
New results on Noncommutative and Commutative Polynomial
Identity Testing

V. Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan
Institute of Mathematical Sciences

C.I.T Campus,Chennai 600 113, India
{arvind,partham,srikanth}@imsc.res.in

Abstract

Using ideas from automata theory we design a new efficient (deterministic) identity test for the
noncommutativepolynomial identity testing problem (first introduced and studied in [RS05, BW05]).
More precisely, given as input a noncommutative circuitC(x1, · · · , xn) computing a polynomial in
F{x1, · · · , xn} of degreed with at mostt monomials, where the variablesxi are noncommuting, we give
a deterministic polynomial identity test that checks ifC ≡ 0 and runs in time polynomial ind, n, |C|,
andt.

The same methods works in a black-box setting: Given a noncommuting black-box polynomialf ∈
F{x1, · · · , xn} of degreed with t monomials we can, in fact, reconstruct the entire polynomial f in time
polynomial inn, d andt. Indeed, we apply this idea to the reconstruction of black-box noncommuting
algebraic branching programs (the ABPs considered by Nisanin [N91] and Raz-Shpilka in [RS05]).
Assuming that the black-box model allows us to query the ABP for the output at any given gate then we
can reconstruct an (equivalent) ABP in deterministic polynomial time.

Finally, we turn to commutative identity testing and explore the complexity of the problem when the
coefficients of the input polynomial come from an arbitrary finite commutative ring with unity whose
elements are uniformly encoded as strings and the ring operations are given by an oracle. We show
that several algorithmic results for polynomial identity testing over fields also hold when the coefficients
come from such finite rings.

1 Introduction

Polynomial identity testing (denotedPIT) over fields is a well studied algorithmic problem: given an arith-
metic circuitC computing a polynomial inF[x1, x2, · · · , xn] over a fieldF, the problem is to determine
whether the polynomial computed byC is identically zero. The problem is also studied when the input
polynomialf is given only via black-box access. I.e. we can evaluate it atany point inFn or in F′n for a
field extensionF′ of F. Whenf is given by a circuit the problem is in randomized polynomialtime. Even
in the black-box setting, when|F| is suitably larger thandeg(f), the problem is in randomized polynomial
time. A major challenge it to obtain deterministic polynomial time algorithms even for restricted versions
of the problem. The results of Impagliazzo and Kabanets [KI03] show that the problem is as hard as prov-
ing superpolynomial circuit lower bounds. Indeed, the problem remains open even for depth-3 arithmetic
circuits with an unboundedΣ gate as output [DS05, KS07].

As shown by Nisan [N91] noncommutative algebraic computation is somewhat easier to prove lower
bounds. Using a rank argument Nisan has shown exponential size lower bounds for noncommutative for-
mulas (and noncommutative algebraic branching programs) that compute the noncommutative permanent or

1

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 25 (2008)

ISSN 1433-8092

determinant polynomials in the ringF{x1, · · · , xn} wherexi are noncommuting variables. Thus, it seems
plausible that identity testing in the noncommutative setting ought to be easier too. Indeed, Raz and Shpilka
in [RS05] have shown that that for noncommutative formulas (and algebraic branching programs) there is
a deterministic polynomial time algorithm for polynomial identity testing. However, for noncommutative
circuits the situation is somewhat different. Bogdanov andWee in [BW05] show using Amitsur-Levitzki’s
theorem that identity testing forpolynomial degreenoncommutative circuits is in randomized polynomial
time. Basically, the Amitsur-Levitzki theorem allows themto randomly assign elements from a matrix
algebraMk(F) for the noncommuting variablesxi, where2k exceeds the degree of the circuit.

The main contribution of this paper is the use of ideas fromautomata theoryto design new efficient
(deterministic) polynomial identity tests fornoncommutativepolynomials. More precisely, given a noncom-
mutative circuitC(x1, · · · , xn) computing a polynomial of degreed with t monomials inF{x1, · · · , xn},
where the variablesxi are noncommuting, we give a deterministic polynomial identity test that checks if
C ≡ 0 and runs in time polynomial ind, |C|, n, andt. The main idea in our algorithm is to think of the
noncommuting monomials over thexi as words and to design finite automata that allow us to distinguish
between different words. Then, using the connection between automata, monoids and matrix rings we are
able to deterministically choose a relatively small numberof matrix assignments for the noncommuting
variables to decide ifC ≡ 0. Thus, we are able to avoid using the Amitsur-Levitzki theorem. Indeed, using
our automata theory method we can easily an alternative proof of (a weaker) version of Amitsur-Levitzki
which is good enough for algorithmic purposes as in [BW05] for example.

Our method actually works in a black-box setting. In fact, given a noncommuting black-box polynomial
f ∈ F{x1, · · · , xn} of degreed with t monomials, which we can evaluate by assigning matrices toxi, we
can reconstruct the entire polynomialf in time polynomial inn, d andt.

Furthermore, we also apply this idea toblack-boxnoncommuting algebraic branching programs. We
extend the result of Raz and Shpilka [RS05] by giving an efficient deterministic reconstruction algorithm for
black-box noncommuting algebraic branching programs (wherein we are allowed to only query the ABP for
input variables set to matrices of polynomial dimension). Our black-box model assumes that we can query
for the output ofany gateof the ABP, not just the output gate.

We now motivate and explain the other results in the paper. Recently, in [AM07] we studiedPIT (the
usual commuting variables setting) and its connection to the polynomial ideal membership problem. Al-
though ideal membership is EXPSPACE-complete, there is an interesting similarity between the two prob-
lems which is the motivation for the present paper. SupposeI ⊂ F[x1, · · · , xn] is an ideal generated by
polynomialsg1, · · · , gr ∈ F[x1, · · · , xk] andf ∈ F[x1, · · · , xn]. We observe thatf ∈ I if and only if f is
identically zero in the ringF[x1, · · · , xk]/I[xk+1, · · · , xn]. Thus, ideal membership is easily reducible to
polynomial identity testing when the coefficient ring isF[x1, · · · , xk]/I. Consequently, identity testing for
the coefficient ringF[x1, · · · , xk]/I is EXPSPACE-hard even when the polynomialf is given explicitly as
a linear combination of monomials.

This raises the question about the complexity ofPIT for a polynomial ringR[x1, · · · , xn] whereR is a
commutative ring with unity. How does the complexity dependon the structure of the ringR? We give a
precise answer to this question in this paper. We show that the algebraic structure ofR is not important. It
suffices that the elements ofR have polynomial-size encoding, and w.r.t. this encoding the ring operations
can be efficiently performed. This is in contrast to the ringF[x1, · · · , xk]/I: we have double exponential
number of elements of polynomial degree inF[x1, · · · , xk] and the ring operations inF[x1, · · · , xk]/I are
essentially ideal membership questions and hence computationally hard.

More precisely, we study polynomial identity testing forfinite commutative ringsR, where we assume
that the elements ofR are uniformly encoded as strings in{0, 1}m with two special strings encoding0 and

2

1, and the ring operations are carried out by queries to thering oracle.

1.1 Organization

The paper is organized as follows. In Section 2, we study the identity testing problem for the noncommu-
tative circuits computing sparse and small degree polynomial. We also show an interpolation algorithm for
such polynomials in the black-box setting. In Section 3, we show an interpolation algorithm for algebraic
branching programs (ABP). In Section 4, we discuss the consequence of the derandomization of identity
testing in the noncommutative model. Section 5 onwards, we discuss commutative identity testing over
finite rings. In Section 5, we prove an analogue of Schwartz-Zippel Lemma for finite commutative rings
with unity. The results for commutative identity testing (both in the black box model and circuit model) are
given in the section 6.

2 Noncommutative Polynomial Identity Testing

Recall that anarithmetic circuitC over a fieldF is defined as follows:C takes as inputs, a set of indeter-
minates (either commuting or noncommuting) and elements from F as scalars. Iff, g are the inputs of an
addition gate, then the output will bef + g. Similarly for a multiplication gate the output will befg. For
noncommuting variables the circuit respect the order of multiplication. An arithmetic circuit is a formula if
the fan-out of every gate is at most one.

Noncommutative identity testing was studied by Raz and Shpilka in [RS05] and Bogdanov and Wee in
[BW05]. In the Bogdanov-Wee paper, they considered a polynomial f of small degree overF{x1, · · · , xn},
for a fieldF, given by an arithmetic circuit. They were able to give a randomized polynomial time algorithm
for the identity testing off . The key feature of their algorithm was a reduction from noncommutative identity
testing to commutative identity testing which is based on a classic theorem of Amitsur and Levitzki [AL50]
about minimal identities for algebras.

Raz and Shpilka [RS05] give a deterministic polynomial-time algorithm for noncommutative formula
identity testing by first converting a homogeneous formula into a noncommutative algebraic branching pro-
gram (ABP), as done in [N91].

In this section we study the noncommutative polynomial identity testing problem. Using simple ideas
from automata theory, we design a new deterministic identity test that runs in polynomial time if the input
circuit is sparse and of small degree. Our algorithm works with only black-box access to the noncommuting
polynomial, and we can even efficiently reconstruct the polynomial.

We will first describe the algorithm to test if a sparse polynomial of polynomial degree over noncom-
muting variables is identically zero. Then we give an algorithm that reconstructs this sparse polynomial.
Though the latter result subsumes the former, for clarity ofexposition, we describe both. Furthermore, we
note that we can assume that the polynomial is given as an arithmetic circuit over a fieldF.

In the case of commuting variables, [BT88] gives an interpolation algorithm that computes the given
sparse polynomial, and thus can be used for identity testing. It is not clear how to generalize this algorithm
to the noncommutative setting. Our identity testing algorithm evaluates the given polynomial at specific,
well-chosen points in a matrix algebra (of polynomial dimension over the base field), such that any non-zero
sparse polynomial is guaranteed to evaluate to a non-zero matrix at one of these points. The reconstruction
algorithm uses the above identity testing algorithm as a subroutine in a prefix-based search to find all the
monomials and their coefficients.

