Electronic Colloguium on Computational Complexity, Report No. 26 (2008)

Towards an Optimal Separation of
Space and Length in Resolution

Jakob Nordstrom Johan Hastad

Royal Institute of Technology (KTH)
SE-100 44 Stockholm, Sweden
{j akobn, j ohanh}@t h. se

February 29, 2008

Abstract

Most state-of-the-art satisfiability algorithms today aexiants of the DPLL procedure
augmented with clause learning. The main bottleneck fan slgorithms, other than the obvi-
ous one of time, is the amount of memory used. In the field obfocomplexity, the resources
of time and memory correspond to the length and space ofumolproofs. There has been a
long line of research trying to understand these proof cerify measures, as well as relating
them to the width of proofs, i.e., the size of the largest stain the proof, which has been
shown to be intimately connected with both length and sp@dsgile strong results have been
proven for length and width, our understanding of spacdllgysite poor. For instance, it has
remained open whether the fact that a formula is provablaantéength implies that it is also
provable in small space (which is the case for length versdsh)y or whether on the con-
trary these measures are completely unrelated in the seaisshtort proofs can be arbitrarily
complex with respect to space.

In this paper, we present some evidence that the true antweldsbe that the latter case
holds and provide a possible roadmap for how such an optieparation result could be ob-
tained. We do this by proving a tight bound 6f(,/n) on the space needed for so-called
pebbling contradictions over pyramid graphs of sizeThis yields the first polynomial lower
bound on space that is not a consequence of a correspondiagbound on width, as well as
an improvement of the weak separation of space and width éamd®rom 2006) from logar-
ithmic to polynomial.

Also, continuing the line of research initiated by (Ben-£as2002) into trade-offs between
different proof complexity measures, we present a simglifieoof of the recent length-space
trade-off result in (Hertel and Pitassi 2007), and show howideas can be used to prove a
couple of other exponential trade-offs in resolution.

1 Introduction

Ever since the fundamentslP-completeness result of Cook [21], the problem of decidiimgtlver
a given propositional logic formula in conjunctive normaitrh (CNF) is satisfiable or not has been
on center stage in Theoretical Computer Science. In moentg®arsSATISFIABILITY has gone
from a problem of mainly theoretical interest to a practegaproach for solving applied problems.
Although all known Boolean satisfiability solvers (SAT-geis) have exponential running time in

*This is the full-length version of the paper [44] to appea®&OC '08
TResearch supported in part by grants from the foundatilotsn och Jakob Soderbergs stiftebmed Sven och
Dagmar Saléns stiftelse

ISSN 1433-8092

TOWARDS AN OPTIMAL SEPARATION

the worst case, enormous progress in performance has ledigbability algorithms becoming a
standard tool for solving a large number of real-world peofd such as hardware and software
verification, experiment design, circuit diagnosis, arfuesttling.

A somewhat surprising aspect of this development is thatrthst successful SAT-solvers to
date are still variants of the resolution-based Davis-&uthogemann-Loveland (DPLL) proced-
ure [25, 26] augmented wittlause learning For instance, the great majority of the best algorithms
at the 2007 round of the international SAT competitions [f&3his description. DPLL procedures
perform a recursive backtrack search in the space of partitii value assignments. The idea
behind clause learning, @onflict-driven learningis that at each failure (backtrack) point in the
search tree, the system derives a reason for the inconsistethe form of a new clause and then
adds this clause to the original CNF formula (“learning” di@use). This can save a lot of work
later on in the proof search, when some other partial truthevassignment fails for similar reas-
ons. The main bottleneck for this approach, other than théab one of time, is the amount of
memory used by the algorithms. Since there is only a finitewarnof space, all clauses cannot
be stored. The difficulty lies in obtaining a highly seleetiand efficient clause caching scheme
that nevertheless keeps the clauses needed. Thus, undargttime and memory requirements
for clause learning algorithms, and how these requiremametselated to one another, is a question
of great practical importance. We refer to e.g. [9, 36, S5t]donore detailed discussion of clause
learning (and SAT-solving in general) with examples of aggtlons.

The study of proof complexity originated with the semingbgaof Cook and Reckhow [23]. In
its most general form, a proof system for a languége a predicateP(z, 7), computable in time
polynomial in|z| and|r|, such that for all- € L there is a stringr (aproof) for which P(z, 7) = 1,
whereas for any: ¢ L it holds for all stringsr that P(z,7) = 0. A proof system is said to be
polynomially bounded if for every: € L there is a proofr, of size at most polynomial inz|. A
propositional proof systerlis a proof system for the language of tautologies in projursit logic.

From a theoretical point of view, one important motivation proof complexity is the intimate
connection with the fundamental questiorPofersusNP. SinceNP is exactly the set of languages
with polynomially bounded proof systems, and sime&@TOLOGY can be seen to be the dual prob-
lem of SATISFIABILITY, we have the famous theorem of [23] tiN® = co-NP if and only if there
exists a polynomially bounded propositional proof systéimus, if it could be shown that there are
no polynomially bounded proof systems for propositionakdéogies,P % NP would follow as a
corollary sinceP is closed under complement. One way of approaching thiardtigioal is to study
stronger and stronger proof systems and try to prove sulyeiqooial lower bounds on proof size.
However, although great progress has been made in the lgseocnf decades for a variety of proof
systems, it seems that we are still very far from fully untierding the reasoning power of even
quite simple ones.

A second important motivation is that, as was mentioned @pdesigning efficient algorithms
for proving tautologies (or, equivalently, testing sasibflity), is a very important problem not only
in the theory of computation but also in applied research iaddstry. All automated theorem
provers, regardless of whether they actually produce demrjiroof, explicitly or implicitly define
a system in which proofs are searched for and rules whichrrdate what proofs in this system
look like. Proof complexity analyzes what it takes to simpisite down and verify the proofs that
such an automated theorem-prover might find, ignoring tinepzdational effort needed to actually
find them. Thus a lower bound for a proof system tells us thgtagorithm, even an optimal
(non-deterministic) one making all the right choices, mestessarily use at least the amount of a
certain resource specified by this bound. In the other dmectheoretical upper bounds on some
proof complexity measure give us hope of finding good proafae algorithms with respect to
this measure, provided that we can design algorithms tteatksdor proofs in the system in an
efficient manner. For DPLL procedures with clause learntihg,time and memory resources used
are measured by tHengthandspaceof proofs in the resolution proof system.

2

1 INTRODUCTION

The field of proof complexity also has rich connections tgtography, artificial intelligence
and mathematical logic. Some good surveys providing motaldere [7, 10, 54].

1.1 Previous Work

Any formula in propositional logic can be converted to a CNFfula that is only linearly larger
and is unsatisfiable if and only if the original formula is at@dogy. Therefore, any sound and
complete system for refuting CNF formulas can be considased general propositional proof
system.

Perhaps the single most studied proof system in propoaitimmof complexityresolution is
such a system that produces proofs of the unsatisfiabilitghF formulas. The resolution proof
system appeared in [16] and began to be investigated in cbanavith automated theorem proving
in the 1960s [25, 26, 50]. Because of its simplicity—thererily one derivation rule—and because
all lines in a proof are clauses, this proof system readitgéeitself to proof search algorithms.

Being so simple and fundamental, resolution was also aaldarget to attack when developing
methods for proving lower bounds in proof complexity. Instikbntext, it is most straightforward
to prove bounds on thengthof refutations, i.e., the number of clauses, rather thamerdtal size
of refutations. The length and size measures are easilytedas polynomially related. In 1968,
Tseitin [58] presented a superpolynomial lower bound ontegion length for a restricted form
of resolution, calledegular resolution, but it was not until almost 20 years later thakéta[32]
proved the first superpolynomial lower bound for generabltgion. This weakly exponential
bound of Haken has later been followed by many other strosgltss among others truly expo-
nential lower bound on resolution refutation length fofeliént formula families in, for instance,
[8, 15, 20, 59].

A second complexity measure for resolution, first made eitgiy Galil [30], is thewidth,
measured as the maximal size of a clause in the refutatiom32sson and Wigderson [15] showed
that the minimal widthiW(F' F 0) of any resolution refutation of &-CNF formulaF' is bounded
from above by the minimal refutation lengfi{ #' - 0) by

W(F I 0) = O(y/nlog L(F F 0)) , (1.1)

wheren is the number of variables i#’. Since it is also easy to see that resolution refuta-
tions of polynomial-size formulas in small width must nesady be short (for the reason that
(2 - #variableg is an upper bound on the total number of distinct clauses dfwi), the result
in [15] can be interpreted as saying roughly that there &asthort refutation of the-CNF formu-
la I if and only if there exists a (reasonably) narrow refutatidrF'. This gives rise to a natural
proof search heuristic: to find a short refutation, searchdfutations in small width. It was shown
in [14] that there are formula families for which this hetidexponentially outperforms any DPLL
procedure regardless of branching function.

The formal study ofpacen resolution was initiated by Esteban and Toran [28, S&Litively,
the spaceSp(m) of a resolution refutationr is the maximal number of clauses one needs to keep
in memory while verifying the refutation, and the spafe(F' + 0) of refuting F' is defined as the
minimal space of any refutation df. A number of upper and lower bounds for refutation space
in resolution and other proof systems were subsequentsepted in, for example, [2, 13, 27, 29].
Just as for width, the minimum space of refuting a formulaloanpper-bounded by the size of the
formula. Somewhat unexpectedly, however, it also turnddtat the lower bounds on resolution
refutation space for several different formula familiea&ly matched previously known lower
bounds on refutation width. Atserias and Dalmau [5] shovired this was not a coincidence, but
that the inequality

W(F F0) < Sp(F + 0) + O(1) (1.2)

3

TOWARDS AN OPTIMAL SEPARATION

holds for anyk-CNF formulaF’, where the (small) constant term dependstonn [42], the first
author proved that the inequality (1.2) is asymptoticatiticsby exhibiting ak-CNF formula family
of sizeO(n) refutable in widthW(F,, - 0) = O(1) but requiring spacép (F,, - 0) = O(logn).
The space measure discussed above is knowfaase spaceA less well-studied space meas-
ure, introduced by Alekhnovich et al. [2], V&riable spacewhich counts the maximal number of
variable occurrences that must be kept in memory simulizgsigoBen-Sasson [11] used this meas-
ure to obtain a trade-off result for clause space versushwirdtesolution, proving that there are
k-CNF formulasF;, that can be refuted in constant clause space and constaht Wid for which
any refutationr,, must haveSp(m,,) - W(m,) = Q(n/logn). More recently, Hertel and Pitassi [33]
showed that there are CNF formul&s for which any refutation off,, in minimal variable space
VarSp (F,, = 0) must have exponential length, but by adding Risixtra units of storage one can
instead get a resolution refutation in linear length.

1.2 Questions Left Open by Previous Research

Despite all the research that has gone into understandingeiolution proof system, a number of
fundamental questions still remain unsolved. We touchflgran two such questions below, and
then discuss a third one, which is the main focus of this papsomewhat more detail.

Equation (1.1) says that short refutation length impliesava refutation width. Combining
Equation (1.2) with the observation above that narrow egfoms are trivially short, we get a similar
statement that small refutation clause space implies sbrtation length. Note, however, that
this doesnot mean that there is a refutation that is both short and nawoihat any small-space
refutation must also be short. The reason is that the resolrgfutations on the left- and right-hand
sides of (1.1) and (1.2) need not (and in general will not)hieesame one.

In view of the minimum-width proof search heuristic mengdrmabove, an important question
is whether short refutation length of a formula does in faxtai that there is a refutation of it that
is both short and narrow. Also, it would be interesting towrnibsmall space of a refutation implies
that it is short. It is not known whether there are such cotimes or whether on the contrary there
exist some kind of trade-off phenomena here similar to treefonspace and width in [11].

A third, even more interesting problem is to clarify the tiela between length and clause
space. For width, rewriting the bound in (1.1) in terms of thenber of clause§F),| instead of
the number of variables we get that that if the width of refgtr,, is w(\/|F,|log|F,|), then the
length of refutingF;,, must be superpolynomial if¥;,|. This is known to be almost tight, since
[18] shows that there is &-CNF formula family {F,,} 2, with W(F, -0) = Q(3/]F,]) but
L(F, F 0) = O(|F,|). Hence, formula families refutable in polynomial lengtim ¢teave somewhat
wide minimum-width refutations, but not arbitrarily widees.

What does the corresponding relation between space anith llied like? The inequality (1.2)
tells us that any correlation between length and clauseespatnot be tighter than the correlation
between length and width, so in particular we get from theiptes paragraph thatCNF formulas
refutable in polynomial length may have at least “somewpatmus” minimum-space refutations.
At the other end of the spectrum, given any resolution réfuiar of F' in length L it can be proven
using results from [28, 34] thatp(r) = O(L/log L). This gives an upper bound on any possible
separation of the two measures. But is there a Ben-Sassgde¥§on kind of upper bound on
space in terms of length similar to (1.1)? Or are length artesmwn the contrary unrelated in the
sense that there exigtCNF formulasF,, with short refutations but maximal possible refutation
spaceSp (F, - 0) = Q(L(F, + 0)/log L(F, + 0)) in terms of length?

We note that for the restricted case of so-called tree-Bsmlution, [28] showed that there is
a tight correspondence between length and space, exadty length versus width. The case for
general resolution has been discussed in, for instance2fl 57], but there seems to have been no
consensus on what the right answer should be. However, jlagses identify a plausible formula

4

2 PROOF OVERVIEW AND PAPER ORGANIZATION

family for answering the question, namely so-calfebbling contradictionglefined in terms of
pebble games over directed acyclic graphs.

1.3 Our Contribution

The main result in this paper provides some evidence thatrteeanswer to the question about
the relationship between space and length is more likelyetatithe latter extreme, i.e., that the
two measures can be separated in the strongest sense @oskibé specifically, as a step towards
reaching this goal we prove an asymptotically tight boundhenclause space of refuting pebbling
contradictions over pyramid graphs.

Theorem 1.1. The clause space of refuting pebbling contradictions oweamids of heighth
in resolution grows a®(h), provided that the number of variables per vertex in the fiegb
contradictions is at leas2.

This yields the first separation of space and length (in thsesef a polynomial lower bound
on space for formulas refutable in polynomial length) tsatét a consequence of a corresponding
lower bound on width, as well as an exponential improvemétiie@separation of space and width
in [42].

Corollary 1.2. For all k > 4, there is a family{ £}, } .~ ; of k-CNF formulas of siz®(n) that can
be refuted in resolution in length(F,, - 0) = O(n) and width W(F,, - 0) = O(1) but require
clause space&p (F), - 0) = O(y/n).

In addition to our main result, we also make the the obsemathat the proof of the recent
trade-off result in [33] can be greatly simplified, and thegmaeters slightly improved. Using
similar ideas, we can also prove exponential trade-offsldagth with respect to clause space
and width. Namely, we show that there &CNF formulas such that if we insist on finding the
resolution refutation in smallest clause space or smakl&tth, respectively, then we have to pay
with an exponential increase in length. We state the theam@gnfor length versus clause space.

Theorem 1.3. There is a family ok-CNF formulas{F},} -, of size©(n) such that:
e The minimal clause space of refutitiy in resolution isSp (F,, - 0) = ©(J/n).
e Any resolution refutationr : F,, 0 in minimal clause space must have lendifr) =

exp (7)),
e There are resolution refutations : F,, - 0 in asymptotically minimal clause spasg (') =
O(Sp(F, + 0)) and lengthL(7’) = O(n), i.e., linear in the formula size.

A theorem of exactly the same form can be proven for lengthugewidth as well.

2 Proof Overview and Paper Organization

Since the proof of our main theorem is fairly involved, wertstey giving an intuitive, high-level
description of the proofs of our results and outlining hovs faper is organized.

2.1 Sketch of Preliminaries

A resolution refutatiorof a CNF formulaF' can be viewed as a sequence of derivation steps on a
blackboard. In each step we may write a clause ffoiwn the blackboard (aaxiomclause), erase
a clause from the blackboard or derive some new clause ichpliethe clauses currently written

5

TOWARDS AN OPTIMAL SEPARATION

on the blackboard. The refutation ends when we reach the contradictory emptysel. Théength

of a resolution refutation is the number of distinct clausethe refutation, thevidthis the size of
the largest clause in the refutation, and theuse spacés the maximum number of clauses on the
blackboard simultaneously. We writ ' - 0), W(F' - 0) andSp (F' - 0) to denote the minimum
length, width and clause space, respectively, of any résaluefutation ofF".

Thepebble gamelayed on a directed acyclic graph (DAG)models the calculation described
by G, where the source vertices contain the input and non-smentiees specify operations on the
values of the predecessors. Placing a pebble on a vertexresponds to storing in memory the
partial result of the calculation described by the subgnaygited atv. Removing a pebble from
corresponds to deleting the partial resulbdfom memory. Apebblingof a DAG G is a sequence
of moves starting with the empty gragh and ending with all vertices itr empty except for a
pebble on the (unique) sink vertex. Toastof a pebbling is the maximal number of pebbles used
simultaneously at any point in time during the pebbling. Pebbling priceof a DAG G is the
minimum cost of any pebbling, i.e., the minimum number of roeyregisters required to perform
the complete calculation described Gy

The pebble game on a DAG can be encoded as an unsatisfiable CNF fornﬂﬂbé, a so-
calledpebbling contradictiorof degreed. See Figure 1 for a small example. Very briefly, pebbling
contradictions are constructed as follows:

e Associated variablesz(v)y, . .., z(v) with each vertex (in Figure 1 we have = 2).

e Specify that all sources have at least one true variablesfample, the clause(r); V z(r)s
for the vertex- in Figure 1.

e Add clauses saying that truth propagates from predecesssrgcessors. For instance, for
the vertexu with predecessors ands, clauses 4—7 in Figure 1 are the CNF encoding of the
implication (xz(r)1 V x(r)2) A (z(s)1 V x(s)2) — (x(u); V x(u)2).

e To get a contradiction, conclude the formula witfx), A - - - A z(z), wherez is the sink of
the DAG.

We will need the observation from [14] that a pebbling caditdon of degreel over a graph with
n vertices can be refuted by resolution in len@tfid® - n) and widthO(d).

2.2 Proof Idea for Pebbling Contradictions Space Bound

Pebble games have been used extensively as a tool to progeatich space lower bounds and
trade-offs for computation. Loosely put, a lower bound far pebbling price of a graph says that
although the computation that the graph describes can barped quickly, it requires large space.
Our hope is that when we encode pebble games in terms of Ciiufas, these formulas inherit
the same properties as the underlying graphs. That is, ifiekegdAG G with high pebbling price,
since the corresponding pebbling contradiction encodedcalation which requires large memory
we would like to try to argue that any resolution refutatidntids formula should require large
space. Then a separation result would follow since we ajrkadw from [14] that the formula can
be refuted in short length.

More specifically, what we would like to do is to establish amection between resolu-
tion refutations of pebbling contradictions on the one hanl the so-calletdlack-white pebble
game[24] modeling the non-deterministic computations desiby the underlying graphs on the

1For our proof, it turns out that the exact definition of theidion rule is not essential—our lower bound holds for
any sound rule. What is important is that we are only alloveedirive new clauses that are implied by the set of clauses
currently on the blackboard.

2 PROOF OVERVIEW AND PAPER ORGANIZATION

(x(r); Va(r)s) A (z(u); Va(v); Va(z) Vz(z)2)
A (z(s)1V 2(s)2) A (@(u); Ve (v)y Va(2)1 V (2)2)
A (z(t) V z(t)2) A (@(u)y Va(v), V() V z(2)2)
A (z(r), Vo(s), Va(u) Vo(u)s) A (z(u)y V() Va(z) Vz(z))
A (M1V@2VUU(U)1V$(U)2) /\x—z)l
A (Mz\/@l\/w(u)l\/x(u)g) /\x—z)z
A (@(r)y V a(s)y Va(u)r V z(u)s) e
A (x(s)y V (), Ve Va(v)s)
A (@1VM2VUU(U)1VUU(U)2) 0 0
A (@(s)y Va(t), V() Va(v)s)
A (z(8)y V x(t)y V 2 (v)1 V 2(v)2) 0 9 0

Figure 1: The pebbling contradiction Peb%12 for the pyramid graph II, of height 2.

other. Our intuition is that the resolution proof systemudtidhave to conform to the combinator-
ics of the pebble game in the sense that from any resolutiotaten of a pebbling contradiction

Pebd we should be able to extract a pebbling of the DAG

Ideally, we would like to give a proof of a lower bound on thealtion refutation space of

pebbling contradictions along the following lines:

1. First, find a natural interpretation of sets of clausesanly “on the blackboard” in a refuta-

tion of the formulaPeb?, in terms of black and white pebbles on the vertices of the DAG

2. Then, prove that this interpretation of clauses in terfifsebbles captures the pebble game

in the following sense: for any resolution refutation/$b?,, looking at consecutive sets of
clauses on the blackboard and considering the corresppsdils of pebbles in the graph we
get a black-white pebbling a¥ in accordance with the rules of the pebble game.

. Finally, show that the interpretation captures clauseaspn the sense that if the content of
the blackboard induceS pebbles on the graph, then there must be at I¥askuses on the

blackboard.

Combining the above with known lower bounds on the pebblirigepof GG, this would imply a
lower bound on the refutation space of pebbling contramhstiand a separation from length and

width. For clarity, let us spell out what the formal argumehthis would look like.
Consider an arbitrary resolution refutation]éébé. From this refutation we extract a pebbling

of G. At some point in time in the obtained pebbling, there must be a lot of pebbles owdhees
of GG since this graph was chosen with high pebbling price. Bstiians that at time there are a
lot of clauses on the blackboard. Since this holds for angluéien refutation, the refutation space
of Pebé must be large. The separation result now follows from thetfeat pebbling contradictions

are known to be refutable in linear length and constant widihis fixed.

Unfortunately, this idea does not quite work. In the nextssdion, we describe the modifica-
tions that we are forced to make, and show how we can maketthar pieces of our construction
fit together to yield Theorem 1.1 and Corollary 1.2 for thecsglecase of pyramid graphs.

7

TOWARDS AN OPTIMAL SEPARATION

x(u)1 Vx(u)s
w(s); V() V() Va(v):
w—3)1 Vv W2 Va(v)1 Vz(v):
w(s)y Va(t), Va(v)r Va(v)
L w—s)2\/%2\/x(v)1\/w(v)g i "
(a) Clauses on blackboard. (b) Corresponding pebbles in the graph.

Figure 2: Example of intuitive correspondence between sets of clauses and pebbles.

2.3 Detailed Overview of Formal Proof of Space Bound

The black-white pebble game played on a DA&an be viewed as a way of proving the end result
of the calculation described k. Black pebbles denote proven partial results of the contiputa
White pebbles denote assumptions about partial resulishitaive been used to derive other partial
results (i.e., black pebbles), but these assumptions wileto be verified for the calculation to
be complete. The final goal is a black pebble on the sirdnd no other pebbles in the graph,
corresponding to an unconditional proof of the end resuthefcalculation with any assumptions
made along the way having been eliminated.

Translating this to pebbling contradictions, it turns chatta fruitful way to think of a black
pebble orv is that it should correspond to truth of the disjuncthﬂng x(v); of all positive literals
overw, or to “truth of v”. A white pebble on a vertex) can be understood to mean that we need to
assumehe partial result omw to derive the black pebbles abowxen the graph. Needing to assume
the truth ofw is the opposite of knowing the truth af, so extending the reasoning above we get
that a white-pebbled vertex should correspond to “falsfty§ i.e., to all negative Iiteralsmi,

i € [d], overw.

Using this intuitive correspondence, we can translate afettauses in a resolution refutation
of Pebc(l; into black and white pebbles i& as in Figure 2. It is easy to see that if we assume
x(s)1 V z(s)2 and z(t); V z(t)2, this assumption together with the clauses on the blackboar
in Figure 2(a) implyz(v); V z(v)2, sov should be black-pebbled andandt white-pebbled in
Figure 2(b). The vertex is also black since(u); V z(u)2 certainly is implied by the blackboard.
This translation from clauses to pebbles is arguably quiteghtforward, and seems to yield well-
behaved black-white pebblings for all “sensible” resa@uatrefutations otPebdg.

The problem is that we have no guarantee that the resolugitatations will be “sensible”.
Even though it might seem more or less clear how an optimatagbn of a pebbling contradic-
tion should proceed, a particular refutation might contammtuitive and seemingly non-optimal
derivation steps that do not make much sense from a pebble garapective. In particular, a res-
olution derivation has no obvious reason always to deriwthtthat is restricted to single vertices.
For instance, it could add the axiomgu); V x(v), V 2(2)1 V 2(2)2, i = 1,2, to the blackboard
in Figure 2(a), derive that the truth efandt¢ implies the truth of eithep or z, i.e., the clauses
x(s); Va(t); Va(v) Va(z) Va(z) ford, j = 1,2, and then erase(u), V z(u), from the black-
board. Although it is hard to see from such a small exampis ttiins out to be a serious problem
in that there appears to be no way that we can interpret sutlatien steps in terms of black and
white pebbles without making some component in the prod ideSection 2.2 break down.

Instead, what we do is to invent a new pebble game, with wetebles just as before, but
with black blobsthat can cover multiple vertices instead of single-vertieck pebbles. A blob on
a vertex sef” can be thought of as truth of some vertexc V. The derivation sketched in the
preceding paragraph, resulting in the set of clauses inr&ig(a), will then be translated into white

8

2 PROOF OVERVIEW AND PAPER ORGANIZATION

Y Va(v) Va(z) V()
x(s); Va(t)y Va(v) Va(z) Va(z
v V() Vr(z)

2

(2)
(2)
z(v)1 Va(z); Va(z),
z(t)y V()1 Va(2)1 Vo(z)s r

(a) New set of clauses on blackboard. (b) Corresponding blobs and pebbles.

Figure 3: Intepreting sets of clauses as black blobs and white pebbles.

pebbles orx andt as before and a black blob covering bethndz in Figure 3(b). We define rules
in this blob-pebble gameorresponding roughly to black and white pebble placemedtramoval
in the usual black-white pebble game, and add a spéatilation rule allowing us to inflate black
blobs to cover more vertices.

Once we have this blob-pebble game, we use it to construeter loound proof as outlined in
Section 2.2. First, we establish that for a fairly generabkslof graphs, any resolution refutation
of a pebbling contradiction can be interpreted as a blotbliredp on the DAG in terms of which
this pebbling contradiction is defined. Intuitively, thesen that this works is that we can use the
inflation rule to analyze apparently non-optimal steps aréfutation.

Theorem 2.1. Let Pebc(l; denote the pebbling contradiction of degeée- 1 over a layered DAG-.
Then there is a translation function from sets of clausesveerfrom Peb?, into sets of black
blobs and white pebbles @ such that any resolution refutatianof Pebc(l; corresponds to a blob-
pebblingP;,. of G under this translation.

In fact, the only property that we need from the layered gsaphTheorem 2.1 is that ib is a
vertex with predecessotsandwv, then there is no path between the siblingandv. The theorem
holds for any DAG satisfying this condition.

Next, we carefully design a cost function for black blobs ardte pebbles so that the cost of
the blob-pebbling?,. in Theorem 2.1 is related to the space of the resolutionatiurtr.

Theorem 2.2. If « is a refutation of a pebbling contradictioﬁebgl; of degreed > 1, then the cost
of the associated blob-pebblirfg; is bounded by the space oy cost(P,) < Sp(w) + O(1).

Without going into too much detail, in order to make the prafofheorem 2.2 work we can only
charge for black blobs having distinct lowest vertices (sueed in topological order), so additional
blobs with the same bottom vertices are free. Also, we cap cmhrge for white pebbles below
these bottom vertices.

Finally, we need lower bounds on blob-pebbling price. Bseanf the inflation rule in combin-
ation with the peculiar cost function, the blob-pebble gamems to behave rather differently from
the standard black-white pebble game, and therefore weotappeal directly to known lower
bounds on black-white pebbling price. However, for a mostrigted class of graphs than in The-
orem 2.1, but still including binary trees and pyramids, wanage to prove tight bounds on the
blob-pebbling price by generalizing the lower bound carddton for black-white pebbling in [37].

Theorem 2.3. Any so-called layered spreading graph, of height. has blob-pebbling pric®(h).
In particular, this holds for pyramid graphd;,.

Putting all of this together, we can prove our main theorem.

9

TOWARDS AN OPTIMAL SEPARATION

Theorem 1.1 (restated). Let Peb%h denote the pebbling contradiction of degrée> 1 defined
over the pyramid graph of heigtit. Then the clause space of refutim@bdnh by resolution is
Sp(Pebf; +0) = O(h).

Proof. The upper bouncﬂp(Peb%h - 0) = O(h) is easy. A pyramid of height can be pebbled
with & + O(1) black pebbles, and a resolution refutation can mimic suchbibling in constant
extra clause space (independentipfo refute the corresponding pebbling contradiction.

The interesting part is the lower bound. Lete any resolution refutation cﬁ’eb%h. Con-
sider the associated blob-pebblifi®) provided by Theorem 2.1. On the one hand, we know
that cost(P,) = O(Sp(w)) by Theorem 2.2, provided that > 1. On the other hand, The-
orem 2.3 tells us that the cost of any blob-pebblindlgfis £2(h), so in particular we must have
cost(Pr) = Q(h). Combining these two bounds oost(P;), we see thabp(m) = Q(h). O

The pebbling contradictionPebC(l; is a (24d)-CNF formula and for constant the size of the
formula is linear in the number of vertices Gf(compare Figure 1). Thus, for pyramid gradis
the corresponding pebbling contradictioﬁsb%h have size quadratic in the height Also, when
d is fixed the upper bounds mentioned at the end of Section ZdnteL(Pebd, - 0) = O(n)
and W(Peb$, F 0) = O(1). Corollary 1.2 now follows if we sef,, = Peb{;, for d = k — 2 and
h = |y/n] and use Theorem 1.1.

Corollary 1.2 (restated). For all & > 4, there is a family ok-CNF formulas{ F, } >, of sizeO(n)
such thatL(F,, - 0) = O(n) and W(F,, F 0) = O(1) but Sp(F,, - 0) = ©(y/n).

2.4 Overview of Trade-off Results

Let us also quickly sketch the ideas (or tricks, really) usegrove our trade-off theorems for
resolution.

We show the following version of the length-variable spaeel¢-off theorem of Hertel and
Pitassi [33], with somewhat improved parameters and a veighnsimpler proof.

Theorem 2.4. There is a family of CNF formulagF,, }°° ; of size©(n) such that:
e The minimal variable space of refutirig, in resolution isVarSp (F,, F 0) = ©(n).
e Any resolution refutationr : F,, -0 in minimal variable space has lengtp(Q(y/n)).
e Adding at mos® extra units of storage, it is possible to obtain a resolutiefutationz’ in
variable spaceVarSp(n') = VarSp(F, - 0) +3 = ©(n) and lengthL(z’) = O(n), i.e.,
linear in the formula size.

The idea behind our proof is as follows. Take formulgsthat are really hard for resolution and
formulasH,,, which have short refutations but require linear variablcspand sef,, = G, AN H,,
for m chosen so thaVarSp (H,, i 0) is only just larger tharVarSp (G, + 0). Then refutations in
minimal variable space will have to take care(af, which requires exponential length, but adding
one or two literals to the memory we can attdék, instead in linear length.

The trade-off result in Theorem 1.3 for length versus class@ce and its twin theorem for
length versus width are shown using similar ideas.

2.5 Paper Organization

Section 3 provides formal definitions of the concepts iniicat! in Sections 1 and 2, and Section 4
gives precise statements of the results mentioned theveglhas some other result relevant to this
paper. The easy proofs of our trade-off theorems are theredrately presented in Section 5.

The bulk of the paper is spent proving our main result in Teeorl.1. In Section 6, we
define our modified pebble game, the “blob-pebble game” wleatvill use to analyze resolution

10

3 FORMAL PRELIMINARIES

refutations of pebbling contradictions. In Section 7 weverthat resolution refutations can be
translated into pebblings in this game, which is Theoremi2.$ection 2.3. In Section 8, we
prove Theorem 2.2 saying that the blob-pebbling price ately measures the clause space of the
corresponding resolution refutation. Finally, after giyia detailed description of the lower bound
on black-white pebbling of [37] in Section 9 (with a somewhimplified proof that might be of
independent interest), in Section 10 we generalize thidtresa nontrivial way to our blob-pebble
game. This gives us Theorem 2.3. Now Theorem 1.1 and Coydll& follow as in the proofs
given at the end of Section 2.3.

We conclude in Section 11 by giving suggestions for furtiesegarch.

3 Formal Preliminaries

In this section, we define resolution, pebble games and pepbbntradictions.

3.1 The Resolution Proof System

A literal is either a propositional logic variable or its negatiompatedx andz, respectively. We
definexr = x. Two literalsa andb arestrictly distinctif a # b anda # b, i.e., if they refer to
distinct variables.

