Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 25 (2008)
ECCC

New results on Noncommutative and Commutative Polynomial
Identity Testing

V. Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan
Institute of Mathematical Sciences
C.1.T Campus,Chennai 600 113, India
{arvind, partham srikanth}@mnsc.res.in

Abstract

Using ideas from automata theory we design a new efficiertefdenistic) identity test for the
noncommutativ@olynomial identity testing problem (first introduced aniddied in [RS05, BWO5]).
More precisely, given as input a noncommutative cireiiftc,, - - - ,z,) computing a polynomial in
F{x1,--- ,z,} of degreel with at most monomials, where the variablesare noncommuting, we give
a deterministic polynomial identity test that check€if= 0 and runs in time polynomial id, n, |C|,
andt.

The same methods works in a black-box setting: Given a nomaging black-box polynomiaf €
F{x1,--- ,z,} of degreel with ¢ monomials we can, in fact, reconstruct the entire polynorhia time
polynomial inn, d andt. Indeed, we apply this idea to the reconstruction of blask-4soncommuting
algebraic branching programs (the ABPs considered by NisgN91] and Raz-Shpilka in [RS05]).
Assuming that the black-box model allows us to query the A@&RHe output at any given gate then we
can reconstruct an (equivalent) ABP in deterministic polyial time.

Finally, we turn to commutative identity testing and expltine complexity of the problem when the
coefficients of the input polynomial come from an arbitranité commutative ring with unity whose
elements are uniformly encoded as strings and the ring tipesaare given by an oracle. We show
that several algorithmic results for polynomial identiggting over fields also hold when the coefficients
come from such finite rings.

1 Introduction

Polynomial identity testing (denote®lT) over fields is a well studied algorithmic problem: given aitha
metic circuitC' computing a polynomial iff'[xy, 22, - , x,] over a fieldF, the problem is to determine
whether the polynomial computed lay is identically zero. The problem is also studied when thaiinp
polynomial f is given only via black-box access. |.e. we can evaluate angtpoint inF"™ or in F'" for a
field extensiont’ of F. When f is given by a circuit the problem is in randomized polynontiae. Even
in the black-box setting, wheliir| is suitably larger thadeg(f), the problem is in randomized polynomial
time. A major challenge it to obtain deterministic polynaimime algorithms even for restricted versions
of the problem. The results of Impagliazzo and Kabanets 3K#how that the problem is as hard as prov-
ing superpolynomial circuit lower bounds. Indeed, the @obremains open even for depth-3 arithmetic
circuits with an unboundell gate as output [DS05, KS07].

As shown by Nisan [N91] noncommutative algebraic compatats somewhat easier to prove lower
bounds. Using a rank argument Nisan has shown exponerg@lasier bounds for noncommutative for-
mulas (and noncommutative algebraic branching programastbmpute the noncommutative permanent or

ISSN 1433-8092

determinant polynomials in the rif{x, - - - ,x,,} wherez; are noncommuting variables. Thus, it seems
plausible that identity testing in the noncommutativeisgtbught to be easier too. Indeed, Raz and Shpilka
in [RS05] have shown that that for noncommutative formuéasd(algebraic branching programs) there is
a deterministic polynomial time algorithm for polynomidlentity testing. However, for noncommutative
circuits the situation is somewhat different. Bogdanov ek in [BWO05] show using Amitsur-Levitzki’'s
theorem that identity testing fgrolynomial degreemoncommutative circuits is in randomized polynomial
time. Basically, the Amitsur-Levitzki theorem allows them randomly assign elements from a matrix
algebra)My (F) for the noncommuting variables, where2k exceeds the degree of the circuit.

The main contribution of this paper is the use of ideas femtomata theoryto design new efficient
(deterministic) polynomial identity tests fabncommutativ@olynomials. More precisely, given a noncom-
mutative circuitC'(zq, - - - , z,) computing a polynomial of degreéwith ¢ monomials inf{x,--- ,x,},
where the variables; are noncommuting, we give a deterministic polynomial idgrtest that checks if
C = 0 and runs in time polynomial id, |C|,n, andt. The main idea in our algorithm is to think of the
noncommuting monomials over the as words and to design finite automata that allow us to digighg
between different words. Then, using the connection beatveegkomata, monoids and matrix rings we are
able to deterministically choose a relatively small numbematrix assignments for the noncommuting
variables to decide if* = 0. Thus, we are able to avoid using the Amitsur-Levitzki tlesor Indeed, using
our automata theory method we can easily an alternativef pfo@ weaker) version of Amitsur-Levitzki
which is good enough for algorithmic purposes as in [BWOBexample.

Our method actually works in a black-box setting. In factegia noncommuting black-box polynomial
f € F{xy,--- ,x,} of degreed with ¢ monomials, which we can evaluate by assigning matrices,tove
can reconstruct the entire polynomjaln time polynomial inn, d andt.

Furthermore, we also apply this ideahtack-boxnoncommuting algebraic branching programs. We
extend the result of Raz and Shpilka [RS05] by giving an efficdeterministic reconstruction algorithm for
black-box noncommuting algebraic branching programs (eiheve are allowed to only query the ABP for
input variables set to matrices of polynomial dimensionjir @lack-box model assumes that we can query
for the output ofany gateof the ABP, not just the output gate.

We now motivate and explain the other results in the papeceRdy, in [AMO7] we studiedPIT (the
usual commuting variables setting) and its connection éoptblynomial ideal membership problem. Al-
though ideal membership is EXPSPACE-complete, there istaneisting similarity between the two prob-
lems which is the motivation for the present paper. SupdoseF|x1,--- ,z,] is an ideal generated by
polynomialsgy,--- , g, € Flxy,--- ,xi] andf € Flzq,--- ,z,]. We observe thaf € I if and only if f is
identically zero in the rind[z1, - -+ , zx|/I[xks1, -+ ,x,). Thus, ideal membership is easily reducible to
polynomial identity testing when the coefficient ringfige, - - - , xx]/I. Consequently, identity testing for
the coefficient ringf[x1, - - - , x|/ is EXPSPACE-hard even when the polynomfak given explicitly as
a linear combination of monomials.

This raises the question about the complexitytif for a polynomial ringR[z1, - - - , z,] whereR is a
commutative ring with unity. How does the complexity dep@mdthe structure of the rin@? We give a
precise answer to this question in this paper. We show tleadltebraic structure a® is not important. It
suffices that the elements &fhave polynomial-size encoding, and w.r.t. this encodirgrihg operations
can be efficiently performed. This is in contrast to the fifjgy, - - - ,zx]/I: we have double exponential
number of elements of polynomial degre€fifxy, - - - ,xx] and the ring operations [z, - - ,x]/I are
essentially ideal membership questions and hence corngmaty hard.

More precisely, we study polynomial identity testing fimite commutative ringsk, where we assume
that the elements aR are uniformly encoded as strings{f, 1}™ with two special strings encodirigand

1, and the ring operations are carried out by queries toitigeoracle

1.1 Organization

The paper is organized as follows. In Section 2, we studydhbatity testing problem for the noncommu-
tative circuits computing sparse and small degree polyabriile also show an interpolation algorithm for
such polynomials in the black-box setting. In Section 3, WWawsan interpolation algorithm for algebraic
branching programs (ABP). In Section 4, we discuss the ques®e of the derandomization of identity
testing in the noncommutative model. Section 5 onwards, iseuds commutative identity testing over
finite rings. In Section 5, we prove an analogue of Schwaitp& Lemma for finite commutative rings
with unity. The results for commutative identity testingtl in the black box model and circuit model) are
given in the section 6.

2 Noncommutative Polynomial Identity Testing

Recall that ararithmetic circuitC' over a fieldlF is defined as followsC' takes as inputs, a set of indeter-
minates (either commuting or noncommuting) and elemepis I as scalars. Iff, g are the inputs of an
addition gate, then the output will b+ ¢g. Similarly for a multiplication gate the output will bgg. For
noncommuting variables the circuit respect the order ofiglidation. An arithmetic circuit is a formula if
the fan-out of every gate is at most one.

Noncommutative identity testing was studied by Raz and|&&m [RS05] and Bogdanov and Wee in
[BWO5]. In the Bogdanov-Wee paper, they considered a paohyabf of small degree ovef{z1,--- ,z,},
for afieldlF, given by an arithmetic circuit. They were able to give a @nized polynomial time algorithm
for the identity testing of . The key feature of their algorithm was a reduction from rmonmutative identity
testing to commutative identity testing which is based ofaasic theorem of Amitsur and Levitzki [AL50]
about minimal identities for algebras.

Raz and Shpilka [RS05] give a deterministic polynomialgiadgorithm for noncommutative formula
identity testing by first converting a homogeneous formaota a noncommutative algebraic branching pro-
gram (ABP), as done in [N91].

In this section we study the noncommutative polynomial iiigiesting problem. Using simple ideas
from automata theory, we design a new deterministic ideieist that runs in polynomial time if the input
circuit is sparse and of small degree. Our algorithm work wnly black-box access to the noncommuting
polynomial, and we can even efficiently reconstruct the paoiyial.