3

We now describe the identity testing algorithm informally.Our idea is to view each monomial as a
short binary string. A sparse polynomial, hence, is given bya polynomial number of such strings (and the
coefficients of the corresponding monomials). The algorithm proceeds in two steps; in the first step, we
construct a small set of finite automata such that, given any small collection of short binary strings, at least
one automaton from the set accepts exactly one string from this collection; in the second step, for each of the
automata constructed, we construct a tuple of points over a matrix algebra overF such that the evaluation of
any monomial at the tuple ‘mimics’ the run of the corresponding string on the automaton. Now, given any
non-zero polynomialf of small degree with few terms, we are guaranteed to have constructed an automaton
A ‘isolating’ a string from the collection of strings corresponding to monomials inf . We then show that
evaluatingf over the tuple corresponding toA gives us a non-zero output: hence, we can concludef is
non-zero. We now describe both algorithms formally.

2.1 Preliminaries

We first recall some standard automata theory notation (see,for example, [HU78]). Fix a finite automaton
A = (Q, δ, q0, qf) which takes as input strings in{0, 1}∗. Q is the set of states ofA, δ : Q × {0, 1} → Q
is the transition function, andq0 andqf are the initial and final states respectively (throughout, we only
consider automata with unique accepting states). For each letterb ∈ {0, 1}, let δb : Q→ Q be the function
defined by:δb(q) = δ(q, b). These functions generate a submonoid of the monoid of all functions fromQ
to Q. This is the transition monoid of the automatonA and is well-studied in automata theory: for example,
see [Str94, page 55]. We now define the0-1 matrixMb ∈ F|Q|×|Q| as follows:

Mb(q, q
′) =

{

1 if δb(q) = q′,
0 otherwise.

The matrixMb is simply the adjacency matrix of the graph of the functionδb. As the entries ofMb are
only zeros and ones, we can considerMb to be a matrix over any fieldF.

Furthermore, for anyw = w1w2 · · ·wk ∈ {0, 1}
∗ we define the matrixMw to be the matrix product

Mw1
Mw2

· · ·Mwk
. If w is the empty string, defineMw to be the identity matrix of dimension|Q| × |Q|.

For a stringw, let δw denote the natural extension of the transition function tow; if w is the empty string,
δw is simply the identity function. It is easy to check that:

Mw(q, q′) =

{

1 if δw(q) = q′,
0 otherwise.

(1)

Thus,Mw is also a matrix of zeros and ones for any stringw. Also, Mw(q0, qf) = 1 if and only if w is
accepted by the automatonA.

2.2 The output of a circuit on an automaton

Now, we consider the ringF{x1, · · · , xn} of polynomials with noncommuting variablesx1, · · · , xn over a
field F. Let C be a noncommutative arithmetic circuit computing a polynomial f ∈ F{x1, · · · , xn}. Let
d be an upper bound on the degree off . We can consider monomials over the noncommuting variables
x1, · · · , xn as strings over an alphabet of sizen. For our construction in Section 2.3, it is convenient
to encode the variablesxi in the alphabet{0, 1}. We do this by encoding the variablexi by the string
vi = 01i0, which is basically a unary encoding with delimiters. Clearly, each monomial over thexi’s of
degree at mostd maps uniquely to a binary string of length at mostd(n + 2).

4

Let A = (Q, δ, q0, qf) be a finite automaton over the alphabet{0, 1}. With respect to automatonA we
have matricesMvi ∈ F|Q|×|Q| as defined in Section 2.1, where eachvi is the binary string that encodes
xi. We are interested in the output matrix obtained when the inputsxi to the circuitC are replaced by the
matricesMvi . This output matrix is defined in the obvious way: the inputs are |Q|× |Q|matrices and we do
matrix addition and matrix multiplication at each addition(resp. multiplication) of the circuitC. We define
theoutput ofC on the automatonA to be this output matrixMout. Clearly, given circuitC and automaton
A, the matrixMout can be computed in time poly(|C|, |A|, n).

We observe the following property: the matrix outputMout of C onA is determined completely by the
polynomialf computed byC; the structure of the circuitC is otherwise irrelevant. This is important for us,
since we are only interested inf . In particular, the output is always0 whenf ≡ 0.

More specifically, consider what happens whenC computes a polynomial with a single term, say
f(x1, · · · , xn) = cxj1 · · · xjk

, with a non-zero coefficientc ∈ F. In this case, the output matrixMout

is clearly the matrixcMvj1
· · ·Mvjk

= cMw, wherew = vj1 · · · vjk
is the binary string representing the

monomialxj1 · · · xjk
. Thus, by Equation 1 above, we see that the entryMout(q0, qf) is 0 whenA rejects

w, andc whenA acceptsw. In general, supposeC computes a polynomialf =
∑t

i=1 cimi with t nonzero
terms, whereci ∈ F \ {0} andmi =

∏di
j=1 xij , wheredi ≤ d. Let wi = vi1 · · · vidi

denote the binary string

representing monomialmi. Finally, letSf
A = {i ∈ {1, · · · , t} | A acceptswi}.

Theorem 2.1 Given any arithmetic circuitC computing polynomialf ∈ F{x1, · · · , xn} and any finite
automatonA = (Q, δ, q0, qf), then the outputMout of C onA is such thatMout(q0, qf) =

∑

i∈Sf
A

ci.

Proof. The proof is an easy consequence of the definitions and the properties of the matricesMw stated
in Section 2.1. Note thatMout = f(Mv1

, · · · ,Mvn). But f(Mv1
, · · · ,Mvn) =

∑s
i=1 ciMwi , where

wi = vi1 · · · vidi
is the binary string representing monomialmi. By Equation 1, we know thatMwi(q0, qf)

is 1 if wi is accepted byA, and0 otherwise. Adding up, we obtain the result.

We now explain the role of the automatonA in testing if the polynomialf computed byC is identically
zero or not. Our basic idea is to try and design an automatonA that accepts exactly one word from among all
the words that correspond to the non-zero terms inf . This would ensure thatMout(q0, qf) is the non-zero
coefficient of the monomial filtered out. More precisely, we will use the above theorem primarily in the
following form, which we state as a corollary.

Corollary 2.2 Given any arithmetic circuitC computing polynomialf ∈ F{x1, · · · , xn} and any finite
automatonA = (Q, δ, q0, qf), then the outputMout of C onA satisfies:

(1) If A rejects every string corresponding to a monomial inf , thenMout(q0, qf) = 0.

(2) If A accepts exactly one string corresponding to a monomial inf , thenMout(q0, qf) is the nonzero
coefficient of that monomial inf .

Moreover,Mout can be computed in timepoly(|C|, |A|, n).

Proof. Both points (1) and (2) are immediate consequences of the above theorem. The complexity of
computingMout easily follows from its definition.

Another interesting corollary to the above theorem is the following.

5

Corollary 2.3 Given any arithmetic circuitC overF{x1, · · · , xn}, and any monomialm of degreedm, we
can compute the coefficient ofm in C in timepoly(|C|, dm, n).

Proof. Apply Corollary 2.2 withA being any standard automaton that accepts the string corresponding to
monomialm and rejects every other string. Clearly,A can be chosen so thatA has a unique accepting state
and|A| = O(ndm).

Remark 2.4 Observe that Corollary 2.3 is highly unlikely to hold in the commutative settingF[x1, · · · , xn].
For, in the commutative case, computing the coefficient of the monomialx1 · · · xn in even an arbitrary
product of linear formsΠi`i is at least as hard as the permanent problem overF, which is#P-complete
whenF = Q.

Remark 2.5 Corollary 2.2 can also be used to give an independent proof ofa weaker form of the result of
Amitsur and Levitzki that is stated in Lemma A.4. In particular, it is easy to see that the algebraMd(F) of
d× d matrices over the fieldF does not satisfy any nontrivial identity of degree< d. To prove this, we will
consider noncommuting monomials as strings directly over the n letter alphabet{x1, · · · , xn}. Suppose
f =

∑t
i=1 cimi ∈ F{x1, · · · , xn} is a nonzero polynomial of degree< d. Clearly, we can construct an

automatonB over the alphabet{x1, · · · , xn} that accepts exactly one string, namely one nonzero monomial,
saymi0, of f and rejects all the other strings over{x1, · · · , xn}. Also,B can be constructed with at mostd
states. Now, consider the outputMout of any circuit computingf onB. By Corollary 2.2 the output matrix
is non-zero, and this proves the result.

2.3 Construction of finite automata

We begin with a useful definition.

Definition 2.6 LetW be a finite set of binary strings andA be a finite family of finite automata over the
binary alphabet{0, 1}.

• We say thatA is isolatingfor W if there exists a stringw ∈W and an automatonA ∈ A such thatA
acceptsw and rejects allw′ ∈W \ {w}.

• We say thatA is an(m, s)-isolating familyif for every subsetW = {w1, · · · , ws} of s many binary
strings, each of length at mostm, there is aA ∈ A such thatA is isolating forW .

Fix parametersm, s ∈ N. Our first aim is to construct an(m, s) isolating family of automataA, where
both |A| and the size of each automaton inA is polynomially bounded in size. Then, combined with
Corollary 2.2 we will be able to obtain deterministic identity testing and interpolation algorithms in the
sequel.

Recall that we only deal with finite automata that have uniqueaccepting states. In what follows, for a
stringw ∈ {0, 1}∗, we denote bynw the positive integer represented by the binary numeral1w. For each
primep and each integeri ∈ {0, · · · , p− 1}, we can easily construct an automatonAp,i that accepts exactly
thosew such thatnw ≡ i (modp). Moreover,Ap,i can be constructed so as to havep states and exactly one
final state.