A clauseC = a1 V---Vay is a set of literals. Throughout this paper, all clauSesre assumed
to be nontrivial in the sense that all literalsGhare pairwise strictly distinct (otherwigg is trivially
true). We say tha€’ is asubclauseof D if C' C D. A clause containing at mostliterals is called
ak-clause

A CNF formulaF = Cy A --- A Cpy, is a set of clauses. A-CNF formulais a CNF formula
consisting oft-clauses. We define tleize S(F') of the formulaZ to be the total number of literals
in F' counted with repetitions. More often, we will be interesiethe number of clausg$’| of F'.

In this paper, when nothing else is stated it is assumed4hBt C, D denote clauses;, D sets
of clauses;, y propositional variablesy, b, ¢ literals, «, 8 truth value assignments amda truth

valueO or 1. We write
—y aly) Iy # x,
" (y) = {) (3.1)

v if y=ux,

to denote the truth value assignment that agrees avetkierywhere except possibly atto which
it assigns the value. We let Vars(C') denote the set of variables atid(C) the set of literals in
a clauseC.? This notation is extended to sets of clauses by taking uniétso, we employ the
standard notatiom| = {1,2,...,n}.

A resolution derivationr : F'+ A of a claused from a CNF formulaF’ is a sequence of clauses
m = {D1,...,D;} such thatD, = A and each lineD;, i € [r], either is one of the clauses In
(axiomg or is derived from clauseB;, Dy, in 7 with j, £ < i by theresolution rule

Bvz CvV=xT
BvC

We refer to (3.2) agesolution on the variable and toB Vv C' as theresolventof B V z andC' vV T
onz. A resolution refutatiorof a CNF formulaF’ is a resolution derivation of the empty clause
(the clause with no literals) fror'. Perhaps somewhat confusingly, this is sometimes alsoeeffe
to as aresolution proofof F.

For a formulaF’ and a set of formula§ = {G1,...,G,}, we say thatj implies F', denoted
G E F, if every truth value assignment satisfying all formuldse G satisfiesF’ as well. It is

(3.2)

2Although the notatiorLit(C) is slightly redundant given the definition of a clause as askterals, we include it
for clarity.

11

TOWARDS AN OPTIMAL SEPARATION

well known that resolution is sound and implicationally quete. That is, if there is a resolution
derivationn : F - A, thenF E A, and if F E A, then there is a resolution derivatian F +— A’ for
someA’ C A. In particular,F is unsatisfiable if and only if there is a resolution refudatof F'.

With every resolution derivation : £'+ A we can associate a DAG,;, with the clauses imr
labelling the vertices and with edges from the assumptiansgs to the resolvent for each applica-
tion of the resolution rule (3.2). There might be severdkdént derivations of a clauge in 7, but
if so we can label each occurrence@fwith a timestamp when it was derived and keep track of
which copy ofC' is used where. A resolution derivatianis tree-likeif any clause in the derivation
is used at most once as a premise in an application of theutesotule, i.e., ifG; is a tree. (We
may make different “time-stamped” vertex copies of the axidauses in order to mak@&; into a
tree).

Thelength L(7) of a resolution derivation is the number of clauses in it. We define the length
of deriving a claused from a formulaF’ asL(F + A) = min,.p 4{L(7)}, where the minimum
is taken over all resolution derivations df In particular, the length of refuting’ by resolution is
denotedZ(F I 0). The length of refuting” by tree-like resolution.<(F I 0) is defined by taking
the minimum over all tree-like resolution refutations of .

Thewidth W(C') of a clauseC is |C], i.e., the number of literals appearing in it. The width of
a set of clause€ is W(C) = maxcec{ W(C)}. The width of derivingA from F' by resolution is
W(F + A) = ming.pr 4{ W(r)}, and the width of refuting” is denotediW(F + 0). Note that
the minimum width measures in general and tree-like resoludoincide, so it makes no sense to
make a separate definition féV<(F - 0).

We next define the measure gface Following the exposition in [28], a proof can be seen as
a Turing machine computation, with a special read-only irippe from which the axioms can be
downloaded and a working memory where all derivation stepsreade. Thelause spacef a
resolution proof is the maximum number of clauses that nede tkept in memory simultaneously
during a verification of the proof. Theariable spacas the maximum total space needed, where
also the width of the clauses is taken into account.

For the formal definitions, it is convenient to use an altéveadefinition of resolution intro-
duced in [2].

Definition 3.1 (Resolution). A clause configuratiorC is a set of clauses. A sequence of clause
configurations{Cy, ..., C.} is aresolution derivatiorfrom a CNF formulaF’ if C, = () and for
all t € [r], C; is obtained fromC;_; by oné of the following rules:

Axiom Download C; = C;_y U {C} for someC € F.
Erasure C; = C;—; \ {C} for someC € C,_;.
Inference C; = C;_; U {D} for someD inferred by resolution front’;, Cy € C;_;.

A resolution derivationr : F'- A of a clauseA from a formulaf’ is a derivation{C,,...,C,}
such thatC, = {A}. A resolution refutatiorof F' is a derivation of the empty clausdrom F..

Definition 3.2 (Clause space [2, 11])Theclause spacef a resolution derivation ={Cy, ...,C;}
is max,c[-1{|C;|}. The clause space of deriving from F' is Sp(F = A) = min.pr 4{Sp(7)},
andSp (F I 0) denotes the minimum clause space of any resolution refatafi F'.

Definition 3.3 (Variable space [2]). The variable spaceof a configurationC is VarSp(C) =
>_cec W(C). The variable space of a derivatidi©o, ...,C.} is max,c[,{ VarSp(Cy)}, and
VarSp (F' + 0) is the minimum variable space of any resolution refutatibé’o

3In some previous papers, resolution is defined so as to allety eerivation step toombineone or zero applications
of each of the three derivation rules. Therefore, some obthunds stated in this paper for space as defined next are off
by a constant as compared to the cited sources.

12

3 FORMAL PRELIMINARIES

Restricting the resolution derivations to tree-like resioh, we get the measuré®<(F + 0)
and VarSp<(F F 0) in analogy withL<(F + 0) defined above.

Note that if one wanted to be really precise, the size andespagasures should probably
measure the number bfts needed rather than the number of literals. However, cogriitierals
makes matters substantially cleaner, and the differeneg isost a logarithmic factor anyway.
Therefore, counting literals seems to be the establishgdfmeasuring formula size and variable
space.

In this paper, we will be almost exclusively interested ia thause space of general resolution
refutations. When we write simply “space” for brevity, we aneclause space.

3.2 Pebble Games and Pebbling Contradictions

Pebble games were devised for studying programming lamguagd compiler construction, but
have found a variety of applications in computational carity theory. In connection with resol-
ution, pebble games have been employed both to analyzestiesodlerivations with respect to how
much memory they consume (using the original definition @icgpin [28]) and to construct CNF
formulas which are hard for different variants of resolntia various respects (see for example
[3, 14, 17, 19]). An excellent survey of pebbling up to ca 183[28].

The black pebbling price of a DAG' captures the memory space, i.e., the number of registers,
required to perform the deterministic computation desttibyG. The space of a non-deterministic
computation is measured by the black-white pebbling pricé’.oWe say that vertices af with
indegree0 are sourcesand that vertices with outdegréeare sinksor targets In the following,
unless otherwise stated we will assume that all DAGs undsaudsion have a unique sink and
this sink will always be denoted. The next definition is adapted from [24], though we use the
established pebbling terminology introduced by [34].

Definition 3.4 (Pebble game).Suppose thatr is a DAG with source$ and a unique target The

black-white pebble gamen G is the following one-player game. At any point in the gamey¢h
are black and white pebbles placed on some verticés af most one pebble per vertex.p&bble

configurationis a pair of subset® = (B, W) of V(G), comprising the black-pebbled vertic&s
and white-pebbled verticdd’. The rules of the game are as follows:

1. If allimmediate predecessors of an empty vettérave pebbles on them, a black pebble may
be placed on. In particular, a black pebble can always be placed on artexeér S.

2. A black pebble may be removed from any vertex at any time.
3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vertéave pebbles on them, the white
pebble onv may be removed. In particular, a white pebble can always t@ved from a
source vertex.

A black-white pebblindrom (B;, W7) to (Bs, W5) in G is a sequence of pebble configurations
P = {Po,...,P,} such thatPy = (B1,W1), P, = (By, Wa), and for allt € [r], P, follows from
IP,_; by one of the rules above. (B;, W) = (0,0), we say that the pebbling isnconditiona
otherwise it isconditional

The costof a pebble configuratiof? = (B, W) is cost(P) = |B U W| and the cost of a
pebbling? = {P,...,P;} is maxo<;<-{cost(P;)}. Theblack-white pebbling pricef (B, W),
denotedBW-Peb(B, W), is the minimum cost of any unconditional pebbling reacHiBgV).

A complete pebblingf GG, also called gebbling strategyor G, is an unconditional pebbling
reaching({z},). Theblack-white pebbling pricef G, denotedBW-Peb(G), is the minimum
cost of any complete black-white pebbling @f

13

TOWARDS AN OPTIMAL SEPARATION

A black pebblingis a pebbling using black pebbles only, i.e., haviig = () for all t. The
(black) pebbling priceof G, denotedPeb(G), is the minimum cost of any complete black pebbling
of G.

We think of the moves in a pebbling as occurring at integraktintervals = 1,2, ... and talk
about the pebbling move “at tim& (which is the move resulting in configuratidf) or the moves
“during the time intervalty, t2]".

The only pebblings we are really interested in are complebblings ofG. However, when we
prove lower bounds for pebbling price it will sometimes bew@nient to be able to reason in terms
of partial pebbling move sequences, i.e., conditional fiegs.

A pebbling contradictiordefined on a DAG= encodes the pebble game@rby postulating the
sources to be true and the target to be false, and specifyatgruth propagates through the graph
according to the pebbling rules. The definition below is aegalization of formulas previously
studied in [17, 49].

Definition 3.5 (Pebbling contradiction [15]). Suppose thats is a DAG with sources, a unique
targetz and with all non-source vertices having indegieeand letd > 0 be an integer. Asso-
ciated distinct variablesc(v)y, . .., x(v)q with every vertexv € V(G). Thedth degreepebbling
contradictionover G, denotedPeb%., is the conjunction of the following clauses:

° \/f:1 x(s); for all s € S (source axiomy

e z(z), foralli € [d] (target axiom}

e z(u); Va(v); V \/fl:1 z(w); forall i, € [d] and allw € V(G) \ S, whereu, v are the two
predecessors ab (pebbling axioms

The formulaPeby, is a (24d)-CNF formula withO (42 - [V (G)|) clauses oved - |V (G)| vari-
ables. An example pebbling contradiction is presentedguiéi 1 on page 7.

4 Review of Related Work

This section is an overview of related work, including fots@atements of some previously known
results that we will need. At the end of Section 4.3 we alsddrprovide some of the intuition
behind the result proven in this paper.

4.1 General Results About Resolution

It is not hard to show that any CNF formulaovern variables is refutable in lengti+! — 1 and
width n. Esteban and Toran [28] proved that the clause space dingfti is upper-bounded by the
formula size. More precisely, the minimal clause spacensast the number of clauses, or the num-
ber of variables, plus a small constant, or in formal notafip(F' + 0) < min{|F|,|Vars(F)|} +
O(1).

We will need the fact that there are polynomial-size famailoé k-CNF formulas that are very
hard with respect to length, width and clause space, eaflgnneeting the upper bounds just
stated.

Theorem 4.1 ([2, 8, 13, 15, 20, 56, 59])There are arbitrarily large unsatisfiabld8-CNF formu-
las F,, of size©(n) with ©(n) clauses an®(n) variables for which it holds thaL.(F,, - 0) =
exp(O(n)), W(F, F0) = ©(n) andSp(F, + 0) = ©(n).

14

4 REVIEW OF RELATED WORK

Clearly, for such formulags, it must also hold thaf(n) = VarSp(F, + 0) = O(n?). We
note in passing that determining the exact variable span®mlexity of a formula family as in
Theorem 4.1 was mentioned as an open problem in [2]. To theobesrr knowledge this problem
is still unsolved.

If a resolution refutation has constant width, it is easya® that it must be of size polynomial in
the number of variables (just count the maximum possiblebmirof distinct clauses). Conversely,
if all refutations of a formula are very wide, it seems readue that any refutation of this formula
must be very long as well. This intuition was made precise éy-Basson and Wigderson [15]. We
state their theorem in the more explicit form of Segerlind][5

Theorem 4.2 ([15]). The width of refuting a CNF formul#’ is bounded from above by

W(FF0) < WEF)+1+3y/nInL(FFO0),
wheren is the number of variables if'.

Bonet and Galesi [18] showed that this bound on width in teshlength is essentially optimal.
For the special case of tree-like resolution, however, jiaissible get rid of the dependence of the
number of variables and obtain a tighter bound.

Theorem 4.3 ([15]). The width of refuting a CNF formul& in tree-like resolution is bounded from
above byW(F' I 0) < W(F) + log Lz(F F 0).

For reference, we collect the result in [18] together witmemther bounds showing that there
are formulas that are easy with respect to length but moalgrhtird with respect to width and
clause space and state them as a thedrem.

Theorem 4.4 ([2, 18, 55]).There are arbitrarily large unsatisfiabl8-CNF formulasF,, of size
©(n?) with ©(n?) clauses and® (n?) variables such thatV(F, - 0) = ©(n) and Sp(F, + 0) =
©(n), but for which there are resolution refutations, : F;, -0 in length L(m,) = O(n?), width
W(m,) = O(n) and clause spac8p(m,) = O(n).

As was mentioned above, the fact that all known lower boumdeetutation clause space co-
incided with lower bounds on width lead to the conjecture tha width measure is a lower bound
for the clause space measure. This conjecture was provebyrAtserias and Dalmau [5].

Theorem 4.5 ([5]). For any CNF formulaF', it holds thatSp (F - 0) — 3 > W(F + 0) — W(F).

In other words, the extra clause space exceeding the miniBwmeeded for any resolution
derivation is bounded from below by the extra width excegdime width of the formula. This
inequality was later shown by the first author to be asymgatiyi strict in the following sense.

Theorem 4.6 ([42]). For all k£ > 4, there is a family{ F;,},- ; of k-CNF formulas of siz&®(n)
such thatL(F,, - 0) = O(n) and W(F,, + 0) = O(1) but Sp(F,, F 0) = ©(logn).

An immediate corollary of Theorem 4.5 is that for polynorsée k-CNF formulas constant
clause space implies polynomial proof length. We are isteckin finding out what holds in the
other direction, i.e., if upper bounds on length imply uppeunds on space.

For the special case of tree-like resolution, it is knowrt thare is an upper bound on clause
space in terms of length exactly analogous to the one on widdrms of length in Theorem 4.3.

“Note that [18], where an explicit resolution refutation appounding the proof complexity measures is presen-
ted, does not talk about clause space, but it is straightfatwo verify that the refutation there can be carried out in
lengthO (n*) and clause spad®@(n).

15

TOWARDS AN OPTIMAL SEPARATION

Theorem 4.7 ([28]). For any tree-like resolution refutatiom of a CNF formulaF' it holds that
Sp(m) < [log L()] 4 2. In particular, Sp(F + 0) < [log Lg(F = 0)] + 2.

For general resolution, since clause space is lower-balipgevidth according to Theorem 4.5,
the separation of width and length of [18] in Theorem 4.4stel thatk-CNF formulas refutable
in polynomial length can still have “somewhat spacious” imimm-space refutations. But exactly
how spacious can they be? Does space behave as width witlctdsplength also in general
resolution, or can one get stronger lower bounds on spactoifioiulas refutable in polynomial
length?

All polynomial lower bounds on clause space known prior te ffaper can be explained as im-
mediate consequences of Theorem 4.5 applied on lower bausmggith. Clearly, any space lower
bounds derived in this way cannot get us beyond the “BengBadgigderson barrier” implied by
Theorem 4.2 saying that if the width of refutidgis w(+/|F|log|F|), then the length of refuting
F must be superpolynomial iiF|. Also, since matching upper bounds on clause space have been
known for all of these formula families, they have not beendidates for showing stronger sep-
arations of space and length. Thus, the best known sepai@tidause space and length has been
the formulas in Theorem 4.4 refutable in linear lengtt¥,, - 0) = O(|F,,|) but requiring space
Sp(Fy, F0) = ©({/|F,|), as implied by the same bound on width.

Let us also discuss upper bounds on what kind of separati@nga griori possible. Given
any resolution refutatiom : F'+ 0, we can write down its DAG representatiafy, (described on
page 12) withL() vertices corresponding to the clauses, and with all nomegsovertices having
fan-in2. We can then transform into as space-efficient a refutation as possible by corisigler
an optimal black pebbling of7; as follows: when a pebble is placed on a vertex we derive the
corresponding clause, and when the pebble is removed agairage the clause from memory.
This yields a refutationt’ in clause spac®eb(G,) (incidentally, this is the original definition
in [28] of the clause space of a resolution refution Since it is known that any constant indegree
DAG onn vertices can be black-pebbled in cé3tn/logn) (see Theorem 4.10), this shows that
Sp(F +0) = O(L(F + 0)/log L(F - 0)) is a trivial upper bound on space in terms of length.

Now we can rephrase the question above about space and ienigéhfollowing way: Is there
a Ben-Sasson-Wigderson kind of lower bound, $&f" + 0) = exp(Q(Sp(F + 0)?/|F])) or
so, on length in terms of space? Or do there eki§INF formulasF with short refutations but
maximum possible refutation spasg(F + 0) = Q(L(F + 0)/log L(F I 0)) in terms of length?
Note that the refutation length(F' - 0) must indeed be short in this case—essentially linear, since
any formulaF' can be refuted in spad®@(|F'|) as was noted above. Or is the relation between
refutation space and refutation length somewhere in betwese extremes?

This is the main question addressed in this paper. We bdlmteclause space and length can
be strongly separated in the sense that there are formulkefamith maximum possible refutation
space in terms of length. As a step towards proving this weorgthe lower bound in Theorem 4.6
from ©(log n) to ©(y/n), thus providing the first polynomial lower bound on spacé ihaot the
consequence of a corresponding bound on width. We nextwesoene results about the tools that
we use to do this.

4.2 Results About Pebble Games

There is an extensive literature on pebbling, mostly from#@s and 80s. We just quickly mention
four results relevant to this paper.

Perhaps the simplest graphs to pebble are complete bireeygf; of heighth. The black
pebbling price ofl}, can be established by an easy induction over the tree hétghblack-white
pebbling, general bounds for the pebbling price of treesngfarity were presented in [39]. For
the case of binary trees, this result can be simplified to aetesquality (a proof of which can be
found in Section 4 of [41]).

16

4 REVIEW OF RELATED WORK

Theorem 4.8. For a complete binary treé}, of heighth > 1 it holds thatPeb(7}) = h + 2 and
BW-Peb(T},) = | 4] + 3.

In this paper, we will focus on pyramid graphs, an example loittv can be found in Figure 1.

Theorem 4.9 ([22, 37]).For a pyramid graphll;, of heighth > 1 it holds thatPeb(II,) = h + 2
andBW-Peb(I1;,) = h/2 + O(1).

As we wrote in Section 2, we are interested in DAGs with as ligiebbling price as possible
measured in terms of the number of vertices. For a IAGith n vertices and constant in-degree,
the best we can hope for@&(n/logn).

Theorem 4.10 ([34]). For directed acyclic graphss with n vertices and constant maximum inde-
gree, it holds thaPeb(G) = O(n/logn).

This bound is asymptotically tight both for black and blagkite pebbling.

Theorem 4.11 ([31, 47]).There is a family of explicitly constructiBi®®AGsG,, with ©(n) vertices
and vertex indegreedor 2 such thatPeb(G) = ©(n/log n) andBW-Peb(G) = ©(n/logn).

It should be pointed out that although the black and blackevpebbling prices coincide
asymptotically in all of the theorems above, this is not thsecin general. In [35], a family of
DAGs with a quadratic difference in the number of pebblesvben the black and the black-white
pebble game was presented. We note that this is the bestagepgpossible, since by [40] the
difference in black and black-white pebbling price can bmast quadratic.

4.3 Results About Pebbling Contradictions Plus Some Intuit ion

Although any constant indegree will be fine for the resultgeced in this subsection, we restrict
our attention to DAGs with vertex indegre@sr 2 since these are the graphs that will be studied in
the rest of this paper.

It was observed in [14] thaPebé can be refuted in resolution by derivir’\(gjf:1 x(v); for all
v € V(@) inductively in topological order and then resolving witle ttarget axioms:(z),, i € [d].
Writing down this resolution proof, one gets the followingpposition (which is proven together

with Proposition 4.15 below).

Proposition 4.12 ([14]). For any DAGG with all vertices having indegre@or 2, there is a resol-
ution refutationr : Pebg -0 inlength L(r) = O(d? - |[V(G)|) and width W(r) = O(d).

Tree-like resolution is good at refuting first-degree pbtgat:ontradictionsPeb}; but is bad at
refuting Pebd, for d > 2.

Theorem 4.13 ([11]). For any DAGG with all vertices having indegre@ or 2, there is a tree-like
resolution refutationr of Peby; such that(r) = O(|V(G)|) and Sp(r) = O(1).

Theorem 4.14 ([14]). For any DAGG with all vertices having indegre@ or 2, Lg(Peb2G F0) =
992(Peb(G))

As to space, it is not too difficult to see that the black petiplrice ofG provides an upper
bound for the refutation clause spacerafb?..

Proposition 4.15. For any DAGG with vertex indegree or 2, Sp (Peb% - 0) < Peb(G) + O(1).

5This was not known at the time of the original theorems in &2, What is needed is an explicit construction of
superconcentrators of linear density, and it has since sle@mwn how to do this (with [4] apparently being the currently
best construction).

17

TOWARDS AN OPTIMAL SEPARATION

Essentially, this is just a matter of combining an optimaldal pebbling of~ with the resolution
refutation idea from [14] sketched above. Since we need tiperubounds on width and space
in Propositions 4.12 and 4.15 in the proof of our main thegrem write down the details for
completeness.

Proof of Propositions 4.12 and 4.1%onsider first the bound on space.

Given a black pebbling of7, we construct a resolution refutation @feb% such that if at
some point in time there are black pebbles on a set of verlicethen we have the clauses
{V&, z(v); | v €V} in memory. When some new vertexis pebbled, we deriva/¢_, z(v);
from the clauses already in memory. We claim that with aelitthre, this can be done in con-
stant extra space independentdofWhen a black pebble is removed framwe erase the clause
V%, z(v);. We conclude the resolution proof by resolvily, z(z); for the target: with all
target axiomsz(2),, i € [d], in spaces.

It is clear that given our claim about the constant extra spaeded when a vertex is black-
pebbled, this yields a resolution refutation in space etpu#ie pebbling cost plus some constant.
In particular, given an optimal black pebbling Gf we get a refutation in spad&eb(G) + O(1).

To prove the claim, note first that it trivially holds for seerverticesv, since\/f:1 x(v); Is
an axiom of the formula. Suppose for a non-source vert@xth predecessors and g that at
some point in time a black pebble is placedxonThenp and g must be black-pebbled, so by
induction we have the clauséz,éﬁl:1 x(p)i and\/;l:1 x(q); in memory. We will use that the clause
z(p); V \/fl:1 z(r); for any i can be derived in additional spadeby resolving\/;.l:1 x(q); with
z(p); v Wj Y \/fl:1 x(r); for j € [d], leaving the easy verification of this fact to the reader. To
derive\/"__, x(r);, first resolve\/"_, z(p); with z(p), V /', z(r); to get\/%_, z(p)i v Vi, (r);,
and then resolve this clause with the claus@s), v \/"_, z(r); fori = 2, ..., d one by one to get
/&, z(r); in total extra spac.

It is easy to see that this proof has widit{d), which proves the claim about width in Pro-
position 4.12. To get the claim about length, we observe timatsubderivation needed when
a vertex is black-pebbled has length(d?). If we use a pebbling that black-pebbles all ver-
tices once in topological order without ever removing a peblve get a refutation in length
L(r) = O(d? - [V(G)]). O

Thus, the refutation clause space of a pebbling contradids upper-bounded by the black
pebbling price of the underlying DAG. Proposition 4.15 i$ goite an optimal strategy with respect
to clause space, though. For binary trees [29] improvedditisid somewhat tSp(Peb?ph FO0) <
%h + O(1) by constructing resolution proofs that try to mimic not dguebblings but instead
optimalblack-whitepebblings off}, as presented in [39]. And for one variable per vertex, we know
from Theorem 4.13 thasp (Peby, F 0) = O(1).

Proving lower bounds on space for pebbling contradictiohdegreed > 2 has turned out
to be much harder. For quite some time there was no lower boangp (Peb? + 0) for any
DAG G in general resolution (in terms of pebbling price or otheeyi In [29], a lower bound
Spg(Pedeh F0) = h 4+ O(1) was obtained for the special case of tree-like resolutionfoktu-
nately, this does not tell us anything about general reisplut-or tree-like resolution, if the only
way of deriving a claus® is from clauses”;, Cs such thatSp-(F + C;) > s, then it holds that
Sp<(F + D) > s+ 1 since one of the clauses; must be kept in memory while deriving the
other clause. This seems to be very different from how gémesalution works with respect to
space. In [42], the first author showed a lower bomptheb%h - 0) = Q(h) for binary trees and
d > 2, which matches the upper bound up to a constant factor. Atettimiques in [42] do not
yield anything for more general graphs, this is all that wiagwn prior to this paper.

18

4 REVIEW OF RELATED WORK

We now try to present our own intuition for what the correavdo bound on the refutation
clause space of pebbling contradicticstsould be Although the reasoning is quite informal and
non-rigorous, our hope is that it will help the reader to gate the formal proofs that will follow.

As we noted above, the resolution refutation}ba‘b%h in [29] used to prove th%h + 0O(1)
upper bound for binary tree pebbling contradictions iscitmally quite similar to the optimal
black-white pebbling of}, presented in [39], and it somehow feels implausible thatraaglution
refutation would be able to do significantly better. Alse tbwer bound in [42] is proven by relat-
ing resolution refutations to black-white pebblings andwleg a lower bound on clause space in
terms of pebbling price. This raises the suspicion that taekbwhite pebbling pric8W-Peb(G)
might be a lower bound fofs’p(Pebg‘; t 0) also for more general graphs as longias 2.

This suspicion is somewhat strengthened by the fact thatsfidable space, we do have such a
lower bound in terms of black-white pebbling prite.

Theorem 4.16 ([11]). For anyd € N*, VarSp (Pebd + 0) > BW-Peb(G).

If the refutation clause space of pebbling contradictimrgeneral DAGs would be constant or
very slowly growing, Theorem 4.16 would imply that B8V-Peb(G) grows larger, the clauses in
memory get wider, and thus weaker. Still it would somehow bssfble to derive a contradiction
from a very small number of these clauses of unbounded widils appears counterintuitive.

On the other hand, for one variable per vertex, ide~ 1, refutations OfPeblG in constant
space have exactly these “counterintuitive” propertielse fesolution refutation oPebIG in The-
orem 4.13 is constructed by first downloading the pebblirigraxor the target and then moving
the false literals downwards by resolving with pebblingoaxs for vertices € V(G)\ S in reverse
topological order. This finally yields a clau§g, 5 z(v), V z(2); of width |S| + 1, which can be
eliminated by resolving with the source axiom&); one by one for alb € S and then with the
target axiomz(z), to yield the empty clause.

If we want to establish a non-constant lower bouncSplﬁPebé F0) for d > 2, we have to pin
down why this case is different. Intuitively, the differenis that with only one variable per vertex, a
single clause:(v1), V...V z(v,), can express the disjunction of the falsity of an arbitrargnber
of verticesvy, ..., v, but ford = 2, the straightforward way of expressing that both variables
x(v;)1 andz(v;)2 are false for at least one out of vertices require8™ clauses.

As was argued in Section 2, to prove a lower bound on the téfatalause space of pebbling
contradictions it seems natural to try to interpret resofutefutations OfPebC(l; in terms of peb-
blings of the underlying grap&y. Let us say that a vertexis “true” if \/f:1 x(v); has been derived
and “false” if%i has been derived for alle [d]. Any resolution proof refutes a pebbling contra-
diction by deriving that some vertexis both true and false and then resolving to @eLet w be
any vertex with predecessotisv. Then we can see that if we have derived thahdv are true, by
downloadingz(w), v (v); v \/{_, z(w), for all i, j € [d] we can derivé/{_, z(w),. This appears
analogous to the rule thatf andv are black-pebbled we can place a black pebblevonn the
opposite direction, if we know(w), for all I € [d], using the axioms (u); V z(v); v V/{_; z(w),
we can derive that either or v is false. This looks similar to eliminating a white pebblewrby
placing white pebbles on the predecesso@ndwv, and then removing the pebble fromm Gen-
eralizing this loose, intuitive reasoning, we argue thaetaas black-pebbled verticeE” should
correspond to the derived conjunction of truth ofiak V/, and that a set of white-pebbled vertices
W should correspond to the derived disjunction of falsityahew € W.

Suppose that we could show that as the resolution derivatiooeeds, the black and white
pebbles corresponding to different clause configuratiensudlined above move about on the ver-
tices of G in accordance with the rules of the pebble game. If so, we dvgat that there is some
clause configuratioft corresponding to a lot of pebbles. This could in turn hopefyikld a lower

%To be precise, the result in [11] is fdr= 1, but the proof generalizes easily to ahyg N7.

19

TOWARDS AN OPTIMAL SEPARATION

bound for the refutation clause space. Fo€itorresponds taVv black pebbles, i.e., implies/
disjoint clauses, it seems likely thgE| should be linear inV. And if C corresponds tdV white
pebbles|C| should grow withN if d > 2, sinceC has to forcel literals false simultaneously for
one out ofN vertices.

This is the guiding intuition that served as a starting pénfporoving the results in this paper.
And although quite a few complications arise along the wag/believe that it is important when
reading the paper not to let all technical details obscueadkher simple intuitive correspondence
sketched above.

5 A Simplified Way of Proving Trade-off Results

Before we launch into the proof of the main result of this papewever, we quickly present
our simplification of the length-space trade-off result 33], and show how the same ideas can
be used to prove other related theorems. We also point oukéyadngredients needed for our
proofs to work and discuss possible conclusions to be dragarding proving trade-off results for
resolution. We remark that this section is a somewhat padishrite-up of the results previously
announced in [43].

We will need the following easy observation.

Observation 5.1. Suppose that’ = G A H whereG and H are unsatisfiable CNF formulas over
disjoint sets of variables. Then any resolution refutation F'F 0 must contain a refutation of
eitherG or H.

Proof. By induction, we can never resolve a clause derived f€omith a clause derived froni,
since the sets of variables of the two clauses are disjoint. O

5.1 A Proof of Hertel and Pitassi’'s Trade-off Result

Using the notation in Section 3, and improving the paransetemewhat, the length-variable space
trade-off theorem of Hertel and Pitassi [33] can be statddlksvs.

Theorem 2.4 (restated).There is a family of CNF formula§F, } .7, of size®©(n) such that:
e The minimal variable space of refutirig, in resolution isVarSp (F,, F 0) = ©(n).
e Any resolution refutatiomr : F,, -0 in minimal variable space has lengtlp(Q(y/n)).
e Adding at mosg extra units of storage, one can obtain a refutatigrin spaceVarSp (') =

VarSp (F, F 0) + 3 = ©(n) and lengthL(x") = O(n), i.e., linear in the formula size.

We note that the CNF formulas used by Hertel and Pitassi, #sas/éhose in our proof, have
clauses of widtt®(n).

Proof of Theorem 2.4Let G,, be CNF formulas as in Theorem 4.1 having s&é»), refutation
length L(G), - 0) = exp(€2(n)) and refutation clause spade (G,, - 0) = O(n). Let us define
g(n) = VarSp(G,, 0) to be the refutation variable space of the formulas. Themldsthat
Q(n) = g(n) = O(n?).

Let H,,, be the formulas

Hm:yl/\"'/\ym/\(gl\/"'vym)' (51)

It is not hard to see that there are resolution refutationd?,,, - 0 in length L(7) = 2m + 1 and
variable spacé/arSp(w) = 2m, and thatL(H,, F 0) = 2m + 1 and VarSp (H,, - 0) = 2m are
also the lower bounds (all clauses must be used in any riefutand the minimum space refutation
must start by downloading the wide clause and some unit €}ausl then resolve).

20

5 A SIMPLIFIED WAY OF PROVING TRADE-OFF RESULTS

Now define
F,=Gn A HLg(n)/2J+l (5.2)

where G, and H 4,,)/2)+1 have disjoint sets of variables. By Observation 5.1, anplutien
refutation ofF;, refutes either,, or H () /2)+1- We have

VarSp (HLg(n)/2J+1 F0)=2-(lg(n)/2] +1) > g(n) = VarSp(G, - 0) , (5.3)

so a resolution refutation in minimal variable space musiteg~,, in lengthexp(€2(n)). However,
allowing at most two more literals in memory, the resolutiefutation can disprove the formula
H | 4(n)/2)+1 instead in length linear in the (total) formula size.