We will first describe the algorithm to test if a sparse polya of polynomial degree over noncom-
muting variables is identically zero. Then we give an alponi that reconstructs this sparse polynomial.
Though the latter result subsumes the former, for claritgxgfosition, we describe both. Furthermore, we
note that we can assume that the polynomial is given as dmaatic circuit over a field.

In the case of commuting variables, [BT88] gives an inteapoh algorithm that computes the given
sparse polynomial, and thus can be used for identity teslirig not clear how to generalize this algorithm
to the noncommutative setting. Our identity testing aldponi evaluates the given polynomial at specific,
well-chosen points in a matrix algebra (of polynomial dirsien over the base field), such that any non-zero
sparse polynomial is guaranteed to evaluate to a non-zemixrabone of these points. The reconstruction
algorithm uses the above identity testing algorithm as aauine in a prefix-based search to find all the
monomials and their coefficients.

We now describe the identity testing algorithm informall@ur idea is to view each monomial as a
short binary string. A sparse polynomial, hence, is giveralpplynomial number of such strings (and the
coefficients of the corresponding monomials). The algoriffroceeds in two steps; in the first step, we
construct a small set of finite automata such that, given amallsollection of short binary strings, at least
one automaton from the set accepts exactly one string fr@edtiection; in the second step, for each of the
automata constructed, we construct a tuple of points oveateéxhalgebra oveF such that the evaluation of
any monomial at the tuple ‘mimics’ the run of the correspogdstring on the automaton. Now, given any
non-zero polynomiaf of small degree with few terms, we are guaranteed to haveroatsd an automaton
A ‘isolating’ a string from the collection of strings corresmling to monomials irf. We then show that
evaluatingf over the tuple corresponding # gives us a non-zero output: hence, we can conclfiie
non-zero. We now describe both algorithms formally.

2.1 Preliminaries

We first recall some standard automata theory notation {seexample, [HU78]). Fix a finite automaton
A = (Q, 0, q0,qr) Which takes as input strings §0,1}*. @ is the set of states of, 6 : @ x {0,1} — @

is the transition function, ang, and g, are the initial and final states respectively (throughotg, amly
consider automata with unique accepting states). For egigni € {0, 1}, letd, : Q@ — Q be the function
defined by:d,(¢) = d(q,b). These functions generate a submonoid of the monoid of iaditions from¢@

to Q. This is the transition monoid of the automatdrand is well-studied in automata theory: for example,
see [Str94, page 55]. We now define thé matrix M, e FIQ/xIQl as follows:

N 1 if 5b(Q) = q/’
My(q,q') = { 0 otherwise.

The matrixM, is simply the adjacency matrix of the graph of the functignAs the entries of\/, are
only zeros and ones, we can considéf to be a matrix over any field.

Furthermore, for anyw = wywsy ---wy € {0,1}* we define the matriX\/,, to be the matrix product
My, My, - - - My, . If wis the empty string, defind/,, to be the identity matrix of dimensiof@| x |Q)|.
For a stringw, let §,, denote the natural extension of the transition functiowtaf w is the empty string,
0 IS simply the identity function. It is easy to check that:

N 1 ifdu(e) =4,
Mw(an)—{ 0 otherwise. (1)

Thus, M,, is also a matrix of zeros and ones for any string Also, M,,(qo,qy) = 1 if and only if w is
accepted by the automatoh

2.2 The output of a circuit on an automaton

Now, we consider the rin§{z,--- ,x,} of polynomials with noncommuting variables, - - - , x,, over a
field F. Let C' be a noncommutative arithmetic circuit computing a polyi@nf € F{x,--- ,z,}. Let

d be an upper bound on the degreefof We can consider monomials over the nhoncommuting variables
x1,- -+, Ty a@s strings over an alphabet of size For our construction in Section 2.3, it is convenient
to encode the variables; in the alphabef0,1}. We do this by encoding the variablg by the string

v; = 01°0, which is basically a unary encoding with delimiters. Clgagach monomial over the;’s of
degree at most maps uniquely to a binary string of length at magt + 2).

Let A = (@, 4, qo, qr) be afinite automaton over the alphapet1}. With respect to automatonA we
have matrices\/,, € FIQIXIQl as defined in Section 2.1, where eaghis the binary string that encodes
x;. We are interested in the output matrix obtained when thatép to the circuitC' are replaced by the
matricesM,,, . This output matrix is defined in the obvious way: the inpuies@| x |Q| matrices and we do
matrix addition and matrix multiplication at each additizasp. multiplication) of the circuit’. We define
the output ofC' on the automatord to be this output matrix/,,;. Clearly, given circuitC’ and automaton
A, the matrix)M,,,; can be computed in time pdly”|, |A|, n).

We observe the following property: the matrix outgut,,; of C' on A is determined completely by the
polynomial f computed byC; the structure of the circuit’ is otherwise irrelevant. This is important for us,
since we are only interested jh In particular, the output is alwayswhen f = 0.

More specifically, consider what happens wh@&ncomputes a polynomial with a single term, say
flz1,--+ ,2n) = cxj, - -z, With a non-zero coefficient € F. In this case, the output matrik/,,,
is clearly the matrivaj1 o My, = cMy, wherew = vj, ---vj, is the binary string representing the
monomialz;, ---x;, . Thus, by Equation 1 above, we see that the eftry;(qo, ¢¢) is 0 when A rejects
w, ande when A acceptaw. In general, suppos€ computes a polynomigl = Zﬁzl ¢;m; wWith ¢ nonzero
terms, where; € F \ {0} andm,; =]_[di x;;, whered; < d. Letw; = vy, - - Vi, denote the binary string

j=1
representing monomiah,. Finally, letS’, = {i € {1,--- ,¢} | A acceptsw;}.
Theorem 2.1 Given any arithmetic circuiC’ computing polynomialf € F{zy,--- ,x,} and any finite

automatonA = (Q, 9, qo, q¢), then the outpudl/,,; of C' on A is such thatM,.:(qo, ¢f) = Ziesf G
A

Proof. The proof is an easy consequence of the definitions and tiegres of the matriced/,, stated

in Section 2.1. Note thadlo,; = f(My,, -, M,,). But f(My,,---,M,,) = >.;_,¢iM,,, where

Wi = iy Vi, is the binary string representing monomiaj. By Equation 1, we know that/,,, (qo, qr)

is 1if w; is accepted by, and0 otherwise. Adding up, we obtain the result. [

We now explain the role of the automatdnin testing if the polynomialf computed byC' is identically
zero or not. Our basic idea is to try and design an automattirat accepts exactly one word from among all
the words that correspond to the non-zero termg.iThis would ensure that/,,:(qo, ¢¢) is the non-zero
coefficient of the monomial filtered out. More precisely, wil wse the above theorem primarily in the
following form, which we state as a corollary.

Corollary 2.2 Given any arithmetic circuiC computing polynomialf € F{zy,---,z,} and any finite
automatonA = (@, 9, qo, g¢), then the outpul/,,; of C on A satisfies:

(1) If Arejects every string corresponding to a monomiafirthenM,.;(qo, ¢5) = 0.

(2) If A accepts exactly one string corresponding to a monomigl,ithen M, (qo, qr) is the nonzero
coefficient of that monomial iffi.

Moreover,M,,; can be computed in timgoly(|C|, | A|,n).

Proof. Both points {) and @) are immediate consequences of the above theorem. The exitypbf
computingM,,,; easily follows from its definition. [

Another interesting corollary to the above theorem is thieiong.

Corollary 2.3 Given any arithmetic circuiC’ overF{zy,--- ,z,}, and any monomiat: of degreed,,,, we
can compute the coefficientafin C in timepoly(|C|, d;,,, n).

Proof. Apply Corollary 2.2 withA being any standard automaton that accepts the string pomdmg to
monomialm and rejects every other string. Clearlycan be chosen so thdthas a unique accepting state
and|A| = O(ndy,). |

Remark 2.4 Observe that Corollary 2.3 is highly unlikely to hold in trenemutative setting|x1, - - - , 2,].
For, in the commutative case, computing the coefficient ®fntonomialx; - - - z,, in even an arbitrary
product of linear formdlL;¢; is at least as hard as the permanent problem dvewhich is#P-complete
whenF = Q.

Remark 2.5 Corollary 2.2 can also be used to give an independent proafwéaker form of the result of
Amitsur and Levitzki that is stated in Lemma A.4. In parcul is easy to see that the algebid,;(IF) of

d x d matrices over the fielff does not satisfy any nontrivial identity of degreed. To prove this, we will
consider noncommuting monomials as strings directly okemtletter alphabet{z,--- ,z,}. Suppose
f= Zle cim; € F{xy,--- ,x,} is a nonzero polynomial of degree d. Clearly, we can construct an
automatonB over the alphabefz,, - - - , z,, } that accepts exactly one string, namely one nonzero momomia
saym,,, of f and rejects all the other strings ovéry,--- ,z,}. Also,B can be constructed with at mast
states. Now, consider the outplf,,; of any circuit computingf on B. By Corollary 2.2 the output matrix

is non-zero, and this proves the result.

2.3 Construction of finite automata

We begin with a useful definition.

Definition 2.6 Let W be a finite set of binary strings and be a finite family of finite automata over the
binary alphabet{0, 1}.

e We say thatd is isolatingfor W if there exists a stringy € W and an automatomi € 4 such that4
acceptsw and rejects alw’ € W\ {w}.

e We say that4 is an(m, s)-isolating familyif for every subsetV’ = {w;,--- ,w,} of s many binary
strings, each of length at most, there is a4 € A such thatA is isolating foriV.