Our collection of automataA is just the set ofAp,i wherep runs over the first few polynomially many
primes, andi ∈ {0, · · · , p − 1}. Formally, letN denote(m + 2)

(

s
2

)

+ 1; A is the collection ofAp,i,

6

wherep runs over the firstN primes andi ∈ {0, · · · , p − 1}. Notice that, by the prime number theorem,
all the primes chosen above are bounded in value byN2, which is clearly polynomial inm ands. Hence,
|A| = poly(m, s), and eachA ∈ A is bounded in size by poly(m, s). In the following lemma we show that
A is an(m, s)-isolating automata family.

Lemma 2.7 The family of finite automataA defined as above is an(m, s)-isolating automata family.

Proof. Consider any set ofs binary stringsW of length at mostm each. By the construction ofA, Ap,i ∈ A
isolatesW if and only ifp does not dividenwj−nwk

for somej and allk 6= j, andnwj ≡ i (modp). Clearly,
if p satisfies the first of these conditions,i can easily be chosen so that the second condition is satisfied. We
will show that there is some prime among the firstN primes that does not divideP =

∏

j 6=k(nwj − nwk
).

This easily follows from the fact that the number of distinctprime divisors ofP is at mostlog |P |, which is
clearly bounded by(m + 2)

(s
2

)

= N − 1. This concludes the proof.

We note that the above(m, s)-isolating familyA can clearly be constructed in time poly(m, s).

2.4 The identity testing algorithm

We now describe the identity testing algorithm. LetC be the input circuit computing a polynomialf over
F{x1, · · · , xn}. Let t be an upper bound on the number of monomials inf , andd be an upper bound on the
degree off . As in Section 2.2, we represent monomials overx1, · · · , xn as binary strings. Every monomial
in f is represented by a string of length at mostd(n + 2).

Our algorithm proceeds as follows: Using the construction of Section 2.3, we compute a familyA of
automata such thatA is isolating for any setW with at mostt strings of length at mostd(n + 2) each. For
eachA ∈ A, the algorithm computes the outputMout of C onA. If Mout 6= 0 for anyA, then the algorithm
concludes that the polynomial computed by the input circuitis not identically zero; otherwise, the algorithm
declares that the polynomial is identically zero.

The correctness of the above algorithm is almost immediate from Corollary 2.2. If the polynomial is
identically zero, it is easy to see that the algorithm outputs the correct answer. If the polynomial is nonzero,
then by the construction ofA, we know that there existsA ∈ A such thatA accepts precisely one of the
strings corresponding to the monomials inf . Then, by Corollary 2.2, the output ofC on A is nonzero.
Hence, the algorithm correctly deduces that the polynomialcomputed is not identically zero.

As for the running time of the algorithm, it is easy to see thatthe family of automataA can be constructed
in time poly(d, n, t). Also, the matricesMvi for eachA (all of which are of size poly(d, n, t)) can be
constructed in polynomial time. Hence, the entire algorithm runs in time poly(|C|, d, n, t). We have proved
the following theorem:

Theorem 2.8 Given any arithmetic circuitC with the promise thatC computes a polynomialf ∈
F{x1, · · · , xn} of degreed with at mostt monomials, we can check, in timepoly(|C|, d, n, t), if f is identi-
cally zero. In particular, iff is sparse and of polynomial degree, then we have a deterministic polynomial
time algorithm.

In the case of arbitrary noncommutative arithmetic circuits, [BW05] gives a randomized exponential
time algorithm for the identity testing problem. Their algorithm is based on the Amitsur-Levitzki theorem,
which forces the identity test to randomly assign exponential size matrices for the noncommuting variables
since the circuit could compute an exponential degree polynomial. However, notice that Theorem 2.8 gives
a deterministic exponential-time algorithm under the additional restriction that the input circuit computes

7

a polynomial with at mostexponentiallymany monomials. In general, a polynomial of exponential degree
can have a double exponential number of terms.

2.5 Interpolation of noncommutative polynomials

We now describe an algorithm that efficiently computes the noncommutative polynomial given by the input
circuit. LetC, f, t andd be as in Section 2.4. LetW denote the set of all strings corresponding to monomials
with non-zero coefficients inf . For all binary stringsw, let Aw denote any standard automaton that accepts
w and rejects all other strings. For any automatonA and stringw, we let [A]w denote the automaton that
accepts those strings that are accepted byA and in addition, containw as a prefix. For a set of finite automata
A, let [A]w denote the set{[A]w | A ∈ A}.

We now describe a subroutineTest that takes as input an arithmetic circuitC and a set of finite automata
A and returns a field elementα ∈ F. The subroutineTest will have the following properties:

(P1) IfA is isolating forW , the set of strings corresponding to monomials inf , thenα 6= 0.

(P2) In the special case when|A| = 1, and the above holds, thenα is in fact the coefficient of the isolated
monomial.

(P3) If noA ∈ A accepts any string inW , thenα = 0.

We now give the easy description ofTest(C,A):
For eachA ∈ A, the subroutineTest computes the output matrixMA

out of C on A. If there is an
A ∈ A such thatMA

out(q
A
0 , qA

f) 6= 0, then for the first such automatonA ∈ A, Test returns the scalar

α = MA
out(q

A
0 , qA

f). Here, notice thatqA
0 , qA

f denote the initial and final states of the automatonA. If there
is no such automatonA ∈ A is found, then the subroutine returns the scalar0.

It follows directly from Corollary 2.2 thatTest has Properties (P1)-(P3). Furthermore, clearlyTest
runs in time poly(|C|, ||A||), where||A|| denotes the sum of the sizes of the automata inA.

Let f ∈ F{x1, · · · , xn} denote the noncommuting polynomial computed by the input circuit C. We
now describe a recursive prefix-search based algorithmInterpolate that takes as input the circuitC and
a binary stringu, and computes all those monomials off (along with their coefficients) which containu
as a prefix when encoded as strings using our encodingxi 7→ vi = 01i0. Clearly, in order to obtain all
monomials off with their coefficients, it suffices to run this algorithm with u = ε, the empty string.

In what follows, letA0 denote the(m, s)-isolating automata family{Ap,i} as constructed in Section
2.3 with parametersm = d(n + 2) ands = t. As explained in Section 2.3, we can computeA0 in time
poly(d, n, t).

Supposef is the polynomial computed by the circuitC. We now describe the algorithm
Interpolate(C,u) formally (Algorithm 1).

The correctness of this algorithm is clear from the correctness of theTest subroutine and Lemma 2.7.
To bound the running time, note that the algorithm never calls Interpolate on a stringu unlessu is the
prefix of some string corresponding to a monomial. Hence, thealgorithm invokesInterpolate for at most
O(td(n + 2)) many prefixesu. Since||[A0]u0|| and|Au| are both bounded by poly(d, n, t) for all prefixes
u, it follows that the running time of the algorithm is poly(|C|, d, n, t). We summarize this discussion in the
following theorem.

Theorem 2.9 Given any arithmetic circuitC computing a polynomialf ∈ F{x1, · · · , xn} of degree at
mostd and with at mostt monomials, we can compute all the monomials off , and their coefficients, in time

8

Algorithm 1 The Interpolation algorithm
1: procedureInterpolate(C,u)
2: α,α′, α′′ ← 0.
3: α← Test(C, {Au}) . Au is the standard automaton that accepts onlyu
4: if α = 0 then
5: Break. . u can not corresponds to a monomial off
6: else
7: Output (u, α). . u is the binary encoding of a monomial off with coefficientα
8: end if

Now the algorithm find all monomials (along with their coefficient)
containingu0 or u1 as prefix in the binary encoding.

9: if |u| = d(n + 2) then
10: Stop.
11: else
12: α′ ←Test(C, [A0]u0), α′′ ←Test(C, [A0]u1).
13: end if
14: if α′ 6= 0 then
15: Interpolate(C, u0). . There is some monomial inC extendingu0
16: end if
17: if α′′ 6= 0 then
18: Interpolate(C, u1). . There is some monomial inC extendingu1
19: end if
20: end procedure

9

poly(|C|, d, n, t). In particular, if C computes a sparse polynomialf of polynomial degree, thenf can be
reconstructed in polynomial time.

3 Interpolation of Algebraic Branching Programs over noncommuting vari-
ables

In this section, we study the interpolation problem for black-box Algebraic Branching Programs (ABP)
computing a polynomial in the noncommutative ringF{x1, · · · , xn}. We are given as input an ABP (defined
below)P in the black-box setting, and our task is to output an ABPP ′ that computes the same polynomial
asP . To make the task feasible in the black-box setting, we assume that we are allowed to evaluateP at any
of its intermediate gates.

We first observe that all the results in Section 2 hold under the assumption that the input polynomialf
is allowed onlyblack-box access. In the noncommutative setting, we shall assume that the black-box access
allows the polynomial to be evaluated for input values from an arbitrary matrix algebra over the base field
F. It is implicit here that the cost of evaluation is polynomial in the dimension of the matrices. Note that
this is a reasonable noncommutative black-box model, because if we can evaluatef only overF or any
commutative extension ofF, then we cannot distinguish the non-commutative polynomial represented byf
from the corresponding commutative polynomial. We state the black-box version of our results below.

Theorem 3.1 (Similar to Theorem 2.1)Given black-box access to any polynomialf =
∑t

i=1 cimi ∈
F{x1, · · · , xn} and any finite automatonA = (Q, δ, q0, qf), then the outputMout of f on A is such that

Mout(q0, qf) =
∑

i∈Sf
A

ci, whereSf
A = {i | 1 ≤ i ≤ t andA accepts the stringwi corresponding tomi}

Here the output of polynomialf onA is defined analogously to the output of a circuit onA in Section 2.2.