Thus, we have a formula familyF;, } >, of sizeQ(n) = S(F,) = O(n?) refutable in length
and variable space both linear in the formula size, but waryeminimum variable space refutation
must have lengthxp(2(n)). Adjusting the indices as needed, we get a formula famil{ witrade-
off of the form stated in Theorem 2.4. O

5.2 Some Other Trade-off Results for Resolution

Using a similar trick as in the previous subsection, we cawgthe following length-clause space
trade-off.

Theorem 1.3 (restated). There is a family of-CNF formulas{ £}, } -, of size©(n) such that:
e The minimal clause space of refutitiy) in resolution isSp (F,, - 0) = ©(J/n).
e Any resolution refutationr : F, -0 in minimal clause space must have lendifwr) =
exp(Q(Y, n))
e There are resolution refutations : F,, - 0 in asymptotically minimal clause spasg (') =
O(Sp(F, + 0)) and lengthL(7’) = O(n), i.e., linear in the formula size.

The same game can be played with refutation width as well.

Theorem 5.2. There is a family ok-CNF formulas{ F}, } -, of size©(n) such that:
e The minimal width of refuting", is W(F, - 0) = ©(¥/n).
e Any refutationr : £, -0 in minimal width must have length(r) = exp(Q(Y/n)).
e There are refutations’ : F,, 0 with W(x’) = O(W(F, + 0)) and L(n’) = O(n).

We only present the proof of Theorem 1.3, as Theorem 5.2 iegdrim exactly the same manner.

Proof of Theorem 1.3Let G,, be a3-CNF formula family as in Theorem 4.1 having siggn),
refutation lengthL(G,, - 0) = exp(©(n)), and refutation clause spase (G,, - 0) = O(n). Let
H,, be a3-CNF formula family as in Theorem 4.4 of sif®(m?) such thatL(H,, - 0) = O(m?)
andSp(H,, - 0) = ©(m). Define

g(n) = min{m | Sp(Hy,, - 0) > Sp(G,, - 0)} . (5.4)

Note that sinceSp (H,,, - 0) = Q(m) andSp(G,, - 0) = O(n), we know thatg(n) = O(n).

Now as before lef,, = G,, A H), whereG,, anng(n) have disjoint sets of variables. By
Observation 5.1, any resolution refutationiof is a refutation of eithet,, or H). Sinceg(n)
has been chosen so ttﬁ'qft(Hg(n) F 0) > Sp(G,, F 0), arefutation in minimal clause space has to
refuteG,,, which requires exponential length. However, sigée) = O(n), Theorem 4.4 tells us
that there are refutations &, in lengthO (n?) and clause spad@(n). O

21

TOWARDS AN OPTIMAL SEPARATION

5.3 Making the Main Trick Explicit

The proofs of the theorems in Sections 5.1 and 5.2 come veilyea fact almosttoo easily.
What is it that makes this possible? In this and the next stilose we want to highlight two key
ingredients in the constructions.

The common paradigm for the proofs of Theorems 1.3, 2.4, éhi%s follows. We are given
two complexity measure&/; and M- that we want to trade off against one another. We do this by
finding formulasG,, and H,,, such that

e The formulasG,, are very hard with respect to the first resource measuredi/hywhile
M, (Gy,) is at most some (more or less trivial) upper bound,

e The formulasH,, are very easy with respect id;, but there is some nontrivigdwer bound
on the usagé/, (H,,) of the second resource,

e The indexm = m(n) is chosen so as to minimizels (H,,,)) — M2(Gr) > 0, i.e., so that
H,,») requiregust a little bit more of the second resource th@p.

Then for £, = Gy A Hy,(n), if we demand that a resolution refutatianmust use the minimal
amount of the second resource, it will have to use a large atwuhe first resource. However, re-
laxing the requirement on the second resource by the verly srpaession\/s (H,.,(,,)) — M2 (Gn),
we can get a refutation’ using small amounts of both resources.

Clearly, the formula familie{F,,},~ , that we get in this way are “redundant” in the sense
that each formuld, is the conjunction of two formula&,, and H,,, which are themselves already
unsatisfiable. Formally, we say that a formiilas minimally unsatisfiablé ' is unsatisfiable, but
removing any claus€’ € F', the remaining subformul&’ \ {C'} is satisfiable. We note that if we
would add the requirement in Sections 5.1 and 5.2 that theulars under consideration should be
minimally unsatisfiable, the proof idea outlined abovesfaibmpletely. In contrast, the result in
[33] seems to be independent of any such conditions. Whaiwesions can be drawn from this?

On the one hand, trade-off results for minimally unsatiséidormulas seem more interesting,
since they tell us something about a property that some adatormula family has, rather than
about some funny phenomena arising because we glue togethéstally unrelated formulas.

On the other hand, one could argue that the main motivaticstdiolying space is the connection
to memory requirements for proof search algorithms, famimse algorithms using clause learning.
And for such algorithms, a minimality condition might appsamewhat arbitrary. There are no
guarantees that “real-life” formulas will be minimally wisfiable, and most probably there is no
efficient way of testing this conditioh.So in practice, trade-off results for non-minimal formulas
might be just as interesting.

5.4 An Auxiliary Trick for Variable Space

A second important reason why our proof of Theorem 2.4 gitiassresults is that we are allowed
to use CNF formulas of growing width. It is precisely becaakthis that we can easily construct
the needed formulaH,,, that are hard with respect to variable space but easy wilect$o length.

If we would have to restrict ourselves ieCNF formulas fork constant, it would be much more
difficult to find such examples. Although the formulas in Theu 4.4 could be plugged in to give a
slightly weaker trade-off, we are not aware of any familyce€NF formulas that can provably give
the very sharp result in Theorem 2.4. (Note, though, thatdimaula families used in the proofs of
Theorems 1.3 and 5.2 consist/eCNF formulas).

"The problem of deciding minimal unsatisfiabilityN#-hard but not known to be iNP. Formally, a languagé is
in the complexity clasBP if and only if there are two languagés € NP andL; € co-NP suchthat, = LN L; [45].
MINIMAL UNSATISFIABILITY is DP-complete [46], and it seems to be commonly believed EatZ NP U co-NP.

22

6 A GAME FOR ANALYZING PEBBLING CONTRADICTIONS

Figure 4: Notation for sets of vertices in DAG G with respect to a vertex v.

This is not the only example of a space measure behaving Badiyrmulas of growing width.
We already discussed the lower boufid(F + 0) > W(F + 0) — W(F) + 3 on clause space
in terms of length in Theorem 4.5, and the result in Theorerilat this inequality is asymptot-
ically strict in the sense that there @eCNF formula familiesF,, with W(E,, F 0) = O(1) but
Sp(F, F0) = O(logn).

However, if we are allowed to consider formulas of growingltlij the fact that the inequality
in Theorem 4.5 is not tight is entirely trivial. Namely, let say that a CNF formul&’ is k-wide
if all clauses inF' have size at least. In [28], it was proven that fof" a k-wide unsatisfiable
CNF formula it holds thalSp (F' = 0) > k + 2. So in order to get a formula famili,, such that
W(F, F0) — W(F,) = O(1) but Sp(F,, F 0) = w(1), just pick some suitable formuldd, } - ;
of growing width.

In our opinion, these phenomena are clearly artificial. &ieeery CNF formula can be re-
written as an equivalert-CNF formula without increasing the size more than lineatthe right
approach when studying space measures in resolution seebestb require that the formulas
under study should have constant width.

As a final comment before moving on to our main result, we noge the open trade-off ques-
tions mentioned in Section 11 do not suffer from the techrpoablems discussed above.

6 A Game for Analyzing Pebbling Contradictions

We now start our construction for the proof of Theorem 1.licWwhwill require the rest of this paper.
In this section we present the modified pebble game that weusegl to study the clause space of
resolution refutations of pebbling contradictions.

6.1 Some Graph Notation and Definitions

We first present some notation and terminology that will bexluia what follows. See Figure 4 for
an illustration of the next definition.

Definition 6.1. We letsucc(v) denote the immediate successors and (v) denote the immediate
predecessors of a vertexin a DAG G. Taking the transivite closures eficc(-) andpred(-), we

23

TOWARDS AN OPTIMAL SEPARATION

let Gy denote all vertices reachable fram(vertices “above™) andGY denote all vertices from
which v is reachable (vertices “below). We write Gi and GZ to denote the corresponding sets

with the vertexv itself removed. Ifpred (v) = {u, w}, we say that: andw aresiblings If u ¢ G}
andv ¢ GY%, we say that. andv arenon-comparablevertices. Otherwise they ammmparable

When reasoning about arbitrary vertices we will often usa aanonical example a vertex
with assumed predecessgred (r) = {p, q}.

Note that for a leab> we havepred(v) =), and for the sinkz of G we havesucc(z) = 0.
Also note thatG¥ andG, are sets of vertices, not subgraphs. However, we will allovselves
to overload the notation and sometimes use this notation tootthe subgraph and its vertices.
Moreover, as a rule we will overload the notation for the grépitself and its vertices, and usually
write only G when we meary (G), and when this should be clear from context.

For our pebble game to work, we require of the graphs unddy $hat they have the following

property.

Property 6.2 (Sibling non-reachability). We say that a DAGQ~ has theSibling non-reachability
propertyif for all verticesu andv that are siblings i@, it holds thatu ¢ G} andv ¢ GY, i.e., the
siblings are not reachable from one another.

Phrased differently, Property 6.2 asserts that siblingsian-comparable.

A sufficient condition for Property 6.2 to hold is thatufis reachable froms, then all paths
P : u ~» v have the same length. This holds for instance for the clatsyefed graphsand it is
also easy to see directly that layered graphs possess Brép&r

Definition 6.3 (Layered DAG). A layered DAGG is a DAG whose vertices are partitioned into
(nonempty) sets dhyersVy, Vi,...,V, onlevelso, 1,... h, and whose edges run between con-
secutive layers. Thatis, {fu, v) is a directed edge, then the levelois L — 1 and the level ob is

L for someL € [h]. We say that: is theheightof the layered DAGS.

Throughout this paper, we will assume that all source westio a layered DAG are located on
the bottom leveD. Let us next give a formal definitions of the pyramid graptet eire the focus of
this paper.

Definition 6.4 (Pyramid graph). Thepyramid graphll;, of heighth is a layered DAG withh + 1
levels, where there is one vertex on the highest level (thie 9i two vertices on the next level et
cetera down tdv + 1 vertices at the lowest levél. Theith vertex at levell has incoming edges
from theith and(i + 1)st vertices at level. — 1.

We also need some notation for contiguous and non-contgytapologically ordered sets of
vertices in a DAG.

Definition 6.5 (Paths and chains).We say thal/ is a(totally) orderedset of vertices in a DAG-,
or achain if all vertices inV" are comparable (i.e., if for all,v € V, eitheru € G% orv € G¥). A
path P is a contiguous chain, i.e., such thatc(v) N P # () for all v € P except the top vertex.

We write P : v ~ w to denote a path starting inand ending inv. A source paths a path that
starts at some source vertex@f A path viaw is a path such that € P. We will also say thaP
visitsw. For a chainV/, we let

e bot(V) denote the bottom vertex &f, i.e., the unique € V such that’” C Gy,
e top(V') denote the top vertex df, i.e., the uniquer € V such tha” C GY,

e Pin(V) denote the set of all pathB8 : bot(V) ~» top(V') via V' or agreeing withV/, i.e.,
such that” C P, and

24

6 A GAME FOR ANALYZING PEBBLING CONTRADICTIONS

¢ Pia(V') denote the set of all source patigreeing withV.

We write| Bin (V') to denote the union of the vertices in all pathss Pin (V') and|J Bvia(V') for
the union of all vertices in pathB € Byia(V).

In the rest of this paper, we will almost exclusively discOgsGs with certain structural prop-
erties. The next definition is so that we will not have to répleese properties over and over again.

Definition 6.6 (Blob-pebblable DAG). A blob-pebblable DAGs a DAG that has a unique sink,
which we will alway denote:, that has vertex indegrexfor all non-sources, and that satisfies the
Sibling non-reachability property 6.2.

6.2 Description of the Blob-Pebble Game and Formal Definitio n

To prove a lower bound on the refutation space of pebblingradittions, we want to interpret de-
rivation steps in terms of pebble placements and removakeinorresponding graph. In Section 2,
we outlined an intuitive correspondence between clauseégahbles. The problem is that if we
try to use this correspondence, the pebble configuraticatsvib get do not obey the rules of the
black-white pebble game. Therefore, we are forced to togdéime pebbling rules. In this section,
we present the modified pebble game used for analyzing tesolderivations.

Our first modification of the pebble game is to alter the rutewbite pebble removal so that a
white pebble can be removed from a vertex when a black pebiplaced on that same vertex. This
will make the correspondence between pebblings and résolderivations much more natural.
Clearly, this is only a minor adjustment, and it is easy tovpréormally that it does not really
change anything.

Our second, and far more substantial, modification of thdleefpame is motivated by the fact
that in general, a resolution refutation a priori has noaoaas follow our pebble game intuition.
Since pebbles are induced by clauses, if at some derivagpritse refutation chooses to erase “the
wrong clause” from the point of view of the induced pebblefauration, this can lead to pebbles
just disappearing. Whatever our translation from clausegebbles is, a resolution proof that
suddenly out of spite erases practically all clauses mustysiead to practically all pebbles dis-
appearing, if we want to maintain a correspondence betweese space and pebbling cost. This
is all in order for black pebbles, but if we allow uncontrolleemoval of white pebbles we cannot
hope for any nontrivial lower bounds on pebbling price (juwkite-pebble the two predecessors of
the sink, then black-pebble the sink itself and finally remxthe white pebbles).

Our solution to this problem is to keep track of exactly whighite pebbles have been used
to get a black pebble on a vertex. Loosely put, removing aeypébble from a vertex without
placing a black pebble on the same vertex should be in ordmrided that all black pebbles placed
on vertices above in the DAG with the help of the white pebble erare removed as well. We do
the necessary bookkeeping by definmgbconfiguration®of pebble configurations, each subcon-
figuration consisting of black pebble together with all thisiter pebbles this black pebble depends
on, and require that if any pebble in a subconfiguration isosed, then all other pebbles in this
subconfiguration must be removed as well.

Another problem is that resolution derivation steps can aderthat appear intuitively bad given
that we know that the end goal is to derive the empty clausewhare formally it appears where
hard to nail down wherein this supposed badness lies. Tyanaluch apparently non-optimal
derivation steps, we introduce anflation rule in which a black pebble can be inflated tdlab
covering multiple vertices. The way to think of this is thdilack pebble on a vertexcorresponds
to derived truth ow, whereas for a blob pebble dnwe only know that some vertexe V is true,
but not which one. For reasons that will perhaps becomear@aSections 9 and 10, in is natural
to consider blobs that are chains (Definition 6.5).

25

TOWARDS AN OPTIMAL SEPARATION

We now present the formal definition of the concept used tbeltaeach black blob pebble
with the set of white pebbles (if any) this black pebble isatafent on. The intended meaning
of the notationB](WW) is a black blob onB together with the white pebblé$” below v with the
help of which we have been able to place the black bloi3oiThese “associated” or “supporting”
white pebbles can be located on any veriek¥ B that can be visited by a source pdtto top(B)
agreeing withB. Formally, thelegal pebble positionsiith respect to a chai® with b = bot(B)
is the set of vertices

pp(B) = GL U (UPn(B)\ B) = PvalB)\ B . (6.1)

We refer to the structurd3] (W) grouping together a black blaB and its associated white pebbles
W as ablob subconfigurationor justsubconfiguratiorfor short.

Definition 6.7 (Blob subconfiguration). For sets of vertices3, W in a blob-pebblable DAG?,
[B](W) is ablob subconfigurationf B # () is a chain andV C Ipp(B). We refer toB as a
(single) blackblob and toW as (a number of different) white pebblsspportingB. We also say
that B is dependenon W. If W = (), B is independent Blobs B with |B| = 1 are said to be
atomic

A set of blob subconfigurationS = {[B;}(W;) |i=1,...,m} together constitute hlob-
pebbling configuration

Note in particular that it always holds th&t N 1 = () for a blob subconfiguratiofB] ().
Since the definition of the game we will play with these blobsg pebbles is somewhat in-
volved, let us first try to give an intuitive description.

e There is one single rule corresponding to the two rules 1 afut Black and white pebble
placement in the black-white pebble game of Definition 3 HisThtroductionrule says that
we can place a black pebble on a vertetogether with white pebbles on its predecessors
(unlessv is a source, in which case no white pebbles are needed).

e The analogy for rule 2 for black pebble removal in Definitiod & a rule for “shrinking”
black blobs. A vertex in a blob can be eliminated byergingtwo blob subconfigurations,
provided that there is both a black blob and a white pebble,@nd provided that the two
black blobs involved in thisnergerdo not intersect the supporting white pebbles of one
another in any other vertex than Removing black pebbles in the black-white pebble game
corresponds to shrinking atomic black blobs.

e Ablack blob can bénflatedto cover more vertices, as long as it does not collide witbwa
supporting white vertices. Also, new supporting white geblzan be added at an inflation
move. There is no analogy of this move in the usual blackevbébble game.

e The rule 4 for white pebble removal also corresponds to mgrgi the blob-pebble game,
since the white pebble used in the merger is eliminated ds lwelddition, however, a white
pebble onw can also disappear if its black bldbchanges so that no longer can be visited
on a path viaB (i.e., if w is no longer a legal pebble position with respecBip

e Other than that, individual white pebbles, and individuakh vertices covered by blobs, can
never just disappear. If we want to remove a white pebble ks pha black blob, we can do
so only byerasingthe whole blob subconfiguration.

The formal definition follows. See Figure 5 for some examplielslob-pebbling moves.

26

6 A GAME FOR ANALYZING PEBBLING CONTRADICTIONS

P
%

(a) Empty pyramid. (b) Introduction move.

»
>

(c) Two subconfigurations before merger. (d) The merged subconfiguration.

B
B

(e) Subconfiguration before inflation. () Subconfiguration after inflation.

>

(g) Another subconfiguration before inflation. (h) After inflation with vanished white pebbles.

Figure 5: Examples of moves in the blob-pebble game.

27

TOWARDS AN OPTIMAL SEPARATION

Definition 6.8 (Blob-pebble game).For a blob-pebblable DAG- and blob-pebbling configura-
tions Sy andS,: on G, ablob-pebblingfrom Sy to S, in G is a sequenc® = {SO, . ,ST} of
configurations such that for alle [7], S; is obtained fronf,_; by one of the following rules:

Introduction S; = S;—1 U {[v](pred(v))}.
Merger S; = S;—1 U {[B](W)} if there are[B,](W1), [B](Wa) € S;—1 such that

1. By U By s (totally) ordered,

2. By N Wy =1),

3. |By N Wq| = 1; letv* denote this unique element B, N W1,
4. B = (B; U By) \ {v*}, and

5. W = ((Wp U W)\ {v*}) N Ipp(B),

We write [B](W) = merge([B1](W1), [B2](W2)) and refer to this as merger onv*.
Inflation S; = S;—1 U {[B(W)} if there is alB'](W’) € S;_; such that

1. BD B,
2. BN W' =,and
3. W2 W' n lpp(B).

We say thatB](W) is derived from B’|(IW’) by inflation or thaf B'](W’) is inflatedto yield
[B](W).

Erasure S; = S;—1 \ {[B](W)} for [B|(W) € S;_1.

The blob-pebblingP is unconditionalif S; = () and conditional otherwise. Acomplete blob-
pebblingof G is an unconditional pebblin@ ending inS, = {[2](#) } for = the unique sink of5.

6.3 Blob-Pebbling Price

We have not yet defined what the price of a blob-pebbling ise fason is that it is not a priori
clear what the “correct” definition of blob-pebbling pridecsild be.

It should be pointed out that the blob-pebble game has naabvntrinsic value—its function
is to serve as a tool to prove lower bounds on the resolutifutation space of pebbling contra-
dictions. The intended structure of our lower bound proafriEsolution space is that we want
look at resolution refutations of pebbling contradictipmgerpret them in terms of blob-pebblings
on the underlying graphs, and then translate lower bounddh@mrice of these blob-pebblings
into lower bounds on the size of the corresponding clauséguoations. Therefore, we have two
requirements for the blob-pebbling priBdob-Peb(G):

1. It should be sufficiently high to enable us to prove gooddoWwounds orBlob-Peb(G),
preferrably by relating it to the standard black-white getgbprice BW-Peb(G).

2. It should also be sufficiently low, so that lower boundsBiab-Peb(G) translate back to
lower bounds on the size of the clause configurations.

So when defining pebbling price in Definition 6.9 below, wepdigve to have in mind the coming
Definition 7.2 saying how we will interpret clauses in ternistmbs and pebbles and that these
two definitions together should make it possible for us todeWound clause set size in terms of
pebbling cost.

28

7 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

For black pebbles, we could try to chargéor each distinct blob. But this will not work, since
then the second requirement above fails. For the translafiolauses to blobs and pebbles sketched
in Section 2.3 it is possible to construct clause configanatithat correspond to an exponential
number of distinct black blobs measured in the clause set Sihe other natural extreme seems
to be to charge only for mutually disjoint black blobs. Buistis far too generous, and the first
requirement above fails. To get a trivial example of thi&etany ordinary black pebbling @¥
and translate in into an (atomic) blob-pebbling, but theantfe it so that each black pebbig is
immediately inflated td{v, z}] after each introduction move. It is straightforward to fiethat this
would yield a pebbling of7 in constant cost. For white pebbles, the first idea might lEhtwgel
for every white-pebbled vertex, just as in the standard lgegghme. On closer inspection, though,
this seems to be not quite what we need.

The definition presented below turns out to give us both ofdixsired properties above, and
allows us to prove an optimal bound. Namely, we define bldiblieg price so as to chargefor
each distinct bottom vertesmong the black blobs, and so as to charge for the subset jpb<iny
white pebblesi’’ N G% in a subconfigurationB](1W) that arelocated below the bottom vertex
bot(B) of its black blobB. Multiple distinct blobs with the same bottom vertex come ffee,
however, and any supporting white pebbles above the bottrtex of its own blob are also free,
although we still have to keep track of them.

Definition 6.9 (Blob-pebbling price). For a subconfiguration3](W), we say thaB3([B](IV)) =
{bot(B)} is thechargeable black verteand thadV* ([B](W)) = W N GZOt(B) are thechargeable
white vertices Thechargeable verticesf the subconfiguratiofB] (V) are all vertices in the union
B([B](W)) U WA([B](W)). This definition is extended to blob-pebbling configurasi€nin the
natural way by letting

BS)= |J B(BI(W)) = {bot(B) | [B](W) € S}
[B(W)eS

and
wee) = U weasioy = J o (wnat®)
[B(W)€eS [Bl(W)eS

The cost of a blob-pebbling configuratighis cost(S) = |B(S) U W(S)|, and the cost of a
blob-pebblingP = {S, ...,S,} is cost(P) = maxc;){cost(S,)}.

The blob-pebbling priceof a blob subconfigurationB](W), denotedBlob-Peb([B](IV)), is
the minimal cost of any unconditional blob-pebblifgy= {Sy, ... ,S,} such thas, = {[B](W)}.
The blob-pebbling price of a DA is Blob-Peb(G) = Blob-Peb([z](0)), i.e., the minimal cost
of any complete blob-pebbling @f.

We will also write)W (S) to denote the set of all white-pebbled verticesSinncluding non-
chargeable ones.

7 Resolution Derivations Induce Blob-Pebblings

For simplicity, in this section, as well as in the next one, wi write vy,..., vy instead of
z(v)1,...,x(v)q for thed variables associated within a dth degree pebbling contradiction. That
is, in Sections 7 and 8 small letters with subscripts willateronly variables in propositional logic
and nothing else.

It turns out that for technical reasons, it is more naturagtmre the target axiomsy, ..., zy
and focus on resolution derivations Yf__, 2 from the rest of the formula rather than resolution
refutations of all ofPebl,. Let us write*Pebl = Pebl, \ {Z1,...,%4} to denote the pebbling

29

TOWARDS AN OPTIMAL SEPARATION

formula overG with the target axioms in the pebbling contradiction rentbv€he next lemma is
the formal statement saying that we may just as well studyat@rns of\/f:1 z; from this pebbling
formula*Peb?, instead of refutations aPeb,.

Lemma 7.1. For any DAGG with sinkz, it holds thatSp (Peb% - 0) = Sp(*Peb% - \/1_,).

Proof. For any resolution derivation* : *Pebd - \/{"_, 2, we can get a resolution refutation of
PebdG from 7* in the same space by resolviiq,{ifl:1 zywithallz;, I =1,...,d, in spaces.

In the other direction, forr : PebZ -0 we can extract a derivation (\7?:1 2 in at most the
same space by simply omitting all downloads of and resatuieps orx; in 7, leaving the literals
z; in the clauses. Instead of the final empty cla0see get some claus® C \/fl:1 z;, and since
*Pebl, ¥ D G \/{, z and resolution is sound, we haie= \/{_, 2. O

In view of Lemma 7.1, from now on we will only consider resabut derivations fromPeb%,
and try to convert clause configurations in such derivatinttssets of blob subconfigurations.

To avoid cluttering the notation with an excessive amouriratkets, we will sometimes use
sloppy notation for sets. We will allow ourselves to omitlgubrackets around singleton sets when
this is clear from context, writing for instandé U v instead oft’ U {v} and[B U b}(W U w)
instead of B U {b}|(W U {w}). Also, we will sometimes omit the curly brackets around séts
vertices in black blobs and write, for instan¢e, v] instead of{u, v}].

7.1 Definition of Induced Configurations and Theorem Stateme nt

If » is a non-source vertex with predecesspred(r) = {p,q}, we say that thexioms forr in
*Pebl, is the set

Am {pz\/q]\/\/l (rili, g€ [d]} (7.1)
and ifr is a source, we defindz%(r) = {\/%_, r;}. ForV a set of vertices i, we letAz%(V) =

{Az%(v) | v € V}. Note that W|th this notation, we hav@eb?, = {Az(v) | v € V(G)}. For
brevity, we introduce the shorthand notation

={Vi,vilveV} (7.2)
and
AlY(V) = V,ey \/Z 1V - (7.3)
One can think of3(V') as “truth of all vertices i/” and All*(V) as “truth of some vertex if™.
We say that a set of clauséimplies a clauseD minimallyif C F D but for all C’ ; C
it holds thatC’ ¥ D. If C E 0 minimally, C is said to beminimally unsatisfiable We say that
C implies a clauseD maximallyif C = D but for all D’ & D it holds thatC’' ¥ D’. To define
our translation of clauses to blob subconfigurations, weimgdications that are in a sense both
minimal and maximal. We remind the reader that the verteX;8ét3) of legal pebble positions
for white pebbles with respect to the chaiwas defined in Equation (6.1) on page 26.

Definition 7.2 (Induced blob subconfiguration). Let G be a blob-pebblable DAG arfd a clause
configuration derived froniPeb%. ThenC induces the blob subconfigurati¢B] (1) if there is a
clause se€p C C and a vertex sef C G\ B with W =S N Ipp(B) such that

Cp U B(S) F AlIT(B) (7.4a)

but for which it holds for all strict subse@’B Cg, S’ C S and B’ C B that

C’z U B(S) ¥ All"(B) (7.4b)
Cp U B(S) ¥ AlI(B) , and (7.4c)
Cp U B(S) ¥ AlIY(B') . (7.4d)

30

7 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

We write S(C) to denote the set of all blob subconfigurations induced by
To save space, when all conditions (7.4a)—(7.4d) hold, viteewr

Cp U B(S) > AllY(B) (7.5)

and refer to this aprecise implicationor say that the clause s€tz U B(S) implies the clause
All(B) precisely Also, we say that the precise implicatily U B(S) > All™(B) witnesseshe
induced blob subconfiguratidd] ().

In the following, we will use the definition of precise impitton > also for clausest//*(V)
where the vertex séf is not a chain.

Let us see that this definition agrees with the intuition @nésd in Section 2.3. An atomic black
pebble on a single vertaxcorresponds, as promised, to the fact t{;!é;l v; is implied by the cur-
rent set of clauses. A black blob dnwithout supporting white pebbles is induced precisely when
the disjunctiondii* (V) = /¢y \/f:1 v; of the corresponding clauses follow from the clauses in
memory, but no disjunction over a strict subset of vertilz’ésg V is implied. Finally, the sup-
porting white pebbles just indicate that if we indeed hadittiermation corresponding to black
pebbles on these vertices, the clause corresponding tappedted black blob could be derived.
Remember that our cost measure does not take into accowsizéhef blobs. This is natural since
we are interested in clause space, and since large blobs,iiiugtive sense, corresponds to large
(i.e., wide) clauses rather than many clauses.

The main result of this section is as follows.

Theorem 7.3. Letr = {Cy, ..., C, } be aresolution derivation 6f{_, z; from*Peb¢ for a blob-
pebblable DAGG. Then the induced blob-pebbling configuratiof&Cy), ..., S(C,)} form the
“backbone” of a complete blob-pebbling of G in the sense that

e S(Cp) =0,
 S(Cr) = {[=](0)}, and

e for everyt € [7], the transitionS(C;_;) ~» S(C;) can be accomplished in accordance with
the blob-pebbling rules in costiax { cost(S(C;_1)), cost(S(Cy)) } + O(1).

In particular, to any resolution derivation : *Pebgl; + \/f:1 z; We can associate a complete blob-
pebblingP; of G such thatcost(P,) < maxcer{cost(S(C))} + O(1).

We prove the theorem by forward induction over the derivatio By the pebbling rules in
Definition 6.8, any subconfiguratid3](1¥) may be erased freely at any time. Consequently, we
need not worry about subconfigurations disappearing duhiegransition froniC;_; to C;. What
we do need to check, though, is that no subconfigurdfit}iV’) appears inexplicably if(C,) as a
result of a derivation ste@,_, ~~ C,, but that we can always derive aff§](W) € S(C;)\S(C;—1)
from S(C,;—_1) by the blob-pebbling rules. Also, when several pebbling esoare needed to get
from S(C;) to S(C,;—1), we need to check that these intermediate moves do not #iegebbling
cost by more than an additive constant.

The proof boils down to a case analysis of the different fogses for the derivation step
C;_1 ~ C;. Since the analysis is quite lengthy, we divide it into sgktisas. But first of all we
need some technical lemmas.

7.2 Some Technical Lemmas

The next three lemmas are not hard, but will prove quite uséfte present the proofs for com-
pleteness.

31

TOWARDS AN OPTIMAL SEPARATION

Lemma 7.4. LetC be a set of clauses and a clause such thaf F D minimally anda € Lit(C)
buta ¢ Lit(C). Thena € Lit(D).

Proof. Suppose not. Le€; = {C € C|a € Lit(C)} andCy = C\ C;. SinceCy ¥ D there
is a truth value assignment such thata(C2) = 1 anda(D) = 0. Note thata(a) = 0, since
otherwisex(C;) = 1 which would contradicC; U C, = C E D. It follows thata ¢ Lit(D). Flip
a to true and denote the resulting truth value assignmenty. By constructiom®=1(C;) = 1
andC, and D are not affected sincéa,a} N (Lit(Cy) U Lit(D)) = 0, soa*='(C) = 1 and
a®=1(D) = 0. Contradiction. O

Lemma 7.5. Suppose that’, D are clauses and is a set of clauses. Then U {C} F D if and
onlyifCEaVv Dforall a € Lit(C).

Proof. Assume thatC U {C} F D and consider any assignmemtsuch thate(C) = 1 and
a(D) = 0 (if there is no suchy, thenC F D C @V D). Such amy must setC' to false, i.e., ali
to true. Conversely, i€ F a Vv D for all a € Lit(C) anda is such thaty(C) = a(C) = 1, it must
hold thata(D) = 1, since otherwisex(a v D) = 0 for some literak € Lit(C) satisfied byr. O

Lemma 7.6. Suppose that = D minimally. Then no literal fronD can occur negated ift, i.e.,
it holds that{@ | a € Lit(D)} N Lit(C) = 0.

Proof. Suppose not. Le€; = {C € C | Ja such that € Lit(C) anda € Lit(D)} andCy =
C\ C;. SinceCy ¥ D there is amy such thato(Cy) = 1 anda(D) = 0. But thena(C,) = 1,
since every(C' € C; contains a negated literalfrom D, and these literals are all set to true doy
Contradiction. O

We also need the following key technical lemma connectinglization with inflation moves.

Lemma 7.7. Let C be a clause set derived froﬁPebé. Suppose thaB is a chain and that
S C G\ Bisavertex set such th@ U B(S) F All"(B) and letW = S N Ipp(B). Then the blob
subconfiguratior{ B] (W) is derivable by inflation from son{&’](IW’) € S(C).