Fix parametersn, s € N. Our first aim is to construct afn, s) isolating family of automatad, where
both | A| and the size of each automaton.ihis polynomially bounded in size. Then, combined with
Corollary 2.2 we will be able to obtain deterministic idéyptiesting and interpolation algorithms in the
sequel.

Recall that we only deal with finite automata that have unigoeepting states. In what follows, for a
stringw € {0,1}*, we denote by, the positive integer represented by the binary numeral For each
primep and each integere {0, --- ,p— 1}, we can easily construct an automatéy); that accepts exactly
thosew such thatw,, = i (modp). Moreover,A, ; can be constructed so as to havstates and exactly one
final state.

Our collection of automata! is just the set ofd,, ; wherep runs over the first few polynomially many
primes, and; € {0,--- ,p — 1}. Formally, letN denote(m + 2)(;) + 1; A is the collection of4,,;,

wherep runs over the firstV primes and € {0,--- ,p — 1}. Notice that, by the prime number theorem,
all the primes chosen above are bounded in valu&/Bywhich is clearly polynomial inn ands. Hence,
|A| = poly(m, s), and eachd € A is bounded in size by polyn, s). In the following lemma we show that
A is an(m, s)-isolating automata family.

Lemma 2.7 The family of finite automatal defined as above is gmn, s)-isolating automata family.

Proof. Consider any set ofbinary strings¥ of length at mostn each. By the construction of, 4,,; € A
isolatesV" if and only if p does not divider.,,; —n,,, for some;j and allk # j, andn.,,; =i (modp). Clearly,
if p satisfies the first of these conditioris;an easily be chosen so that the second condition is satisfied
will show that there is some prime among the fitsprimes that does not divide = [; ;. (nw, — nw,)-
This easily follows from the fact that the number of distipdime divisors ofP is at mostlog | P|, which is
clearly bounded bym + 2)(;) = N — 1. This concludes the proof. n

We note that the aboven, s)-isolating family.A can clearly be constructed in time poly, s).

2.4 The identity testing algorithm

We now describe the identity testing algorithm. I&be the input circuit computing a polynomiglover
F{xy,--- ,z,}. Lett be an upper bound on the number of monomialg,iandd be an upper bound on the
degree off. As in Section 2.2, we represent monomials awgr - - | x,, as binary strings. Every monomial
in f is represented by a string of length at mé&t + 2).

Our algorithm proceeds as follows: Using the constructibSection 2.3, we compute a family of
automata such thad is isolating for any setl” with at mostt strings of length at mosi(n + 2) each. For
eachA € A, the algorithm computes the outpuf,,; of C on A. If M,,; # 0 for any A, then the algorithm
concludes that the polynomial computed by the input cinsuiiot identically zero; otherwise, the algorithm
declares that the polynomial is identically zero.

The correctness of the above algorithm is almost immedrata Corollary 2.2. If the polynomial is
identically zero, it is easy to see that the algorithm owghé correct answer. If the polynomial is nonzero,
then by the construction ofl, we know that there existd € A such thatd accepts precisely one of the
strings corresponding to the monomialsfin Then, by Corollary 2.2, the output @f on A is nonzero.
Hence, the algorithm correctly deduces that the polynoagaiputed is not identically zero.

As for the running time of the algorithm, it is easy to see thatfamily of automatad can be constructed
in time poly(d,n,t). Also, the matrices\/,, for each A (all of which are of size polf,n,t)) can be
constructed in polynomial time. Hence, the entire alganituns in time poly|C|, d, n,t). We have proved
the following theorem:

Theorem 2.8 Given any arithmetic circuitC' with the promise thatC computes a polynomiaf €
F{x1,--- ,z,} of degreed with at most monomials, we can check, in tirpely(|C|, d, n, t), if f is identi-
cally zero. In particular, iff is sparse and of polynomial degree, then we have a detetimipislynomial
time algorithm.

In the case of arbitrary noncommutative arithmetic cisujBWO05] gives a randomized exponential
time algorithm for the identity testing problem. Their aligiom is based on the Amitsur-Levitzki theorem,
which forces the identity test to randomly assign expoméstize matrices for the noncommuting variables
since the circuit could compute an exponential degree pohyal. However, notice that Theorem 2.8 gives
a deterministic exponential-time algorithm under the addal restriction that the input circuit computes

7

a polynomial with at moséxponentiallymany monomials. In general, a polynomial of exponentiareeg
can have a double exponential number of terms.

2.5 Interpolation of noncommutative polynomials

We now describe an algorithm that efficiently computes thecommutative polynomial given by the input
circuit. LetC', f,t andd be as in Section 2.4. L&V denote the set of all strings corresponding to monomials
with non-zero coefficients iff. For all binary stringsv, let A,, denote any standard automaton that accepts
w and rejects all other strings. For any automatband stringw, we let[A],, denote the automaton that
accepts those strings that are accepted layd in addition, contai as a prefix. For a set of finite automata
A, let[A],, denote the sef[A],, | A € A}.

We now describe a subroutifiest that takes as input an arithmetic circGitand a set of finite automata
A and returns a field elemente F. The subroutindest will have the following properties:

(P1) If Ais isolating for¥/, the set of strings corresponding to monomialg'jithena # 0.

(P2) In the special case wheéd| = 1, and the above holds, thenis in fact the coefficient of the isolated
monomial.

(P3) If noA € A accepts any string i/, thena, = 0.

We now give the easy description Dést (C, A) :

For eachA € A, the subroutineTest computes the output matrix/Z, of C' on A. If there is an
A € A such thatMy, (¢4, qf) # 0, then for the first such automatoh € A, Test returns the scalar
a = Mz, (q4', 7). Here, notice thagy', ¢7' denote the initial and final states of the automatorif there
is no such automatod € A is found, then the subroutine returns the scélar

It follows directly from Corollary 2.2 thaTest has Properties (P1)-(P3). Furthermore, clediyst
runs in time poly|C1, ||A||), where||.A|| denotes the sum of the sizes of the automatd.in

Let f € F{xy,--- ,z,} denote the noncommuting polynomial computed by the inpautiC. We
now describe a recursive prefix-search based algorittiterpolate that takes as input the circuit and
a binary stringu, and computes all those monomials fofalong with their coefficients) which contain
as a prefix when encoded as strings using our encading: v; = 01°0. Clearly, in order to obtain all
monomials off with their coefficients, it suffices to run this algorithm it = ¢, the empty string.

In what follows, let.A, denote the(m, s)-isolating automata familf A, ;} as constructed in Section
2.3 with parametersn = d(n + 2) ands = t. As explained in Section 2.3, we can computg in time
poly(d, n,t).

Suppose f is the polynomial computed by the circui. We now describe the algorithm
I nt er pol at e(C, u) formally (Algorithm 1).

The correctness of this algorithm is clear from the corress$rof theTest subroutine and Lemma 2.7.
To bound the running time, note that the algorithm neveisdalterpolate on a stringu unlessu is the
prefix of some string corresponding to a monomial. Hencealperithm invokesInterpolate for at most
O(td(n + 2)) many prefixes:. Since||[Ao].o|| and|A,| are both bounded by pdl¥, n, t) for all prefixes
u, it follows that the running time of the algorithm is pol¢’|, d, n, t). We summarize this discussion in the
following theorem.

Theorem 2.9 Given any arithmetic circuiC computing a polynomiaf € F{xy,--- ,xz,} of degree at
mostd and with at most monomials, we can compute all the monomialg,and their coefficients, in time

Algorithm 1 The Interpolation algorithm

1: procedurel nt er pol at e(C,u)

2:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

© N T AW

a, o, 0.

a«— Test (C,{A,}) > A, is the standard automaton that accepts anly
if o = 0then

Break. > u can not corresponds to a monomialjfof
else

Output (u, «). > u IS the binary encoding of a monomial gfwith coefficienta
end if

Now the algorithm find all monomials (along with their coeifiat)
containingu0 or u1 as prefix in the binary encoding.
if |u| = d(n+ 2) then
Stop.
else
o/ —Test (C,[Aolu), o —Test (C,[Aou1)-
end if
if o/ # 0then
| nt er pol at e(C, u0). > There is some monomial i extendingu0
end if
if o’ # 0then
| nt er pol at e(C,ul). > There is some monomial ifi extendingul
end if

20: end procedure

poly(|C|,d,n,t). In particular, if C computes a sparse polynomiglof polynomial degree, thefi can be
reconstructed in polynomial time.

3 Interpolation of Algebraic Branching Programs over noncanmuting vari-
ables

In this section, we study the interpolation problem for klox Algebraic Branching Programs (ABP)
computing a polynomial in the noncommutative rifgze, - - - , z,, }. We are given as input an ABP (defined
below) P in the black-box setting, and our task is to output an ABRhat computes the same polynomial
asP. To make the task feasible in the black-box setting, we aedhat we are allowed to evaluateat any
of its intermediate gates.