Corollary 3.2 (Similar to Corollary 2.3) Given black-box access to a polynomialf in F{x1, · · · , xn}, and
any monomialm of degreedm, we can compute the coefficient ofm in f in timepoly(dm, n).

Finally we have,

Theorem 3.3 (Similar to Theorem 2.9)Given black-box access to a polynomialf in F{x1, · · · , xn} of
degree at mostd and with at mostt monomials, we can compute all the monomials off , and their coeffi-
cients, in timepoly(d, n, t). In particular, if f is a sparse polynomial of polynomial degree, then it can be
reconstructed in polynomial time.

Our interpolation algorithm for noncommutative ABPs is motivated by Raz and Shpilka’s [RS05] algo-
rithm for identity testing of ABPs over noncommuting variables. Our algorithm interpolates the given ABP
layer by layer using ideas developed in Section 2 (principally Corollary 3.2).

Definition 3.4 [N91, RS05] An Algebraic Branching Program (ABP) is a directed acyclic graph with one
vertex of in-degree zero, called the source, and a vertex of out-degree zero, called the sink. The vertices of
the graph are partitioned into levels numbered0, 1, · · · , d. Edges may only go from leveli to leveli + 1 for
i ∈ {0, · · · , d − 1}. The source is the only vertex at level0 and the sink is the only vertex at leveld. Each
edge is labeled with a homogeneous linear form in the input variables. The size of the ABP is the number of
vertices.

10

Notice that an ABP with no edge between two verticesu andv on levelsi and i + 1 is equivalent to
an ABP with an edge fromu to v labeled with the zero linear form. Thus, without loss of generality, we
assume that in the given ABP there is an edge between every pair of vertices on adjacent levels.

As mentioned before, we will assume black-box access to the input ABPP where we can evaluate the
polynomial computed byP at any of its gates over arbitrary matrix rings overF. In order to specify the gate
at which we want the output, we index the gates ofP with a layer number and a gate number (in the layer).

Based on [RS05], we now define aRaz-Shpilka basisfor the leveli of the ABP. Let the number of
nodes at thei-th level beGi and let{p1, p2, · · · , pGi} be the polynomials computed at the nodes. We
will identify this set of polynomials with theGi × ni matrix Mi where the columns ofMi are indexed by
ni different monomials of degreei, and the rows are indexed by the polynomialspj. The entries of the
matrixMi are the corresponding polynomial coefficients. A Raz Shpilka basis is a set of at mostGi linearly
independent column vectors ofMi that generates the entire column space. Notice that every vector in the
basis is identified by a monomial.

In the algorithm we need to compute a Raz-Shpilka basis at every level of the ABP. Notice that at the
level 0 it is trivial to compute such a basis. Inductively assume we can compute such a basis at the leveli.
Denote the basis byBi = {v1, v2, · · · , vki

} wherevj ∈ FGi , andki ≤ Gi. Assume that the elements of
this basis corresponds to the monomials{m1,m2, · · · ,mki

}. We compute a Raz Shpilka basis at the level
i + 1 by computing the column vectors corresponding to the set of monomials{mjxs}j∈[ki],s∈[n] in Mi+1

and then extracting the linear independent vectors out of them. Computing these column vectors requires
the computation of the coefficients of these monomials, which can be done in polynomial time using the
Corollary 3.2. Notice that we also know the monomials that the elements of this basis correspond to.

We now describe the interpolation algorithm formally. As mentioned before, we will construct the output
ABP P ′ layer by layer such that every gate ofP ′ computes the same polynomial as the corresponding gate
in P . Clearly, this task is trivial at level0.

Assume that we have completed the construction up to leveli < d. We now construct leveli + 1. This
only involves computation of the linear forms between leveli and leveli + 1. Hence, there areki ≤ Gi

vectors in the Raz-Shpilka basis at theith level. Let the monomials corresponding to these vectors be
B = {m1, · · · ,mki

}. Fix any gateu at leveli + 1 in P , and letpu be the polynomial compute at this gate
in P . Clearly,

pu =

Gi
∑

j=1

pj`j

wherepj is the polynomial computed at thejth gate at leveli, and`j is the linear form labeling the edge
between thejth gate at leveli andu.

11

We have,

pu =

Gi
∑

j=1

pj`j

=

Gi
∑

j=1

∑

m:|m|=i

c(j)
m m

(

n
∑

s=1

a(j)
s xs

)

=
∑

m:|m|=i,s

mxs

Gi
∑

j=1

c(j)
m a(j)

s

=
∑

m:|m|=i,s

mxs〈cm, as〉

wherecm andas denote the vectors of field elements(c
(j)
m)j and(a

(j)
s)j respectively. Note thatas denotes

a vector of unknowns that we need to compute. Each monomialmxs in the above equation gives us a linear
constraint onas. However, this system of constraints is exponential in size. To obtain a feasible solution for
{as}s∈[n], we observe that it is sufficient to satisfy the constraints corresponding only to monomialsmxs

wherem ∈ B. All other constraints are simply linear combinations of these and are thus automatically
satisfied by any solution to these.

Now, for m ∈ B ands ∈ {1, · · · , n}, we compute the coefficients ofmxs in pu and those ofm in each
of thepi’s using the algorithm of Corollary 3.2. Hence, we have all the linear constraints we need to solve
for {as}s∈[n]. Firstly, note that such a solution exists, since the linearforms in the black box ABPP give
us such a solution. Moreover, any solution to this system of linear equations generates the same polynomial
pu at gateu. Hence, we can use any solution to this system of linear equations as our linear forms. We
perform this computation for all gatesu at thei + 1st level. The final step in the iteration is to compute the
Raz-Shpilka basis for the leveli + 1.

We can use induction on the level numbers to argue correctness of the algorithm. From the input black-
box ABPP , for each levelk, let Pjk, 1 ≤ j ≤ Gk denote the algebraic branching programs computed by
P with output gate as gatej in level k. Assume, as induction hypothesis, that the algorithm has computed
linear forms for all levels upto leveli and, furthermore, that the algorithm has a correct Raz-Shpilka basis
for all levels upto leveli. This gives us a reconstructed ABPP ′ upto leveli with the property, for1 ≤ k ≤ i,
each ABPP ′

jk, 1 ≤ j ≤ Gk computes the same polynomials as the correspondingPjk, 1 ≤ j ≤ Gk, where
P ′

jk is obtained fromP ′ by designating gatej at levelk as output gate. Under this induction hypothesis,
it is clear that our interpolation algorithm will compute a correct set of linear forms between levelsi and
i + 1. Consequently, the algorithm will correctly reconstruct an ABP P ′ upto leveli + 1 along with a
corresponding Raz-Shpilka basis for that level.

We can now summarize the result in the following theorem.

Theorem 3.5 LetP be an ABP of sizes and depthd overF{x1, x2, · · · , xn} given by black-box access that
allows evaluation of any gate ofP for inputsxi chosen from a matrix algebraMk(F) for a polynomially
bounded value ofk. Then in deterministic timepoly(d, s, n), we can compute an ABPP ′ such thatP ′

evaluates to the same polynomial asP .

12

4 Noncommutative identity testing and circuit lower bounds

In Section 2 we gave a new deterministic identity test for noncommuting polynomials which runs in poly-
nomial time for sparse polynomials of polynomially boundeddegree.

However, the real problem of interest is identity testing for polynomials given by small degree non-
commutative circuits for which Bogdanov and Wee [BW05] givean efficient randomized test. When the
noncommutative circuit is a formula, Raz and Shpilka [RS05]have shown that the problem is in determin-
istic polynomial time. Their method uses ideas from Nisan’slower bound technique for noncommutative
formulae [N91].

How hard would it be to show that noncommutative PIT is in deterministic polynomial time forcircuits
of polynomial degree? In the commutative case, Impagliazzoand Kabanets [KI03] have shown that deran-
domizing PIT implies circuit lower bounds. It implies that either NEXP 6⊆ P/poly or the integer Permanent
does not have polynomial-size arithmetic circuits.

We observe that this result also holds in the noncommutativesetting. I.e., if noncommutative PIT has
a deterministic polynomial-time algorithm then eitherNEXP 6⊆ P/poly or thenoncommutativePermanent
function does not have polynomial-size noncommutative circuits.

As noted, in some cases noncommutative circuit lower boundsare easier to prove than for commutative
circuits. Nisan [N91] has shown exponential-size lower bounds for noncommutative formula size and further
results are known for pure noncommutative circuits [N91, RS05]. However, proving superpolynomial size
lower bounds for general noncommutative circuits computing the Permanent has remained an open problem.

The noncommutative Permanent functionPerm(x1, · · · , xn) ∈ R{x1, · · · , xn} is defined as

Perm(x1, · · · , xn) =
∑

σ∈Sn

n
∏

i=1

xi,σ(i),

where the coefficient ringR is any commutative ring with unity. Specifically, for the next theorem we choose
R = Q.

Theorem 4.1 If PIT for noncommutative circuits of polynomial degreeC(x1, · · · , xn) ∈ Q{x1, · · · , xn}
is in deterministic polynomial-time then eitherNEXP 6⊆ P/polyor thenoncommutativePermanent function
does not have polynomial-size noncommutative circuits.