Proof. Pick C' C C, S’ C S and B’ C B minimal such thatC’ U B(S’) E All"(B’). Then
C’' U B(S") > AllT(B') by definition. Note, furthermore, tha’ # () since the clause set on
the left-hand side must be non-contradictory. A&, # () sinceB’' NS’ € BN S = {,
so by Lemma 7.4 it cannot be thB{S’) £ AlI*(B’). This means that induces|[B’](W’) for
W' =S"n lpp(B"). We claim that B'|(WW’) can be inflated t¢B](IV), from which the lemma
follows.

To verify this claim, note that first two conditions’ C BandB N W’ C B N S = (for
inflation moves in Definition 6.8 clearly hold by constructicAs to the third condition, we get

W' N ipp(B) = (8" N Ipp(B")) N Ipp(B) € S N lpp(B) =W
which proves the claim. O

We now start the case analysis in the proof of Theorem 7. hfodifferent possible derivation
steps in a resolution derivation.
7.3 Erasure

Suppose that; = C;_; \ {C} for C € C;_;. It is easy to see that the only possible outcome
of erasing clauses is that blob subconfigurations disaparnote for future reference that this
implies that the blob-pebbling cost decreases monotdpiadden going fromS(C;_) to S(Cy).

32

7 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

7.4 Inference

Suppose that, = C,_; U {C} for some claus€ derived fromC;_;. No blob subconfigurations
can disappear at an inference move sifige; C C;. Suppose thatB](W) is a new subcon-
figuration at timet arising fromCp C C;_; andS C G \ B such thatW’ = S N Ipp(B) and
Cp U {C} U B(S) > AlI(B). SinceC is derived fromC;_;, we haveC, ; F C. Thus it
holds thatC;_; U B(S) F AllT(B) and Lemma 7.7 tells us thaB](W) is derivable by inflation
from S(Cy_1).

Since no subconfiguration disappears, the pebbling costdees monotonically when going
from S(C,_,) to S(C;) for an inference step, which is again noted for future refeee

7.5 Axiom Download

This is the interesting case. Assume that a new blob subewmafign [B](W) is induced at time
as the result of a download of an axiathe Az¢(r). ThenC must be one of the clauses inducing
the subconfiguration, and we get that there@reC C;_; andS C G\ Bwith W =S N Ipp(B)
such that

Cp U {C} U B(S) > AlI"(B) . (7.6)

Our intuition is that download of an axiom clausec Az?(r) in the resolution derivation should
correspond to an introduction ¢f](pred(r)) in the induced blob-pebbling. We want to prove
that any other blob subconfiguratid®](1V) in S(C;) is derivable by the pebbling rules from
S(Ci—1) U [r]{pred(r)). Also, we need to prove that the pebbling moves needed toajo fr
S(C¢—1) to S(C;) do not increase the blob-pebbling cost by more than an additnstant com-
pared tomax {cost(S(C;_1)), cost(S(Cy))} = cost(S(Cy)).

We do the proof by a case analysis ovelepending on where in the graph this vertex is located
in relation toB. To simplify the proofs for the different cases, we first shageneral technical
lemma about pebble induction at axiom download.

Lemma 7.8. Suppose thaf; = C;_; U C for an axiomC' € Az%(r) and that[B](W) is a new
blob subconfiguration induced at times withessed b§7.6). Then it holds that:

1.r¢s.
2. pred(r) N B =10.

3. Ifr ¢ B, thenC;_; induces[B](W U ({r} N Ilpp(B))) if r is a source, and otherwise this
subconfiguration can be derived frdC;_;) by inflation.

4. If r is a non-source vertex ande pred(r) is such thaw € ipp(B) \ S, then we can derive
[B U v[(S N lpp(B U v)) fromS(C;_;) by inflation.

Proof. Suppose thatB](W) € S(C;) \ S(C;_1). For part 1, noting thab(r) = C for C' € Az(r)
we see that ¢ S, as otherwise the implication (7.6) cannot be precise gifican be omitted.

If r is a source part 2 is trivial, so suppoged(r) = {p,q} andC =p; vV g; v \/fl:1 r;. Then
it follows from Lemma 7.6 tha{p, ¢} N B = 0.

For part 3, ifr is a source, we haw€ = \/f:1 r; and (7.6) becomes

Cp UB(S U r) > AlIT(B) (7.7)
for S U r C G\ B, which shows that;_; induces

[BI((S U r) N ipp(B)) = [BI((S N Ipp(B)) U (r N Ipp(B)))

= [BI{(W U (r N Ipp(B))) - (7.8)

33

TOWARDS AN OPTIMAL SEPARATION

If r is a non-source we do not get a precise implication but stileh
Cp UB(S U r)E All(B) (7.9)

and Lemma 7.7 yields thaB]((S U r) N lpp(B)) = [B](W U (r N Ipp(B))) is derivable by
inflation fromS(C;_).

If v € pred(r) in part 4, the downloaded axiom can be written on the farm= C’ V ;.
Applying Lemma 7.5 on (7.6) we get

Cp U B(S) E AlY(B) v v; C AlIT(B U v) . (7.10)

By assumption, we have th&t U v is a chain and that C G \ (B U v), so Lemma 7.7 says that
[B U v](S N Ilpp(B U v)) is derivable fronS(C;_;) by inflation. O

What we get from Lemma 7.8 is not in itself sufficient to derilre new blob subconfiguration
[B](W) in the blob-pebble game, but the lemma provides subconfigngathat will be used as
building blocks in the derivations ¢B](WW) below.

Now we are ready for the case analysis over the vertéor the downloaded axiom clause
C € Az%(r). Recall that the assumption is that there exists a blob silgeoation [B](W) €
S(Cy) \ S(Cy—1) induced through (7.6) fo€z C C;—; andS C G\ Bwith W = S N lpp(B).
Remember also that we want to explain all new subconfiguratioS(C;) \ S(C;—_1) in terms of
pebbling moves fron$(C;) U {[r|(pred(r))}. As illustrated in Figure 6, the cases foare:

=

.r€G\ (G UUBin(B)) for b = bot(B),
2.7 € UPn(B)\ B,

3. r € B\ {b} for b = bot(B),

4. r = bot(B), and

5. r € G for b = bot(B).

75.1 Casel:reG\ (G% UUBin(B)) for b =bot(B)

If r € G\ (G4 U |JBin(B)), this means that the vertexs outside the set of vertices covered by
source paths vi# to top(B). In other wordsy ¢ Ipp(B) U B and part 3 of Lemma 7.8 yields that
[B](W U (r N lpp(B))) = [B](W) is derivable fromS(C;_,) by inflation. Note that we need
no intermediate subconfigurations in this case.

752 Case2: reJPBin(B)\B

This is the first more challenging case, and we do it in somaldetshow how the reasoning goes.
The proofs for the rest of the cases are analogous and willdsepted in slightly more condensed
form.

The conditionr € |JBin(B) \ B says that the vertexis located on some path frohvt(B)
via B to top(B) strictly above the bottom verteik = bot(B). In particular, this means that
r cannot be a source vertex. Lgted(r) = {p,q} and denote the downloaded axiom clause
C=pVy VvV n.

Part 3 of Lemma 7.8 says that we can derive the blob subcoafigor

[BI(W U (r 0 lpp(B))) = [B(W U r) (7.11)

34

7 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

Figure 6: Cases for vertex r with respect to new black blob B at download of axiom C' € Az%(r).

by inflation fromS(C,_1), where the equality holds sineec | Bin(B) \ B C lpp(B) by Defini-
tion 6.7. Also, since: is on some path abovg at least one of the predecessors afiust be located
on some path fromh as well. That is, translating what was just said into our tiatawe have that
the fact that- € | Bin(B) N GZ implies that eithep € [JBin(B) or ¢ € |JPBin(B) or both. By
symmetry, we get two cases:€ |JBin(B), ¢ ¢ UBin(B) and{p,q} C JPin(B). Let us look
at them in order.

. p € UBin(B), ¢ ¢ UPin(B): We make a subcase analysis depending on whether
B U W or not. Recall from part 2 of Lemma 7.8 that? B. The two remaining cases are
peWandp¢ B U W.

(a) p € W: Letw be the uppermost vertex i belowp, or in formal notation
v=top(Gk N B) . (7.12)

Such a vertexor must exist sincep € |JPBin(B) \ B. Sincep is abovev and is a
predecessor af, it lies on some path fromtor, i.e.,p € JPBin({v,7}) \ {v,r}. For

the siblingg we haveg ¢ |JBin({v,7}). This is so since ¢ |JPin(B) and for any
pathP € Pin({v,r}) it holds thatP C |JPin(B) since there is nothing inbetween
andr in B, i.e., (UBn({v,7}) \ {v,r}) N B = 0. Also,q ¢ G¥ O G because of
the Sibling non-reachability property 6.2. Hence, it musitihthatq ¢ lpp({v,r}).

We can use this information to make blob-pebbling movesltiagun [B](W) as fol-

lows. First introducér](p, ¢) and inflate this subconfiguration to

v, rI{p, ¢} O lpp({v,})) = [v,7](p) - (7.13)

Then derive the subconfiguratid®](W U r) in (7.11) by inflation fromS(C;_,).
Finally, merge the two subconfigurations (7.11) and (7.13)e result of this merger
move is[B U v|(W U p) = [B(W).

35

TOWARDS AN OPTIMAL SEPARATION

(b) p ¢ B U W: Note thatp € Bin(B) \ B by assumption. Also, it must hold that¢ S
since otherwise we would get the contradictioa S N (Pin(B)\B) € SN ipp(B) =
W. Thus,p € lpp(B) \ S and part 4 of Lemma 7.8 yields that we can derive the blob
subconfiguration
[B U p|(W,) for W, C W (7.14)

by inflation fromS(C;—1), whereW,, =S N Ipp(B U p) C S N Ipp(B) = W since
Ipp(B U p) C Ipp(B) if p € UPin(B). (This last claim is easily verified directly from
Definition 6.7.)

With v = top(GR N B) as in (7.12), introducér|(p, ¢) and inflate tov, r](p) as in
(7.13). Merging the subconfigurations (7.13) and (7.14ldgie

[B U {v,r}|(Wp) = [B U r[(Wp) (7.15)

and a second merger of the resulting subconfiguration (WitB)the subconfiguration
in (7.11) produce$B|(W U W),) = [B](W).

This finishes the cagec | Bin(B), ¢ ¢ U Pin(B).

Il {p,q} € UBin(B): By part 2 of Lemma 7.8p, ¢} N B =0, so{p,q} € Pin(B) \ B. By
symmetry, we have the following subcasesj@ndg with respect to membership i and
Ww.

@ {p,q} < W,
L)y peW, q¢ W,
©) {p,at N (BUW)=0.

We analyze these subcases one by one.

(@) {p,q} € W: Thisis easy. Just introdude|(p, ¢) and merge this subconfiguration with
the subconfiguration (7.11) to gg8](W U {p, q}) = [B](W).

(b) p € W, ¢ ¢ W: In this case it must hold that ¢ S since otherwise we would have
g€ SN (Pin(B)\B) CSnipp(B) = W contradicting the assumption. Thus
g€ (Pin(B)\ B)\ S C lpp(B)\ S and part 4 of Lemma 7.8 allows us to derive

[B U q|(W,) for W, C W (7.16)

by inflation fromS(C,_). Here we havéV, = S N lpp(B U q) C SN lpp(B) =W
sincelpp(B U q) C Ipp(B) wheng € | Bin(B).
Introducelr](p, ¢) and merge with the subconfiguration (7.16) to get

(B U r[(W, U p) (7.17)

and then merge (7.17) withB](W U r) from (7.11) to getlBj(W U W, U p) =
[B](W).

(©) {p,q} N B U W = (: Just as for the vertey in case case Ilb, here it holds for
bothp andq that{p, q} C Ipp(B) \ S. Part 4 of Lemma 7.8 yields subconfigurations
[B U p[(W,) for W,, C W as in (7.14) andB U q|(W,) for W, C W as in (7.16)
derived by inflation fron5(C;_1).
Introducelr](p, ¢) and merge with (7.14) opto get

[B U r|(W, U q) (7.18)

36

7 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

and then merge (7.18) with (7.16) gmesulting in
[B U r|(W, UW,) . (7.19)
Finally, merge (7.19) with (7.11) onto get[B|(W U W, U W,) = [B|(W).

This concludes the casec |J%in(B) \ B. We can see that in all subcases, the new blob
subconfigurationB] (W) is derivable fronS(C;_;) U [r](pred(r)) by inflation moves followed by
mergers on some subset{of, ¢, r}.

Let us analyze the cost of derivind3](W). We want to bound the cost of the intermedi-
ate subconfigurations that are used in the transition f89f_;) to S(C;) but are not present
in S(Cy). We first note that for the subconfiguratiof8](IV U r), [B U p](Wp), [B U q](Wy)
and[B U r|(W’) for variousW’ C W, the chargeable vertices are all subsets of the chargeable
vertices of the final subconfiguratidf] (V). This is so sincé = bot(B) is the bottom vertex in
all these black blobs, and all chargeable white verticesaméained in?’ N G%. The subconfigu-
rations|r](p, ¢) and[v, r]{p) for v = top(Gk N B) can incur an extra cost, however, but this cost
is clearly bounded b¥{p, ¢, r,v}| = 4.

7.5.3 Case3: re B\ {b} for b =bot(B)

First we note that in this case, we can no longer use part 3 winh& 7.8 to derive the blob sub-
configuration[B](W U r) of (7.11). The vertex cannot be added to the suppdttsince it is
contained inB. Also, we note that cannot be a source since it is above the bottom vertexs
usual, let us writered (r) = {p, ¢}.

Observe that just as in case 2 (Section 7.5.2) we must haver gitc |JPin(B) or ¢ €
U Bin(B) or both. By symmetry we get the same two cases for memberShigralg in | Bin(B),

namelyp € [JPBin(B), ¢ ¢ UPBin(B) and{p,q} €U PBin(B).

. p € UBin(B), ¢ ¢ UPBin(B): As before,p ¢ B by part 2 of Lemma 7.8. We make a
subcase analysis depending on whetheriW orp ¢ B U .

As in (7.12) we letv = top(GX N B) and note thap € |JPin({v,7}) \ {v,r}. Forq we
haveq ¢ | PBin({v,r}) sinceq ¢ |JPBin(B) but{v,r} C JPin(B) and there is nothing
inbetweenv andr in B. Also, g ¢ G)X) GX because of the Sibling non-reachability
property 6.2. Hence, it holds thatZ ipp({v,r}).

(@) p € Wt Introduce[r](p, g), inflate [r[(p, ¢) to [v,r]({p,q} N pp({v,r})) = [v,r](p)
as in (7.13) and continue the inflation[tB U {v,r}|(W U p) = [B](W).

(b) p ¢ B U W: Justasincase 2,¢ W impliesp ¢ S, sop € lpp(B) \ S and we can
use part 4 of Lemma 7.8 to deriy& U p|(W,) for W, C W as in (7.14). Introduce
[r]{(p, q), inflate to[v, r|(p) as in (7.13) and merge (7.13) and (7.14)oresulting in
[B U {v,r}[(W,) = [B](Wp), which can be inflated tpB](WV).

Il. {p,q} € UDPin(B): We have the same possibilities to consider for containroéptandq
in B U W as in case 2(ll) on page 36.

(@) {p,q} € W: This is immediate. Introduce the subconfiguratjelip, ¢) and inflate to
[B U r[(W U {p,q}) = [B(W).

(b) pe W, g ¢ B U W: Apply part 4 of Lemma 7.8 to deriviB U ¢|(W,) for W, C W
by inflation fromS(C;_;). Then introduce€r|(p,¢) and merge oy to get the sub-
configuration[B U r|(W, U p) = [B](W, U p), which can be inflated further to
[B(Wq Up U W) = [B|(W).

37

TOWARDS AN OPTIMAL SEPARATION

(©) {p,q} N (B U W) = {: In the same way as in case IIb, derive the subconfigurations
[B U p|(W,) and[B U q](W,) with W, U W, C W from S(C;_,) by inflation. Intro-
duce|r](p, ¢) and merge twice, first op and then oy, to get[B](W, U W,), which
can be inflated t¢B](W).

This concludes the casec B\ {b}. We see that in all subcases the new blob subconfiguration
[B](W) is derivable fron5(C;_1) U [r]{pred(r)) by inflation moves followed by mergers on some
subset of p, ¢}, possibly followed by one more inflation move.

As in the previous case, the bottom vertex in all of the blalb®[B U p|, [B U ¢] and
[B U r]isb = bot(B), and the corresponding chargeable white pebbles are suifsabse ofil’.

The extra cost caused by the subconfiguratieh®, ¢) and[v, r|(p) is at most.

7.5.4 Case 4: r = bot(B)

If r is a source, anyB](W) with » € B can be derived by introducing](pred(r)) = [r](0) and
inflating. Suppose therefore that= bot(B) is not a source and letred(r) = {p,q}. Then it
holds that{p, ¢} C GZ C Ipp(B), i.e., the vertex set8 U p andB U ¢ are both chains.

By symmetry, we have three cases faandq with respect to membership . (It is still true
that{p,q} N B = () by part 2 of Lemma 7.8.)

(@) {p,q} € W: Immediate. Introducé|(p, q) and inflate tdB U r|(W U {p,q}) = [B(W).

(b) p € W, ¢ ¢ W: Enlist the help of our old friend Lemma 7.8, part 4, to derfileU ¢](W,)
for W, C W by inflation fromS(C;_;) (wherelV, C W holds sincépp(B U v) C lpp()

if v e GA) Introduce[r|(p, ¢) and merge with B U ¢|(IV,) to get[B U r|(W, U p) =
[B](W, U p). Theninflatel B](W, U p) to [B|(W, U p U W) = [B(W).

(©) {p,q} N W = 0: Following an established tradition, mimic case b and &g U p](1V},)
and[B U ¢|(W,) with W, U W, C W by inflation fromS(C;_;). Introduce[r](p, ¢), do
two mergers to getB](W,, U W) and inflate tgB](WW).

This takes care of the case= b. Again, in all subcases our new subconfigurati®(WW) is
derivable fromS(C;_1) U [r](pred(r)) by inflation moves followed by mergers on some subset of
{p, q}, possibly followed by one more inflation move.

This time the blobg§B U p] and[B U ¢| can cause an extra intermediate cost afach for
the bottom verticep and ¢, and[r|(p, q) potentially adds an extra costfor r, giving that the
intermediate extra cost is bounded by

755 Caseb5: r € Gt for b= bot(B)

This final case is very similar to the previous case bot(B). Note first that € Gﬁ C lpp(B).
If r is a source, thed’ = \/_, r; and we have

Cp U {C}UB(S)=Cp UB(S Ur) > All"(B) (7.20)

attimet — 1, which shows thatB](W U r) € S(C;_;). Hence, we can introdude](pred(r)) =
[r](0) and merge om to get[B](WV).

As usual, the more interesting case is whes a non-source withred (r) = {p, ¢}. The case
analysis is just as in case 4 (Section 7.5.4). However, m@ertow we can again use part 3 of
Lemma 7.8 to derivéB](W U r) from S(C;_;) by inflation since it holds that ¢ B.

(@) {p,q} € W: Introducing|r](p, ¢) and merging witfB|(W U r) yields[B](W).

38

8 INDUCED BLOB CONFIGURATIONS MEASURE CLAUSE SET SIZE

(b) p e W, g ¢ W: Appeal to part 4 of Lemma 7.8 to g8 U ¢|(IV,) for W, C I by inflation
from S(C;_1). Introduce[r]|(p, ¢) and merge to gdiB U r|(IW, U p), and merge again with
[B](W U r) to get[B|(W).

) {p,q} N W = 0: As in case b above fog, derive[B U p|(W,) and[B U ¢](W,) with
W, U W, C W by inflation fromS(C;_;). Introduce|r](p, ¢) and do two mergers to get
[B U (W, U W,). Finally merge[B U r|(W, U W,) with [B](IWW U r) to get[B](W).

This takes care of the case= Gﬁ. We note that in all subcases of this cd$8(1V) is derivable
from S(Cy—1) U [r](pred(r)) by inflation moves followed by mergers on some subs&pod, r}.
Again, the extra intermediate pebbling cost is boundet{pyg, r}| = 3.

7.6 Wrapping up the Proof

If m = {(CO, . ,(CT} is a derivation of\/f:1 z; from *Pebd, it is easily verified from Definition 7.2
thatS(Co) = S(0) = 0 andS(C,) = S({VL, z}) = {[](0)}.

In Sections 7.3, 7.4, and 7.5, we have shown how to do themediate blob-pebbling moves
to get fromS(C,_1) to S(C,) in the case of erasure, inference and axiom download, resplgc
For erasure and inference, the blob-pebbling cost change®tanically during the transition
S(Ci—1) ~ S(Cy). In the case of axiom download, there can be an extra costimfurred for
deriving eacHB](W) € S(C;) \ S(C¢—1). We have no a priori upper bound ¢8(C;) \ S(C¢-1)|,
but if we just derive the new subconfigurations one by one aaseeall intermediate subconfigu-
rations inbetween these derivations, we will keep the &t cost belowt.

This shows that the complete blob-pebblif} of G associated to a resolution derivation
m: *Pebé H \/f:1 z; by the construction in this section has blob-pebbling cosinded from above
by cost(Pr) < maxcer{cost(S(C))} + 4. Theorem 7.3 is thereby proven.

8 Induced Blob Configurations Measure Clause Set Size

In this section we prove that if a set of clausésnduces a blob-pebbling configurati&{C)
according to Definition 7.2, then the costSifC) as specified in Definition 6.9 is at mg&t|. That

is, the cost of an induced blob-pebbling configuration pfesia lower bound on the size of the set
of clauses inducing it. This is Theorem 8.5 below.

Note that we cannot expect a proof of this fact to work regesslbf the pebbling degree The
induced blob-pebbling in Section 7 makes no assumptionatabhdut for first-degree pebbling
contradictions we know thafp (*Peby, F z1) = Sp(Pebg, - 0) = O(1). Providedd > 2, though,
we show that one has to pay at legSt > N clauses to get an induced blob-pebbling configuration
of cost V.

We introduce some notation to simply the proofs in what fetio Let us defineVars®(u) =
{u1,...,uq}. We say that a vertex is representedn a clauseC' derived from*Peb?, or thatC
mentionsu, if Vars®(u) N Vars(C) # 0. We write

V(C) ={ueV(Q) Vars®(u) N Vars(C) # 0} (8.1)

to denote all vertices represented’in We will also refer tol’(C') as the set of verticementioned
by C. This notation is extended to sets of clauses by taking wnibarthermore, we write

CU]={CeC|V(C)NU#p (8.2)

to denote the subset of all clause<irmentioning vertices in a vertex sgt

39

TOWARDS AN OPTIMAL SEPARATION

We now show some technical results about CNF formulas tHatarne in handy in the proof
of Theorem 8.5. Intuitively, we will use Lemma 8.1 below ttggr with Lemma 7.4 on page 32 to
argue that if a clause s€tinduces a lot of subconfigurations, then there must be a leaidéble
occurrences irC for variables corresponding to these vertices. Note, hewdhat this alone will
not be enough, since this will be true also for pebbling degre: 1.

Lemma 8.1. Suppose for a set of claus€sand clausedD; and D, with Vars(D;) N Vars(Dy) =
) thatC F Dy vV Dy butC ¥ Ds. Then there is a literab € Lit(C) N Lit(Dy).

Proof. Pick a truth value assignmeatsuch thaty(C) = 1 buta(D2) = 0. SinceC F D, we must
havea(D;) = 1. Leta/ be the same assignment except that all satisfied literdls iare flipped to
false (which is possible since they are all strictly distibg assumption). Thea/(D; Vv D3) = 0
forcesa/(C) = 0, so the flip must have falsified some previously satisfiedsganC. O

The fact that a minimally unsatisfiable CNF formula must henae clauses than variables
seems to have been proven independently a number of timesf(seinstance, [1, 6, 20, 38]).
We will need the following formulation of this result, reilag subsets of variables in a minimally
implicating CNF formula and the clauses containing vagalitfom these subsets.

Theorem 8.2. Suppose that’ is CNF formula that implies a clausB minimally. For any subset
of variablesV of F, let Iy, = {C' € F' | Vars(C) NV # 0} denote the set of clauses containing
variables fromV'. Then ifV C Vars(F) \ Vars(D), it holds that|Fy/| > |V|. In particular, if F°

is a minimally unsatisfiable CNF formula, we havg-| > |V|forall V' C Vars(F).

Proof. The proof is by induction ove¥” C Vars(F) \ Vars(D).

The base case is easy.|Mf| = 1, then|Fy/| > 2, since anyr € V must occur both unnegated
and negated i" by Lemma 7.4.

The inductive step just generalizes the proof of Lemma 7dpp8se thatFy.| > |V'| for
all strict subsetd”” G V' C Vars(F) \ Vars(D) and consided’. Sincefy, C Fy if V/ C V,
choosing any/’ of size|V| — 1 we see thatFy | > |Fy/| > |V/|+1 = |V|.

If |Fy/| > |V|there is nothing to prove, so assume ttfat| = |V/|. Consider the bipartite graph
with the variabled” and the clauses iRy as vertices, and edges between variables and clauses for
all variable occurrences. Since for & C V the set of neighbourd’ (V') = Fy» C Fy satisfies
IN(V')| > |V'|, by Hall's marriage theorem there is a perfect matching betw” and Fy,. Use
this matching to satisfyy, assigning values to variables inonly.

The clauses if” = F'\ Fy are not affected by this partial truth value assignmentesthey
do not contain any occurrences of variables/in Furthermore, by the minimality of' it must
hold that F’ can be satisfied ané falsified simultaneously by assigning values to variabtes i
Vars(F')\ V.

The two partial truth value assignments above can be cominan assignment that satisfies
all of F' but falsifies D, which is a contradiction. Thugy,| > |[V|. The theorem follows by
induction. O

Continuing our intuitive argument, given that Lemmas 7.4 &1 tell us that many induced sub-
configurations implies the presence of many variablds, we will use Theorem 8.2 to demonstrate
that a lot of different variable occurrences will have tonsiate into a lot of different clauses
provided that the pebbling degrekis at least2. Before we prove this formally, let us try to
provide some intuition for why it should be true by studyimgtspecial cases. Recall the notation
B(V) = {Vieq vilv € V} and Al (V) = V,cy Ve vi from Section 7.

ExampleB8.3. Suppose thaf is a clause set derived froﬁlPebé that inducesV independent black
blobs By, ..., By that are pairwise disjoint, i.eB; N B; = () if i # j. Then the implications

CE AlIT(B)) (8.3)

40

8 INDUCED BLOB CONFIGURATIONS MEASURE CLAUSE SET SIZE

hold fori = 1,..., N. Remember that sinc@eb‘é is non-contradictory, so i€.
It is clear that a non-contradictory clause Eetatisfying (8.3) fori = 1,..., NV is quite simply
the set
(C:{All+(BZ-)|z':1,...N} (8.4)

consisting precisely of the clauses implied. Also, it se@asisible that this is the best one can
do. Informally, if there would be strictly fewer clauses th&, some clause would have to mix
variables from different blob®; and ;. But then Lemma 7.4 says that there will be extra clauses
needed to “neutralize” the literals frof; in the implicationC F All*(B;) and vice versa, so that
the total number of clauses would have to be strictly grethatan V.

As it turns out, the proof thdtC| > N whenC inducesN pairwise disjoint and independent
black blobs is very easy. Suppose on the contrary that (&R}shHfori = 1,..., N but that
|C| < N. Let« be a satisfying assignment f@r. Choosen’ C « to be any minimal partial truth
value assignment fixin@ to true. Then for the size of the domain@fwe have|Dom(a/)| < N,
since at most one distinct literal is needed for every clause C to fix it to true. This means
that there is som; such that’ does not set any variables Irurs?(B;). Consequentlyy’ can be
extended to an assignmeit settingC to true but4i/*(B;) to false, which is a contradiction. With
some more work, and using Theorem 8.2, one can show{@at N if variables from distinct
blobs are mixed.

Note that the above argument works for any pebbling degeadmgd = 1. Intuitively, this
means that one can charge for black blobs even in the casstafdigree pebbling formulas.

ExampleB.4. Suppose that the clause §einduces an blob subconfiguratiB] (W) with W +# (),
and let us assume for simplicity th@tis minimal andiW = S so that the implication

C U B(W) E AlIY(B) (8.5)

holds and is minimal. We claim th&t| > |1V | 4 1 provided that > 1.

Since by definitionB N W = () we haveVars(AlIT(B)) N Vars(B(W)) = 0, and Theorem 8.2
yields that|C U B(W)| > |C[W] U B(W)| > | Vars(B(W))|, using the notation from (8.2). This
is not quite what we want—we have a lower bound@nu B(W)|, but what we need is a bound
on |C|. But if we observe thatVars(B(W))| = d|W| while |B(W)| = ||, we get that

IC| > |Vars(B(W))| — I BW)|+1=(d—-1)|W|+1>|W|+1 (8.6)

as claimed.

We remark that this time we had to use that 1 in order to get a lower bound on the clause
set size. And indeed, it is not hard to see that a single clangke formC' = vy vV \/ oy W1 can
induce an arbitrary number of white pebbled ¥ 1. Intuitively, white pebbles can be had for free
in first degree pebbling formulas.

In general, matters are more complicated than in Examplesa®d 8.4. If[B;|(W;) and
[Bs|(W5) are two induced blob subconfigurations, the black bldhsand B, need not be dis-
joint, the supporting white pebbldd’; and W, might also intersect, and the black bléh can
intersect the supporting white pebblé$ of the other blob. Nevertheless, if we choose with some
care which vertices to charge for, the intuition providedooy examples can still be used to prove
the following theorem.

Theorem 8.5. Suppose thaty is a blob-pebblable DAG and I€f be a set of clauses derived from
the pebbling formul&Peb?, for d > 2. Then|C| > cost(S(C)).

Proof. Suppose that the induced set of blob subconfiguratiofi§d$ = {[B;](W;)|i € [m]}. By
Definition 6.9, we haveost(S(C)) = |[B U W2 | where

B = {bot(B;)|[Bi](W:) € S(C)} (8.7)

41

TOWARDS AN OPTIMAL SEPARATION

and
wh= U (Wmna™) (8.8)
[B;](W;)€S(C)

We need to prove tha€| > |B U W2|.

We first show that all vertices i U W are represented in some claus€irBy Definition 7.2,
for each[B;](W;) € S(C) there is a clause séi; C C and a vertex sef; C G \ B; with
W; =58; N lpp(B,) C S, such that

C; U B(S;) F AlIY(B)) (8.9)

and such that this implication does not hold for any stridiset ofC;, S; or B;. Fix (arbitrarily)
suchC; ands; for every[B;|(W;) € S(C) for the rest of this proof.

For the induced black blobB; we claim thatB; C V(C;), which certainly impliedot(B;) €
V(C). To establish this claim, note that for anye B; we can apply Lemma 8.1 with); =
\/;l:1 v; andDy = AlI*(B; \ {v}) on the implication (8.9), which yields that the vertexnust be
represented if; U B(W;) by some positive literad;. SinceB; N S; = (), we haveVars(B(S;)) N
Vars(AllT(B;)) = 0 and thusy; € Lit(C;).

Also, we claim thatS; C V(C;). To see this, note that sindg; N S; = () and the implica-
tion (8.9) is minimal, it follows from Lemma 7.4 that for eyew € S;, all literals@;, j € [d], must
be present irC;. Thus, in particular, it holds that; N GZOt(Bi) CV(Cy).

We now prove by induction over subsdtsC B U W* that|C[R]| > |R|. The theorem clearly
follows from this sinceC| > |C[R]]|. (The reader can think dt as the set of verticegpresenting
the blob-pebbling configuratiori®;|(W;) € S(C) in the clause set.)

The base casfR| = 1 is immediate, since we just demonstrated that all vertices R are
represented ift.

For the induction step, suppose th&{R’]| > |R'| for all R & R. Pick a “topmost” vertex
r € R, i.e., such than N R = (. We associate a blob subconfiguratid)](W;) € S(C) with

r as follows. Ifr = bot(B;) for some[B;|(W;), fix [B;](W;) arbitrarily to such a subconfigu-
bOt(BZ')

ration. Otherwise, there must exist sofig|(WV;) such that- € W; N G, , o fix any such
subconfiguration. We note that it holds that
R0 Gy, C {7} (8.10)

for [B;](W;) chosen in this way.