We first observe that all the results in Section 2 hold undertsumption that the input polynomigl
is allowed onlyblack-box accesdn the noncommutative setting, we shall assume that thekidax access
allows the polynomial to be evaluated for input values framagbitrary matrix algebra over the base field
F. It is implicit here that the cost of evaluation is polynoiiiathe dimension of the matrices. Note that
this is a reasonable noncommutative black-box model, secduve can evaluat¢ only overF or any
commutative extension df, then we cannot distinguish the non-commutative polynbrejresented by
from the corresponding commutative polynomial. We sta¢ehlack-box version of our results below.

Theorem 3.1 (Similar to Theorem 2.1) Given black-box access to any polynomjal= Zﬁzl cm; €
F{z,--- ,z,} and any finite automatord = (Q, 4, o, q¢), then the outpuf\/,,; of f on A is such that

Moui(qo,qr) = Ziesf G, whereS’, = {i |1 <i < tandA accepts the stringy; corresponding ton, }
A
Here the output of polynomigt on A is defined analogously to the output of a circuit4mn Section 2.2.

Corollary 3.2 (Similar to Corollary 2.3) Given black-box access to a polynomfah F{x,--- ,x,}, and
any monomiain of degreed,,,, we can compute the coefficientrofin f in timepoly(d,,,n).

Finally we have,

Theorem 3.3 (Similar to Theorem 2.9) Given black-box access to a polynomjain F{zq,--- ,z,} of
degree at most and with at most monomials, we can compute all the monomialg’ oand their coeffi-
cients, in timepoly(d, n,t). In particular, if f is a sparse polynomial of polynomial degree, then it can be
reconstructed in polynomial time.

Our interpolation algorithm for noncommutative ABPs is ivatted by Raz and Shpilka’s [RS05] algo-
rithm for identity testing of ABPs over noncommuting vaiied Our algorithm interpolates the given ABP
layer by layer using ideas developed in Section 2 (printigabrollary 3.2).

Definition 3.4 [N91, RS05] An Algebraic Branching Program (ABP) is a digzttacyclic graph with one
vertex of in-degree zero, called the source, and a vertexibflegree zero, called the sink. The vertices of
the graph are partitioned into levels numberd, - - - , d. Edges may only go from leveto leveli + 1 for

i € {0,---,d — 1}. The source is the only vertex at levehnd the sink is the only vertex at level Each
edge is labeled with a homogeneous linear form in the inpualkes. The size of the ABP is the number of
vertices.

10

Notice that an ABP with no edge between two vertieeandv on levelsi and: + 1 is equivalent to
an ABP with an edge fromy to v labeled with the zero linear form. Thus, without loss of gatig/, we
assume that in the given ABP there is an edge between evergfpartices on adjacent levels.

As mentioned before, we will assume black-box access toniat IABP P where we can evaluate the
polynomial computed by’ at any of its gates over arbitrary matrix rings o¥ernn order to specify the gate
at which we want the output, we index the gated’okith a layer number and a gate number (in the layer).

Based on [RSO05], we now defineRaz-Shpilka basifor the leveli of the ABP. Let the number of
nodes at the-th level beG; and let{pi, p2,--- ,pg, } be the polynomials computed at the nodes. We
will identify this set of polynomials with th&; x n* matrix M; where the columns af/; are indexed by
n' different monomials of degreg and the rows are indexed by the polynomigjs The entries of the
matrix M; are the corresponding polynomial coefficients. A Raz Shdilltsis is a set of at mo&t; linearly
independent column vectors 8f; that generates the entire column space. Notice that evetprvia the
basis is identified by a monomial.

In the algorithm we need to compute a Raz-Shpilka basis ay éeeel of the ABP. Notice that at the
level 0 it is trivial to compute such a basis. Inductively assume a® compute such a basis at the leiel
Denote the basis b, = {vi,v2,- -, vk, } Wherev; € F¢, andk; < G;. Assume that the elements of
this basis corresponds to the monomigts; , mo, - - - , my, }. We compute a Raz Shpilka basis at the level
i+ 1 by computing the column vectors corresponding to the setafomials{m;zs} ek, sem) i Mit1
and then extracting the linear independent vectors outerhthComputing these column vectors requires
the computation of the coefficients of these monomials, Wwisign be done in polynomial time using the
Corollary 3.2. Notice that we also know the monomials thatélements of this basis correspond to.

We now describe the interpolation algorithm formally. Asntiened before, we will construct the output
ABP P’ layer by layer such that every gate Bf computes the same polynomial as the corresponding gate
in P. Clearly, this task is trivial at levél.

Assume that we have completed the construction up to fexetl. We now construct level+ 1. This
only involves computation of the linear forms between lavahd leveli + 1. Hence, there arg; < G;
vectors in the Raz-Shpilka basis at tiih level. Let the monomials corresponding to these vecters b
B = {my,---,my,}. Fix any gateu at leveli + 1 in P, and letp,, be the polynomial compute at this gate
in P. Clearly,

G;
Pu = ijfj
=1

wherep; is the polynomial computed at thieh gate at levet, and/; is the linear form labeling the edge
between thegth gate at level andw.

11

We have,
G
pu= Y il
j=1

G; n
S m <Zagj>xs>

Jj=1 \m:|lm|=i

G;
= Z Mg Dal)
m:|m|=i,s j=1
= Z mIs <Cma CL3>

m:|m|=i,s

wherec,, andas denote the vectors of field elememtﬁ))j and(agj))j respectively. Note that; denotes

a vector of unknowns that we need to compute. Each monomiglin the above equation gives us a linear
constraint orus. However, this system of constraints is exponential in.slpeobtain a feasible solution for
{as}sem)» We observe that it is sufficient to satisfy the constraimtsesponding only to monomiate;
wherem € B. All other constraints are simply linear combinations cégb and are thus automatically
satisfied by any solution to these.

Now, form € B ands € {1,--- ,n}, we compute the coefficients ofx, in p, and those ofn in each
of the p;’s using the algorithm of Corollary 3.2. Hence, we have all lihear constraints we need to solve
for {as}cpn)- Firstly, note that such a solution exists, since the lifeems in the black box ABRP give
us such a solution. Moreover, any solution to this systenmefr equations generates the same polynomial
py at gateu. Hence, we can use any solution to this system of linear amsats our linear forms. We
perform this computation for all gatesat thei + 1st level. The final step in the iteration is to compute the
Raz-Shpilka basis for the leveh- 1.

We can use induction on the level numbers to argue correctifale algorithm. From the input black-
box ABP P, for each levek, let P;;, 1 < j < G}, denote the algebraic branching programs computed by
P with output gate as gatgin level k. Assume, as induction hypothesis, that the algorithm hagpated
linear forms for all levels upto leveland, furthermore, that the algorithm has a correct Razlighpasis
for all levels upto level. This gives us a reconstructed ABP upto level; with the property, foil < k < 1,
each ABPP]fk,, 1 < j < Gy, computes the same polynomials as the corresponljpgl < j < G}, where
nyk is obtained fromP’ by designating gatg at level k as output gate. Under this induction hypothesis,
it is clear that our interpolation algorithm will compute arect set of linear forms between levéland
1 + 1. Consequently, the algorithm will correctly reconstrunt @BP P’ upto level: + 1 along with a
corresponding Raz-Shpilka basis for that level.

We can now summarize the result in the following theorem.

Theorem 3.5 Let P be an ABP of size and depthd overF{x1, xo, - - - , x,} given by black-box access that
allows evaluation of any gate d? for inputsz; chosen from a matrix algebra/, (F) for a polynomially
bounded value ok. Then in deterministic timpoly(d, s,n), we can compute an ABP’ such thatP’
evaluates to the same polynomial &s

12

4 Noncommutative identity testing and circuit lower bounds

In Section 2 we gave a new deterministic identity test foraoonmuting polynomials which runs in poly-
nomial time for sparse polynomials of polynomially boundiegree.

However, the real problem of interest is identity testing ffolynomials given by small degree non-
commutative circuits for which Bogdanov and Wee [BWO05] gare efficient randomized test. When the
noncommutative circuit is a formula, Raz and Shpilka [RStB}e shown that the problem is in determin-
istic polynomial time. Their method uses ideas from Nisdovger bound technique for noncommutative
formulae [N91].

How hard would it be to show that noncommutative PIT is in datristic polynomial time forcircuits
of polynomial degree? In the commutative case, Impagli@armbKabanets [KI03] have shown that deran-
domizing PIT implies circuit lower bounds. It implies thather NEXP ¢ P/poly or the integer Permanent
does not have polynomial-size arithmetic circuits.

We observe that this result also holds in the noncommutagting. l.e., if noncommutative PIT has
a deterministic polynomial-time algorithm then eith¢EXP ¢ P/poly or thenoncommutativéermanent
function does not have polynomial-size noncommutativeuds.

As noted, in some cases noncommutative circuit lower boanglgasier to prove than for commutative
circuits. Nisan [N91] has shown exponential-size lowemmsfor noncommutative formula size and further
results are known for pure noncommutative circuits [N9108®S However, proving superpolynomial size
lower bounds for general noncommutative circuits compyutive Permanent has remained an open problem.

The noncommutative Permanent functiBarm(z1,--- ,x,) € R{z1,--- ,z,} is defined as
n
Perm(xly' o 7:L'7L) = Z H'mi,a(i)>
O'ESn Z:1

where the coefficient ring is any commutative ring with unity. Specifically, for the néxeorem we choose

R=Q.