Proof. SupposeNEXP⊆ P/poly. Then, by the main result of [IKW02] we haveNEXP = MA. Furthermore,
by Toda’s theorem MA⊆ PPermZ , where the oracle computes the integer permanent. Now, assuming PIT
for noncommutative circuits of polynomial degree is in deterministic polynomial-time we will show that the
(noncommutative) Permanent function does not have polynomial-size noncommutative circuits. Suppose to
the contrary that it does have polynomial-size noncommutative circuits. Clearly, we can use it to compute the
integer permanent as well. Furthermore, as in [KI03] we notice that the noncommutativen × n Permanent
is also uniquely characterized by the identitiesp1(x) ≡ x andpi(X) =

∑i
j=1 x1jpi−1(Xj) for 1 < i ≤ n,

whereX is a matrix ofi2 noncommuting variables andXj is itsj-th minor w.r.t. the first row. I.e. if arbitrary
polynomialspi, 1 ≤ i ≤ n satisfies thesen identities overnoncommutingvariablesxij, 1 ≤ i, j ≤ n if and
only if pi computes thei × i permanent of noncommuting variables. The rest of the proof is exactly as in
Impagliazzo-Kabanets [KI03]. We can easily describe an NP machine to simulate a PPermZ computation.
The NP machine guesses a polynomial-size noncommutative circuit for Perm on m ×m matrices, where
m is a polynomial bound on the matrix size of the queries made. Then the NP verifies that the circuit
computes the permanent by checking them noncommutativeidentities it must satisfy. This can be done in

13

deterministic polynomial time by assumption. Finally, theNP machines uses the circuit to answer all the
integer permanent queries. Putting it together, we getNEXP = NP which contradicts the nondeterministic
time hierarchy theorem.

5 Schwartz-Zippel lemma over finite rings

In this section we give a generalization of Schwartz-ZippelLemma to finite commutative rings and apply it
for identity testing of black-box polynomials inR[x1, · · · , xn], whereR is a finite commutative ring with
unity whose elements are uniformly encoded by strings from{0, 1}m with a special stringe denote unity,
and the ring operations are performed by a ring oracle.

We recall some facts about finite commutative rings [Mc74, AM69]. A commutative ringR with unity
is a local ring if R has auniquemaximal idealM . An elementr ∈ R is nilpotent if rn = 0 for some
positive integern. An elementr ∈ R is aunit if it is invertible. I.e.rr′ = 1 for some elementr′ ∈ R. Any
element of a finite local ring is either a nilpotent or a unit. An idealI is aprime idealof R if ab ∈ I implies
eithera ∈ I or b ∈ I. For finite commutative rings, prime ideals and maximal ideals coincide. These facts
considerably simplify the study of finite commutative rings(in contrast to infinite rings).

Theradical of a finite ringR denoted byRad(R) is defined as the set of all nilpotent elements, i.e

Rad(R) = {r ∈ R | ∃n > 0 s.trn = 0}

The radicalRad(R) is an ideal ofR, and it is the unique maximum ideal ifR is a local ring. Letm
denote the least positive integer such that for every nilpotentr ∈ R, rm = 0, i.e (Rad(R))m = 0. Let R be
any finite commutative ring with unity and{P1, P2, · · · , P`} by the set of all maximal ideals ofR. Let Ri

denote the quotient ringR/Pm
i for 1 ≤ i ≤ `. Then, it is easy to see that eachRi is a local ring andPi/P

m
i

is the unique maximal ideal inRi. We recall the following structure theorem for finite commutative rings.

Theorem 5.1 ([Mc74], Theorem VI.2, page 95)Let R be a finite commutative ring. ThenR decomposes
(up to order of summands) uniquely as a direct sum of local rings. More precisely

R ∼= R1 ⊕R2 ⊕ · · · ⊕R`,

via the mapφ(r) = (r + Pm
1 , r + Pm

2 , · · · , r + Pm
`), whereRi = R/Pm

i andPi, 1 ≤ i ≤ ` are all the
maximal ideals ofR.

It is easy to see thatφ is a homomorphism with trivial kernel. The isomorphismφ naturally ex-
tends to the polynomial ringR[x1, x2, · · · , xn], and gives the isomorphism̂φ : R[x1, x2, · · · , xn] →
⊕`

i=1Ri[x1, x2, · · · , xn].

5.1 The Schwartz-Zippel lemma

We observe the following easy fact about zeros of univariatepolynomials over finite commutative rings with
unity.

Proposition 5.2 LetR be a finite commutative ring with unity containing an integral domainD. If f ∈ R[x]
is a nonzero polynomial of degreed thenf(a) = 0 for at mostd distinct values ofa ∈ D.

14

Proof. Notice thatD is a finite integral domain as it is contained in the finite ringR. Thus,D must in fact
be a finite field. Now, supposea1, a2, · · · , ad+1 ∈ D are distinct points such thatf(ai) = 0, 1 ≤ i ≤ d + 1.
Then we can writef(x) = (x − a1)q(x) for q(x) ∈ R[x]. Dividing q(x) by x − a2 yields q(x) =
(x − a2)q

′(x) + q(a2), for someq′(x) ∈ R[x]. Thus,f(x) = (x − a1)(x − a2)q
′(x) + (x − a1)q(a2).

Puttingx = a2 in this equation gives(a2−a1)q(a2) = 0. But (a2−a1) is nonzero in the fieldD and hence
is invertible. By cancellation we getq(a2) = 0. Consequently,f(x) = (x − a1)(x − a2)q

′(x) in R[x].
Applying this argument successively for the otherai finally yields f(x) = g(x)

∏d+1
i=1 (x − ai) for some

nonzero polynomialg(x) ∈ R[x]. Since
∏d+1

i=1 (x − ai) is a monic polynomial, this forcesdeg(f) ≥ d + 1
which is a contradiction.

Using Proposition 5.2 we describe an easy generalization ofthe Schwarz-Zippel lemma to finite com-
mutative rings with unity containing integral domains.

Lemma 5.3 Let R be a finite commutative ring with unity containing an integral domain D. Let g ∈
R[x1, x2, · · · , xn] be any polynomial of degree at mostd. If g 6≡ 0, then for any subsetA of D we have

Proba1∈A,··· ,an∈A[g(a1, a2, · · · , an) = 0] ≤
d

|A|
.

Proof. We need to show that the number ofn-tuples(a1, · · · , an) ∈ An such thatg(a1, a2, · · · , an) = 0
is at mostd|A|n−1. The proof is by induction onn. The base casen = 1 involves a univariate polynomial
g(x1) in R[x1] and follows directly from Proposition 5.2. As induction hypothesis suppose the lemma holds
for multivariate polynomials inn − 1 indeterminates. Writeg(x1, x2, · · · , xn) as g(x1, x2, · · · , xn) =
∑k

i=0 xi
ngi(x1, x2, · · · , xn−1), wherek ≤ d is the largest exponent ofxn in g with nonzero coefficientgk,

and eachgi ∈ R[x1, x2, · · · , xn−1]. Sincegk 6= 0 anddeg(gk) ≤ d − k, by the induction hypothesis there
are at most(d− k)|A|n−2 tuples(a1, · · · , an−1) ∈ An−1 such thatgk(a1, · · · , an1

) = 0. Let

E1 = {(a1, · · · , an) | gk(a1, · · · , an1
) = 0}.

Then |E1| ≤ (d − k)|A|n−1. Now consider the univariate polynomial̂g(xn) =
∑k

i=0 xi
ngi(a1, a2, · · · , an−1) in R[xn] for (a1, · · · , an−1) ∈ An−1. If gk(a1, a2, · · · , an−1) is nonzero

thenĝ(xn) is a nonzero polynomial. Let

E2 = {(a1, · · · , an) | ĝ(xn) 6= 0 andĝ(an)) = 0}.

It follows from Proposition 5.2 that|E2| ≤ k|A|n−1.
Since{(a1, · · · , an) | g(a1, · · · , an) = 0} ⊆ E1 ∪E2, we obtain the required bound

|{(a1, · · · , an) | g(a1, · · · , an) = 0}| ≤ |E1|+ |E2| ≤ (d− k)|A|n−1 + k|A|n−1 = d|A|n−1.

This completes the proof.

In general Lemma 5.3 is not applicable, because the given finite ring may not contain a large finite field.
We explain how to get around this problem for finite commutative local rings. Because of the structure
theorem, it suffices to consider local rings.

Let R be a finite local ring with unity given by a ring oracle. Suppose the characteristic ofR is pα for a
primep. If the elements ofR are encoded in{0, 1}m then2m upper bounds the size ofR. Let M > 2m, to
be fixed later in the analysis. LetU = {ce | 0 ≤ c ≤M}, wheree denotes the unity ofR. We will argue that,

15

for a suitableM , if we samplece uniformly fromU then(c modp) e is almost uniformly distributed inZpe.
Pickx uniformly at random fromZM and outputxe. Let a ∈ Zp andP = Prob[x ≡ a (modp)]. Thex for
whichx ≡ a (modp) area, a+p, · · · , a+pbM−a

p c. LetM ′ = bM−a
p c. ThenP = M ′+1/M ≤ 1

p(1+ 2m

M).

Clearly,P ≥ 1
p(1− 2m

M). For a givenε > 0, chooseM = 2m+1/ε. Then1−ε/2
p ≤ P ≤ 1+ε/2

p . So(x modp)e
is ε

2 -uniformly distributed inZpe.

Lemma 5.4 LetR be a finite local commutative ring with unity and of characteristic pα for a primep. The
elements ofR are encoded using binary strings of lengthm. Letg ∈ R[x1, x2, · · · , xn] be a polynomial of
degree at mostd andε > 0 be a given constant. Ifg 6≡ 0, then

Proba1∈U,··· ,an∈U [g(a1, a2, · · · , an) = 0] ≤
d

p
(1 +

ε

2
),

whereU = {ce | 0 ≤ c ≤M} andM > 2m+1/ε.

Proof. Consider the following tower of ideals insideR :

R ⊇ pR ⊇ p2R ⊇ · · · ⊇ pαR = {0}.