Consider the clause s€; C C and vertex seb; O W; from (8.9) associated withB;](1V;)
above. Clearly, by constructiane V' (C;) is one of the vertices ak mentioned byC;. We claim
that the total number of vertices i mentioned byC; is upper-bounded by the number of clauses
in C; mentioning these vertices, i.e., that

Let us first see that this claim is sufficient to prove the tbearTo this end, let
R[i] =R N V(Cy) (8.12)

denote the set of all vertices i mentioned byC; and assume th&€;[R]| = |C;[R[i]]| > |R[]|-
Observe thaC;[R][:]] € C[R], sinceC; C C andR[i] C R. Orin words: the set of clauses in
C; mentioning vertices iRk[i] is certainly a subset of all clausesG@hmentioning any vertex im.
Also, by constructiorC; does not mention any vertices i\ R]i] sinceR[i] = R N V(C;). That
is,

CIR\ R[i]] € C[R]\ C; (8.13)

42

8 INDUCED BLOB CONFIGURATIONS MEASURE CLAUSE SET SIZE
in our notation. Combining the (yet unproven) claim (8.1d4) €,;[R] = C,[R][i]] asserting that
|C;[R[i]]| > |R[i]| with the induction hypothesis fdk \ R[i] C R\ {r} & R we get

ICIR]| = [C:[R] U (C\ C)[R]|
> |GIRNV(C)IUCIR\ V(C)]

= |G[R[]| + |C[R\ R[] (8.14)
> |R[i| +[R\ R[]
= |R|

and the theorem follows by induction.

It remains to verify the claim (8.11) thét;[R[]]| > |R[:]| for R[i] = R N V(C;) # 0. To do
so, recall first that € R[i]. Thus,R[i] # () and if R[i| = {r} we trivially have|C;[R[i]]| > 1 =
|R[i]|. Suppose therefore th&ti] 2 {r}.

We want to apply Theorem 8.2 on the formula= C; U B(S;) on the left-hand side of the
minimal implication (8.9). LetkR’ = RJ[i] \ {r}, writte R’ = Ry U Ry for Ry = R’ n S, and
Ry = R'\ Ry, and consider the subformula

Fp ={C e (C; UB(S))|V(C) N R # 0} (©.15)
= G;[R] U B(Ry) '
of F = C; U B(S;). A key observation for the concluding part of the argumertha by (8.10)
we haveVars(R') N Vars(AlIY(B;)) = 0.

For eachw € Ry, the clauses ifB(R;) containd literals wy, . .., w, and these literals must
all occur negated ifC; by Lemma 7.4. For each € Rs, the clauses itC;[R’] contain at least
one variableu;. Appealing to Theorem 8.2 with the subset of variabl@ss?(R') N Vars(C;) C
Vars(F) \ Vars(AlIt(B;)), we get

i

= |Ci[R] U B(Ry)|
> |Varsd(R') N Vars(C;)| +1 (8.16)
> d‘Rﬂ + ‘R2| +1,

and rewriting this as
|GIRI]| = |CIRT])
- I Bt

> (d—1)|Ry| + |Ro| +1
> !RM!

(8.17)

establishes the claim. O

We have two concluding remarks. Firstly, we note that theglahere the conditiod > 2 is
needed is the very final step (8.17). This is where an attairpteer bound proof for first degree
pebbling formulagPeb{, would fail for the reason that the presence of many white |estinS(C)
says absolutely nothing about the size of the claus€ ssducing these pebbles. Secondly, another
crucial step in the proof is that we can choose our repreffemtaertices: € R so that (8.10) holds.

It is thanks to this fact that the inequalities in (8.16) gmtigh. The way we make sure that (8.10)
holds is to charge only for (distinct) bottom vertices in thlack blobs, and only for supporting
white pebbles below these bottom vertices.

43

TOWARDS AN OPTIMAL SEPARATION

9 Black-White Pebbling and Layered Graphs

Having come this far in the paper, we know that resolutiorivdéons induce blob-pebblings. We
also know that blob-pebbling cost gives a lower bound onsgaet size and hence on the space of
the derivation. The final component needed to make the pfobfi@orem 1.1 complete is to show
lower bounds on the blob-pebbling pri@&ob-Peb(G;) for some nice family of blob-pebblable
DAGSG;.

Perhaps the first idea that comes to mind is to try to estaldisbr bounds on blob-pebbling
price by reducing this problem to the problem of proving loweunds for the standard black-
white pebble game of Definition 3.4. This is what is done in] [the restricted case of trees.
There, for the pebbling®,: that one gets from resolution derivations *Peb%l— \/f:1 z; in arather
different so-called “labelled” pebble game, an explicitgedure is presented to transfoffp into a
complete black-white pebblings ®fin asymptotically the same cost. The lower bound on pebbling
price in the labelled pebbel game then follows immediatglyubing the known lower bound for
black-white pebbling of trees in Theorem 4.8.

Unfortunately, the blob-pebble game seems more difficalh tthe game in [42] to analyze in
terms of the standard black-white pebble game. The proldaimeiinflation rule (in combination
with the cost function). It is not hard to show that withouflation, the blob-pebble game is
essentially just a disguised form of black-white pebblinthus, if we could convert any blob-
pebbling into an equivalent pebbling not using inflation m®without increasing the cost by more
than, say, some constant factor, we would be done. But irrasinto the case for the labelled
pebble game in [42] played on binary trees, we are curremtfyahle to transform blob-pebblings
into black-white pebblings in a cost-preserving way.

Instead, what we do is to prove lower bounds directly for tlodipebble game. This is not
immediately clear how to do, since the lower bound proofsbfack-white pebbling price in, for
instance, [24, 31, 37, 39] all break down for the more genddi-pebble game. We are currently
able to obtain lower bounds only for the limited clasdayfered spreading graphdo be defined
below), a class that includes binary trees and pyramid graplour proof, we borrow heavily from
the corresponding bound for black-white pebbling in [31]t tve need to go quite deep into the
construction in order to make the changes necessary fortiwé go through in the blob-pebbling
case. In this section, we therefore give a detailed exposiif the lower bound in [37], in the
process simplifying the proof somewhat. In the next sectierbuild on this result to generalize
the bound from the black-white pebble game to the blob-gegame in Definition 6.8.

9.1 Some Preliminaries and a Tight Bound for Black Pebbling

Unless otherwise stated, in the followirdg denotes a layered DAG;, v, w, x,y denote vertices
of G; U,V,W, X, Y denote sets of vertices? denotes a path; arff} denotes a set of paths. We
will also use the following notation.

Definition 9.1 (Layered DAG notation). For a vertexu in a layered DAGG we let level (u)
denote the level ofi. For a vertex set/ we let minlevel(U) = min{level(u) : v € U} and
maxlevel(U) = max{level(u) : v € U} denote the lowest and highest level, respectively, of any
vertex inU. Vertices inU on particular levels are denoted as follows:

o U{=j} ={uecU|level(u) > j} denotes the subset of all verticediron level; or higher.
o U{~j} ={ueU]|level(u) > j} denotes the vertices i strictly above leve}.
o U{~j} =U{=j}\ U{~j} denotes the vertices exactly on leyel

The vertex set§/{=<j} andU{<j} are defined wholly analogously.

44

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

P

>
|
—

1 2 3 4 -+ h htl
(a) Pyramid graph of height h = 6. (b) Pyramid as fragment of 2D rectilinear lattice.

Figure 7: The pyramid IIs of height 6 with labelled vertices.

For the layered DAGS$- under consideration we will assume that all sources area (g
that all non-sources have indegrgeand that there is a a unique sink Since all layered DAGs
also possess the Sibling non-reachability property 6.8, rtteans that we are considering blob-
pebblable DAGs (Definition 6.6), and so the blob-pebble gaarebe played on them.

Although most of what will be said in what follows holds fobérary layered DAGs, we will
focus on pyramids since these are the graphs that we are m@ststed in. Figure 7(a) presents a
pyramid graph with labelled vertices that we will use as animg example. Pyramid graphs can
also be visualized as triangular fragments of a directeddin@ensional rectilinear lattice. Perhaps
this can sometimes make it easier for the reader to see thabls” statements about properties of
pyramids in some of the proofs below are indeed obvious. dai€i 7(b), the pyramid in Figure 7(a)
is redrawn as such a lattice fragment.

In the standard black and black-white pebble games, we hevéotiowing upper bounds on
pebbling price of layered DAGs.

Lemma 9.2. For any layered DAG?>}, of heighth with a unique sink and all non-sources having
vertex indegree, it holds thatPeb(G},) < h + O(1) andBW-Peb(G},) < h/2 4+ O(1).

Proof. The bounds above are true for complete binary trees of hgigltording to Theorem 4.8.
It is not hard to see that the corresponding pebbling stiegetpn be used to pebble any layered
graph of the same height with at most the same amount of mebble

Formally, suppose that the sinkof the DAG GG}, has predecessorsandy. Label the root of
T, by z; and its predecessors hy andy;. Recursively, for a vertex ifi, labelled byw;, look
at the corresponding vertex in GG, and suppose thatred (w) = {u,v}. Then label the vertices
pred(w;) in Ty, by u; andvy, for the smallest positive indices k£ such that there are not already
other vertices irf}, labelledu; andvy. In Figure 8 there is an illustration of how the vertices in a
pyramidIl; of height3 are mapped to vertices in the complete binary ffge this manner.

The result is a labelling df}, where every vertex in GG;, corresponds to one or more distinct
verticesvy, ..., vy, in Ty, and such that ipred(w;) = {u;, v} in T}, thenpred(w) = {u,v}
in G,. Given a pebbling strateg® for 73, we can pebbl&r;, with at most the same amount of
pebbles by mimicking any move on amyin T}, by performing the same move anin GG;,. The
details are easily verified. O

45

TOWARDS AN OPTIMAL SEPARATION

(a) Pyramid graph II; of height 3. (b) Binary tree T3 with vertex labels from ITs.

Figure 8: Binary tree with vertices labelled by pyramid graph vertices as in proof of Lemma 9.2.

In this section, we will identify some layered grapfg for which the bound in Lemma 9.2 is
also the asymptotically correct lower bound. As a warm-ung, @also to introduce some important
ideas, let us consider the black pebbling price of the pyddiii of heighth.

Theorem 9.3 ([22]). Peb(I1;) = h + 2 for h > 1.
To prove this lower bound, it turns out that it is sufficienstady blocked paths in the pyramid.

Definition 9.4. A vertex setU blocksa pathP if U N P # (. U blocks a set of path$3 if U
blocks allP € ‘3.

Proof of Theorem 9.3lt is easy to devise (inductively) a black pebbling strattugt usesh + 2
pebbles (using, for instance, Lemma 9.2). We show that shagsib a lower bound.

Consider the first time when all possible paths from sources to the sink are blocidualdzk
pebbles. Suppose th&is (one of) the last path(s) blocked. Obviousi,s blocked by placing
a pebble on some source vertex The pathP containsh + 1 vertices, and for each vertex €
P\ {u} there is a unique patR, that coincides withP? from v onwards to the sink but arrives at
v in a straight line from a source “in the opposite directiofi'ttwat of P, i.e., via the immediate
predecessor af not contained inP. Attime ¢ — 1 all such pathg P, | v € P\ {u}} must already
be blocked, and sincP is still open no pebble can block two patRs # P, for v,v" € P\ {u},

v # v'. Thus at time there are at least+ 1 pebbles orl;. Furthermore, without loss of generality

each pebble placement on a source vertex is followed by aengibbble placement (otherwise

perform all removals immediately following after timebefore making the pebble placement at
timet). Thus at time + 1 there areh + 2 pebbles oril,. O

We will use the idea in the proof above about a set of pathsarging at different levels to
another fixed path repeatedly, so we write it down as a sepalmervation.

Observation 9.5. Suppose that andw are vertices irll; on levelsL,, < L,, and thatP : u ~ w
is a path fromu to w. LetK = L,, — L, and write P = {vg = u,v1,...,vx = w}. Then
there is a set oK paths3 = { Py, ..., Pk} such thatP; coincides withP from v; onwards tow
arrives tov; in a straight line from a source vertex via the immediate pessor ofy; which is not
contained inP, i.e., is distinct fromw;_,. In particular, for anyi, j with1 < ¢ < j < kit holds
that P, N Pj QPJ N PQP\{’LL}

We will refer to the pathd”, ..., Px as a set otonverging source path®r just converging
paths, forP : u ~~ w. See Figure 9 for an example.

46

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Figure 9: Set of converging source paths (dashed) for the path P : uy ~ y; (solid).

9.2 A Tight Bound on the Black-White Pebbling Price of Pyrami ds

The rest of this section contains an exposition of Klawe [3Vith some simplifications of the
proofs. Much of the notation and terminology has been chaufigen [37] to fit better with this
paper in general and (in the next section) the blob-pebbheega particular. Also, it should be
noted that we restrict all definitions to layered graphs ontrast to Klawe who deals with a some-
what more general class of graphs. We concentrate on lageaptis mainly to avoid unnecessary
complications in the exposition, and since it can be prowammo graphs in [37] can give a better
size/pebbling price trade-off than one gets for layereglgsaanyway.

Recall from Definition 6.5 that path viaw is a pathP such thatv € P. We will also say that
P visitsw. The notation3,ia(w) is used to denote all source paths visiting Note that a path
P € Pyia(w) visiting w may continue aftetw, or may end inw.

Definition 9.6 (Hiding set). A vertex set/ hidesa vertexw if U blocks all source paths visiting,
i.e., if U blocksPyia(w). U hidesW if U hides allw € W. If so, we say that/ is ahiding set
for . We write[UT| to denote the set of all vertices hidden 3y

Our perspective is that we are standing at the sourcésanfd looking towards the sink. Then
U hidesw if we “cannot see”w from the sources sincE completely hidesv. WhenU blocks
a pathP is is possible that we can “see” the beginning of the pathwmutannot walk all of the
path since it is blocked somewhere on the way. The reason kigyarminological distinction is
convenient will become clearer in the next section.

Note that ifU should hidew, then in particular it must block all paths endingun Therefore,
when looking at minimal hiding sets we can assume withowt &dgyenerality that no vertex i&f
is on a level higher thaw.

It is an easy exercise to show that the hiding relation issitae, i.e., that ifU hidesV” andV
hidesW, thenU hidesWV.

Proposition 9.7. If V C [[U] andW C [[V]| thenW C [[UT].

One key concept in Klawe’s paper is thatpaftential The potential of® = (B, W) is intended
to measure how “good” the configuratidhis, or at least how hard it is to reach in a pebbling.
Note that this is not captured by the cost of the current mebbhfiguration. For instance, the final
configurationP, = ({z}, 0) is the best configuration conceivable, but only cdstst the other

a7

TOWARDS AN OPTIMAL SEPARATION

extreme, the configuratiofi in a pyramid with, say, all vertices on levélwhite-pebbled and all
vertices on levell + 1 black-pebbled is potentially very expensive (for low levél), but does
not seem very useful. Since this configuration on the one wmqdite expensive, but on the other
hand is extremely easy to derive (just white-pebble alliseston levell, and then black-pebble
all vertices on leveL + 1), here the cost seems like a gross overestimation of thedtygss” ofP.

Klawe’s potential measure remedies this. The potential pélable configuratiofB, W) is
defined as the minimum measure of anyEehat together witi1” hides B. Recall thatU/ {5}
denotes the subset of all verticeslinon level;j or higher in a layered grap@.

Definition 9.8 (Measure). The jth partial measureof the vertex set/ in G is

() = {j +2U{=j} ifU{=j}#0,
0 otherwise,

and themeasureof U is m(U) = max; {m(U)}.

Definition 9.9 (Potential). We say thatU is a hiding set for a black-white pebble configuration
P = (B,W) in a layered graptz if U U W hides B. We define thepotential of the pebble
configuration to be

potq(P) = potg (B, W) = min{mg(U) : U is a hiding set fo(B, W)} .

If U is a hiding set fo B, W) with minimal measurenq(U) among all vertex set§” such that
U’ U W hidesB, we say that/ is aminimum-measurhiding set forP.

Since the graph under consideration will almost always bardrom context, we will tend to
omit the subindexG in measures and potentials.

We remark that although this might not be immediately obsjdhere is quite a lot of nice
intuition why Definition 9.9 is a relevant estimation of hogdod” a pebble configuration is. We
refer the reader to Section 2 of [37] for a discussion aboigt thet us just note that with this
definition, the pebble configuratidh. = ({z},) has high potential, as we shall soon see, while
the configuration with all vertices on levélwhite-pebbled and all vertices on level+ 1 black-
pebbled has potential zero.

Remark9.1Q Klawe does not use the level of a vertexn Definitions 9.8 and 9.9, but instead the
black pebbling pric®eb({u}, #) of the configuration with a black pebble arand no other pebbles
in the DAG. For pyramids, these two concepts are equivaterd,we feel that the exposition can
be made considerably simpler by using levels.

Klawe proves two facts about the potentials of the pebbldigorations in any black-white
pebblingP = {Py, ..., P} of a pyramid grapily:

1. The potential correctly estimates the goodness of thecuconfiguratior?; by taking into
account the whole pebbling that has led’to Namely,pot (P;) < 2 - max,<;{cost(Ps)}.

2. The final configuratio®, = ({z},0) has high potential, namelyot({z},0) = h 4+ O(1).

Combining these two parts, one clearly gets a lower boundzbblmg price.

For pyramids, part 2 is not too hard to show directly. In fédg a useful exercise if one wants
to get some feeling for how the potential works. Part 1 is miickier. It is proven by induction
over the pebbling. As it turns out, the whole induction prhisiges on the following key property.

Property 9.11 (Limited hiding-cardinality property). We say that the black-white pebble con-
figurationP = (B, W) in G has theLimited hiding-cardinality propertyor just theLHC property
for short, if there is a vertex sét such that

48

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

1. U is a hiding set foi?,
2. potg(P) = m(U),
3. U=Bor|U| <|B|+|W| = cost(P).

We say that the grapf has the Limited hiding-cardinality property if all blackite pebble con-
figurationsP = (B, W) on G have the Limited hiding-cardinality property.

Note that requirements 1 and 2 just say thiait a vertex set that witnesses the potentiaP of
The important point here is requirement 3, which says (ladlgjcthat if we are given a hiding set
U with minimum measure but with size exceeding the cost of taekbwhite pebble configura-
tion P, then we can pickanotherhiding setU’ which keeps the minimum measure but decreases
the cardinality to at mostost (PP).

Given Property 9.11, the induction proof for part 1 followstq easily. The main part of the
paper [37] is then spent on proving that a class of DAGs inogyramids have Property 9.11.
Let us see what the lower bound proof looks like, assumingRhgperty 9.11 holds.

Lemma 9.12 (Theorem 2.2 in [37]).Let G be a layered graph possessing the LHC property and
suppose thaP = {P, = 0, Py,...,P.} is any unconditional black-white pebbling ¢4 Then it
holds for allt = 1,..., 7 thatpot,(P;) < 2 - maxs<;{cost(Ps)}.

Proof. To simplify the proof, let us assume without loss of gengrdhat no white pebble is ever
removed from a source. f? contains such moves, we just substitute for each such waliblg
placement o a black pebble placement ennstead, and when the white pebble is removed we
remove the corresponding black pebble. It is easy to cheatkthits results in a legal pebblirg’

that has exactly the same cost.

The proof is by induction. The base caBg = (is trivial. For the induction hypothesis,
suppose thapot (P;) < 2 - maxs<;{cost(Ps)} and letU;, be a vertex set as in Property 9.11, i.e.,
such that/; U W; hidesB;, pOt(Pt) = m(Ut) and|Ut| < COSt(Pt) = |B| + |W|

ConsiderP;;. We need to show thaiot (P;11) < 2- maxs<;+1{cost(Ps)}. By the induction
hypothesis, it is sufficient to show that

pot(Psy1) < max{pot(P;),2 - cost(Psr1)} . 9.1)

We also note that i/, U W, hidesB;.; we are done, since if gt (P 11) < m(U;) = pot(Py).
We make a case analysis depending on the type of move madeftorge?; to Py, 1.

1. Removal of black pebble: In this cagé, U W1 = U; U W, obviously hidesB;,1 C By
as well, sopot (Pyy1) < pot(Py).

2. Placement of white pebble: Agaitiy U W, D Uy U W, hidesB.y1 = By, sopot(Py1) <
pot(Py).

3. Removal of white pebble: Suppose that a white pebble i®verhfrom the vertexw, so
Wit = Wi\ {w}. As noted above, without loss of generalityis not a source vertex. \We
claim thatU; U W4, still hidesB;1; = B, from whichpot(P;41) < pot(PP;) follows as
above.

To see that the claim is true, note thatd(w) C B; U W; by the pebbling rules, for
otherwise we would not be able to remove the white pebble otf pred(w) C W, we are
done, since thety; U Wy, 1 hidesU, U W, and we can use the transitivity in Proposition 9.7.
If instead there is some € pred(w) N By, thenUy U Wy = Uy U Wiy U {w} hidesv

by assumption. Since is a successor af, and therefore on a higher level thapwe must
haveU; U W, \ {w} hidingv. Thus in any cas&; U W, hidespred (w), so by transitivity
U; U Wt+1 hidethH.

49

TOWARDS AN OPTIMAL SEPARATION

4. Placement of black pebble: Suppose that a black pebbladegonw. If v is not a source,
by the pebbling rules we again have thatd (v) C B; U W;. In particular,B; U W; hidesv
and by transitivity we have thaf, U Wy, = U; U W, hidesB; U {v} = By41.

The case when is a source turns out to be the only interesting one. Ngw W, does not
necessarily hidd; U {v} = B;;1 any longer. An obvious fix is to try with; U {v} U W}
instead. This set clearly hidd3;;, but it can be the case that(U; U {v}) > m(Uy).
This is problematic, since we could hayet(P;11) = m(Uy U {v}) > m(U;) = pot(Py).
And we do not know that the inequalifyot (P;) < 2 - cost(P;) holds, only thapot (P;) <
2 - maxs<{cost(Ps)}. This means that it can happen thatt(P;y;) > 2 - cost(Ps11),
in which case the induction step fails. However, we claint tiging the Limited hiding-
cardinality property 9.11 we can prove ff.; = U; U {v} that

m(Upy1) = m(Up U {v}) < max{m(U;),2 - cost(Pr41)} , (9.2)

which shows that (9.1) holds and the induction steps goesigf.

Namely, suppose thaf; is chosen as in Property 9.11 and considgr; = U; U {v}. Then
Ui+ 1s a hiding set fol?,; = (B; U {v}, W;) and hencepot(P1) < m(Upy1). For
j > 0, it holds thatU; 1 {>=j} = Ui{=3j} and thusm? (U;11) = m?(U;). On the bottom
level, using that the inequality/;| < cost(P;) holds by the LHC property, we have

mO(Ups1) =2 U1 = 2- (JU] +1) < 2- (cost(P;) +1) =2-cost(Pey 1) (9.3)
and we get that
m(Ups1) = max;{m/ (Up11) } = max{max;so{m’ (U;) }, m®(Us11) }
< max{m(U;),2 - cost(Piy1)} = max{pot(P;),2 - cost(Pir1)} (9.4)
which is exactly what we need.
We see that the inequality (9.1) holds in all cases in our aaadysis, which proves the lemmal]

The lower bound on black-white pebbling price now followsdhowing that the final pebble
configuration({z}, ®) has high potential.

Lemma 9.13. For z the sink of a pyramidl;, of heighth, the pebble configuratiof{z},{) has
potentialpotyy, ({z},0) = h + 2.

Proof. This follows easily from the Limited hiding-cardinality gperty (which says thdl can be
chosen so that eithéf C {z} or |U| < 0), but let us show that this assumption is not necessary
here. The selt/ = {2} hides itself and has measurgU) = m"(U) = h+2-1 = h+ 2. Suppose
that z is hidden by somé/’ # {z}. Without loss of generality/’ is minimal, i.e., no strict subset

of U’ hidesz. Letw be a vertex i/’ on minimal levelminlevel(U) = L < h. The fact that/’ is
minimal implies that there is a paff : u ~» z such that P \ {u}) N U’ = @ (otherwiseU" \ {u}
would hidez). By Observation 9.5, there must extst- L converging paths from sources4dhat

are all blocked by distinct pebbles A \ {«}. It follows that

mU') >m"(U') = L+2U{~L} =L+2U'|>L+2 - (h+1-L)>h+2 (9.5

(where we used that/’{>L} = U’ since L = minlevel(U)). ThusU = {z} is the unique
minimum-measure hiding set fé{z}, #), and the potential ipot ({z},0) = h + 2. O

Since [37] proves that pyramids possess the Limited hidarglinality property, and since there
are pebblings that yield matching upper bounds, we haveolteing theorem.

50

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Theorem 9.14 ([37]). BW-Peb(Il;) = 4 + O(1).

Proof. The upper bound was shown in Lemma 9.2. For the lower bourdnmae9.13 says that the
final pebble configuratio{z},) in any complete pebblin@ of II;, has potentiabot ({z},0) =
h+ 2. According to Lemma 9.12)ot({z},0) < 2 - cost(P). ThusBW-Peb(II,) > h/2+1. O

In the final two subsections of this section, we provide dyfaletailed overview of the proof
that pyramids do indeed possess the Limited hiding-calitlinaroperty. As was discussed above,
the reason for giving all the details is that we will need te mad modify the construction in non-
trivial ways in the next section, where we will use ideas ireghbby Klawe’s paper to prove lower
bounds on the pebbling price of pyramids in the blob-pebhlag

9.3 Proving the Limited Hiding-Cardinality Property

We present the proof of that pyramids have the Limited hidiagdinality property in a top-down
fashion as follows.

1. First, we study what hiding sets look like in order to bettederstand their structure. Along
the way, we make a few definitions and prove some lemmas catmgin Definition 9.20
and Lemma 9.24.

2. We conclude that it seems like a good idea to try to splithoding set into disjoint com-
ponents, prove the LHC property locally, and then add ehargttogether to get a proof
that works globally. We make an attempt to do this in Theore? %ut note that the argu-
ment does not quite work. However, if we assume a slightlyrgger property locally for our
disjoint components (Property 9.27), the proof goes thinoug

3. We then prove this stronger local property by assuminggieamid graphs have a certain
spreadingproperty (Definition 9.34 and Theorem 9.35), and by showmdg.émmas 9.33
and 9.36 that the stronger local property holds for suchesjing graphs.

4. Finally, in Section 9.4, we give a simplified proof of thednem in [37] that pyramids are
indeed spreading.

From this, the desired conclusion follows.
For a start, we need two definitions. The intuition for thetfose is that the vertex séf is
tight if is does not contain any “unnecessary” verteRidden by the other vertices in.

Definition 9.15 (Tight vertex set). The vertex seU is tight if for all «w € U it holds thatu ¢

TUN\{u}.
If z is a vertex hidden by/, we can identify a subset &f that is necessary for hiding

Definition 9.16 (Necessary hiding subset)lf « € [[U]], we defineU|z| to be the subset dff
such that for each € Uz there is a source path ending inz for whichP N U = {u}.

We observe that it/ is tight andu € U, thenU|u| = {u}. This is not the case for non-tight
sets. If we let/ = {u} U pred(u) for some non-source, Definition 9.16 yields that/|«| = 0.
The vertices iU | z|] must be contained in every subsetlbthat hidesr, since for each € U|jz]
there is a source path tothat intersecté/ only inv. Butif U is tight, the seU| x| is alsosufficient
to hidez, i.e.,z € [[U|=]]).

Lemma 9.17 (Lemma 3.1 in [37]).If U is tight andx € [[U]], thenU|z|] hidesz and this set is
also contained in every subseti@fthat hidesr.

51

TOWARDS AN OPTIMAL SEPARATION

Proof. The necessity was argued above, so the interesting pastis tb [[U|=|[]. Suppose not.
Let P, be a source path te such thatP, N U|z|] = 0. SinceU hidesz, U blocks P;. Letv be
the highest-level element iR, N U (i.e., , the vertex on this path closestith SinceU is tight,
U \ {v} does not hide. Let P, be a source path tesuch that?, N (U \ {v}) = 0. Then going
first along P, and switching taP;in v we get a path ta: that intersect$/ only in v. But if so, we
havev € U|z|| contrary to assumption. Thus,c [[U|z||]| must hold. O

Given a vertex sat/, the tight subset o/ hiding the same elements is uniquely determined.

Lemma 9.18. For any vertex sel/ in a layered graph’z there is a uniquely determined minimal
subsetU* C U such that[U*] = [[UT], U* is tight, and for anyU’ C U with [U']] = [[UT it
holds thatU* C U".

Proof. We construct the séf* bottom-up, layer by layer. We will |e/;" be the set of vertices on
level 7 or lower in the tight hiding set under construction, dfjdbe the set of vertices il strictly
above level remaining to be hidden.

Let L = minlevel(U). Fori < L, we defineU;* = (). Clearly, all vertices on level in U must
be present also itr*, since no vertices iV {> L} can hide these vertices and vertices on the same
level cannot help hiding each other. $&t = U{~ L} = U \ U{> L}. Now we can remove from
U all vertices hidden by/;, so set/; = U \ [[U;]. Note that there are no vertices on or below
level L leftin U7, i.e.,U; = U;{> L}, and thatU; hides the same vertices as dé&s= L} (since
the two sets are equal).

Inductively, suppose we have constructed the vertex 8gts and U;_;. Just as above, set
U =Uf, UU_{~i}andU] = U;_; \ [U;]. If there are no vertices remaining on level
to be hidden, i.e., itV7_;{~i} = 0, nothing happens and we g&f = U, andU; = U/ ;.
Otherwise the vertices on levein U/, are added td/; and all of these vertices, as well as any
vertices above it/;_; now being hidden, are removed fraiff_, resulting in a smaller séf;".

To conclude, we sdt’* = Uj, for M = maxlevel(U). By construction, the invariant

MU = TU{=4}]] (9.6)

holds for all levels. Thus,[[U*]| = [[UT]. Also, U* must be tight since it € U* andlevel(v) = i,

by constructionU*{ <} does not hide), and (as was argued above) neither dgé¢>-i} \ {v}.
Finally, suppose thdf’ C U is a hiding set fot/ with U* ¢ U’. Considern € U*\U’ and suppose
level(v) = 4. On the one hand, we have ¢ [[U;] by construction. On the other hand, by
assumption it holds that € [[U’{<}]| and thusy € [[U{=<}]. But then by the invariant (9.6) we
know thatv € [[U;_,]], which yields a contradiction. Hencg,” C U’ and the lemma follows. O

We remark that/* can in fact be seen to contain exactly those elemerdsU such that: is
not hidden byU \ {u}.

It follows from Lemma 9.18 that it/ is a minimum-measure hiding set fBr= (B, W), we
can assume without loss of generality thaty W is tight. More formally, ifU U W is not tight,
we can consider minimal subsét$ C U andW’ C W such thaty’ U W' hidesB and is tight,
and prove the LHC property faB and W’ with respect to thi€/’ instead. Then clearly the LHC
property holds also foB andWV.

Suppose that we have a détthat together withiV hides B. Suppose furthermore thdt
contains vertices very far apart in the graph. Then it miginywell be the case that U W can
be split into a number of disjoint subséis U W; responsible for hiding different parfs; of B,
but which are wholly independent of one another. Let us givexample of this.

Example9.19 Suppose we have the pebble configuratidh W) = ({x1,y1, vs}, {ws, se, s7})
and the hiding set/ = {v1, ua, us, v3, s5} in Figure 10(a). The® U W hidesB, butU seems un-
necessarily large. To get a better hiding8&f we can leaves responsible for hidings but replace

52

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

(a) Hiding set U with large size and measure. (b) Smaller hiding set U* with smaller measure.

Figure 10: lllustration of hiding sets in Example 9.19 (with vertices in hiding sets cross-marked).

{v1,u2,us,v3} by {x1,y1}. The resulting sel/* = {x1,y1,s5} in Figure 10(b) has both smaller
size and smaller measure (we leave the straightforwardicagion of this fact to the reader).

Intuitively, it seems that the configuration can be splitvilo ttomponents, namelyB,, W) =
({z1,91}, {ws}) with hiding setUy = {v1,u2,us,v3} and (B2, Wa2) = ({vs}, {s6,s7}) with
hiding setU; = {s5}, and that these two components are independent of one andthienprove
the hiding set/, we need to do something locally about the bad hiding/sét the first component,
namely replace it witl/; = {z1, y1 }, but we should keep the locally optimal hiding §&tin the
second component.

We want to formalize this understanding of how vertice®ii?” andU depend on one another
in a hiding seV U W for B. The following definition constructs a graph that descriihesstructure
of the hiding sets that we are studying in terms of these digraries.

Definition 9.20 (Hiding set graph). For a tight (and non-empty) set of vertic&sin G, thehiding
set graphH = H(G, X) is an undirected graph defined as follows:

e The set of vertices off is V(H) = [[XT.

e The set of edge&'(H) of H consists of all pairs of verticgs, y) for ,y € [[X]| such that
GE N [XUl 0 GE N XUyl #0.

We say that the vertex sét is hiding-connectedf (G, X) is a connected graph.

When the grapldz and vertex seX are clear from context, we will sometimes write ofty X)
or even just{. To illustrate Definition 9.20, we give an example.

Exampled.21 Consider again the pebble configuratidh, W) = ({1, y1,v5}, {ws, s¢, s7}) from
Example 9.19 with hiding séf = {vy, us, us, vs, s5}, where we have shaded the set of hidden ver-
tices in Figure 11(a). The hiding set grafti X) for X = U U W = {vy, ug, us, v, ws, S5, S¢, S7}

has been drawn in Figure 11(b). In accordance with the intugketched in Example 9.1%{(X)
consists of two connected components.