Theorem 4.1 If PIT for noncommutative circuits of polynomial deg€éx1,--- ,x,) € Q{x1,--- ,z,}
is in deterministic polynomial-time then eitheEXP ¢ P/poly or the noncommutativd®’ermanent function
does not have polynomial-size honcommutative circulits.

Proof. Suppose&NEXP C P/poly. Then, by the main result of [IKW02] we haM&XP = MA. Furthermore,
by Toda’s theorem MAC PPz where the oracle computes the integer permanent. Nowasg®!T
for noncommutative circuits of polynomial degree is in detimistic polynomial-time we will show that the
(noncommutative) Permanent function does not have poljalesize nhoncommutative circuits. Suppose to
the contrary that it does have polynomial-size noncomrivataircuits. Clearly, we can use it to compute the
integer permanent as well. Furthermore, as in [KI03] weagothat the noncommutative x n Permanent
is also uniquely characterized by the identitigéx) = x andp;(X) = Z;.:l x1pi—1(X;) forl <i < mn,
whereX is a matrix ofi> noncommuting variables ang; is its j-th minor w.r.t. the first row. I.e. if arbitrary
polynomialsp;, 1 < i < n satisfies these identities ovemoncommutingariablesz;;, 1 < 7,5 < n if and
only if p; computes the x i permanent of noncommuting variables. The rest of the pmekactly as in
Impagliazzo-Kabanets [KI03]. We can easily describe an Nfehime to simulate a’P"™ computation.
The NP machine guesses a polynomial-size noncommutatiwgitcior Perm onm x m matrices, where
m is a polynomial bound on the matrix size of the queries madeenTthe NP verifies that the circuit
computes the permanent by checking thexoncommutativédentities it must satisfy. This can be done in

13

deterministic polynomial time by assumption. Finally, tiB machines uses the circuit to answer all the
integer permanent queries. Putting it together, weNg&XP = NP which contradicts the nondeterministic
time hierarchy theorem. [

5 Schwartz-Zippel lemma over finite rings

In this section we give a generalization of Schwartz-Zidmshma to finite commutative rings and apply it
for identity testing of black-box polynomials iR[z1, - - , x,], whereR is a finite commutative ring with
unity whose elements are uniformly encoded by strings f§6m }"* with a special string: denote unity,
and the ring operations are performed by a ring oracle.

We recall some facts about finite commutative rings [Mc74,69Y A commutative ringR with unity
is alocal ring if R has auniqguemaximal idealM. An elementr € R is nilpotentif »™ = 0 for some
positive integem. An element- € R is aunit if it is invertible. l.e.rr’ = 1 for some element’ € R. Any
element of a finite local ring is either a nilpotent or a unit ileal/ is aprime idealof R if ab € I implies
eithera € T orb € I. For finite commutative rings, prime ideals and maximal isieaincide. These facts
considerably simplify the study of finite commutative rif@scontrast to infinite rings).

Theradical of a finite ring R denoted byrRad R) is defined as the set of all nilpotent elements, i.e

RadR) ={r€ R|3n > 0s.tr" =0}

The radicalRad R) is an ideal ofR, and it is the unique maximum ideal R is a local ring. Letn
denote the least positive integer such that for every relpot € R, ™ = 0, i.e (Rad R))"™ = 0. Let R be
any finite commutative ring with unity angdP;, P, - -- , P} by the set of all maximal ideals &. Let R;
denote the quotient ring/ P/ for 1 < i < ¢. Then, itis easy to see that eaBhis a local ring and?; / P"*
is the uniqgue maximal ideal iR;. We recall the following structure theorem for finite comative rings.

Theorem 5.1 ([Mc74], Theorem V1.2, page 95)Let R be a finite commutative ring. Thed decomposes
(up to order of summands) uniquely as a direct sum of locggirMore precisely

RER ®Ry® - D Ry,

via the mapp(r) = (r + P*,r + P3*,--- ,r + P;*), whereR; = R/P/" and P;,1 < i < / are all the
maximal ideals of?.

It is easy to see thap is a homomorphism with trivial kernel. The isomorphisfnaturally ex-
tends to the polynomial rindR[z1,x2, - ,x,], and gives the isomorphism : Rlxy,x9, -+ ,x,] —
@leR’i[xl7x27 e 7xn]-

5.1 The Schwartz-Zippel lemma

We observe the following easy fact about zeros of univapatgnomials over finite commutative rings with
unity.

Proposition 5.2 Let R be a finite commutative ring with unity containing an intdgtamainD. If f € R|x]
is a nonzero polynomial of degrelthen f (a) = 0 for at mostd distinct values of, € D.

14

Proof. Notice thatD is a finite integral domain as it is contained in the finite riegThus,D must in fact
be a finite field. Now, suppos8, as, - - ,aq11 € D are distinct points such thgi{a;) = 0,1 <i < d+ 1.
Then we can writef (z) = (z — a1)q(x) for ¢(z) € Rz]. Dividing ¢(x) by x — ay yields ¢(z) =
(x — a2)d'(z) + q(az), for someq'(z) € R[z]. Thus,f(z) = (x — a1)(z — a2)¢'(x) + (x — a1)q(az).
Puttingz = as in this equation givesas — a;)g(az) = 0. But (a2 — a1) is nonzero in the field and hence
is invertible. By cancellation we get(az) = 0. Consequentlyf(z) = (z — a1)(z — a2)q¢’(x) in Rx].

Applying this argument successively for the othgrfinally yields f(z) = g(x) f;rll(x — a;) for some
nonzero polynomiay(z) € R[z]. Since]‘[fjll(x — a;) is a monic polynomial, this forcaseg(f) > d + 1
which is a contradiction. [

Using Proposition 5.2 we describe an easy generalizatidheoSchwarz-Zippel lemma to finite com-
mutative rings with unity containing integral domains.

Lemma 5.3 Let R be a finite commutative ring with unity containing an intdggamain D. Letg €

R[zy,x9,- -+ ,x,] be any polynomial of degree at mastlf g # 0, then for any subset of D we have
d
PrleeA,‘“ 7(17L€A[g(a17 ag, - ,CLn) - O] S W
Proof. We need to show that the numberretuples(a,,--- ,a,) € A™ such thayy(ay,as, -+ ,a,) =0

is at mostd|A|"~!. The proof is by induction on. The base case = 1 involves a univariate polynomial
g(x1) in R[z4] and follows directly from Proposition 5.2. As induction lotpesis suppose the lemma holds
for multivariate polynomials im — 1 indeterminates. Writg(z1, 22, -+ ,2,) asg(x1,x2, - ,Tpn) =
Zf:o 2t gi(x1, w2, ,2,_1), Wherek < d is the largest exponent af, in g with nonzero coefficiengy,
and eachy; € R[z1, 22, -+ ,z,—1]. Sinceg, # 0 anddeg(gr) < d — k, by the induction hypothesis there
are at mostd — k)| A|"~2 tuples(ay,- -+ ,a,_1) € A" ! such thayy(ay, - - - ,a,,) = 0. Let

El = {(ala"' 7an) ’gk(ala'” 7an1) = 0}

Then |Ey| < (d — k)AL Now consider the univariate polynomiaf(z,) =
Sk o ahgilar,ag, -+ an—1) in Rlz,] for (ay,--- ,an_1) € A" If gy(ar, a9, - ,a,_1) is nonzero
theng(z,) is a nonzero polynomial. Let

Ey ={(a1,--- ,an) | §(zn) # 0 @andg(an)) = 0}.

It follows from Proposition 5.2 thatt| < k| A" 1.
Since{(ai, - ,a,) | g(ai,--- ,a,) = 0} C E; U Ey, we obtain the required bound

{(ar,-- an) [glar, -+ an) = O} < |Br| + | Bo| < (d— k)| A" + kA" = d|A]" ",
This completes the proof. [

In general Lemma 5.3 is not applicable, because the givee finig may not contain a large finite field.
We explain how to get around this problem for finite commuatocal rings. Because of the structure
theorem, it suffices to consider local rings.

Let R be a finite local ring with unity given by a ring oracle. Suppdtise characteristic a® is p“ for a
primep. If the elements o are encoded IR0, 1}™ then2™ upper bounds the size &. Let M > 2™, to
be fixed later in the analysis. L&t = {ce | 0 < ¢ < M}, wheree denotes the unity ak. We will argue that,

15

for a suitable)M, if we samplece uniformly from U then(c modp) e is almost uniformly distributed ife.
Pick z uniformly at random fronZ,, and outputzce. Leta € Z, andP = Proljz = a (modp)]. Thex for
whichz = a (modp) area, a+p,--- ,a+p|=2]. LetM' = [¥=¢|. ThenP = M'+1/M < 1 (1+%7).
Clearly,P > %(1—%). For a givere > 0, chooseM = 21 /¢, Thenl‘Tf/2 <P< 1+Tf/2. So(z modp)e
is 5-uniformly distributed inZe.