Let k be the integer such thatg ∈ pkR[x1, · · · , xn] \ pk+1R[x1, · · · , xn]. Write g = pkĝ. Consider
the ring, Î = {r ∈ R | pkr = 0}. Clearly, Î is an ideal ofR. Let S = R/(Î + pR). We claim
that ĝ is a nonzero polynomial inS[x1, · · · , xn]. Otherwise, let̂g ∈ (Î + pR)[x1, · · · , xn]. Write ĝ =
g1 + g2, whereg1 ∈ Î[x1, · · · , xn] and g2 ∈ pR[x1, · · · , xn]. Thenpkĝ = pkg2 as pkg1 = 0. But
g2 ∈ pR[x1, · · · , xn], which contradicts the fact thatk is the largest integer such thatg ∈ pkR[x1, · · · , xn].
Thusĝ is a nonzero polynomial inS[x1, · · · , xn]. Now we argue thatS contains the finite fieldFp, and then
using the Lemma 5.3, the proof of the lemma will follow easily. To see a copy ofFp insideS, it is enough
to observe that{i + (Î + pR) | 0 ≤ i ≤ p− 1} as a field is isomorphic toFp. Clearly the failure probability
for identity testing ofg in R[x1, · · · , xn] is upper bounded by the failure probability for the identitytesting
of ĝ in S[x1, · · · , xn]. Consider the natural homomorphismφ : U → Fp, given byφ(ce) = c modp. Thus
if we sample uniformly fromU , usingφ, we canε

2 -uniformly sample fromFp. Notice that for anyb ∈ Fp,
1−ε/2

p ≤ Probx∈ZM
[x ≡ b modp] ≤ 1+ε/2

p . Now using the Lemma 5.3, we conclude the following :

Proba1∈U,a2∈U ···an∈U [g(a1, · · · , an) = 0] ≤ Probb1∈Fp···bn∈Fp [ĝ(b1, · · · , bn) = 0] ≤
d

p
(1 +

ε

2
),

wherebi = ai (modp). The additional factor of(1 + ε
2) comes from the fact that we are only sampling

ε
2 -uniformly from Fp. This can be easily verified from the proof of Lemma 5.3. Hencewe have proved the
lemma.

6 Randomized Polynomial Identity Testing over finite rings

In this section we study the identity testing problem over finite commutative ring oracle with unity. For the
input polynomial, we consider both black-box representation and circuit representation. First we consider
the black-box case. Our identity testing algorithm is a direct consequence of Lemma 5.4.

16

Theorem 6.1 LetR (which decomposes into local rings as⊕`
i=1Ri) be a finite commutative ring with unity

given as a oracle. Let the input polynomialf ∈ R[x1, · · · , xn] of degree at mostd be given via black-box
access. SupposeRi’s is of characteristicpαi

i . Let ε > 0 be a given constant. Ifpi ≥ kd for all i, for some
integerk ≥ 2, we have a randomized polynomial time identity test with success probability1− 1

k (1 + ε
2).

Proof. Consider the natural isomorphism̂φ : R[x1, x2, · · · , xn] → ⊕`
i=1Ri[x1, x2, · · · , xn]. Let φ̂(f) =

(f1, f2, · · · , f`). If f 6≡ 0 thenfi 6≡ 0 for somei ∈ [`], wherefi ∈ Ri[x1, x2, · · · , xn]. Fix such ani. Our
algorithm is a direct application of Lemma 5.4. DefineU = {ce | 0 ≤ c ≤ M}, assign values for thexi’s
independently and uniformly at random fromU , and evaluatef using the black-box access. The algorithm
declaresf 6≡ 0 if and only if the computed value is nonzero. By Lemma 5.4, ouralgorithm outputs the
correct answer with probability1− d

pi
(1 + ε

2) ≥ 1− 1
k (1 + ε

2). 1

The drawback of Theorem 6.1 is that we get a randomized polynomial-time algorithm only whenpi ≥
kd.

However, when the polynomialf is given by an arithmetic circuit we will get a randomized identity test
that works for all finite commutative rings given by oracle. This is the main result in this section. A key
idea is to apply the transformation from [AB03] to convert the given multivariate polynomial to a univariate
polynomial. The following lemma has an identical proof as [AB03, Lemma 4.5].

Lemma 6.2 Let R be an arbitrary commutative ring andf ∈ R[x1, x2, · · · , xn] be any polynomial of
maximum degreed. Consider the polynomialg(x) obtained fromf(x1, x2, · · · , xn) by replacingxi by
x(d+1)i−1

i.e g(x) = f(x, x(d+1), · · · , x(d+1)n−1

). Thenf ≡ 0 overR[x1, · · · , xn] if and only ifg ≡ 0 over
R[x].

By Lemma 6.2, it suffices to describe the identity test for a univariate polynomial inR[x] given by an
arithmetic circuit. Notice that ifdeg(f) = d then we can bounddeg(g) by d(d + 1)n−1 which we denote
by D. Our algorithm is simple and essentially the same as the Agrawal-Biswas identity test over the finite
ring Zn [AB03].

We will randomly pick a monic polynomialq(x) ∈ U [x] of degreedlog O(D)e. Then we carry out a
division of f(x) by the polynomialq(x) and compute the remainderr(x) ∈ R[x]. Our algorithm declares
f to be identically zero if and only ifr(x) = 0. Notice that we will use the structure of the circuit to carry
out the division. At each gate we carry out the division. Moreprecisely, if the inputs of a+ gate are the
remaindersr1(x) andr2(x), then the output of this+ gate isr1 + r2. Similarly if r1 andr2 are the inputs of
a∗ gate, then we divider1(x)r2(x) by q(x) and obtain the remainder as its output. Crucially, sinceq(x) is
a monic polynomial, the division algorithm will make sense and produce unique remainder even ifR[x] is
not a U.F.D (which is the case in general).

We now describe the pseudocode of the identity testing algorithm (Algorithm 2). Our algorithm takes
as input an arithmetic circuitC computing a polynomialf ∈ R[x1, x2, · · · , xn] of degree at mostd and an
ε > 0.

We will now prove the correctness of the above randomized identity test in Lemmas 6.3, 6.4, and 6.5.

Lemma 6.3 Let R be a local commutative ring with unity and of characteristicpα for some primep and
integerα > 0. Let g be a nonzero polynomial inR[x] such thatg ∈ pkR[x] \ pk+1R[x] for k < α. Let

1Notice that we have to computece using the ring oracle for addition inR. Starting withe, we need to add itc times. The
running time for this computation can be made polynomial inlog c by writing c in binary and applying the standard doubling
algorithm.

17

Algorithm 2 The Identity Testing algorithm
1: procedureIdentityTesting(C,ε)
2: for i = 1, n do
3: xi ← x(d+1)i−1

. Univariate transformation
4: end for
5: g(x)← C(x, x(d+1), · · · , x(d+1)n−1

).
6: D ← d(d + 1)n−1. . The formal degree ofg(x) is at mostD
7: Choose a monic polynomialq(x) ∈ U [x] of degreedlog 12D

1−ε e uniformly at random.
8: Divide g(x) by q(x) and compute the remainderr(x). . The division algorithm uses the structure

of the circuit.
9: if r(x) = 0 then

10: C computes a zero polynomial.
11: else
12: C computes a nonzero polynomial.
13: end if
14: end procedure

Î = {r ∈ R | pkr = 0}, g = pkĝ whereĝ 6∈ pR andq is a monic polynomial inR[x]. If q dividesg in R,
thenq dividesĝ in R/(Î + pR).

Proof. As q(x) divides g(x) in R[x], we haveg(x) = q(x)q1(x) for some polynomialq1(x) ∈ R[x].
Supposêg(x) = q(x)q̄(x)+r(x) in R[x] where the degree ofr(x) is less than the degree ofq(x). Also note
that the division makes sense even over the ring asq(x) is monic. We want to show thatr(x) ∈ (Î +pR)[x].
We have the following relation inR[x]:

g = qq1 = pkĝ = pkqq̄ + pkr.

So, pkr = q(q1 − pk q̄). If (q1 − pkq̄) 6≡ 0 in R[x], then the degree of the polynomialq(q1 − pk q̄)
is strictly more than the degree ofpkr asq is monic and degree ofq is more than the degree ofr. Thus
(qq1 − pkqq̄) ≡ 0 in R[x] forcing pkr = 0 in R[x]. So by the choice of̂I, we haver(x) ∈ Î[x]. Thus
r(x) ∈ (Î + pR)[x]. Notice that in the Lemma 5.4, we have already proved thatĝ(x) 6≡ 0 in S[x], where
S = R/(Î + pR). Also q is nonzero inS[x] as it is a monic polynomial. Hence we have proved thatq(x)
dividesĝ(x) overS[x].

The following lemma is basically chinese remaindering tailored to our setting.

Lemma 6.4 Let R be a local ring with characteristicpα. Letg(x) ∈ pkR[x] \ pk+1R[x] for somek ≥ 0.
Let g(x) = pkĝ(x) and Î = {r ∈ R | pkr = 0}. Supposeq1(x), q2(x) are two monic polynomials over
R[x] such that each of them dividesg in R[x]. Moreover, suppose there exist polynomialsa(x), b(x) ∈ R[x]
such thataq1 + bq2 = 1 in R/(Î + pR). Thenq1q2 dividesĝ in R/(Î + pR).

Proof. By the Lemma 6.3, we know thatq1 andq2 divide ĝ in R/(Î + pR). Let ĝ = q1q̄1 and ĝ = q2q̄2

in R/(Î + pR). Let q̄1 = q2q3 + r in R/(Î + pR). So, ĝ = q1q2q3 + q1r. Substitutingq2q̄2 for ĝ,
we getq2(q̄2 − q1q3) = q1r. Multiplying both side bya and substitutingaq1(x) = 1 − bq2, we get
q2[a(q̄2 − q1q3) + br] = r. If r 6≡ 0 in R/(Î + pR), we arrive at a contradiction sinceq2 is monic and thus
the degree ofq2[a(q̄2 − q1q3) + br] is more than the degree ofr.