Note that there are edges from the top verein the first component to every other vertex
in this component and from the top vertexto every other vertex in the second component. We
will prove presently that this is always the case (Lemma .Z2rhaps a more interesting edge
in H(X) is, for instance (w1, z2). This edge exists SINCE w1 || = {v1, ua,us} and X|z.| =
{ug,us,v3,ws} intersect and since as a consequence of this (which is easilffed) we have
I N [X Lw]] N I2 N [X e2l]] # 0. For the same reason, there is an eflgg ug) since
Xlus] = {s5, 86} and X|lus]| = {s¢, s7} intersect.

53

TOWARDS AN OPTIMAL SEPARATION

.
¢%m
()

(a) Vertices hiddenby U U W. (b) Hiding set graph H(U U W).

Figure 11: Pebble configuration with hiding set and corresponding hiding set graph.

Lemma 9.22. Suppose for a tight vertex s&tthatx € [[X] andy € X|=|. Thenxz andy are in
the same connected component(fx).

Proof. Note first thatz, y € [[X]| by assumption, s@ andy are both vertices ifi{(X). Sincex
is abovey we haveG; 2 G¥ and we geG% N [X|=]] N GX N [Xwl] = [XLy N G N
{y} = {y} # 0. Thus,(z,y) is an edge iH(X), soxz andy are certainly in the same connected
component. O

Corollary 9.23. If X is tight andz € [[XT] thenz and all of X||z| are in the same connected
component of{(X).

The next lemma says that #(X) is a hiding set graph with vertex sét = [[XT]], then
the connected componerit, . .., Vi of H(X) are themselves hiding set graphs defined over the
hiding-connected subsets N V4,..., X N V.

Lemma 9.24 (Lemma 3.3 in [37]).Let X be a tight set and leY; be one of the connected com-
ponents inH(X). Then the subgraph ¢f((X) induced byV; is identical to the hiding set graph
H(X N V;) defined on the vertex subsgtN V;. In particular, it holds thatV; = [[X N V;].

Proof. We need to show thdt; = [[X N V] and that the edges 6{(X) in V; are exactly the
edges ifH(X N V;). Let us first show thay € V; ifand only ify € [X N Vi].

(=) Supposey € V;. ThenX |y C V; by Corollary 9.23. AlsoX|y| C X by definition, so
Xyl € X N V. Sincey € [X|ly)]| by Lemma 9.17, clearly € [X N V;]).

(<) Supposey € [[X N V;]l. SinceX is tight, its subsetX N V; must be tight as well.
Applying Lemma 9.17 twice, we deduce thHaf N V;)|y] hidesy and thatX|jy| € (X N V)|l
since X ||y is contained in any subset of that hidesy. But then a third appeal to Lemma 9.17
yields that(X N V;)|ly] € X|ly| sinceX |y C (X N V;)Ilyl € X N V; and consequently

Xyl = (X 0 Vi)l - (9.7)

By Corollary 9.23y and all of(X N V;)|y|| = X|ly| are in the same connected component. Since
Xy CV; itfollows thaty € V;.

This shows tha¥; = [[X N V;]|. Plugging (9.7) into Definition 9.20, we see tlat y) is an
edge inH(X) for z,y € V; ifand only if (z,y) is an edge iH(X N V;). O

Now we are in a position to describe the structure of the ptohaf pyramid graphs have the
LHC property.

54

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Theorem 9.25 (Analogue of Theorem 3.7 in [37])LetP = (B, W) be any black-white pebble
configuration on a pyramidl. Then there is a vertex sétsuch thaty U W hidesB, poty; (P) =
m(U) and eitherU = Bor |U| < |B|+ |W/|.

The idea is to construct the graph= H(II,U U W), study the different connected compon-
ents inH, find good hiding sets locally that satisfy the LHC propesghich we prove is true for
each local hiding-connected subsetbt), and then add all of these partial hiding sets together
to get a globally good hiding set.

Unfortunately, this does not quite work. Let us neverthekatempt to do the proof, note where
and why it fails, and then see how Klawe fixes the broken detalil

Tentative proof of Theorem 9.2%et U be a set of vertices il such thaty U W hidesB and
pot(P) = m(U). Suppose that/ has minimal size among all such sets, and furthermore that
among all such minimum-measure and minimume-size Bdtss the largest intersection with

Assume without loss of generality (Lemma 9.18) thatu W is tight, so that we can con-
structH. Let the connected componentsi¢beVy,..., V. Foralli =1,... k,letB; = BNV,
W; =W N V;,andU; = U N V;. Lemma 9.24 says thaf, U W, hidesB;. In addition, allV; are
pairwise disjoint, s0B| = S2F_||By|, [W| = S8 [W;| and|U| = 3K, (U3,

Thus, if the LHC property 9.11 does not hold fdrglobally, there is some hiding-connected
subsetU; U W; that hidesB; but for which|U;| > |B;| + |W;| andU; # B;. Note that this implies
that B; ¢ U; since otherwisé/; would not be minimal.

Suppose that we would know that the LHC property is true fahegonnected component.
Then we could find a vertex sét* with U C B; or |U;| < |B;| + |[W;| such that; U W; hides
B; andm (U;) < m(U;). SettingU* = (U \ U;) U Uy, we would get a hiding set with either
|U*| < |U|or|U* n B| > |U N B|. The second inequality would hold sincgif*| = |U|, then
|U7| = |Ui| > |B; U W;| and this would implyU; = B; and thu§U; N B;| > |U; N B;|. This
would contradict how/ was chosen above, and we would be home.

Almost. We would also need that* could be substituted fa; in U without increasing the
measure, i.e., that(U;) < m(U;) should implym ((U\ U;) U U}) < m((U\U;) U U;).
And this turns out not to be true. O

The reason that the proof above does not quite work is thaméesure in Definition 9.8 is
ill-behaved with respect to unions. Klawe provides thediwihg example of what can happen.

Example9.26 With vertex labels as in Figures 7 and 9-11, }t = {s1,s2}, Xo = {w}
and X3 = {s3}. Thenm(X;) = 4 andm(X2) = 5 but taking unions withX; we get that
m(X1 U Xg) = 6 and m(X2 U Xg) = 5. ThUSm(Xl) < m(Xg) but m(X1 U Xg) >
’I’)’L(X2 U Xg)

So it is not enough to show the LHC property locally for eachrexted component in the
graph. We also need that séfsfrom different components can be combined into a globalngidi
set while maintaining measure inequalities. This leadbéddllowing strengthened condition for
connected components Bf.

Property 9.27 (Local limited hiding-cardinality property). We say that the pebble configuration
P = (B, W) has theLocal limited hiding-cardinality propertyor just theLocal LHC propertyfor
short, if for any vertex set/ such thatU U W hides B and is hiding-connected, we can find a
vertex set/* such that

1. U* is a hiding set fo(B, W),
2. for any vertex se¥ with Y N U = @ it holds thatm (Y U U*) < m(Y U U),
3. U*C Bor|U*| < |B|+|W]|.

55

TOWARDS AN OPTIMAL SEPARATION

We say that the grap&y has the Local LHC property if all black-white pebble configiionsP =
(B,W)onG do.

Note that if the Local LHC property holds, this in particularplies thatm(U*) <m(U) (just
chooseY” = (). Also, we immediately get that the LHC property holds glgba

Lemma 9.28. If G has the Local limited hiding-cardinality property 9.27ethGG has the Limited
hiding-cardinality property 9.11.

Proof. Consider the tentative proof of Theorem 9.25 and look at thietpvhere it breaks down.
If we instead use the Local LHC property to fibief, this time we get that (U;*) < m (U;) does
indeed implym (U \ U;) U U7) <m((U \ U;) U U;), and the theorem follows. O

An obvious way to get the inequality.(Y U U*) < m(Y U U) in Property 9.27 would be
to require thatm’(U*) < m’(U) for all j, but we need to be slightly more general. The next
definition identifies a sufficient condition for sets to belawell under unions with respect to the
measure in Definition 9.8.

Definition 9.29. We writeU =,,, V if for all j > 0 there is an < j such thatn’/ (U) < m*(V).

Note that it is sufficient to verify the condition in Definitid®.29 forj = 1, ..., maxlevel(U).
Forj > maxlevel(U) we getm/(U) = 0 and the inequality trivially holds.

It is immediate thal/' =, V impliesm(U) < m(V), but the relationz,,, gives us more
information than that. Usual inequality,(U) < m (V') holds if and only if for everyj we can
find ani such thatn’ (U) < m‘(V), but in the definition of<,,, we are restricted to finding such
an index: that is less than or equal fo So not only ism(U) < m(V') globally, but we can also
explain locally at each level, by “looking downwards”, whyhas smaller measure th&h

In Example 9.26,X7 %, Xs since the relative cheapnessXf compared taX5 is explained
not by a lot of vertices inXs on low levels, but by one single high-level, and thereforpessive,
vertex in X5y which is far aboveX;. This is why these sets behave badly under union. If we have
two setsX; and X, with X; =, X5, however, reversals of measure inequalities when taking
unions as in Example 9.26 can no longer occur.

Lemma 9.30 (Lemma 3.4in[37]).1f U Z,,, VandY NV =0, thenm(Y U U) <m(Y U V).

Proof. To show thatn(Y U U) < m(Y U V), for each levelj = 1,... maxlevel(Y U U) we
want to find a leveli such thatm’(Y U U) < m‘(Y U V). We pick thei < j provided by
the definition ofU =, V such thatm/(U) < m‘(V). SinceV N W = @ andi < j implies
Y{=j} € Y{=1}, we get
m! (Y UU)=j+2-[(UUY){=5}] <j+2-[U{=3}+2 Y {=5} <
i+ 2-|[V{=i}|+2-|Y{=i}|=m'(Y UV) (9.8)

and the lemma follows. O

So when locally improving a blocking sét that does not satisfy the LHC property to some set
U~ that does, if we can take care thét =3, U in the sense of Definition 9.29 we get the Local
LHC property. All that remains is to show that this can indeedione.

When “improving” U to U*, we will strive to pick hiding sets of minimal size. The next
definition makes this precise.

Definition 9.31. For any set of verticedX, let
Ly j(X) =min{|Y|: X{>=j} C[[Y]andY{~j} =Y}

denote the size of a smallest §étsuch that all vertices ity are on levelj or higher andy” hides
all vertices inX on levelj or higher.

56

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Note that we only require of” to hide X{>j} and not all ofX. Given the condition that
Y =Y {>j}, this set cannot hide any verticesii{ < j }. We make a few easy observations.

Observation 9.32. Suppose thak is a set of vertices in a layered gragh Then:
1. Lo(X) is the minimal size of any hiding set far.
2. f X CY,thenLy;(X) < L-;(Y) for all j.
3. Italways holds thal;(X) < |X{=j}| < |X].

Proof. Part 1 follows from the fact that’ {=0} = V for any setV. If X C Y, thenX{>;} C
Y{>j} and any hiding set foX {> j} works also forY’{=j}, which yields part 2. Part 3 holds
sinceX{>j} C X is always a possible hiding set for itself. O

For any vertex se¥’ in any layered grapl;, we can always find a set hiding that has
“minimal cardinality at each level” in the sense of Definiti®.31.

Lemma 9.33 (Lemma 3.5 in [37]).For any vertex setV we can find a hiding set’* such that
|V*{=j}| < L-;(V)forall j, and eitherV* = V or |[V*| < |V|.

Proof. If |V{>j}| < L»;(V) for all j, we can choos&* = V. Suppose this is not the case, and
let & be minimal such thaf’ {> k}| > L.+ (V). Let V' be a minimum-size hiding set féf{>-k}
with V! = V/{=k} and|V’| = |L-,(V)| and setV’* = V{<k} U V'. SinceV{<k} hides itself
(any set does), we have tHat hidesV = V{<k} UV {=k} and that

(V| = [V{=E} + V| < [V{=<E} + [V{=k} = V] . 9.9)

Combining (9.9) with part 1 of Observation 9.32, we see thatrhinimal index found above must
bek = 0. Going through the same argument as above again, we sdéthat j}| < L. ;(V) for
all j, since otherwise (9.9) would yield a contradiction to thet thatV’ = V’{>0} was chosen
as a minimume-size hiding set fof. O

We noted above thdt.(X) is the cardinality of a minimum-size hiding set &f. Forj > 0,
the quantityL.-;(X) is large if one needs many vertices on level;j to hide X {>j}, i.e., if
X{>7j} is “spread out” in some sense. Let us consider a pyramid gragrsuppose that is a
tight and hiding-connected set in which the level-differemaxlevel (X') — minlevel (X) is large.
Then it seems thdtX | should also have to be large, since the pyramid “fans out'usckty. This
intuition might be helpful when looking at the next, cruaigfinition of Klawe.

Definition 9.34 (Spreading graph). We say that the layered DAG is aspreading graphif for
every (non-empty) hiding-connected sétin G and every levej = 1,..., maxlevel([XT]), the
spreading inequality

| X| > Lw;([XT) + j — minlevel(X) (9.10)

holds.

Let us try to give some more intuition for Definition 9.34 bynstdering two extreme cases in
a pyramid graph:

e Forj < minlevel(X), we have that the terpi— minlevel(X) is non-positive X {>-j} = X,
and[[X{>=7}] = [[X]. In this case, (9.10) is just the trivial fact that no set thides[] X |
need be larger thaX itself.

e Considerj = maxlevel([[XT]), and suppose thftX {> j}|| is a single vertex with X |z|| =
X. Then (9.10) requires thaK | > 1 + level(z) — minlevel(X), and this can be proven to
hold by the “converging paths” argument of Theorem 9.3 ande®lation 9.5.

57

TOWARDS AN OPTIMAL SEPARATION

Very loosely, Definition 9.34 says that ¥ contains vertices at low levels that help to hide other
vertices at high levels, thel must be a large set. Just as we tried to argue above, the sgread
inequality (9.10) does indeed hold for pyramids.

Theorem 9.35 ([37]). Pyramids are spreading graphs.

Unfortunately, the proof of Theorem 9.35 in [37] is rathemilved. The analysis is divided into
two parts, by first showing that a class of so-caléck graphsare spreading, and then demonstrat-
ing that pyramid graphs are nice. In Section 9.4, we give glied, direct proof of the fact that
pyramids are spreading that might be of independent iriteres

Accepting Theorem 9.35 on faith for now, we are ready for theigsive lemma.: If our layered
DAG is a spreading graph andif U W is a hiding-connected set hidirg such that’ is too large
for the conditions in the Local limited hiding-cardinalipyoperty 9.27 to hold, then replacihagby
the minimum-size hiding set in Lemma 9.33 we get a hidingrsectordance with the Local LHC

property.

Lemma 9.36 (Lemma 3.6 in [37]).Suppose thaB, W, U are vertex sets in a layered spreading
graph G such thatU U W hides B and is tight and hiding-connected. Then there is a vertex set
U* such thaty* U W hidesB, U* 3,, U, and eithertU* = B or |[U*| < |B| + |W|.

Postponing the proof of Lemma 9.36 for a moment, let us n@&eitlwe combine this lemma
with Lemma 9.30 and Theorem 9.35, the Local limited hidiagdiality property for pyramids
follows.

Corollary 9.37. Pyramid graphs have the Local limited hiding-cardinalityoperty 9.27.

Proof of Corollary 9.37.This is more or less immediate, but we write down the detaitscbm-
pleteness. Since pyramids are spreading by Theorem 9.8%nke.36 says thdf* is a hiding set
for (B, W) and thatU* =,,, U. Lemma 9.30 then yields that (Y U U*) <m(Y U U) forall Y’
with Y N U = (. Finally, Lemma 9.36 also tells us th&t' C B or |U*| < |B| + |W|, and thus
all conditions in Property 9.27 are satisfied. O

Continuing by plugging Corollary 9.37 into Lemma 9.28, we te global LHC property in
Theorem 9.25 on page 55. So all that is needed to concludegdanoof of the lower bound for
the black-white pebbling price of pyramids is to prove Theanr9.35 and Lemma 9.36. We attend
to Lemma 9.36 right away, deferring a proof of Theorem 9.3théonext subsection.

Proof of Lemma 9.36If |U| < |B| 4+ |W| we can pickU* = U and be done, so suppose that
|U| > |B| + |W]. Intuitively, this should mean thdf is unnecessarily large, so it ought to be
possible to do better. In fadl] is so large that we can just ignovE and pick a bettet/* that hides

B all on its own.

Namely, letU* be a minimum-size hiding set fd8 as in Lemma 9.33. Then eithér* = B or
|U*| < |B| < |B| + |W|. To prove the lemma, we also need to show fiiat=,, U, which will
guarantee thal’* behaves well under union with other sets with respect to oreas

Before we do the the formal calculations, let us try to prexsdme intuition for why it should be
the case that/* 3, U holds, i.e., that for everywe can find an < j such thatn? (U*) < m‘(U).
Perhaps it will be helpful at this point for the reader to lcatkExample 9.19 again, where the
replacement ot/; = {v1,ua,us,v3} in Figure 10(a) byU; = {x1,y:1} in Figure 10(b) shows
Lemmas 9.33 and 9.36 in action.

Suppose first thaj < minlevel(U U W) < minlevel(U). Then the measure inequality
m? (U*) < m’(U) is obvious, sincé/{=j} = U is so large that it can easily pay for all 6, let
aloneU*{=j} C U".

58

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Forj > minlevel(U U W), however, we can worry that although our hiding Eétdoes in-
deed have small size, the verticesliti might be located on high levels in the graph and be very
expensive since they were chosen without regard to meadustthrowing away all white pebbles
and picking a new séf* that hidesB on its own is quite a drastic move, and it is not hard to con-
struct examples where this is very bad in terms of poterg@y},(exchangings for vs in the hiding
set of Example 9.19). The reason that this neverthelesssigtkatU | is so large, that, in addition,

U u W is hiding-connected, and that, finally, the graph under icemation is spreading. Thanks
to this, if there are a lot of expensive verticedih{= j} on or above some high levgkresulting in

a large partial measur@’ (U*), the number of vertices on or above level= minlevel(U U W)
inU = U{= L} is large enough to yield at least as large a partial meaatﬂ"l(d]).

Let us do the formal proof, divided into the two cases above.

1. j < minlevel(U U W): Using the lower bound on the size Gfand that leve}j is no higher
than the minimal level of/, we get

m? (U*) = j+2- |U{>=j}] by definition ofm/(-) |

[
<j+2-|U* [sinceV{>=j} C V foranyV |
<j+2-|B| [by construction ot/* in Lemma 9.33
<j+2-|U| [by assumptiofU| > |B| + |W| > |B] |
=j+2-|U{=j} [U{=j} = U sincej < minlevel(U) |
=m! (U) [by definition ofm?(-) |

and we can choose= j in Definition 9.29.

2. j > minlevel(U U W): Let L = minlevel(U U W). The black pebbles i® are hidden by
U U W, or in formal notationB C [[U U W1, so

L-j(B) < L-;(U u W7) (9.11)

holds by part 2 of Observation 9.32. Moreovér,u W is a hiding-connected set of vertices
in a spreading grapt¥, so the spreading inequality in Definition 9.34 says thaty W| >
Ltj(ITU U Wﬂ) +] — L, or

J+L;(TUUWT) <L+|UUW| (9.12)
after reordering. Combining (9.11) and (9.12) we have that
J+L-j(B)<L+|UUW| (9.13)
and it follows that

m! (U*) =j+2-|U{=j} by definition ofm/(-) |

[
<j+|U{=4} + |U| [sinceV{=j} C V foranyV |
<j+Ls;(B)+|B| [by construction o/* in Lemma 9.33
< L+|UuUW|+|B| [by the inequality (9.13)
[
[
[

<L+2-|U| by assumptiofU| > |B| + [W| |
=L+2-|U{=L}| U{=L} = U sinceL < minlevel(U) |
= ml(U) by definition ofm?™(-) |

Thus, the partial measure bfat the minimum leveL is always larger than the partial meas-
ure of U* at levelsj above this minimum level, and we can choa@se L in Definition 9.29.

59

TOWARDS AN OPTIMAL SEPARATION

Consequentlyl/* =,,, U, and the lemma follows. O

Concluding this subsection, we want to make a comment abauinhas 9.33 and 9.36 and try
to rephrase what they say about hiding sets. Given a tightf setW such thatB C [U U W],
we can always pick &* as in Lemma 9.33 witlt/* = B or |U*| < |B| and with|U*{>=j}| <
Ly ;(B) for all j. This will sometimes be a good idea, and sometimes not. dustlaemma 9.36,
for j > minlevel(U U W) we can always prove that

m? (U*) < minlevel(U U W) +|U| + (|B| + [W]) . (9.14)

The key message of Lemma 9.36 is that repladindpy U* is a good idea ifU is sufficiently
large, namely ifl /| > | B| + |W|, in which case we are guaranteed to ge{U*) < m%(U) for
L = minlevel(U U W).

9.4 Pyramids Are Spreading Graphs

The fact that pyramids are spreading graphs, that is, tlegt $htisfy the inequality (9.10), is a
conseguence of the following lemma.

Lemma 9.38 (Ice-Cream Cone Lemma).lf X is a tight vertex set in a pyramifl such that
H(X) is a connected graph with vertex Sét= [X, then there is a unique vertexe V such
that X = X|z) andV = [X|«|] C II%.

What the lemma says it that for any tight vertex &etthe connected componenits, ..., Vi
look like ragged ice-cream cones turned upside down. Maeder each “ice-cream conéd’;, all
vertices inX N V; are needed to hide the top vertex. The two connected comisomelRigure 11
are both examples of such “ice-cream cones.”

Before proving Lemma 9.38, we show how this lemma can be usedtablish that pyramid
graphs are spreading by a converging-paths argument assigr@iion 9.5.

Proof of Theorem 9.35Suppose thak is a tight and hiding-connected set, i.e., such #iaX) is
a single connected component with set of vertites- [XT]|. Letz € V be the vertex given by
Lemma 9.38 such thaX = Xz andV = [[X|«|]]] C I, and letM = level(z).

For any; < M we have

Lo(TX) <M —j+1 . (9.15)

This is so since there are only so many vertices on lgvelIl; and the set of all these vertices
must hide everything iff X'[| above levelj since[[X[C II7.

By assumptionX is tight and all ofX is needed to hide, i.e., X = X|). Pick a vertex
v € X on bottom levelL = minlevel(X). Sincev € X|«| there is a pathP : v ~» x such
that P N X = {v}. Consider the set of converging source pathsAan Observation 9.5. All
these converging pathB,, P, ..., Py, must be blocked by distinct vertices X \ {v}, since
P, N P; C P\ {v}andP\ {v} does notinterseck. From this the inequality

X|>M—-L+1 (9.16)

follows. By combining (9.15) and (9.16), we get that
X| = Loj(TXT) > M —L+1—(M—j+1)=j—L (9.17)
which is the required spreading inequality (9.10). O

The rest of this subsection is devoted to proving the Icea@r€one Lemma. We will use that
fact that pyramids are planar graphs where we can talk alkftuahd right. More precisely, the
following (immediate) observation will be central in ouiopf.

60

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Observation 9.39. Suppose for a planar DAG that we have a source path to a vertexw and
two verticesu, v € GZ” on opposite sides @?. Then any patlf) : v ~~ v must intersec.

Given a vertex in a pyramidll, there is a unique path that passes throughd in every vertex
u moves to the right-hand successouoiVe will refer to this path as theorth-east pattthroughv,
or just theNE-paththroughv for short, and denote it b¥\ye(v). The path through always moving
to the left is thenorth-west pathor NW-paththroughv, and is denotedyw (v). For instance, for
the vertexv, in our running example pyramid in Figure 7 we hadg=(v4) = {s4, u4q,v4, w4} and
Paw(vg) = {s¢,us,vq, ws, x2,y1}. To simplify the proofs in what follows, we make a couple of
observations.

Observation 9.40. Suppose thak is a tight set of vertices in a pyramid and thatv € [[XT].
Then[[X)] C IIX.

Proof. Since all vertices inX|v|| have a path ta by definition, it holds thatX|»|] C II}. Any
vertexu € II \ II} must lie either to the left oPye(v) or to the right of Pyw(v) (or both). In the
first case,Pye(u) is a path viau that does not intersect ||v||, sou ¢ [[X|l»]/]]. In the second case,
we can draw the same conclusion by looking™aiv(u). Thus, (IT \ II}) N [X|[v|]] = 0. O

Observation 9.41. Suppose thak is a tight set of vertices in a DAG and thatv € [[X]|. Then
there is a source patl to v such thajP N X| = 1.

Proof. Let P, be any source path toand note tha®,; intersectsX sincev € [[X]. Lety be the
last vertex onP; in P, N X, i.e., the vertex on the highest level in this intersecti®mnce X is
tight, there is a source pafh, to y that does not intersecf \ {y}. Let P be the path that starts like
P, and then switches t®, iny. Then|P N X| = |{y}| = 1. O

Using Observations 9.40 and 9.41, we can simplify the defmibf the hiding set graph. Note
that Observation 9.40 is not true for arbitrary layered DABsvever, or even for arbitrary layered
planar DAGSs, so the simplification below does not work in gahe

Proposition 9.42. Let H = H(II, X) be the hiding set graph for a tight set of vertic&sin a
pyramidII, and suppose that, v € [[X]|. Then the following conditions are equivalent:

1. (u,v) is an edge ir, i.e, I N [X|w)] N IR N [XLl] # 0.
2. [X 1] N TXLel]] # 0.
3. X|ul N X # 0.

Proof. The directions (1= (2) and (3)=- (2) are immediate. The implication (2 (1) also
follows easily, since] X |[«|]] C II} and[[X|»|]]] C II} by Observation 9.40. To prove (2} (3),
fix some vertexw € [[X|«]/]] N [[X|v]]] and letP be a source path te as in Observation 9.41
with P N X = {y} for some vertex. SinceP N X|u| # 0 # P N X|«| by assumption, we
havey € X|u] N X|o| # 0. O

As the first part of the proof of Lemma 9.38, we show that altiges hidden by a hiding-
connected seX are contained in a subpyramid, the top vertex of which is hidden byX. This
gives the ice-cream cone shape alluded to by the name ofrtirade

Lemma 9.43. Let’ H = H(II, X) be the hiding set graph of a hiding-connected vertexsét a
pyramidIl. Then there is a unique vertexc [[X such that] X']] C II7.

61

TOWARDS AN OPTIMAL SEPARATION

Figure 12: lllustration of proof of Lemma 9.43 that 7 is not connected if = ¢ [X7).

Proof. It is clear that at most one vertex € [[X]| can have the properties stated in the lemma.
We show that such a vertex exists. As a quick preview of thefpree note that it is easy to find

a unique vertex: on minimal level such thgif X']] C II7. The crucial part of the lemma is that

is hidden byX. The reason that this holds is that the grépls connected. If: ¢ [[XT], we can
find a source patl® to the top vertex of the pyramid such thaP does not interseck but there
are vertices irf{ both to the left and to the right ad?. But there is no way we can have an edge
crossingP in H, so the hiding set graph cannot be connected after all. @diation.

The above paragraph really is the whole proof, but let us jpisvide the (somewhat tedious)
formal details for completeness. To follow the formalimatiof the argument, the reader might be
helped by looking at Figure 12. Suppose tHatas height and letsy, s, . .., sp+1 be the sources
enumerated from left to right. Look at the north-east pats(s1), Pne(s2), - .. and lets; be the
first vertex such thaPye(s;) N [X # 0. Similarly, considetPnw (sp+1), Paw(sn), - - . and lets;
be the first vertex such th@w(s;) N [[XT # 0. It clearly holds that < j.

Let = be the unique vertex wherBye(s;) and Pyw(s;) intersect. By construction, we have
[XT] C II%, since no NE-path to the left dPye(s;) = Pne(x) intersects[X[| and neither does
any NW-path to the right oPyw(s;) = Paw(z). We need to show that it also holds that [XT).

To derive a contradiction, suppose instead that [[X]|. By definition, there is a patf from
some source* to x such thatP? N X7 = (. P cannot coincide withPyg(z) or Pyw(z) since
the latter two paths both interse€X]| by construction. Sincﬂ; N [[X] = 0, we can extend
P to a pathP* : s* ~ z via z having the property thaP* N [X = 0 but there are vertices in
H(X) both to the left and to the right a?*, namely, the non-empty sele(z) N X N II and
Puw(z) N X7 N II%. We claim that this implies th&t is not connected. This is a contradiction
to the assumptions in the statement of the lemma and it feltatz < [X must hold.

To establish the claim, note that is connected, there must exist some efige’) between
a vertexu to the left of P* and a vertexv to the right of P*. Then Proposition 9.42 says that
TX1ul]l O [Xoy]] # 0. Pick any vertexw € [X|u|]] N [[X|v)]] @nd assume without loss of
generality thatw is on the right-hand side dP*. We prove that such a vertex cannot exist. See
the example vertices labelled v andw in Figure 12, which illustrate the fact that ¢ [[X« if

62

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Figure 13: lllustration of proof of Lemma 9.44 that all of X is needed to hide .

w € [X

Sincew is assumed to be hidden ByX|«|]], the NW-path throughv must intersectX | «||
somewhere before or in w. Fix anyy € Pyw(w) N X[« N IIY and note thay must also
be located to the right oP*. By Definition 9.16, there is a source path via y to u such that
P’ n X = {y}. But P’ must intersec”* somewhere abovg, sincey is to the right and: is to
the left of P*. (Here we use Observation 9.39.) Consider the source patlstérts likeP* and
then switches td’ at some intersection point iR’ N P* N Hg . This path reaches but does not
intersectX, contradicting the assumptione [[XT. It follows that[[X |[u|]] N [X)] = 0 for all
u andv on different sides of*, so there are no edges acrd3sin . This proves the claim. [

The second part needed to prove Lemma 9.38 is that all veiitic¥ are required to hide the
top vertexz € [X found in Lemma 9.43.

Lemma 9.44. Let’H = H(II, X) be the hiding set graph of a hiding-connected vertexsét a
pyramidIl and letz € [[X]] be the unique vertex such thaX || C II%. ThenX = X|j«].

Proof. By definition, X ||z € X. We want to show tha¥ |z = X. Again, let us first try to
convey some intuition why the lemma is true Xf\ X |=|| #), sinceX is hiding-connected there
must exist some vertex hidden by all &f but not by justX =] or X \ X|z| (otherwise there can
be no edge between the component#{afontainingX |z and X \ Xz, respectively). But if so,
it can be shown that the extra verticesin\ X |z help X =] to hide one of its own vertices. This
contradicts the fact thaX is tight, so we must hav& |z = X which proves the lemma.

Let us fill in the formal details in this proof sketch. Assunte,derive a contradiction, that
X|=| # X. SinceX is tight, it holds that X \ X|z|)) N [X|=|]] = @, soH contains vertices
outside of[X|=|[]. Since™ is connected, there must exist some e(ﬂgeu’) between a pair
of verticesu € [[XT] \ [X|=|] andu’ € [[X|=]|]]. Lemma 9.17 says that|./| C X|«| and
Proposition 9.42 then tells us thatju| N X[z # 0. Also, X|u]| \ X|=] # 0 sinceu ¢ X|z].
For the rest of this proof, fix some arbitrary vertices X || N X|z| ands € X|u| \ X|=]. We
refer to Figure 13 for an illustration of the proof from herasards.

63

TOWARDS AN OPTIMAL SEPARATION

By Definition 9.16, there are source patAsvia r to v and P; via s to « that intersectX only
in r ands, respectively. Also, there is a source pétho x such that? N X = {r} sincer € X|z|.
Suppose without loss of generality thais to the right of P. The pathsP; and P cannot intersect
betweens andu. To see this, observe thath; crossesP after s but beforer, then by starting with
P and switching taP; at the intersection point we get a source path that is not blocked by .
And if the crossing is after, we can start withP; and then switch ta® when the paths intersect,
which implies thats € X ||z || contrary to assumption. Thusis located to the right oP as well.

Extend P, by going north-west fromy until hitting P, which must happen somewhere in
betweenr and z, and then followingP to 2. Denote this extended path By and letw be
the vertex starting from whict?” and P coincide. The pattPZ must intersectfX in some more
vertex afters sinces ¢ X|=|. Pick anyv € PE n (X \ {s}). By constructiony must be located
strictly betweern: andw. We claim thatX \ {v} hidesv. This contradicts the tightness af and
the lemma follows.

To prove the claim, consider any source p&thto v and assume tha®, N (X \ {v}) = 0.
Then, in particularr ¢ P,. Suppose thaP, passes to the left of. By planarity, P, must intersect
P somewhere above. But if so, we can construct a source pdthto x that starts likeP, and
switches toP at this intersection point. We gét’ N X = (), which contradictsr € X |«|. If
insteadP, passes on the right, thenP, must crossP, in order to get tav. This implies that there
is a source path” to u such that?” N X = (), namely the path obtained by starting to go along
P, and then changing t&, when the two paths intersect aboveThus we get a contradiction in
this case as well. Henc& \ {v} blocks any source path toas claimed. O

The Ice-Cream Cone Lemma 9.38 now follows. Thereby, thefggbthe lower bound on the
black-white pebbling price of pyramid graphs in Theorend®h page 51 is complete.