Lemma 5.4 Let R be a finite local commutative ring with unity and of charaigtc p© for a primep. The
elements ofk are encoded using binary strings of length Letg € R[xy,z2, - ,x,] be a polynomial of
degree at mosf ande > 0 be a given constant. if Z 0, then

d
Prob, cv,... anevlg(ar,az, -+ ,a,) = 0] < 1—7(1 +3),

whereU = {ce |0 < c < M}and M > 2™+ /e,
Proof. Consider the following tower of ideals inside:
RDOpR2Op’RD--- D p*R={0}.

Let k be the integer such that € p*R[x1,--- ,x,] \ p*T'R[z1,- - ,z,]. Write g = p*§. Consider
the ring, I = {r € R | p*r = 0}. Clearly, I is an ideal ofR. LetS = R/(I + pR). We claim
that § is a nonzero polynomial it§[xzy,--- ,z,]. Otherwise, ley € (I + pR)[z1, -- ,x,]. Write § =
g1 + g2, Whereg, € I[z1,--- ,x,] andgs € pR[z1,--- ,x,]). Thenpky = pFg, asphg; = 0. But
g2 € pR[xy,--- , x,], which contradicts the fact thatis the largest integer such that p*Rlxq, - - -, z,,].
Thusg is a nonzero polynomial i§{x1, - - - , z,]. Now we argue thas' contains the finite fiel&f,, and then
using the Lemma 5.3, the proof of the lemma will follow easilp see a copy df, inside S, it is enough
to observe thafi + (I +pR) | 0 <i < p— 1} as afield is isomorphic tB,. Clearly the failure probability
for identity testing ofg in R[z1,--- ,] is upper bounded by the failure probability for the identigting
of gin S[xy,--- ,x,]. Consider the natural homomorphistn U — TF,, given by¢(ce) = ¢ modp. Thus
if we sample uniformly from/, using¢, we cang-uniformly sample fronit,,. Notice that for any € F,

1‘}# < Probyez,, [z = bmodp] < 1+Tf/2. Now using the Lemma 5.3, we conclude the following :

Proby, cv,ascv--anevlglar, - -+ ,an) = 0] < Prol, cr,..o,er,[G(b1, -+ ,bp) = 0] <
whereb; = a; (modp). The additional factor of1 + §) comes from the fact that we are only sampling

$-uniformly from[F,,. This can be easily verified from the proof of Lemma 5.3. Hemeehave proved the
lemma. [

6 Randomized Polynomial Identity Testing over finite rings
In this section we study the identity testing problem oveitdicommutative ring oracle with unity. For the

input polynomial, we consider both black-box represeatatind circuit representation. First we consider
the black-box case. Our identity testing algorithm is aaimnsequence of Lemma 5.4.

16

Theorem 6.1 Let R (which decomposes into local rings @lei) be a finite commutative ring with unity
given as a oracle. Let the input polynomigle R[zq,--- ,x,] of degree at mosf be given via black-box
access. Suppode;’s is of characteristicp;". Lete > 0 be a given constant. ff; > kd for all i, for some
integerk > 2, we have a randomized polynomial time identity test witltess probabilityl — %(1 +5).

Proof. Consider the natural isomorphism: R[z1, 22, - , 2] — ® Ri[x1, 22, -, x,]. Leto(f) =
(f1, fas -+, fo). If f £ 0thenf; # 0 for some: € [¢], wheref; € R;[x1, 22, ,xy,]. Fix such an. Our
algorithm is a direct application of Lemma 5.4. Defitie= {ce | 0 < ¢ < M}, assign values for the;’s
independently and uniformly at random frdify and evaluatg’ using the black-box access. The algorithm
declaresf # 0 if and only if the computed value is nonzero. By Lemma 5.4, algorithm outputs the
correct answer with probability — £(1+ §) > 1 — ¢(1+§).* n

The drawback of Theorem 6.1 is that we get a randomized polialeime algorithm only whemp; >
kd.

However, when the polynomidl is given by an arithmetic circuit we will get a randomizednitlty test
that works for all finite commutative rings given by oraclehi§ is the main result in this section. A key
idea is to apply the transformation from [ABO3] to conver tliven multivariate polynomial to a univariate
polynomial. The following lemma has an identical proof aBpS8, Lemma 4.5].

Lemma 6.2 Let R be an arbitrary commutative ring and € R[z1,x2, - ,z,] be any polynomial of
maximum degree. Consider the polynomiaj(x) obtained fromf(z1,z2,--- ,z,) by replacingz; by
2D e g(r) = f(z,x@) ... @D Thenf = 0 overR[zy, - - - ,] if and only ifg = 0 over
Rlx].

By Lemma 6.2, it suffices to describe the identity test for &anmte polynomial inR[z] given by an
arithmetic circuit. Notice that ifleg(f) = d then we can boundeg(g) by d(d + 1)~ which we denote
by D. Our algorithm is simple and essentially the same as thewafBiswas identity test over the finite
ring Z,, [ABO3].

We will randomly pick a monic polynomiaj(xz) € Ulx] of degree[log O(D)]. Then we carry out a
division of f(x) by the polynomialy(z) and compute the remaindefx) € R[x]. Our algorithm declares
f to be identically zero if and only if(z) = 0. Notice that we will use the structure of the circuit to carry
out the division. At each gate we carry out the division. Mprecisely, if the inputs of & gate are the
remainders+ (z) andry(z), then the output of thig- gate isr; + ro. Similarly if 1 andr, are the inputs of
ax gate, then we divide; (z)r2(x) by ¢(z) and obtain the remainder as its output. Crucially, sigce is
a monic polynomial, the division algorithm will make sense g@roduce unique remainder everfifz] is
not a U.F.D (which is the case in general).

We now describe the pseudocode of the identity testing idfgor(Algorithm 2). Our algorithm takes
as input an arithmetic circu®’ computing a polynomiaf € R[z1, 2, - - ,x,] of degree at most and an
e > 0.

We will now prove the correctness of the above randomizentityetest in Lemmas 6.3, 6.4, and 6.5.

Lemma 6.3 Let R be a local commutative ring with unity and of characterigtft for some primep and
integera > 0. Letg be a nonzero polynomial ik[z] such thatgy € p*R[z] \ p**'R[z] for k < a. Let

INotice that we have to compute using the ring oracle for addition iR. Starting withe, we need to add it times. The
running time for this computation can be made polynomialoigic by writing ¢ in binary and applying the standard doubling
algorithm.

17

Algorithm 2 The Identity Testing algorithm
1: procedurel dentityTesti ng(C,e)
2: fori =1,ndo

3: z; o)t > Univariate transformation
4 end for

5: g(z) — C(m, 2@t ... pd+)"

6: D «—d(d+1)"L. > The formal degree of(x) is at mostD

7: Choose a monic polynomia{(x) € U[z] of degreeflog 227 uniformly at random.

8: Divide g(x) by ¢(x) and compute the remaindefz). > The division algorithm uses the structure

of the circuit.
o: if r(x) = 0then

10: C computes a zero polynomial.

11: else

12: C computes a nonzero polynomial.
13: end if

14: end procedure

I={reR|pr= 0}, g = p"g whereg ¢ pR andq is a monic polynomial ink[z]. If ¢ dividesg in R,
theng dividesg in R/(I + pR).

Proof. As ¢(x) dividesg(z) in R[x], we haveg(z) = q(x)qi(z) for some polynomialy (z) € R[z].
Suppose€j(z) = ¢(x)g(x)+r(x) in R[z] where the degree of x) is less than the degree @fx). Also note
that the division makes sense even over the ring(a$is monic. We want to show thatz) € (I +pR)|z].
We have the following relation if[x]:

9=aq =" =p"qq+p"r
So,p*r = q(q1 — p*q). If (¢1 — p*q) # 0 in R[z], then the degree of the polynomialg; — p*q)
is strictly more than the degree pfr asq is monic and degree af is more than the degree of Thus
(qq1 — p"qq) = 0 in R[z] forcing p*r = 0 in R[z]. So by the choice of, we haver(z) € I[z]. Thus
r(z) € (I + pR)[z]. Notice that in the Lemma 5.4, we have already proved gha} # 0 in S[z], where
S = R/(I + pR). Also q is nonzero inS[z] as it is a monic polynomial. Hence we have proved tffab
dividesg(x) overSz].]

The following lemma is basically chinese remainderingotaitl to our setting.

Lemma 6.4 Let R be a local ring with characteristip®. Letg(z) € p*R[z] \ p**! R[z] for somek > 0.
Letg(z) = p*g(z) andI = {r € R | pkr = 0}. Supposey (z), ¢2(x) are two monic polynomials over
RJx] such that each of them dividesn R[z]. Moreover, suppose there exist polynomials), b(z) € R[z]
such thatag; + bga = 1in R/(I + pR). Theng, ¢, dividesg in R/(I + pR).

Proof. By the Lemma 6.3, we know thai andg, divide § in R/(I + pR). Letj = 141 andj = ¢2>
in R/(f + pR). Letqi = go2q3 + 7 in R/(f + pR). S0,§ = q1q2q3 + q1r. Substitutingg.g» for g,
we getga(Gda — q1g3) = qir. Multiplying both side bya and substitutingug; (z) = 1 — bgo, we get
@la(@ — qigz) + br] = . If r £ 0in R/(I + pR), we arrive at a contradiction singg is monic and thus
the degree ofi2[a(g2 — g1g3) + br| is more than the degree of [

18

Let f(x) be a nonzero polynomial iR[z] of degree at mosD. The next lemma states that, if we pick
a random monic polynomiaj(z) € Ulz| (U is similarly defined as before)of degrée~ log O(D), with
high probability,q(z) will not divide f(x).