18

Let f(x) be a nonzero polynomial inR[x] of degree at mostD. The next lemma states that, if we pick
a random monic polynomialq(x) ∈ U [x] (U is similarly defined as before)of degreed ≈ log O(D), with
high probability,q(x) will not divide f(x).

Lemma 6.5 Let R be a commutative ring with unity. Supposef(x) ∈ R[x] is a nonzero polynomial of
degree at mostD and ε > 0 be a given constant. Choose a random monic polynomialq(x) of degree
d = dlog 12D

1−ε e in U [x]. Then with probability at least1−ε
4d , q(x) will not dividef(x) overR[x].2

Proof. Let R ∼=
⊕

i Ri is the local ring decomposition ofR. As f is nonzero inR[x], there existsj such
thatfj = φ̂j(f) is nonzero inRj[x]. Clearly, we can lower bound the required probability by theprobability
that qj = φ̂j(q) does not dividefj in Rj [x]. Let the characteristic ofRj is pα. If qj dividesfj in Rj [x],
then it also divides overRj/(Îj + pRj). It is shown in the proof of the Lemma 5.4,Fp ⊂ Rj/(Îj + pRj).

Now the number of irreducible polynomials inFp of degreed is at leastp
d−2pd/2

d . Let t = pd−2pd/2

d . Let

q̂(x) =
∑d−1

i=0 bix
i + xd ∈ Fp[x] be a monic polynomial. Now if a monic polynomialP (x) of degreed is

randomly chosen fromU [x] then, Prob[P (x) ≡ q̂(x) modp] =
Qd−1

i=0
b(M−bi)/pc+1

Md ≥ 1
pd (1 − 2m

M)d. Again,

choosingM > d2m+1/ε, we get Prob[P (x) ≡ q̂(x) modp] ≥ (1− ε/2)/pd.
So, the probability thatqj is an irreducible polynomial inFp[x] is at leastt(1 − ε)/pd > (1 − ε)/2d.

Let fj ∈ pkRj [x] \ pk+1Rj[x]. So we can writefj = pkf ′, wheref ′ ∈ Rj[x] \ pRj[x]. By the Lemma 6.3,
qj dividesf ′ in R/(Îj + pR). Also, by the Lemma 6.4, the number of different monic polynomials that are
irreducible inFp and dividesf ′ in Rj/(Îj + pRj) is at mostD/d. In the sample space forq, any monic
polynomial of degreed in Rj/(Îj + pRj) occurs at most(M

p + 1)d times. So the probability that a random

monic irreducible polynomialq will divide f is at most
(D/d)(M

p
+1)d

Md ≤ D
dpd (1 + 1

d)d < 3D
d2d . So a random

monic polynomialq ∈ U [x] (which is irreducible inFp with reasonable probability) will not dividef(x)
with probability at least1−ε

2d −
3D
dpd > 1−ε

4d for d ≥ dlog 12D
1−ε e.

The correctness of Algorithm 2 and its success probability follow directly from Lemma 6.3, Lemma 6.4
and Lemma 6.5.

In particular, by Lemma 6.5, the success probability of our algorithm is at least1−ε
4t , where t =

dlog 12D
1−ε e. As 1−ε

4t is an inverse polynomial quantity in input size and the randomized algorithm has one-
sided error, we can boost the success probability by repeating the test polynomially many times. We sum-
marize the result in the following theorem.

Theorem 6.6 Let R be a finite commutative ring with unity given as an oracle andf ∈ R[x] be a polyno-
mial, given as an arithmetic circuit. Then in randomized time polynomial in the circuit size andlog |R| we
can test whetherf ≡ 0 in R[x].

Randomized polynomial time identity testing for multivariate polynomialsf ∈ R[x1, · · · , xn] given by
arithmetic circuits follows from Theorem 6.6 and Lemma 6.2.

Theorem 6.7 Let R be a commutative ring with unity given as an oracle. Letf be a polynomial in
R[x1, x2, · · · , xn] of formal degree at mostd, is given by an arithmetic circuit overR. Then in randomized
time polynomial in circuit size andlog |R| we can test whetherf ≡ 0 in R[x1, x2, · · · , xn].

2An alternative proof of this lemma based on [AB03, Lemma 4.7]is given in the appendix.

19

Remark 6.8 The randomized polynomial-time identity test of Bogdanov and Wee [BW05] for noncommuta-
tive circuits of polynomially bounded degree inF{x1, · · · , xn} for a fieldF, can be extended to such circuits
over any commutative ringR with unity, whereR is given by a ring oracle. This follows from the fact that
the Amitsur-Levitzki theorem is easily seen to hold even in the ring R{x1, · · · , xn}. The easy details are
given in the appendix.

Remark 6.9 Finally, we note that the results in Section 2 carry over without changes to noncommuting
polynomials inR{x1, · · · , xn}, whereR is a commutative ring with unity given by a ring oracle.

7 Acknowledgements

We thank anonymous conference reviewers for their many helpful suggestions.

References

[AB03] M. A GRAWAL AND S. BISWAS. Primality and identity testing via Chinese remaindering.J. ACM.,
50(4):429-443, 2003.

[AL50] S.A A MITSUR AND J. LEVITZKI . Minimal Identities for algebras.In Proceedings of the American
Mathematical Society.,volume 1, pages 449-463, 1950.

[AM69] M.F. ATIYAH AND I.G. MACDONALD . Introduction to commutative algebra.Addison-Wesley
Publishing Company,1969.

[AM07] V. A RVIND AND P. MUKHOPADHYAY The Ideal Membership problem and Polynomial Identity
Testing.ECCC report TR07-095,2007.

[BW05] A. BOGDANOV AND H. WEE More on Noncommutative Polynomial Identity Testing .In Proc. of
the 20th Annual Conference on Computational Complexity,pp. 92-99, 2005.

[DS05] Z. DVIR AND A. SHPILKA . Locally Decodable Codes with 2 queries and Polynomial Identity
Testing for depth 3 circuits.In Proc. of the 37th annual ACM Sym. on Theory of computing.,2005.

[GZ05] A. GIAMBRUNO AND M. ZAICEV. Polynomial Identities and Asymptotic Methods.American
Mathematical Society.,Vol. 122, 2005.

[HU78] J.E. HOPCROFT ANDJ.D. ULLMAN Introduction to Automata Theory, Languages and Computa-
tion, Addison-Wesley, 1979.

[IKW02] R. IMPAGLIAZZO , V. KABANETS AND A. W IGDERSON. In search of an easy witness: Expo-
nential time vs. probabilistic polynomial time.Journal of Computer and System Sciences 65(4).,pages
672-694, 2002.

[KI03] V. K ABANETS AND R. IMPAGLIAZZO . Derandomization of polynomial identity tests means prov-
ing circuit lower bounds.In Proc. of the thirty-fifth annual ACM Sym. on Theory of computing., pages
355-364, 2003.

[KS05] NEERAJ KAYAL , NITIN SAXENA , On the Ring Isomorphism and Automorphism Problems.IEEE
Conference on Computational Complexity,2-12, 2005.

20

[KS07] N. KAYAL AND N. SAXENA . Polynomial Identity Testing for Depth 3 Circuits.Computational
Complexity., 16(2):115-138, 2007.

[Le92] H.W.LENSTRA JR. Algorithms in algebraic number theory.Bulletin of the AMS., 26(2), 211-244,
1992.

[Mc74] B R. MACDONALD . Finite Rings with Identity.Marcel Dekker, INC. New York, 1974.

[MR95] R. MOTWANI AND P. RAGHAVAN . Randomized Algorithms.Cambridge University Press.,, 1995.

[N91] N. NISAN. Lower bounds for non-commutative computation.In Proc. of the 23rd annual ACM Sym.
on Theory of computing.,pages 410-418, 1991.

[BT88] M. BEN-OR AND P. TIWARI . A Deterministic Algorithm For Sparse Multivariate Polynomial In-
terpolation.In Proc. of the 20th annual ACM Sym. on Theory of computing.,pages 301-309, 1988.

[RS05] R. RAZ AND A. SHPILKA . Deterministic polynomial identity testing in non commutative models.
Computational Complexity.,14(1):1-19, 2005.

[Sch80] JACOB T. SCHWARTZ. Fast Probabilistic algorithm for verification of polynomial identities.J.
ACM., 27(4), pages 701-717, 1980.

[Str94] HOWARD STRAUBING. Finite automata, formal logic, and circuit complexity.Progress in Theoret-
ical Computer Science.Birkhuser Boston Inc., Boston, MA, 1994.

[Zip79] R. ZIPPEL. Probabilistic algorithms for sparse polynomials.In Proc. of the Int. Sym. on Symbolic
and Algebraic Computation.,pages 216-226, 1979.

21

A Noncommutative identity testing over commutative coefficient rings

Here we extend the noncommutative identity testing of Bogdanov and Wee [BW05] to overR{x1, · · · , xn}
whereR is an arbitrary commutative ring with unity. Our algorithm is a combination of Amitsur-Levitzki’s
theorem and the Theorem 6.7. We first briefly discuss the Amitsur-Levitzki’s result tailored to our appli-
cation and the result of [BW05]. LetMk(F) be thek × k matrix algebra overF. The following algebraic
lemma was the key result used in [BW05].

Lemma A.1 [AL50, GZ05]Mk(F) does not satisfy any non-trivial polynomial identity of degree< 2k.