10 A Tight Bound for Blob-Pebbling the Pyramid

Inspired by Klawe’s ideas in Section 9, we want to do sometkimilar for the blob-pebble game
in Definition 6.8 on page 28. In this section, we study blobkpable DAGs (Definition 6.6) that
are also layered. We show that for all such DAGg of heighth that are spreading in the sense
of Definition 9.34, it holds thaBlob-Peb(G),) = ©(h). In particular, this bound holds for pyram-
ids II;, since they are spreading by Theorem 9.35.

The constant factor that we get in our lower bound is modirataall and explicit. In fact, we
believe that it should hold th&lob-Peb(G},) > h/2 + O(1) for layered spreading graplds, of
heighth, just as in the standard black-white pebble game. As we havenade any real attempt
to get optimal constants, the factor in our lower bound caimipgroved with a minor effort, but
additional ideas seems to be needed to push the constame atbty up to%.

10.1 Definitions and Notation for the Blob-Pebbling Price Lo wer Bound

Recall that a vertex séf hides a black pebble dnif it blocks all source paths visiting. For a
blob B, which is a chain by Definition 6.7, it appears natural to edtthis definition by requiring
thatU should block all paths going through all 8. We recall the terminology and notation from
Definition 6.5 that a black blol® and a pathP agreewith each other, or thaP is a pathvia B, if

B C P, and thatl,ia(B) denotes the set of all source paths agreeing With

Definition 10.1 (Blocked black blob). A vertex setJ blocksa blobB if U blocks allP € Pyia(B).

A terminological aside: Recalling the discussion in theibeimg of Section 9.2, it seems
natural to say thal/ blocksa black blobB rather than hides it, since standing at the sources we
might “see” the beginning oB, but if we try to walk any path viaB we will fail before reaching

64

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

the top of B sinceU blocks the path. This distinction between hiding and blogkiurns out to be
a very important one in our lower bound proof for blob-pebblprice. Of course, iB is an atomic
black pebble, i.e|B| = 1, the hiding and blocking relations coincide.

Let us next define what it means to block a blob-pebbling condigon.

Definition 10.2 (Unblocked paths).For [B](W) an blob subconfiguration, the set wfiblocked
pathsfor [B](W) is

unblocked([Bl{(W)) = {P € Pyia(B) | W does not blockP}

and we say thal/ blocks [B](W) if U blocks all paths ininblocked([B](W)). We say that/
blocks the blob-pebbling configuratighif U blocks all[B](W) € S. If so, we say thaU is a
blockerof [B](W) or S, respectively, or dlocking seffor [B](W) or S.

Comparing to Section 9.2, note that when blocking a gath ‘Bia(B), U can only use the
white pebbledV that are associated witB in [B](W). Although there might be white pebbles
from other subconfiguration®3’|(W’) # [B](W) that would be really helpful/ cannot enlist the
help of the white pebbles i/’ when blockingB. The reason for defining the blocking relation in
this way is that these white pebbles can suddenly disappeatadpebbling moves performed on
such subconfigurationd’|(W').

Reusing the definition of measure in Definition 9.8 on pagew8generalize the concept of
potentialto blob-pebbling configurations as follows.

Definition 10.3 (Blob-pebbling potential). The potentialof an a blob-pebbling configuratidhis
pot(S) = min{m(U) : U blocksS} .

If U is such thatU blocksS andU has minimal measure:(U) among all blocking sets fd$, we
say thatl/ is aminimum-measurblocking set forS.

To compare blob-pebbling potential with the black-whitélpleng potential in Definition 9.9,
consider the following examples with vertex labels as iruFég 7 and 9-11.

Examplel0.4 For the blob-pebbling configuratidh= {[z](y1), [z](y2)}, the minimum-measure
blocker isU = {z}. In comparison, the standard black-white pebble configamdt = (B, W) =
({z},{y1,y2}) hasU = 0 as minimum-measure hiding set.

Example10.5 For the blob-pebbling configuratiof = {[z](0), [y1](z1,z2)}, the minimum-
measure blocker is agalii = {z}. In comparison, for the standard black-white pebble config-
urationP = (B, W) = ({z,y1}, {x1,z2}) we have the minimum-measure hiding &et= {x3}.

Remarkl0.6 Perhaps it is also worth pointing out that Definition 10.3hdeaed a strict generaliz-
ation of Definition 9.9. Given a black-white pebble configimaP = (B, W) we can construct an
equivalent blob-pebbling configurati&{P) with respect to potential by setting

S(P) = {[p]{(W n G%)|b € B} (10.1)

but as the examples above show going in the other directinatipossible.

Since we have accumulated a number of different minimalitgga for blocking sets, let us
pause to clarify the terminology:

e The vertex selU is a subset-minimalor justminimal blocking set for the blob-pebbling
configurationS if no strict subset/’ ; U is a blocking set foB.

e U is aminimum-measurblocking set forS if it has minimal measure among all blocking
sets forS (and thus yields the potential §).

65

TOWARDS AN OPTIMAL SEPARATION

e U is aminimum-sizélocking set forS if it has minimal size among all blocking sets for

Note that we can assume without loss of generality that minirmeasure and minimum-size
blockers are both subset-minimal, since throwing away lyoeis vertices can only decrease the
measure and size, respectively. However, minimum-medsdaokers need not have minimal size
and vice versa. For a simple example of this, consider (watiex labels as in Figures 7 and 9-11)
the blob-pebbling configuratioB = {[z](ws,ws)} and the two blocking set§; = {z} and

U2 = {wl,'LUQ}.
10.2 A Lower Bound Assuming a Generalized LHC Property

For the blob-pebble game, a useful generalization of Ptpf@etl on page 48 turns out to be the
following.

Property 10.7 (Generalized limited hiding-cardinality property). We say that a blob-pebbling
configurationS on a layered blob-pebblable DAG has theGeneralized limited hiding-cardinality
property with paramete€'x if there is a vertex sdt such that

1. U blockss,
2. pot(S) = m(U), i.e.,U is a minimum-measure blocker 8f
3. |U| < Ck - cost(S).

For brevity, in what follows we will just refer to th&eneralized LHC property
We say that the grapty has the Generalized LHC property with parametgy if all blob-
pebbling configurationS on G have the Generalized LHC property with paraméter.

When the parameté&r'x is clear from context, we will just write th&tor G has the Generalized
LHC property.

For all layered blob-pebblable DAGS;, of heighth that have the Generalized LHC property
and are spreading, it holds thBtob-Peb(G),) = ©(h). The proof of this fact is very much in
the spirit of the proofs of Lemma 9.12 and Theorem 9.14, aljhothe details are slightly more
complicated.

Theorem 10.8 (Analogue of Theorem 9.14)Suppose thaf7, is a layered blob-pebblable DAG
of heighth possessing the Generalized LHC property 10.7 with some fiaetmeterCx. Then
for any unconditional blob-pebblin® = {Sy = 0,S1,...,S;} of G, it holds that

pot(Sy) < (2Ck + 1) -mgg({cost(Ss)} . (10.2)

In particular, for any family of layered blob-pebblable DAG,;, that are also spreading in the
sense of Definition 9.34, we haB&b-Peb(G),) = O(h).

We make two separate observations before presenting tbé pro
Observation 10.9. For any layered DAG7), of height it holds thatBlob-Peb(G},) = O(h).

Proof. Any layered DAGG), can be black-pebbled with + O(1) pebbles by Theorem 9.2 on
page 45, and it is easy to see that a blob-pebbling can mimachk pebbling in the same cost]

Observation 10.10.If GG}, is a layered blob-pebblable DAG of heightthat is spreading in the
sense of Definition 9.34, themt, ([2](0)) = h + 2.

66

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

Proof. The proof is fairly similar to the corresponding case forgmgids in Lemma 9.13. Note,
though, that in contrast to Lemma 9.13, here we cannot gestditement from the Generalized
LHC property, but instead have to prove it directly.

Sincelz] is an atomic blob, the blocking and hiding relations coieciihe set/ = {z} hides
itself and has measuret 2. We show that any other blocking set must have strictly langeasure.

Suppose that is hidden by some vertex sét' # {z}. This U’ is minimal without loss of
generality. In particular, we can assume thiats tight in the sense of Definition 9.15 and th&t=
U'|l=). Then by Corollary 9.23 it holds thdf’ is hiding-connected. Letting. = minlevel(U’)
and settingj = h in the spreading inequality (9.10), we get tat| > 1 + h — L and hence
m(U') >m*({U'") > L+2(1+h—L)=2h—L+2>h+2sinceL < h. O

Proof of Theorem 10.8The statement in the theorem follows from Observations 20 10.10
combined with the inequality (10.2), so just as for Theoret42he crux of the matter is the
induction proof needed to get this inequality.

Suppose thal; is such that it blockS; andpot (S;) = m(U;). By the inductive hypothesis, we
have thapot(S;) < (2Ck + 1) - maxs<¢{cost(S;)}. We want to show foB,; thatpot (S¢y1) <
(2Ck + 1) - maxs<¢y1{CcOSt(S;,)}. Clearly, this follows if we can prove that

pot(Si4+1) < max{pot(S;), (2Ck + 1) - cost(S;)} . (10.3)

We also note that it/; blocksS;; we are done, since if 300t (S¢+1) < m(Uy) = pot(Sy).

We make a case analysis depending on the type of move in D&fiit8 made to get frorf,
to S;+1. Analogously with the proof of Lemma 9.12, we want to showt thia can usé/; to block
S¢11 as long as the move is not an introduction on a source verteéxten use the Generalized
LHC property to take care of such black pebble placement®orcss.

Erasure S¢p1 =S \ {[B](W)} for [B](W) € S;. Obviously,U; blocksS;1 C S;.

Inflation S;11 =S; U {[B(W)} for [B](W) inflated from soméB’](W’) € S; such that

B CB, (10.4a)
W' N lpp(B) C W , and (10.4b)
BNnW =0 . (10.4c)

We claim thatU; blocks [B](WW) and thus all ofS;;,. Let us first argue intuitively why.
Suppose thaP is any source path agreeing with This path also agrees with’, and so
must be blocked by/; U W' by assumption. I{J; blocks B we are done. We can worry,
though, that/; does not blockP, but that instead” was blocked by some € W’ that
disappeared as a result of the inflation move. But iE W' is on a path viaB, it cannot
have disappeared, so this can never happen.

We now write down the formal details. With the notation in Défon 10.2, fix any path
P € unblocked([B](W)). We need to show tha® N U; # (. Let us assume without loss
of generality thatP ends intop(B), for U; blocks[B](W) precisely if it blocks the paths

P n GPP for all P € unblocked([B](W)). We note that by definition, the fact tha
agrees with a chailv and ends inop(V') implies that

PCVUlpp(V) . (10.5)

Since P agrees withB, or in formal notationP € Pia(B), and sinceB’ C B by (10.4a),
we haveP € Pyia(B’). By assumptionl/; blocks[B’](W’), which in particular means that

67

TOWARDS AN OPTIMAL SEPARATION

U; U W' intersects the patl agreeing withB’. We get

0#£Pn (U UW) [by definition of blocking]
=(PNU)U((P\B) N W) [sinceB N W' = 0 by (10.4c)|
=(PNU) U (Pnipp(B)n W) [sinceP C BU lpp(B) by (10.5)]
C(PNU)U(PNW) [sincelpp(B) N W' C W by (10.4b)]
=PnNnU ([PNW= @ if P € unblocked([B](W))]

so P N U, # () and the desired conclusion thag blocks the pathP follows.

Merger Si11 =S, U {[B](W)} for [B](W) derived by merger ofB;](W1), [B2](W2) € S such
that

BiNWy=0, (10.6a)

By n Wy = {v*} (10.6b)

B = (B; U By)\ {v*} , and (10.6¢)

W= (W1 U W)\ {v*}) N Ipp(B) . (10.6d)

Let us again first argue informally that if a set of vertidésblocks two subconfigurations
[B1](W7) and [B3](W>), it must also block their merger. L&t be any path viaB, and
suppose in addition thd® visits the merger vertex*. If so, P agrees withB, and must be
blocked byU; U Wj. If on the other hand® agrees withB but doesot visit v*, it is a path
via Bj that in addition does not pass through the white pebbl&iireliminated in the merger.
This means that/, U W \ {v*} must blockP. Again, we have to argue that the blocking
white vertices do not disappear when we apply the inteseatith ipp(B) in (10.6d), but
this is straightforward to verify.

So let us show formally that’; blocks [B](W), i.e., that for anyP € unblocked([B](W))
it holds thatP N U, # (. As above, without loss of generality we consider only paths
ending intop(B) = top(B; U Bz). Recall that

BinW; =0 (20.7)
holds for all subconfigurations by definition. We divide thmabysis into two subcases.

1. P € Pvia(B1 U Bg) = Puia(B U {v*}). If so, in particular it holds thaP € Pyia(B2)
and sincdJ; blocks[Bs](Ws) we have

0#£Pn (U UW,) [by definition of blocking]
= (P NU)U((P\(B1 U By)) N Wy) [by (10.6a) and (10.7)
= (P NU) U (Pnlipp(B1 UBy) N W) [by(10.5)]
= (P NU)U(P N Ipp(B U v*) N Wy) [just rewriting using (10.6c)
C(PAUYU(P A (Wo\{o"}) N ipp(B) [Ipp(BU{v*}) C lpp(B) \ {v"}]
C(PNU)U(PNW) [by (10.6d)|
=PNU [sinceP € unblocked ([B|(W)) |

so U, blocks the pattP in this case.

2. P € Puia(B) \ BPvia(B U {v*}). This means thaB C P butB U {v*} ¢ P, so the
path P does not pass througlht. SinceP agrees withB; andU, blocks[B;](IV1) by

68

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

assumption, we get that

0#Pn (U UWy) by definition of blocking]

[
= (P NU)U((P\B) N W) [by (10.6b) and (10.7)
= (P NU) U (Pnlpp(B) N W) [P C BUlpp(B) by (10.5)]
=(PNU) U (Pn Wi\ {v"}) nipp(B)) [sincev* ¢ P by assumptior)
C(PNU)U(PNW) [by (10.6d)]
= (P Ny [P € unblocked([B](W)) |

andU, blocks the pattP in this case as well.

Introduction S;1 = S; U {[v](pred(v))}. Clearly,U; blocksS;, if v is a non-source vertex,
i.e., if pred(v) # 0, sincelU, blocksS; and[v](pred (v)) blocks itself.

Suppose however thatis a source vertex, so that the subconfiguration introduséd(i)).
As in the proof of Lemma 9.14/, does not necessarily blo&, any longer but/;; =
U, U {v} clearly does. Foj > 0, it holds thatl/; 1 {>=j} = Uy{= 4} and thusn’ (U, 1) =
m/ (U;). On the bottom levej = 0, using that|U;| < Ck - cost(S;) Generalized LHC
property 10.7 we have

m®(Upp1) = 2 |Upa| = 2- (JU] + 1) <
2. (Ck -cost(Sy) +1) <2 (Ck - cost(Si1) +1) <
2 (Ck - cost(Si11) + cost(Si11)) < 2(Ck +1) - cost(Sy41) (10.8)

and we get that
pot(Set1) < m(Upp1) < max;{m? (Ups1)}
< max{m(Uy;), (2Ck + 1) - cost(Sy41) } =
max{pot(S), (2Ck + 1) - cost(S¢41)} (10.9)

which is what is needed for the induction step to go through.

We see that regardless of the pebbling move made in thetianSj ~~ S, 1, the inequality (10.3)
holds. The theorem follows by the induction principle. O

Hence, in order to prove a lower bound Blob-Peb(G),) for layered spreading graplis,, it is
sufficient to find some constaaty such that these DAGs can be shown to possess the Generalized
LHC property 10.7 with parametéry .

10.3 Some Structural Transformations

As we tried to indicate by presenting the small toy blob-piglghconfigurations in Examples 10.4
and 10.5, the potential in the blob-pebble game behavesvgoatelifferently from the potential in
the standard pebble game. There are (at least) two impdaliféerences:

e Firstly, for the white pebbles we have to keep track of eyasthich black pebbles they can
help to block. This can lead to slightly unexpected consege® such as the blocking dét
and the set of white pebbles overlapping.

69

TOWARDS AN OPTIMAL SEPARATION

e Secondly, for black blobs there is a much wider choice wherblock the blob-pebbles
than for atomic pebbles. It seems that to minimize the piaierilocking black blobs on
(reasonably) low levels should still be a good idea. Howewercannot a priori exclude the
possibility that if a lot of black blobs intersect in some Higvel vertex, adding this vertex
to a blocking set/ might be a better idea.

In this subsection we address the first of these issues. Thadéssue, which turns out to be much
trickier, is dealt with in the next subsection.

One simplifying observation is that we do not have to proveperty 10.7 for arbitrary blob-
pebbling configurations. Below, we show that one can do secteical preprocessing of the blob-
pebbling configurations so that it suffices to prove the Galieed LHC property for the subclass
of configurations resulting from this preprocessinghroughout this subsection, we assume that
the paramete€’'x is some fixed constant.

We start slowly by taking care of a pretty obvious redundarigst us say that the blob sub-
configuration[B](W) is self-blockingif W blocks B. The blob-pebbling configuratio is self-
blocker-freeif there are no self-blocking subconfigurationsSinThat is, if[B] (V) is self-blocking,
W needs no extra help blocking. Perhaps the simplest example of thi§h$(W) = [v](pred(v))
for a non-source vertex. The following proposition is immediate.

Proposition 10.11. For S any blob-pebbling configuration, I1& be the blob-pebbling configura-
tion with all self-blockers irS removed. Thewrost(S') < cost(S), pot(S’) = pot(S) and any
blocking set/’ for S’ is also a blocking set fds.

Corollary 10.12. Suppose that the Generalized LHC property holds for seltkar-free blob-
pebbling configurations. Then the Generalized LHC propkdigls for all blob-pebbling configu-
rations.

Proof. If Sis notself-blocker-free, take the maxim@l C S that is and the blocking sét’ that the
Generalized LHC property provides for tis ThenU’ blocksS and since the two configuratiofis
andS’ have the same blocking sets their potentials are equab®) = m(U’). Finally, we have
that|U| < Ck - cost(S') < Cf - cost(S). Thus the Generalized LHC property holds for O

We now move on to a more interesting observation. Looking at {[z](y1), [2](y2)} in
Example 10.4, it seems that the white pebbles really do riptdieall. One might ask if we could
not just throw them away? Perhaps somewhat surprisingdyatiswer is yes, and we can capture
the intuitive concept of necessary white pebbles and fazmat as follows.

Definition 10.13 (White sharpening). GivenS = {[Bi]<Wi>}ie[m]’ we say that’ is a white

sharpeningf S if §' = {[Bﬂ(W@}ie[m] for B! = B; andW/ C W;.

K3 K3

That is, a white sharpening removes white pebbles and thiesrihe blob-pebbling configu-
ration stronger or “sharper” in the sense that the cost cindmtrease and the potential can only
increase.

Proposition 10.14.1f S’ is a white sharpening & it holds thatcost(S’) < cost(S) andpot(S') >
pot(S). More precisely, any blocking s&t for S’ is also a blocking set fos.

Proof. The statement about cost is immediate from Definition 6.9 Jtatement about potential
clearly follows from Definition 10.3 since it holds that anptking setU’ for S’ is also a blocking
set forS. O

8Note that we did something similar in Section 9.3 after Lenr8, when we argued that if is a minimum-
measure hiding set fdf = (B, W), we can assume without loss of generality that) W is tight. For if not, we
just prove the Limited hiding-cardinality property for sertight subset/’ U W’ C U U W instead. This is wholly
analogous to the reasoning here, but since matters beconeecomoplex we need to be a bit more careful.

70

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

In the next definition, we suppose that there is some fixeddbitrary ordering of the vertices
in G, and that the vertices are considered in this order.

Definition 10.15 (White elimination). For [B](W) a subconfiguration and any blocking set
for [B](W), write W = {wy,...,ws}, setW? := W and iteratively perform the following for
i=1,...,s1f UU W=\ {w;}) blocks B, setW’ := Wi~1\ {w;}, otherwise setV’ := Wi~1,
We define thevhite eliminatiorof [B] (W) with respect td/ to beW-elim ([B](W),U) = [B](W*)
for ¢ the final set resulting from the procedure above.

ForS a blob-pebbling configuration arid a blocking set fofS, we define

W-elim(S, U) = {W-elim([B](W), U)|[B](W) € S} . (10.10)

We say that the elimination trict if S # W-elim(S, U). If S = W-elim(S, U) we say tha€ is
white-eliminated or YW-eliminatedfor short, with respect t&'.

Clearly W-elim(S, U) is a white sharpening &. And if we pick the rightU, we simplify the
problem of proving the Generalized LHC property a bit more.

Lemma 10.16. If U is a minimum-measure blocking set fyrthenS’ = W-elim(S, U) is a white
sharpening of such thatpot (S") = pot(S) andU blocksS'.

Proof. SinceS’ = W-elim(S, U) is a white sharpening & (which is easily verified from Defin-
itions 10.13 and 10.15), it holds by Proposition 10.14 that(S’) > pot(S). Looking at the
construction in Definition 10.15, we also see that the whilleljtes are “sharpened away” with care
so thatU remains a blocking set. Thus(U) > pot(S’) = pot(S) = m(U), and the lemma
follows. O

Corollary 10.17. Suppose that the Generalized LHC property holds for thefsadt blob-pebbling
configurationsS having the property that for all minimum-measure blockiets$/ for S it holds
thatS = W-elim(S, U). Then the Generalized LHC property holds for all blob-péfgplconfigu-
rations.

Proof. This is essentially the same reasoning as in the proof of {aoy0l10.12 plus induction.
Let S be any blob-pebbling configuration. Suppose that therds&isninimum-measure blocker
U for S such thatS is not W-eliminated with respect t&/. LetS! = W-elim(S,U). Then
cost(S!) < cost(S) by Proposition 10.14 angot(S') = pot(S) by Lemma 10.16.

If there is a minimum-measure blockér for S* such thas! is notW-eliminated with respect
to U', setS? = W-elim(S!,U'). Continuing in this manner, we get a chaih, S?,S?, ... of
strict WW-eliminations such thatost (S!) > cost(S?) > cost(S?)... andpot(S') = pot(S?) =
pot(S?) = ... This chain must terminate at some configuratiérsince the total number of white
pebbles (counted with repetitions) decreases in everydroun

Let U* be the blocker that the Generalized LHC property providesfo ThenU” blockssS,
pot(S) = pot(S¥) = m(U*), and|U*| < Ck - cost(SF) < C - cost(S). Thus the Generalized
LHC property holds fofS. O

We note that in particular, it follows from the constructionDefinition 10.15 combined with
Corollary 10.17 that we can assume without loss of gengrédit any blocking set/ and any
blob-pebbling configuratiof thatU does not intersect the set of white-pebbled vertices in

Proposition 10.18.1f S = W-elim(S, U), then in particular it holds that’ N W(S) = 0.

Proof. Any w € W(S) n U would have been removed in th&-elimination. O

71

TOWARDS AN OPTIMAL SEPARATION

(a) Minimum-measure but non-tight blocking set. (b) Tight but non-connected blocker for blob.

Figure 14: Two blob-pebbling configurations with problematic blocking sets.

10.4 A Proof of the Generalized Limited Hiding-Cardinality Property

We are now ready to embark on the proof of the Generalized Lid@arty for layered spreading
DAGs.

Theorem 10.19. All layered blob-pebblable DAGs that are spreading posshesGeneralized
limited hiding-cardinality property 10.7 with parametél; = 13.

Since pyramids are spreading graphs by Theorem 9.35, thiktisat we need to get the lower
bound on blob-pebbling price on pyramids from Theorem 18\ note that the parametéfy
in Theorem 10.19 can easily be improved. However, our maimte&m here is not optimality of
constants but clarity of exposition.

We prove Theorem 10.19 by applying the preprocessing in teeiqus subsection and then
(almost) reducing the problem to the standard black-whitebpe game. However, some twists
are added along the way since our potential measure for tlebave differently from Klawe’s
potential measure for black and white pebbles. Let us firstrgtify two problems that arise if we
try to do naive pattern matching on Klawe’s proof for the g black-white pebble game.

In the standard black-white pebble game[ifis a minimum-measure hiding set fir =
(B,W), Lemma 9.18 tells us that we can assume without loss of géyetaat U U W is tight.
This isnottrue in the blob-pebble game, not even after the transfoomsin Section 10.3.

Example10.2Q Consider the configuratioS = {[w1](us,us), (w4, z3](ug,us), [z2,y2, 2](D)}
with blocking setU = {x9,u1,ug} in Figure 14(a). It can be verified thaf is a minimum-
measure blocking set and that the configuraiois VV-eliminated with respect t&/, but the set
U UW() = {uy,usz,us, ug, us, ug, x2 } is not tight (because afs).

This can be handled, but a more serious problem is that ewbe getU U W blocking the
chain B is tight, there is no guarantee that the vertice#/iu W end up in the same connected
component of the hiding set gragf(U U 1) in Definition 9.20.

Example10.21 Consider the single-blob configuratiéh = {[us, 2](#)} in Figure 14(b). It is
easy to verify thall = {vy4, y» } is a subset-minimal blocker &f and also a tight vertex set. This
highlights the fact that blocking sets for blob-pebblingfigurations can have rather different prop-
erties than hiding sets for standard pebbles. In particalaninimal blocking set for a single blob
can have several “isolated” vertices at large distancan fone another. Among other problems,
this leads to difficulties in defining connected componentdarking sets for subconfigurations.

The naive attempt to generalize Definition 9.20 of connectadponents in a hiding set graph
to blocking sets would place the verticesandy in different connected componengs,} and

72

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

{y2}, none of which block$ = {[us, z](0)}. This is not what we want (compare Corollary 9.23
for hiding sets for black-white pebble configurations). Weark that there really cannot be any
other sensible definition that placesandys in the same connected component either, at least not
if we want to appeal to the spreading properties in Definiid4. Since the level difference (n

is 3 but the size of the set is on}; the spreading inequality (9.10) cannot hold for this set.

To get around this problem, we will instead use connectedpoom@nts defined in terms of
hiding the singleton black pebbles given by the bottom gestiof our blobs. For a start, recalling
Definitions 9.6 and 10.1, let us make an easy observatiotinglhe hiding and blocking relations
for a blob.

Observation 10.22.If a vertex sel’ hides some vertedxec B, thenV blocksB.

Proof. If V blocks all paths visiting, then in particular it blocks the subset of paths that noy onl
visits b but agree with all of5. O

We will focus on the case when the bottom vertex of a blob isldid

Definition 10.23 (Hiding blob-pebbling configurations). We say that the vertex sét hidesthe
subconfiguratio B](W) if U U W hides the vertedot(B), and thatU hides the blob-pebbling
configurationS if U hides all[B](W) € S.

If U does not hidéB](W), thenU blocks[B](W) only if U N Ggot(B) does.

Proposition 10.24. Suppose that a vertex sgtin a layered DAGG blocks but does not hide the
subconfiguratioriB] (W) and that[B](W') does not block itself. Theii N G2°'®) does not block

[B](W), but there is a subséf’ C U N G]Zot(B) that blocks[B](W).

Proof. Suppose thal’ U IV blocks B but does not hidé = bot(B), and thafl” does not blockB.
Then there is a source paih via B such that?, N W = (). Also, there is a source pafh to b
suchthat’, N (U U W) = 0. LetP = (P, N G%) U (P N GY) be the source path that starts
like P; and continues likeé”%, from b onwards. Clearly,

Pn((UnGHuw)=PinUUW)U(PnW)=0 (10.11)

soU N G% does not blockB](W).

Suppose thal/ N G} does not blocKB](W). SinceU U W does not hidé, there is some
source pattP; tobwith P, N (U U W) = 0. Also, sincel/ UW blocksB but (U N Gy) U W does
not, there is a source patf via B such that?, N (U U W) #@butP, N (U U W) N GY =0.
But then letP = (P, N G%) U (P2 N GY) be the source path that starts |ike and continues
like P, from b onwards. We get thaP agrees withB and thatP N (U U W) = (), contradicting
the assumption thdf blocks[B](W). O

We want to distinguish between subconfigurations that adddn and subconfigurations that
are just blocked, but not hidden. To this end, let us intredihe notation

Su(S,U) = {[B|(W) € S|U hides[B](W)} (10.12)
to denote the subconfigurationsSrhidden byU and
Sg(S,U) =S\ Su(S,U) (10.13)
to denote the subconfigurations that are just blocked. W wri

B (S,U) = {bot(B) | [Bl(W) € Sy(S,U)} (10.14)
Bg(S,U) = {bot(B) | [B(W) € Sp(S,U)} (10.15)

73

TOWARDS AN OPTIMAL SEPARATION

@) {[s4,y1,2](v2), [us, w3](s3), [wa, z3](vs) }. (b) {[s4,04,w3,x3,y2](D), [w2,y1](s3,u3,21), [wa] (V) } .

Figure 15: Examples of blob-pebbling configurations with hidden and just blocked blobs.

to denote the black bottom vertices in these two subsetshafosifigurations and note that we can
haveBy (S,U) N Bp(S,U) # 0. The white pebbles in these subsets located below the bottom
vertices of the black blobs that they are supporting are téeho

WH(S,U) = {W n G}|[Bl(W) € Sy(S,U), b =bot(B)} (10.16)
and
WE(S,U) = {W n G4|[BI(W) € SE(S,U), b=bot(B)} . (10.17)

This notation will be used heavily in what follows, so we gaeouple of simple but hopefully
illuminating examples before we continue.

Examplel0.25 Consider the blob-pebbling configurations and blocking setFigure 15. For
the blob-pebbling configuratiof; = {[s4, y1, 2](va), [us, ws](s3), [wa, z3](vs) } with blocking
setU; = {vs,v4} in Figure 15(a), the vertex séby, vs} hidesw, = bot([wa, z3]) but [s4, y1, 2]
is blocked but not hidden b{ws, vs, v4 } andfus, ws] is blocked but not hidden bfws}. Thus, we
have

Sk (S1,U1) = {[wa, z3](vs) }

SB(S1,Ur) = {[s4,y1, 2] (va), [us, ws](s3) }
Br(S1,Ur) = {wa}

Bp(S1,U1) = {s4,us}
Wi (S1,Ur) = {vs}

Wg(S1,Ur) = {s3}

in this example. For the configurati®h = {[s4, v, w3, x:3, y2] (D), [w2, y1](s3, us, 1), [wa](vs) }
with blockerUs = {s2, u4, us} in Figure 15(b), it is straightforward to verify that

Sk (S2,Us) = {[wa,y1](s3, uz, x1), [wa](vs) }
SB(S2,Usz) = {[s4, va, w3, x5, y2] (D) }
Bu(S2,

74

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

are the corresponding sets.

Let us also use the opportunity to illustrate Definition B0.The blob-pebbling configuration
St is notW-eliminated with respect t&/1, sincel; also blocks this configuration with the white
pebble ons; removed. However, a better idea measure-wise is to chaedadbking set fofs; to
U{ = {s4,v4}, which has measure (U;) = 4 < 6 = m(U;). The vertex set/; can be verified to
be a minimum-measure blocker 85, but whenS; is W-eliminated with respect t&; the white
pebble onz; disappears.

As a final remark in this example, we comment that although swe mot indicated explicitly
in Figures 15(a) and 15(b) which white pebblés are associated with which black bld® (as
was done in Figure 14(a)), this is uniquely determined byrdwgiirement in Definition 6.7 that
W C Ipp(B).

For the rest of this section we will assume without loss ofegality (in view of Proposi-
tion 10.11 and Corollary 10.17) that we are dealing with afpebbling configuratiors and a
minimum-measure blockdy of S such thatfS is free from self-blocking subconfigurations and is
W-eliminated with respect t&/. As an aside, we note that it is not hard to show (using Defini-
tion 10.15 and Proposition 10.24) that this implies tha (S, U) = (. We will tend to drop the
argumentsS andU for Sy, Sg, Bu, B, W4, andW4, since from now on the blob-pebbling con-
figurationS and the blocket/ will be fixed. With this notation, Theorem 10.19 clearly twils if
we can prove the following lemma.

Lemma 10.26. LetS be any blob-pebbling configuration on a layered spreadingslswd U be
any blocking set fo such that

1. pot(S) = m(U), i.e.,U is a minimum-measure blocker ®f

2. Sis free from self-blocking subconfigurations andtseliminated with respect t&/, and

3. U has minimal size among all blocking sétsfor S such thatpot (S) = m(U’).
Then|U| < 13- |By U Bp U W§|.

The proof is by contradiction, although we will have to wodether than for the corresponding
Theorem 9.25 for black-white pebbling and also use (thef@f)dhe latter theorem as a subroutine.
Thus, for the rest of this section, let us assume on the agrttratU has all the properties stated in
Lemma 10.26 but that/| > 13-|By U Bz U W4 |. We will show that this leads to a contradiction.