Lemma 6.5 Let R be a commutative ring with unity. Suppogér) € R[z] is a nonzero polynomial of
degree at mosD ande > 0 be a given constant. Choose a random monic polynogfia) of degree
1207 in U[z]. Then with probability at least—, g(z) will not divide f(z) over R[xz].2

Proof. Let R = P, R; is the local ring decomposition @. As f is nonzero inRk[z], there existg such
that f; = gzbj(f) is nonzero ink;[z]. Clearly, we can lower bound the required probability byghebability
thatg; = qu() does not dividef; in R;[z]. Let the characteristic aR; is p®. If ¢; divides f; in R;[z],
then it also divides oveR;/(I; + pR;). Itis shown in the proof of the Lemma58, C R;/(I; +pR).

Now the number of irreducible polynomials), of degreed is at Ieast’i Lett = %‘W Let

j(z) = ZZ: bix' + 2¢ € F,[z] be a monic polynomial. Now if a monic polynomlﬁ?l(:n) of degreed is
d—1

randomly chosen fror/[z] then, ProbP(z) = G(x) modp] = L= L(% P/l 41 (1= 37)% Again,

choosingM > d2™*! /e, we get ProbP(z) = (x) modp] > (1 — ¢/2)/p?.

So, the probability thag; is an irreducible polynomial if¥,[z] is at leastt(1 — €)/p? > (1 — €)/2d.
Let f; € p"R;[z] \ p" ! R;[z]. So we can writef; = p* f, Wheref’ € R;[z] \ pR;[z]. By the Lemma 6.3,
g; divides f’in R/(I; + pR). Also, by the Lemma 6.4, the number of different monic polyials that are
irreducible inF,, and dividesf’ in RJ/(+ pR;) is at mostD/d In the sample space fagr, any monic
polynomial of degreel in R;/(I; + pR;) occurs at mos¢M + 1)4 times. So the probability that a random

monic irreducible polynomiad will divide f is at most% < Cl]%(l + 1)? < 25 So arandom
monic polynomialg € U[z] (Which is irreducible inF, with reasonable probability) will not dividé(x)

with probability at least; ¢ — 32 > 1=¢ 12D 281, n

The correctness of Algorithm 2 and its success probabitiypdv directly from Lemma 6.3, Lemma 6.4
and Lemma 6.5.

In particular, by Lemma 6.5, the success probability of ogo@dthm is at Ieast%, wheret =
[log $227. As =< is an inverse polynomial quantity in input size and the ranited algorithm has one-
sided error, We can boost the success probability by repe#te test polynomially many times. We sum-

marize the result in the following theorem.

Theorem 6.6 Let R be a finite commutative ring with unity given as an oracle gnd R|x| be a polyno-
mial, given as an arithmetic circuit. Then in randomizedetipolynomial in the circuit size andg |R| we
can test whethef = 0 in R[z].

Randomized polynomial time identity testing for multiate polynomialsf € R[x1, - , x,] given by
arithmetic circuits follows from Theorem 6.6 and Lemma 6.2.

Theorem 6.7 Let R be a commutative ring with unity given as an oracle. lfebe a polynomial in
R[zy,x9,- -+ ,x,] Of formal degree at most, is given by an arithmetic circuit oveR. Then in randomized
time polynomial in circuit size ankbg | R| we can test whethef = 0in R[x1,x2, - , x,].

2An alternative proof of this lemma based on [AB03, Lemma & Zjiven in the appendix.

19

Remark 6.8 The randomized polynomial-time identity test of Bogdamal/\&ee [BWO05] for noncommuta-
tive circuits of polynomially bounded degre€lifiz+, - - - , x,, } for a fieldF, can be extended to such circuits
over any commutative ring with unity, whereR is given by a ring oracle. This follows from the fact that
the Amitsur-Levitzki theorem is easily seen to hold eveheérring R{x1,--- ,z,}. The easy details are
given in the appendix.

Remark 6.9 Finally, we note that the results in Section 2 carry over withchanges to noncommuting
polynomials inR{z1,-- - , x,}, whereR is a commutative ring with unity given by a ring oracle.

7 Acknowledgements

We thank anonymous conference reviewers for their manyiiedpggestions.

References

[ABO3] M. AGRAWAL AND S. BiswAs. Primality and identity testing via Chinese remainderiAigACM.,
50(4):429-443, 2003.

[AL50] S.A AMITSUR AND J. LEVITZKI. Minimal Identities for algebrasn Proceedings of the American
Mathematical Societyyolume 1, pages 449-463, 1950.

[AM69] M.F. ATIYAH AND I.G. MACDONALD. Introduction to commutative algebrdddison-Wesley
Publishing Company. 969.

[AMO7] V. ARVIND AND P. MUKHOPADHYAY The Ideal Membership problem and Polynomial Identity
Testing.ECCC report TR0O7-092,007.

[BWO5] A. BOGDANOV AND H. WEE More on Noncommutative Polynomial Identity Testinkp Proc. of
the 20th Annual Conference on Computational Complepity,92-99, 2005.

[DS05] Z. DviR AND A. SHPILKA. Locally Decodable Codes with 2 queries and Polynomial titken
Testing for depth 3 circuitdn Proc. of the 37th annual ACM Sym. on Theory of computi2§05.

[GZ05] A. GIAMBRUNO AND M. ZAICEV. Polynomial Identities and Asymptotic Method&merican
Mathematical SocietyNol. 122, 2005.

[HU78] J.E. HopPCROFT ANDJ.D. ULLMAN Introduction to Automata Theory, Languages and Computa-
tion, Addison-Wesley1979.

[IKWO02] R. IMPAGLIAZZO, V. KABANETS AND A. WIGDERSON In search of an easy witness: Expo-
nential time vs. probabilistic polynomial timdournal of Computer and System Sciences 65p&ges
672-694, 2002.

[KIO3] V. KABANETS AND R. IMPAGLIAZZO. Derandomization of polynomial identity tests means prov-
ing circuit lower boundsin Proc. of the thirty-fifth annual ACM Sym. on Theory of contimg., pages
355-364, 2003.

[KS05] NEERAJKAYAL, NITIN SAXENA, On the Ring Isomorphism and Automorphism ProbletB&E
Conference on Computational Complexyl2, 2005.

20

[KSO7] N. KAYAL AND N. SAXENA. Polynomial Identity Testing for Depth 3 Circuit€omputational
Complexity, 16(2):115-138, 2007.

[Le92] H.W.LENSTRA JR. Algorithms in algebraic number theoBulletin of the AMS, 26(2), 211-244,
1992.

[Mc74] B R. MACDONALD. Finite Rings with IdentityMarcel Dekker, INC. New York1974.
[MR95] R. MOTWANI AND P. RAGHAVAN . Randomized AlgorithmsCambridge University Press1995.

[N91] N. NisAN. Lower bounds for non-commutative computatiémProc. of the 23rd annual ACM Sym.
on Theory of computingpages 410-418, 1991.

[BT88] M. BEN-OR AND P. TiwaRI. A Deterministic Algorithm For Sparse Multivariate Polyni@l In-
terpolation./n Proc. of the 20th annual ACM Sym. on Theory of computipages 301-309, 1988.

[RSO5] R. Rz AND A. SHPILKA. Deterministic polynomial identity testing in non commiiita models.
Computational Complexityl4(1):1-19, 2005.

[Sch80] AcoB T. SCHWARTZ. Fast Probabilistic algorithm for verification of polynahiidentities. J.
ACM., 27(4), pages 701-717, 1980.

[Str94] HOWARD STRAUBING. Finite automata, formal logic, and circuit complexiBrogress in Theoret-
ical Computer Scienc®irkhuser Boston Inc., Boston, MA, 1994.

[Zip79] R. ZIiPPEL Probabilistic algorithms for sparse polynomidls Proc. of the Int. Sym. on Symbolic
and Algebraic Computatiompages 216-226, 1979.

21

A Noncommutative identity testing over commutative coeffient rings

Here we extend the noncommutative identity testing of Bogdaand Wee [BWO05] to oveR{z1,- -+ ,z,}
whereR is an arbitrary commutative ring with unity. Our algorithea combination of Amitsur-Levitzki’s
theorem and the Theorem 6.7. We first briefly discuss the Amitsvitzki’s result tailored to our appli-
cation and the result of [BWO05]. Let/,(IF) be thek x k matrix algebra oveF. The following algebraic
lemma was the key result used in [BWO05].

Lemma A.1 [AL50, GZ05] My (F) does not satisfy any non-trivial polynomial identity of aeg< 2k.