Based on Lemma A.1, a noncommutative version of the Schwartz-Zippel lemma overF{x1, · · · , xn}
is described in [BW05]. We first give an intuitive description of the identity testing algorithm in [BW05].
Assumef ∈ F{x1, · · · , xn} is of degreed and is given by an arithmetic circuit. Fixk such thatk > dd/2e.
Consider a field extensionF′ of F such that|F′| >> d. The idea is to evaluate the circuit on randomk × k
matrices fromMk(F

′). We think each entry of the matrix as an indeterminate and view thek2 indeterminates
as commuting variables. So at the output of the circuit, we get a k × k matrix such that each of its entries
are polynomials in commuting variables. Lemma A.1 guarantees thatf ≡ 0 in F{x1, · · · , xn} if and only
if each of thek2 polynomials computed as the entries of the matrix at the output gate, are identically zero.
Then we get a lower bound of the success probability via commutative Schwartz-Zippel lemma.

We give a randomized polynomial time identity testing algorithm overR{x1, · · · , xn} whereR is any
finite commutative ring with unity and is given by a ring oracle. Our algorithm is based on the observation
that Lemma A.1 is valid overMk(R). For the sake of completeness, we briefly discuss the proof ofthe
Lemma A.1 tailored toR. The following fact is the key in proving the Lemma A.1.

Fact A.2 [GZ05, page 7]Let A be anF-algebra spanned by a setB overF. If the algebraA satisfies an
identity of degreek in F{x1, · · · , xn}, then it satisfies a multilinear identity of degree≤ k.

We observe that the result of the Fact A.2 holds, even ifA be an algebra overR. Proof is analogous to
the proof of the Fact A.2. Following [GZ05, page 7], we call a polynomial f multilinear if every variable
occurs with degree exactly one in every monomial off .

Lemma A.3 Let A be anR-algebra such thatA satisfies an identity of degreek. Then it satisfies a multi-
linear identity of degreek.

Proof. The lemma follows from an identical argument to that in the proof of Theorem 1.3.7 in [GZ05].

Using Lemma A.3, it follows that Lemma A.1 extends toMk(R). The proof is analogous to the proof
of Theorem 1.7.2 in [GZ05]. Letf be an identity forMk(R) of degree< 2k. By the Lemma A.3, we can
assume thatf is multilinear. Also, multiplyingf by the new variables from the right, we can assume that
the degree off is 2k − 1. Let,

f(x1, x2, · · · , x2k−1) =
∑

σ∈S2k−1

ασxσ(1) · · · xσ(2k−1)

with α1 6= 0, where1 denotes the identity permutation. Leteij be thek × k matrix with unity (of R) at
the(i, j)-th entry and zero in all other entries. It is easy to see thatf(e11, e12, e22, e23, · · · , ek−1,k, ekk) =
α1e1k 6= 0, sincex1 · · · x2k−1 is the only monomial that does not vanish during the evaluation. Sof is not
an identity forMk(R). The fact thatR is a ring with unity is crucially used.

22

Lemma A.4 Let R be a finite commutative ring with unity. ThenMk(R) does not satisfy any polynomial
identity of degree< 2k.

Now we a randomized polynomial time identity testing algorithm overR{x1, · · · , xn}.

Theorem A.5 Letf ∈ R{x1, · · · , xn} be a polynomial of degreed, given by a noncommutative arithmetic
circuit C. R is given as a ring oracle and its elements are encoded using binary strings of lengthm. Then
there is a randomized polynomial time algorithm (poly(n,d,m)) to test iff ≡ 0 overR{x1, · · · , xn}.

Proof. Let x1, x2, · · · , xn are the indeterminates inC. Choosek = dd/2e + 1. Replace eachxi by a

k × k matrix over the set of indeterminates{y(i)
j` }1≤j,`≤k. Once we replacexi by matrices , the inputs and

the outputs of the gates will be matrices. Replace each addition (multiplication) gate by a block of circuits
computing the sum (product) of twok × k matrices (without loss of generality, assume that the fan-in of
all gates is two). This can be easily achieved usingO(k2) gates. LetĈ be the arithmetic circuit obtained
from C by these modifications. Clearly,̂C computes a function fromFnk2

→ Fk2

and the size of̂C is only
polynomial in the size ofC. Denote byȲ the variable list(y(1)

11 , · · · , y
(1)
kk , · · · , y

(n)
11 , · · · , y

(n)
kk). Then,

Ĉ(Ȳ) = (P1(Ȳ), · · · , Pk2(Ȳ)).

Also, by the Lemma A.4,Mk(R) does not satisfy any identity of degree< 2k overR{x1, · · · , xn}. Sof
satisfiesMk(R) if and only if f ≡ 0 in R{x1, · · · , xn}, which equivalently implies thatPi ≡ 0 overR[Ȳ]
for all i. Notice that the degree ofPi is ≤ d. Now we appeal to the Theorem 6.7 in order to test whether
Pi ≡ 0 in time poly(n, d,m).

Bogdanov and Wee in [BW05] evaluate the noncommutative circuit over a field extensionF′ of F in
caseF is a small field compared to the degree. In our proof of TheoremA.5, when coefficients come from
the ringR, we avoid working in a ring extension and instead apply Theorem 6.7.

B Alternative proof of Lemma 6.5

Let R be a finite commutative ring with unity (denotede) and its elements uniformly encoded in{0, 1}m.
Recall we need to show the following: if we divide a nonzero polynomial g(x) ∈ R[x] of degreeD by

a random monic polynomialq(x) ∈ U [x] of degreelog O(D) then with high probability we get a nonzero
remainder. Recall from Section 6 thatU = {ke | 0 ≤ k ≤M − 1}, whereM > 2m+1/ε.

Indeed, Agrawal and Biswas essentially show in [AB03, Lemma4.7] that the above result holds for the
special case when the ringR is the ringZt of integers modulot, wheret is any positive integer given in
binary. In Section 6 we gave a self-contained proof of Lemma 6.5. In the sequel we give a different proof
which applies the [AB03] result forZt and brings out an interesting property of the division algorithm.

Let n denote the characteristic of the ringR. Then sampling fromU [x] amounts to almost uniform
sampling from the copy ofZn[x], namelyZne[x], contained inR[x] as a subring. Since(R,+) is a finite
abelian group, by the fundamental theorem for abelian groups, we can write(R,+) as a direct sumR =
⊕k

i=1 Zniei, wheree1, · · · , ek forms an independent generating set for(R,+), andni is the additive order
of ei for eachi. Notice that the lcm ofn1, · · · , nk is the ring’s characteristicn. This decomposition extends
naturally to the additive group(R[x],+) to give

R[x] =
k
⊕

i=1

Zni [x]ei. (2)

23

Thus, every polynomialg(x) ∈ R[x] can be uniquely written asg(x) =
∑

i=1 gi(x)ei, wheregi is a
polynomial with integer coefficients in the range0, · · · , ni − 1 for eachi. Clearly, dividingg(x) by q(x)
amounts to dividing each term in

∑

i=1 gi(x)ei. The following claim tells us how to analyze this term by
term division. More precisely, we analyze the quotient and remainder when we dividegi(x)ei ∈ R[x] by
q(x) ∈ Zn[x] (∼= Zne[x] ⊆ R[x]).

Claim B.1 Let gi(x) = q(x)q′(x) + r′(x) be the quotient and remainder when we dividegi(x) by q(x) in
the ringZni [x]. Letgi(x)ei = q(x)q′′(x) + r′′(x) be the quotient and remainder when we dividegi(x)ei by
q(x) in the ringR[x]. Thenq′(x)ei = q′′(x) andr′(x)ei = r′′(x).

This claim is somewhat surprising because Equation 2 only gives us agroupdecomposition ofR[x] and not
a ring decomposition. Thus, it is not clear why division in the ringZni [x] can be related to division inR[x].
Indeed, the crucial reason why we can relate the two divisions is because the divisor polynomialq(x) lives
in the copy ofZn[x] insideR[x].

To see the claim, we will carry out the division ofgi(x) by q(x) overR[x]. Since bothgi andq(x) have
integer coefficients, this amounts to carrying out divisionin Zn[x] which yields, say,gi(x) = q(x)q1(x) +
r1(x). We can also writeq1(x) = a(x)+nib(x) andr1(x) = c(x)+nid(x). Then, overZni , notice that we
must havegi(x) = q(x)a(x)+c(x). Therefore,a(x) = q′(x) andc(x) = r′(x). Now, multiplying both sides
by ei we will get q1(x)ei = a(x)ei + nieib(x) = a(x)ei = q′(x)ei. Similarly, we getr1(x)ei = c(x)ei =
r′(x)ei. Furthermore, again multiplying both sides byei, we also getgi(x)ei = q(x)q1(x)ei + r1(x)ei.
Hence,q′′(x) = q1(x)ei = q′(x)ei andr′′(x) = r1(x)ei = r′(x)ei. This proves the claim.

A consequence of the claim is the following nice property of the division algorithm: in order to divide
g(x) by q(x) over the ringR, for eachi we can carry out the division ofgi(x) by q(x) over the ringZni and
obtain the quotients and remainders:

gi(x) = q(x)q′i(x) + r′i(x).

Then we can put together the term by term divisions to obtain

g(x) = q(x)(

k
∑

i=1

q′i(x)ei) + (

k
∑

i=1

r′i(x)ei). (3)

More precisely, when we divideg(x) by q(x) in R[x], the quotient is
∑k

i=1 q′i(x)ei and the remainder is
∑k

i=1 r′i(x)ei. Now, sinceg ∈ R[x] is nonzero, there is an indexj such thatgj [x] ∈ Znj [x] is nonzero.
Furthermore, sincenj is a factor ofn, the polynomialq(x) modulonj is still an almost uniformly distributed
random monic polynomial. It follows from the Agrawal-Biswas result [AB03, Lemma 4.7] applied to
division of gj(x) by q(x) over Znj that r′j(x) will be nonzero with high probability. Consequently, by

Equation 3 the remainder
∑k

i=1 r′i(x)ei on dividingg(x) by q(x) in the ringR[x] is also nonzero with the
same probability.

24

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

