heads at the right end of the tape. It
will use the head on tape 1 to scan the blocks for the players and the head on tape 2 to scan
the corresponding blocks for the even-numbered players. It will solve the disjointness problems for
each block in the common subsequences Jp/3, . . . , J2, J1, in turn. If an intersection is found in some
pair of corresponding blocks in these sequences then the output is 1; otherwise, the output is 0.
The promise ensures that, for each of the m subproblems, to check for a given common element it
suffices to compare the blocks for a single pair of players. Since every i ∈ [m] appears in some Jj ,
if we can position the heads to check the corresponding blocks then we can compute each of the m
disjointness subproblems exactly and hence pDisj

m,Φ
n,p .

It remains to show how the read/write stream algorithm positions the heads on the tapes
in the positions corresponding to the sequences Jp/3, . . . , J1. These sequences can be hardwired
into the state transition function as follows. We represent the sequence of positions indicated by
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Jp/3, . . . , J1 by a tuple of values that is stored internally by the algorithm as part of the state:
(j, i, a, ka, b, kb, f) where j ∈ [p/3] denotes which Jj is being considered, i ≤ d√me denotes the
position within the common subsequence Jj that is being considered, a denotes the index of one
of the two permutations that have Jj as a common subsequence, ka = ka(j, i) ∈ [m] denotes the
number of blocks in φa that must must be skipped over to get to the i+1-st position in the common
subsequence, b denotes the index of the other of the two permutations that have Jj as a common
subsequence, kb = kb(j, i) ∈ [m] denotes the number of blocks φb that must must be skipped over to
get to the i + 1-st position in the common subsequence, and f is a bit that will determine whether
the algorithm is currently comparing positions and will be ready to have its heads repositioned
when it has finished its comparison, or it is in the act of repositioning its heads. If i + 1 ≤ |Jj | the
transition function will map (j, i, aj , 0, bj , 0, 1) to (j, i + 1, aj , ka(j, i + 1), bj , kb(j, i + 1), 0), leaving
the remainder of the state unchanged; in this state it will move its heads to the left on tapes 1
and 2, decrementing the k1 and k2 counters, respectively, with each step. Otherwise the transition
function will map it to (j + 1, aj+1, ka(j + 1, 1), bj+1, kb(j + 1, i), 0) after skipping over the blocks
for up to 2 φ` that are between φaj and φaj+1 and between φbj

and φbj+1
, respectively. After that

it will move its heads to the left and decrement the counters as in the other case.
The total number of bits of state required is O(log pmn).

6 Concluding remarks

We have introduced a novel reduction relating the read/write stream model directly to multiparty
number-in-hand communication complexity. This reduction seems quite powerful and yields both
simpler proofs and stronger results. It is likely to have useful implications for other problems.

An obvious open question is to close the gap between the upper and lower bounds for computing
pDisj

Π
N,p and approximating Fk. As we have shown, we are not far from the limit on lower bounds

using the blocked and permuted version of disjointness, pDisj
m,Φ
n,p ; moreover, it is not clear how a

simulation like that in Theorem 4.1 (which appears to be optimal up to a polylogarithmic factor)
can be made to work for more general instances of pDisj

Π
N,p.

Optimizing our upper bound for pDisj
m,Φ
n,p raises the following interesting combinatorial ques-

tion: Given a set of k permutations on [m], what is the length of the longest common subsequence
that can be guaranteed between some pair of these k permutations as a function of m and k? We
conjecture that for any integer constants m, c, k > 0 such that 2c−1 < k ≤ 2c, in any set of k
permutations on [m] there exists a pair such that the longest common subsequence of this pair of

permutations has length Ω(m
2c−1−1
2c−1 ). We can construct examples for any m, c, k to show that this

bound cannot be improved, up to a constant factor. If this conjecture is correct, then our upper
bound for pDisj

m,Φ
n,p can be modified to match the lower bound, up to a mo(1) factor.
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