Based on Lemma A.1, a noncommutative version of the Schyvidgpizel lemma ovef{zq, - ,x,}
is described in [BWO05]. We first give an intuitive descriptiof the identity testing algorithm in [BWO05].
Assumef € F{z1,--- ,z,} is of degreel and is given by an arithmetic circuit. Fixsuch that: > [d/2].
Consider a field extensidif of F such thaiF’| >> d. The idea is to evaluate the circuit on randénx &
matrices fromM/, (F’). We think each entry of the matrix as an indeterminate ana the k2 indeterminates
as commuting variables. So at the output of the circuit, weadex k matrix such that each of its entries
are polynomials in commuting variables. Lemma A.1 guaesiteatf = 0 in F{zy,--- ,x,} if and only
if each of thek? polynomials computed as the entries of the matrix at theutugpte, are identically zero.
Then we get a lower bound of the success probability via cotatine Schwartz-Zippel lemma.

We give a randomized polynomial time identity testing aidon over R{z1,- - - ,z,} whereR is any
finite commutative ring with unity and is given by a ring omcDur algorithm is based on the observation
that Lemma A.1 is valid ovefM/,(R). For the sake of completeness, we briefly discuss the protifeof
Lemma A.1 tailored taR. The following fact is the key in proving the Lemma A.1.

Fact A.2 [GZO05, page 7].et A be anF-algebra spanned by a sét overF. If the algebraA satisfies an
identity of degreé: in F{z,--- ,x,}, then it satisfies a multilinear identity of degreek.

We observe that the result of the Fact A.2 holds, evehlife an algebra oveR. Proof is analogous to
the proof of the Fact A.2. Following [GZ05, page 7], we calldymomial f multilinear if every variable
occurs with degree exactly one in every monomiaf of

Lemma A.3 Let A be anR-algebra such thatd satisfies an identity of degrée Then it satisfies a multi-
linear identity of degreé:.

Proof. The lemma follows from an identical argument to that in theopof Theorem 1.3.7 in [GZ05

Using Lemma A.3, it follows that Lemma A.1 extendsif),(R). The proof is analogous to the proof
of Theorem 1.7.2 in [GZO05]. Lef be an identity forM(R) of degree< 2k. By the Lemma A.3, we can
assume thaf is multilinear. Also, multiplyingf by the new variables from the right, we can assume that
the degree of is 2k — 1. Let,

(w1, @0, xop1) = Z QoZy(1) " To(2k—1)

0€Sok—1

with a; # 0, wherel denotes the identity permutation. L&t be thek x k matrix with unity (of R) at
the (2, j)-th entry and zero in all other entries. Itis easy to see fliat;, e12, €22, €23, - - , €x—1.k, €kk) =
aiey, # 0, sincexy - - - xo_1 IS the only monomial that does not vanish during the evadnatSof is not
an identity forM(R). The fact thatR is a ring with unity is crucially used.

22

Lemma A.4 Let R be a finite commutative ring with unity. Théd,(R) does not satisfy any polynomial
identity of degree< 2k.

Now we a randomized polynomial time identity testing algon overR{zy,-- ,z,}.

Theorem A5 Let f € R{xy,---,z,} be a polynomial of degre€ given by a noncommutative arithmetic
circuit C'. R is given as a ring oracle and its elements are encoded usimgristrings of lengthn. Then
there is a randomized polynomial time algorithpoly(n,d,m)) to test iff = 0 over R{x1, - , 2, }.

Proof. Letxy,zo,---,z, are the indeterminates ifi. Choosek = [d/2] + 1. Replace each; by a

k x k matrix over the set of indeterminatégj(.?}13—,@9. Once we replace; by matrices , the inputs and
the outputs of the gates will be matrices. Replace eachiaddinultiplication) gate by a block of circuits
computing the sum (product) of two x k& matrices (without loss of generality, assume that the faofi
all gates is two). This can be easily achieved uging?) gates. Lei’ be the arithmetic circuit obtained
from C by these modifications. Clearl§j computes a functlon fro™** — F** and the size of is only

polynomial in the size of’. Denote byY” the variable Ilsl(y11 o ,y,ik), . ,y§1>, e ,y,ik)). Then,
C(Y) = (Pi(Y),--- , Pe2(Y)),

Also, by the Lemma A.4).(R) does not satisfy any identity of degree2k over R{x1, - ,x,}. Sof
satisfiesM (R) if and only if f = 0in R{x1,--- ,z,}, which equivalently implies thaP;, = 0 over R[Y]

for all .. Notice that the degree @, is < d. Now we appeal to the Theorem 6.7 in order to test whether
P; = 0intime poly(n, d,m). [

Bogdanov and Wee in [BWO05] evaluate the noncommutativeuitiamver a field extensiofi”’ of I in
casell is a small field compared to the degree. In our proof of Theote® when coefficients come from
the ring R, we avoid working in a ring extension and instead apply Taen6.7.

B Alternative proof of Lemma 6.5

Let R be a finite commutative ring with unity (denotefland its elements uniformly encoded{ie, 1}™.

Recall we need to show the following: if we divide a nonzertypomial g(z) € R[z] of degreeD by
a random monic polynomial(z) € Ulz] of degreelog O(D) then with high probability we get a nonzero
remainder. Recall from Section 6 tHdt= {ke | 0 < k < M — 1}, whereM > 2™+! /e

Indeed, Agrawal and Biswas essentially show in [AB0O3, LeminTd that the above result holds for the
special case when the ring is the ringZ; of integers modula, wheret is any positive integer given in
binary. In Section 6 we gave a self-contained proof of Lemnga B the sequel we give a different proof
which applies the [AB03] result fa£; and brings out an interesting property of the division attaon.

Let n denote the characteristic of the riy Then sampling fronU/[x] amounts to almost uniform
sampling from the copy of,[z], namelyZ,e[z], contained ink[z] as a subring. SincéR,+) is a finite
abelian group, by the fundamental theorem for abelian growe can writg R, +) as a direct sunRk =
@le Zn,e;, Whereey, - - -, e;, forms an independent generating set(fBt +), andn; is the additive order
of e; for eachi. Notice that the Icm ofi1, - - - , ny, is the ring’s characteristia. This decomposition extends
naturally to the additive groufR[z], +) to give

Rlz] = €D Zn,[z]e:.)

Thus, every polynomial(xz) € R[z] can be uniquely written ag(xz) = > ._, gi(z)e;, whereg; is a
polynomial with integer coefficients in the ran@e -- ,n; — 1 for eachi. Clearly, dividingg(x) by ¢(z)
amounts to dividing each term in’,_, gi(z)e;. The following claim tells us how to analyze this term by
term division. More precisely, we analyze the quotient asmainder when we divide;(z)e; € R[z] by

q(x) € Zy[z] (& Zye[z] C R[z]).

Claim B.1 Letg;(x) = q(z)¢'(x) + r'(z) be the quotient and remainder when we diviger) by ¢(x) in
the ringZ,,, [z]. Letg;(z)e; = q(x)q¢" (=) + 7" (x) be the quotient and remainder when we divigler)e; by
q(x) in the ring R[z]. Theng'(z)e; = ¢"(x) andr’(z)e; = r"(z).

This claim is somewhat surprising because Equation 2 onlysgiis groupdecomposition of?[x] and not
aring decomposition. Thus, it is not clear why division in the rifig [z] can be related to division iR[x].
Indeed, the crucial reason why we can relate the two divisisiecause the divisor polynomigk:) lives
in the copy ofZ,,[x] inside R[z].

To see the claim, we will carry out the division @f(z) by ¢(z) over R[z]. Since bothy; andg(x) have
integer coefficients, this amounts to carrying out divisioiZ,, [x] which yields, sayg;(z) = ¢(x)q1(z) +
r1(z). We can also write; (x) = a(x) +n;b(x) andri(x) = ¢(x) +n;d(x). Then, ovefZ,,, notice that we
must havey; (z) = q(x)a(z)+c(x). Thereforea(x) = ¢'(x) ande(z) = /(). Now, multiplying both sides
by e; we will getqi(x)e; = a(x)e; + nieib(x) = a(x)e; = ¢'(x)e;. Similarly, we getr; (z)e; = c(x)e; =
r’'(x)e;. Furthermore, again multiplying both sides by we also gety;(z)e; = q(z)q1(z)e; + ri(x)e;
Henceq”(z) = q1(x)e; = ¢'(x)e; andr”(z) = ri(x)e; = r/(z)e;. This proves the claim.

A consequence of the claim is the following nice propertyhaf division algorithm: in order to divide
g(z) by q(z) over the ringR, for eachi we can carry out the division @f(x) by ¢(x) over the ringZ,,, and
obtain the quotients and remainders:

gi(x) = q(x)qi(x) + ri(x).

Then we can put together the term by term divisions to obtain

k
g(z) = Q(w)(z gi(z)e) + (Y rilz)e). (3)

More precisely, when we dividg(z) by ¢(x) in R[z], the quotient iszle ¢;(x)e; and the remainder is
SF ri(x)e;. Now, sinceg € R[z] is nonzero, there is an indgxsuch thatg;[z] € Zn,[x] is nonzero.

Furthermore, since; is a factor ofr, the polynomial(2) modulon; is still an almost uniformly distributed
random monic polynomial. It follows from the Agrawal-Bissvaesult [ABO3, Lemma 4.7] applied to

division of g;(z) by q(z) over Z,,; that r’() will be nonzero with high probability. Consequently, by

Equation 3 the remamd@z L ri(x)e; on dividing g(z) by ¢(x) in the ring R[z] is also nonzero with the
same probability.

24

ECCC ISSN 1433-809
http://eccc.hpi-web.de/