For the subconfiguration i that are hidden by/, one could argue that matters should be
reasonably similar to the case for standard black-whitéblpgdy and hopefully we could apply
similar reasoning as in Section 9.3 to prove something Usgiout the vertex set hiding these sub-
configurations. The subconfigurationsSi that are just blocked but not hidden, however, seem
harder to get a handle on (compare Example 10.21).

Let Uy C U be a smallest vertex set hidirfy; and letUp = U \ Uy. The setUp consists
of vertices that are not involved in any hiding of subconfadians inSy;, but only in blocking
subconfigurations iz on levels above their bottom vertices. As a first step towamsing
Lemma 10.26, and thus Theorem 10.19, we want to arguéithaannot be very large.

Consider the blobs iiz. By definition they are not hidden, but are blocked at somel izlvove
level(bot(B)). Since the vertices itV are located on high levels, a naive attempt to improve the
blocking set would be to pick some € Up and replace it by the vertices iz corresponding
to the subconfigurations iz thatw is involved in blocking, i.e., by the sé" = {bot(B)\U\
{u} does not blockB](W) € Sg}. Note thatB* is lower down in the graph than so(U \ {u}) U
B" is obtained fron/ by moving vertices downwards and by construction {«}) U B* blocksS.

But by assumption/ has minimal potential and cardinality, so this new blocksed) cannot be an
improvement measure- or cardinality-wise. The same hblds extend the construction to subsets

75

TOWARDS AN OPTIMAL SEPARATION

U’ C Ug and the corresponding bottom vertides’ C B. By assumption we can never find any
subset such that/ \ {U’}) U BY" is a better blocker thafl. It follows that the cost of the blobs
thatUp helps to block must be larger than the sizdJgf, and in particular tha/z| < |Bg|. Let
us write this down as a lemma and prove it properly.

Lemma 10.27.LetS be any blob-pebbling configuration on a layered DAG @&hte any blocking
set forS such thatpot(S) = m(U), U has minimal size among all blocking séf$ for S with
pot(S) = m(U’), andS is free from self-blocking subconfigurations and/iseliminated with
respect toU. Then ifUy C U is any smallest set hidin§z and U = U \ Uy, it holds that
Us| < |Bgl.

Before proving this lemma, we note the immediate corolldrat tif the whole blocking set
U is significantly larger tharost(S), the lion’s share ot/ by necessity consists not of vertices
blocking subconfigurations i, but of vertices hiding subconfigurationsSg;. And recall that
we are indeed assuming, to get a contradiction, thi large.

Corollary 10.28. Assume tha andU are as in Lemma 10.26 but with'| > 13- | By U Bg U W4 |.
LetUy C U be a smallest set hidin§. Then|Ug| > 12 - \BH U Bg U Wﬁ,|.

As was indicated in the informal discussion preceding Leni@27, the proof of the lemma
uses the easy observation that moving vertices downwardsrdg decrease the measure.

Observation 10.29.Suppose that/, V; andV; are vertex sets in a layered DAG such thah V; =
() and there is a one-to-one (but not necessarily onto) mappind; — V5 with the property that
level(v) <level(f(v)). Thenm(U U Vi) <m(U U Va).

Proof. This follows immediately from Definition 9.8 on page 48 sittike mappingf tells us that

(U UV {=4} < [U{=j} +Vi{=3j} < |U{=j} +[f(Vi{=4})]
< [U{z7} + [Va{= 3} < [(U U Va){= 3}

forall j. O

Proof of Lemma 10.27Note first that by Proposition 10.24, for eve[B|(W) € Sp with b =
bot(B) it holds thatU N Gy = (Uy UUg) N Gy blocks[B](W). Therefore, all vertices itV
needed to blockB](W) can be found i/ N Gy . Rephrasing this slightly, the blob-pebbling
configuratiorsS is blocked byUs; U (Up N Uyep,, Gy), and sincd is subset-minimal we get that

Consider the bipartite graph witliz andUg as the left- and right-hand vertices, where the neigh-
bours of eaclb € B are the verticeV(b) = Ug N G}/ in Up aboveb. We have thaiV (Bg) =

Up N Upes, Gy = Up by (10.18). LetB’ C Bp be a largest set such thaV (5')| < |B|. If

B’ = Bp we are done since this is the inequalityz| < |Bp|. Suppose therefore th& & Bp
and|UB| = |N(BB)| > |BB|.

ForallB” C Bg\ B we must haveN (B”) \ N (B')| > |B"|, for otherwiseB3” could be added
to B’ to yield an even larger s&* = B’ U B” with \N(B*)| < |B*| contrary to the assumption
that B’ has maximal size among all sets with this property. It foddvy Hall’s marriage theorem
that there must exist a matching B \ B’ into N (Bg \ B') \ N(B') = Up \ N(B'). Thus,
|Bg\B'| < |Up\ N (B')| and in addition it follows from the way our bipartite grapfcinstructed
that everyb € B \ B’ is matched to some € Ui \ N (B') with level(u) > level(b).

Clearly, all subconfigurations in

Si = {[Bl(W) € Sp| bot(B) € Bg \ B'} (10.19)

76

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

are blocked by35 \ B’ (even hidden by this set, to be precise). Also, as was arguibe beginning
of the proof, everyB](W) € Sg with b = bot(B) is blocked byUy; U (U N G}) = U U N(b),
so all subconfigurations in

S% = {[B}(W) € Sg| bot(B) € B'} (10.20)

are blocked byUy U N(B') where|N(B')| < |B’|. And we know thatSy is blocked (even
hidden) byUy. It follows that if we let

U*=Uyg U N(B/) U (BB \B/) (10.21)

we get a vertex séf * that blocksSy U S U S, = S, has measure: (U*) < m(U) because of
Observation 10.29, and has size

\U*| < |Un|+|N(B')| +|Bs\ B'| < |Uu| + |B'| + |Bs \ B'| = |U] (10.22)
strictly less than the size @&f. But this is a contradiction, sindé was chosen to be of minimal
size. The lemma follows. O

The idea in the remaining part of the proof is as follows: Foxe smallest subséfy C U
that hidesSy, and letUp = U \ Ug. Corollary 10.28 says thdfy is the totally dominating part
of U and hence thal/y; is very large. BulUy hides the blob subconfigurations Sip; very much
in a similar way as for hiding sets in the standard black-g/pigbble game. And we know from
Section 9.3 that such sets need not be very large. Therefereamt to use Klawe-like ideas to
derive a contradiction by transformiridy locally into a (much) better blocking set f8;;. The
problem is that this might leave some subconfiguratior$gmot being blocked any longer (note
that in general/z will not on its own blockS). However, since we have chosen our parameter
Ck = 13 for the Generalized LHC property 10.7 so generously andesihe transformation in
Section 9.3 works for the (non-generalized) LHC propertthyiarametett, we expect our locally
transformed blocking set to be so much cheaper that we carddt take care of any subconfigu-
rations inSp that are no longer blocked simply by adding all bottom veditor all black blobs in
these subconfigurations to the blocking set.

We will not be able to pull this off by just making one local inogement of the hiding set as
was done in Section 9.3, though. The reason is that the logabivement td/;; could potentially
be very small, but lead to very many subconfigurations§ ijnbecoming unblocked. If so, we
cannot afford adding new vertices blocking these subcorgtmns without risking to increase the
size and/or potential of our new blocking set too much. Toensikre that this does not happen,
we instead make multiple local improvementd.gf simultaneously. Our next lemma says that we
can do this without losing control of how the measure behaves

Lemma 10.30 (Generalization of Lemma 9.30)Suppose that/, ..., U, V1,...,V,, Y are ver-
tex sets in a layered graph such that for alj € [k], i # j, it holds thatU; 3, Vi, V; N V; =0,
U;NV;=0andY NV; =0. Thenm (Y U U, U;) <m(Y U UL, V).

Proof. By induction overk. The base case = 1 is Lemma 9.30 on page 56.
For the induction step, le¥” = Y U "' U;. SincelUy, <, Vi andY’ N Vi, = 0 by
assumption, we get from Lemma 9.30 that

m(Y UUL U) =m(Y' UU) <m(Y' UVy)=m(Y Ul U uV,) . (10.23)

LettingY” =Y U V,, we see that (again by assumption) it holds forgll€ [k — 1], i # j, that
U Zm Vi, VinV; =0,U; N V; =0 andY” N V; = 0. Hence, by the induction hypothesis we
have

m(YUUS U U W) =m (Y UULZL U) <m (Y UUZ Vi) =m (Y UUL, Vi) (10.24)

and the lemma follows. O

e

TOWARDS AN OPTIMAL SEPARATION

We also need an observation about the white pebblBgin
Observation 10.31.For any [B](W) € Sy with b = bot(B) it holds thatW = W N GY.

Proof. This is so sinces is W-eliminated with respect t6/. SinceU U W hidesb = bot(B),
any vertices iV N Gy are superfluous and will be removed by #&elimination procedure in
Definition 10.15. O

Recalling from (10.16) thaxVs, = {W N G4 |[B](W) € Sg, b = bot(B)} this leads to the
next, simple but crucial observation.

Observation 10.32.The vertex sdt/; U W4 hides the vertices if§; in the sense of Definition 9.6.

That is, we can conside(nSH, WIA{) to be (almosf) a standard black-white pebble configura-
tion. This sets the stage for applying the machinery of 8adi3.

Appealing to Lemma 9.18 on page 52, }etC Uy UW?4 be the unique, minimal tight set such
that

X =MUxn U Wﬁ,ﬂ (10.25)

and define
W;% = W,A{ N X (10.26a)
Ur=UygNX (10.26b)

to be the vertices inW4 and Uy that remains inX after the bottom-up pruning procedure of
Lemma 9.18.
LetH = H(G, X) be the hiding set graph of Definition 9.20 f&r = Ur UW4. Suppose that

Vi,...,V, are the connected componentstofand define foi = 1, .. . | k the vertex sets
By =Bg NV (10.27a)
WL =WE NV, (10.27b)
UL, =Ug NV (10.27¢)

to be the black, white and “hiding” vertices within compohé&h and

WL =WAnYV, (10.27d)
Uh=Ur NV (10.27e)

to be the vertices ofVf; andUp in component/; that “survived” when moving to the tight sub-
setX. Note that we have the disjoint union equalitied), = (Js_ W4, Uy = U, U}, et cetera
for all of these sets.

Let us also generalize Definition 9.8 of measure and partedsure to multi-sets of vertices
in the natural way, where we charge separately for each cbpyesy vertex. This is our way of
doing the bookkeeping for the extra vertices that might texled later to blocK 5 in the final step
of our construction.

This brings us to the key lemma stating how we will locally moye the blocking sets.

Lemma 10.33 (Generalization of Lemma 9.36)With the assumptions on the blob-pebbling con-
figuration S and the vertex set/ as in Lemma 10.26 and with notation as above, suppose that
Ul U Wi, hidesBY,, thatH (UL U W) is a connected graph, and that

\Uk| >6-|By UWy| - (10.28)

°Not quite, since we might havéy N W4 # (. But at least we know thdf iz N W% = () by W-elimination and
the roles ofU andW in U U W are fairly indistinguishable in Klawe’s proof anyway, sistdoes not matter.

78

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

Then we can find a multi-sét! C [[UZ. U W] that hides the vertices if};, has||U},|/3] extra
copies of some fixed but arbitrary vertex on leligl = maxlevel (U},), and satisfied/! =,,, U},
and|Uf| < |U}j;| (whereU; is measured and counted as a multi-set with repetitions).

Proof. Let U be the set found in Lemma 9.33 on page 57, which certainly {ih U WET,
together with the prescribed extra copies of some (fixed fitrary) vertex that we place on level
maxlevel ([[U}; U W) > Ly to be on the safe side. By Lemma 9.83, hidesB};, and the size
of U} counted as a multi-set with repetitiors

U < By |+ [|UG1/3] < (+3) - Uk | < |U| - (10.29)

It remains to show that! =,,, U},

The proof of this last measure inequality is very much as imire 9.36, but with the distinction
that the connected graph that we are dealing with is definedl§vU W, but we count the vertices
in Ui, UW4,. Note, however, that by construction these two unions hidetyy the same set of
vertices, i.e.,

U UWET = U UW4YT (10.30)

Recall that by Definition 9.29 on page 56, what we need to doderdto show that/! 3., U} is
to find for eachj anl < j such thatn’ (U!) < m!(U};). As in Lemma 9.36, we divide the proof
into two cases.

1. 1fj < minlevel(Ur} U W:’F) = minlevel(U}'{ U W}I), we get

m! (UL) = j+2- |UH{=j}] [by definition ofm?(-) |
<j+2-|Uj [sinceV{=j} C V foranyV |
<j+2 (IByl+[|U41/3]) [byLemma9.33 plus extra vertices
<j+2-|U [by the assumption in (10.28)
=j+2-|Uy{=3}| [Ul {=j} = Uj; sincej < minlevel(U};) |
=m! (U}) [by definition ofm?(-) |

and we can choode= j in Definition 9.29.

2. Consider insteagl > minlevel(U% U W) and letL = minlevel(U% U W4). Since the
black pebbles iBi; are hidden by/i. U W, i.e., Bi, C [UL U WE] in formal notation,
recollecting Definition 9.31 and Observation 9.32, part 8,see that

Ly (BYy) < Le;(TU; U WET) (10.31)

for all j. Also, sinceU% U Wi is a hiding-connected vertex set in a spreading gr@ph
combining Definition 9.34 with the fact that,. U Wi C Ui, U Wi, we can derive that

J4 Lej(TUF UWET) < L+ |Up UWE| < L+ Uy UWy| . (10.32)
Together, (10.31) and (10.32) say that
j+Lyrj(By) < L+ |Uy UWy] (10.33)

79

TOWARDS AN OPTIMAL SEPARATION

and using this inequality we can show that

m! (Uy) = j +2- |U{=j}]
<J+Lwj(By) + |By| +2- [|UL/3]
< L+|Uj UWy| + |By|+2- ||Uj|/3] [using the inequality (10.33)

[by definition ofm? () |
[
[
< L+ 2|Uy|+ |By| + [Wi| [|A U B| <|A|+|B|]
[
[
[

by Lemma 9.33 + extra verticgs

< L+ 2|Uy|+2-|By u Wy |A|+|B| <2-|AU B|]
<L+2-|Uf] by the assumption in (10.28)
=L+2-|Uy{=L}| sinceL < minlevel(U})]
=mb(UY) [by definition ofm™(-) |

Thus, the partial measure 6f;; at the minimum levelL is always at least as large as the
partial measure of/! at levelsj above this minimum level, and we can chodse L in
Definition 9.29.

Consequentlyl/! =,,, Ui, and the lemma follows. O

Now we want to determine in which connected components diittiag set graplti we should
apply Lemma 10.33. Loosely put, we want to be sure that charigj, to U? is worthwhile, i.e.,
that we gain enough from this transformation to compensatié extra hassle of reblocking blobs
in Sp that turn unblocked when we chan@&;. With this in mind, let us define theveight of a
component/; in H as

wivey = [T0B1] i 0] = 6183, 0w 038
! 0 otherwise.

The idea is that a componeh} has large weight if the hiding séf;; in this component is large
compared to the number of bottom black verticeSjp hidden and the white pebble®?, helping
U}, to hideBY,. If we concentrate on changing the hiding sets in componeitisnon-zero weight,
we hope to gain more from the transformationl&j into U than we lose from then having to
reblockingSp. And sinceUy is large, the total weight of the non-zero-weight composédat
guaranteed to be reasonably large.

Proposition 10.34.With notation as above, the total Weight of all connectedpamentsly, ... ,Vy
in the hiding set grapt{ = H(G,Ur U W2) is 8 w(V;) > |By U Bg U W5

Proof. The total size of the union of all subset§, C Uy with sizes|U};| < 6 - |By, U Wi|
resulting in zero-weight componenitsin H is clearly strictly less than

k
6-) |Byy UWy|=6-|By UWE| <6-|By UBsUWE| . (10.35)
1=1

Since according to Corollary 10.28 we have tay| > 12- |By U Bg U W4, it follows that the
size of the unioJ 1), U}y of all subsetd/}; corresponding to non-zero-weight componekits

must be strictly larger thaé- |By U Bz U W4|. But then

S w) = o [Uhl/6] > - U UH 1By U Bp U W5 (10.36)
w(V;)>0 w(V;)>0
as claimed in the proposition. O

80

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

We have now collected all tools needed to establish the @kned limited hiding-cardinality
property for spreading graphs. Before we wrap up the prebfid recapitulate what we have shown
so far.

We have divided the blocking s&tinto a disjoint union/y; U Up of the verticed/ not only
blocking but actuallyhiding the subconfigurations i C S, and the vertice8/5 just helpingUy
to block the remaining subconfigurationsSg = S \ Sy. In Lemma 10.27 and Corollary 10.28,
we proved that it/ is large (which we are assuming) thEg must be very small compared 1§y,
so we can basically just ignotés. If we want to do something interesting, it will have to be don
with Ug.

And indeed, Lemma 10.33 tells us that we can restrudtyeto get a new vertex set hiding
Sy and make considerable savings, but that this can le&ztmo longer being blocked. By
Proposition 10.34, there is a large fractiorLgf that resides in the non-zero-weight components of
the hiding set grapl (as defined in Equation (10.34)). We would like to show thajualjciously
performing the restructuring of Lemma 10.33 in these corepts) we can also take careSy.

More precisely, we claim that we can combine the hiding §&tsrom Lemma 10.33 with
some subsets dfy U Ug andBg into a new blocking set/* for all of Sy U Sg = S in such
a way that the measure (U*) does not exceeeh(U) = pot(S) but so that|U*| < |U|. But
this contradicts the assumptions in Lemma 10.26. It follthreg the conclusion in Lemma 10.26,
which we assumed to be false in order to derive a contradictioust instead be true. That is,
any setU that is chosen as in Lemma 10.26 must have HiZe< 13 - \BH U Bg U Wﬁ,|. This
in turn implies Theorem 10.19, i.e., that layered spreadiagphs possess the Generalized limited
hiding-cardinality property that we assumed in order toagktwer bound on blob-pebbling price,
and we are done.

We proceed to establish this final claim. Our plan is onceragiado some bipartite match-
ing with the help of Hall's theorem. Create a weighted biparmgraph with the vertices ilfp =
{bot(B)|[B](W) € Sg} on the left-hand side and with the non-zero-weight conmectenpon-
ents amondnh, . .., Vi in H in the sense of (10.34) acting as “supervertices” on the-tigind side.
Reorder the indices among the connected comporiénts . , V;. if needed so that the non-zero-
weight components ar#, ..., Vi.. All vertices in the weighted graphs are assigned weights so
that each right-hand side superverféxgets its weight according to (10.34), and each left-hand
vertex has weight.1% We define the neighbours of each fixed vertiex B to be

N(b) = {Vi|w(V;) > 0 and maxlevel (Uf;) > level(d)} , (10.37)

i.e., all non-zero-weight componeritsthat contain vertices in the hiding 9€é; that could possibly
be involved in blocking any subconfiguratigB](WW) € Sp having bottom vertexot(B) = b.
This is so since by Proposition 10.24, any verieg Uy helping to block such a subconfiguration
[B](W) € Sp must be strictly above, so if the highest-level vertices B, are on a level below,
no vertex inU}; can be responsible for blockin@] (V).

Let B’ C Bp be alargest set such tha{ N (B')) < |B’|. We must have

N(B') # UL, Vi (10.38)

sincew (U, Vi) > |Bi U Bp U W§| > |Bs| by Proposition 10.34. For al” C Bp \ B’ it
holds that
w(N(B")\N(B)) = |B"| (10.39)

since otherwisd3’ would not be of largest size as assumed above. The ineq&lit$9) plugged
into Hall's marriage theorem tells us that there is a magtohthe vertices in5z \ B’ to the

00, if we like, we can equivalently think of an unweighted giiawhere eaclv; is a cloud ofw(V;) unique and
distinct vertices, and whet® (b) in (10.37) always containing either all or none of theseivest

81

TOWARDS AN OPTIMAL SEPARATION

components i J*, V; \ N (B') # 0 with the property that no componeh} gets matched with
more thanw(V;) vertices fromBz \ 5’

Reorder the components in the hiding set graplso that the matched componentsh
areVi,...,V,, and the rest of the components arg.1,..., Vs and so thatU}{, ...,Up and
UIQ”“, R UI";, are the corresponding subsets of the hiding.get Then pick good local blockers
U! C V; as in Lemma 10.33 for all componenits, . . ., V,,,. Now the following holds:

1. By construction and assumption, respectively, the weset J", U2 U (., U}, blocks
(and even hidesy .

2. All subconfigurations in
Sk = {[BI(W) € Sp| bot(B) € B'} (10.40)

are blocked by U N(B') = Ug U UL, Ul as we have not moved any elements
in U aboveB'.

3. With notation as in Lemma 10.30, I&t = Up U |J}_,,.., U} and conside’! and U,
fori = 1,...,m. We haveU; 3,, Uy fori = 1,...,m by Lemma 10.33. Also, since
Uy N Up =0andU; C V; andUj, C V; for V4,. .., V; pairwise disjoint sets of vertices,
it holds for alli,j € [m], i # j, thatU! N Ul = 0, Ui, N UL =0, U N U}, = 0 and
Y N U}, = 0. Therefore, the conditions in Lemma 10.30 are satisfied andamclude that

YUUZ IUZ)

m(Up U UL, UL U Ui Up) = m(
(Y U Uz 1 UH)
(
(

IN

(10.41)

UB UUZ lUH UUZ =m+1]Z;I)
U) ,

m
m
m
m

where we note that’z U |J, U? U [
Also, we have the strict inequality

, U} ismeasured as a multi-set with repetitions

1=m-+

U U UL UL U Ul Uit < U1 (10.42)
where again the multi-set @unted with repetitions

4. It remains to take care of the potentially unblocked subgarations in
S% = {[B)(W) € Sp| bot(B) € Bg \ B} . (10.43)

But we derived above that there is a matching3gf\ B’ to V1, ..., V,, such that nd/; is
chosen by more than

w(V;) = [|U/6] < [|Uk1/3] (10.44)

vertices fromBp \ B’ (where we used that’;;| > 6 if w(V;) > 0 to get the last inequality).
This means that there is a spare blocker verteliirfor eachb € B \ B’ that is matched
to V;. Also, by the definition of neighbours in our weighted biggargraph, each is matched

to a component witaxlevel (U};) > level(b). By Observation 10.29, lowering these spare
vertices frommaxlevel (U};) to level(b) can only decrease the measure.

Finally, throw away any remaining multiple copies in our n@acking set, and denote the resulting
set byU*. We have that/* blocks S and thatm (U*) < m(U) but |U*| < |U|. Thisis a
contradiction sincé/ was chosen to be of minimal size, and thus Lemma 10.26 mudt It
then Theorem 10.19 follows immediately as well, as was natexve.

82

11 CONCLUSION AND OPEN PROBLEMS

10.5 Recapitulation of the Proof of Theorem 1.1 and Optimali ty of Result

Let us conclude this section by recalling why the tight boondtlause space for refuting pebbling
contradictions in Theorem 1.1 now follows and by showing tha current construction cannot be
pushed to give a better result.

Theorem 10.35 (rephrasing of Theorem 1.1)Suppose thaf7;, is a layered blob-pebblable DAG
of heighth that is spreading. Then the clause space of refuting thelp@)mntradictionPebdGh

of degreed > 1 by resolution isS’p(PebdGh F0) =©O(h).

Proof. The O(h) upper bound on clause space follows from the boked(G) < h + O(1) on
the black pebbling price in Lemma 9.2 on page 45 combined m'mhboundSp(PebC(l; F0) <
Peb(G) + O(1) from Proposition 4.15 on page 17.

For the lower bound, we instead consider the pebbling fcmrf‘iBlebéh without target ax-

ioms z(z),, ..., x(z), and use that by Lemma 7.1 on page 30 it holds fhatPeby;, + 0) =

Sp (*Pebd;, + \/\, (2);). Fix any resolution derivatiom : *Pebd, +\/¢_, z(z); and letP, be

the complete blob-pebbling of the graghassociated tar in Theorem 7.3 on page 31 such that
cost(Pr) < maxcer{cost(S(C))} + O(1). On the one hand, Theorem 8.5 on page 41 says that
cost(S(C)) < |C| provided thatl > 1, so in particular it must hold thabst (P,) < Sp(m)+0(1).

On the other hand;ost(P,) > Blob-Peb(G}) by definition, and by Theorems 10.8 and 10.19 it
holds thatBlob-Peb(G}) = Q(h). ThusSp(r) = Q2(h), and the theorem follows. O

Plugging in pyramid graphH, in Theorem 10.35, we gét-CNF formulasF;, of size ©(n)
with refutation clause spad®(y/n). This is the best we can get from pebbling formulas over
spreading graphs.

Theorem 10.36.Let G be any layered spreading graph and suppose fhdié has formula size
and number of clause®(n). ThenSp (Pebd, I 0) = O(y/n).

Proof. Suppose thaf has height:. ThenSp (Peb, - 0) = O(h) as was noted above. The size

of Pebl, as well as the number of clauses, is linear in the number rites |V (G)|. We claim
that the fact tha€ is spreading implies tha¥’ (G)| = ©(h?), from which the theorem follows.

To prove the claim, leV;, denote the vertices df on level L. Then|V(G)| = Z}i:o|VL|-
Obviously, for anyL the setl’;, hides the sink of GG. Fix for everyL some arbitrary minimal subset
V] C Vi, hiding z. ThenV] is tight, the grapt#(V7}) is hiding-connected by Corollary 9.23,
and settingj = h in the spreading inequality (9.10) we get tH&t/| > 1+ h — L. Hence
V(G| = Zi—olVil = (n?). =

The proof of Theorem 10.36 can also be extended to cover tgamalr definition in [37] of
spreading graphs that are not necessarily layered, but idlmrdetails.

11 Conclusion and Open Problems

We have proven an asymptotically tight bound on the refomatiause space in resolution of peb-
bling contradictions over pyramid graphs. This yields theently best known separation of length
and clause space in resolution. Also, in contrast to previmlynomial lower bounds on clause
space, our result does not not follow from lower bounds ortlwidr the corresponding formulas.
Instead, a corollary of our result is an exponential improgat of the separation of width and space
in [42]. This is a first step towards answering the questiothefrelationship between length and
space posed in, for instance, [11, 29, 57].

83

TOWARDS AN OPTIMAL SEPARATION

More technically speaking, we have established that fographsG in the class of “layered
spreading DAGs” (including complete binary trees and pydagnaphs) the height of G, which
coincides with the black-white pebbling price, is an asyotipal lower bound for the refutation
clause spacé'p(PebdG + 0) of pebbling contradiction?ebé provided thatd > 2. Plugging in
pyramid graphs we get &n(,/n) bound on space, which is the best one can get for any spreading
graph.

An obvious question is whether this lower bound on clauseespaterms of black-white peb-
bling price is true for arbitrary DAGs. In particular, do¢$old for the family of DAGS{G,, }72 ,
in [31] of sizeO(n) that have maximal black-white pebbling priB&V-Peb(G,,) = Q(n/logn)
in terms of size? If it could be proven for pebbling contréidics over such graphs that pebbling
price bounds clause space from below, this would immediatgbly that there aré&-CNF formulas
refutable in small length that can be maximally complex wébpect to clause space.

e ¢}

Open Problem 1. Is there a family of unsatisfiable-CNF formulas{ F, },~ ; of sizeO(n) such
that L(F, + 0) = O(n) and W(F,, - 0) = O(1) but Sp(F,, F 0) = Q(n/logn)?

We are currently working on this problem, but note that tHe86&s in [31] seem to have much
more challenging structural properties that makes it harfifttthe lower bound argument from
standard black-white pebblings to blob-pebblings.

A second question, more related to Theorem 1.3 and the athde-0ff results presented in
Section 5, is as follows. We know from [15] (see Theorem 4h2} short resolution refutations
imply the existence of narrow refutations, and in view oftan appealing proof search heuristic is
to search exhaustively for refutations in minimal width. e3erious drawback of this approach is
that there is no guarantee that the short and narrow refotatire the same one. On the contrary,
the narrow refutatiom’ resulting from the proof in [15] is potentially exponenlyalonger than the
short proofr that we start with. However, we have no examples of formullasre/the refutation in
minimum width is actually known to be substantially longean the minimum-length refutation.
Therefore, it would be valuable to know whether this inceeaslength is necessary. That is, is
there a formula family which exhibits a length-width traolé-in the sense that there are short
refutations and narrow refutations, but all narrow refota have a length blow-up (polynomial or
superpolynomial)? Or is the exponential blow-up in [15} jais artifact of the proof?

Open Problem 2. If F'is a k-CNF formula ovem variables refutable in lengtli, is it true that
there is always a refutation of F' in width W(r) = O(\/nlog L) with length no more than, say,
L(m) = O(L) or at mostpoly(L)?

A similar trade-off question can be posed for clause spadeen refutation in small space,
we can prove using [5] (see Theorem 4.5) that there must axisfutation in short length. But
again, the short refutation resulting from the proof is f@& $ame as that with which we started.
For concreteness, let us fix the space to be constant. If aquiial-sizek-CNF formula has a
refutation in constant clause space, we know that it musttugable in polynomial length. But can
we get a refutation in both short length and small space smebusly?

Open Problem 3. Suppose tha{F, },~, is a family of polynomial-sizé&-CNF formulas with
refutation clause spacgp (F, F 0) = O(1). Does this imply that there are refutationg : F, 0
simultaneously in lengtly(7,,) = poly(n) and clause spacép(m,) = O(1)?

Or can it be that restricting the clause space, we sometimes to end up with really long
refutations? We would like to know what holds in this case] aow it relates to the trade-off
results for variable space in [33].

Finally, we note that all bounds on clause space proven gs fathe regime where the clause
spaceSp () is less than the number of claugég in F'. This is quite natural, since the size of the
formula can be shown to be an upper bound on the minimal clspesee needed [28].

84

11 CONCLUSION AND OPEN PROBLEMS

Such lower bounds on space might not seem too relevant teeclaarning algorithms, since
the size of the cache in practical applications usually kéllvery much larger than the size of the
formula. For this reason, it seems to be a highly interegtimodplem to determine what can be said
if we allow extra clause space. Assume that we have a CNF farimwf size roughlyn refutable
in length L(F + 0) = L for L suitably large (sayl, = poly(n) or L = nl°¢™ or so). Suppose
that we allow clause space more than the minimus O(1), but less than the trivial upper bound
L/log L. Can we then find a resolution refutation using at most thattmapace and achieving at
most a polynomial increase in length compared to the minifhum

Open Problem 4 ([12]). Let F' be any CNF formula withF’| = n clauses (or| Vars(F)| = n
variables). Suppose thdi(F' + 0) = L. Does this imply that there is a resolution refutation
7 : F'F0in clause spaceép(m) = O(n) and lengthL(7) = poly(L)?

If so, this could be interpreted as saying that a smart enalayse learning algorithm can
potentially find any short resolution refutation in readaleaspace (and for formulas that cannot be
refuted in short length we cannot hope to find refutationgiefiitly anyway).

We conclude with a couple of comments on clause space veesedearning.

Firstly, we note that it is unclear whether one should expegtfast progress on Open Prob-
lem 4, at least if if our experience from the case whe&sér) < |F'| is anything to go by. Proving
lower bounds on space in this “low-end regime” for formulasyewith respect to length has been
(and still is) very challenging. However, it certainly camme excluded that problems in the range
Sp(m) > |F| might be approached with different and more successfuhigabs.

Secondly, we would like to raise the question of whetherpitesof what was just said before
Open Problem 4, lower bounds on clause space can nevesgthyphesindications as to which for-
mulas might be hard for clause learning algorithms and whpp8se that we know for some CNF
formulaF' thatSp (F' - 0) is large. What this tells us is that any algorithm, even a deterministic
one making optimal choices concerning which clauses to satterow away at any given point in
time, will have to keep a fairly large number of “active” ctas in memory in order to carry out the
refutation. Since this is so, a real-life deterministicagfreearch algorithm, which has no sure-fire
way of knowing which clauses are the right ones to concenatat any given moment, might
have to keep working on a lot of extra clauses in order to be that the fairly large critical set of
clauses needed to find a refutation will be among the “actlalises.

Intriguingly enough, pebbling contradictions over pyrdminight in fact be an example of this.
We know that these formulas are very easy with respect tdheamyd width, having constant-width
refutations that are essentially as short as the formulmdklves. But in [52], it was shown that
state-of-the-art clause learning algorithms can havessproblems with even moderately large
pebbling contradiction§: Although we are certainly not arguing that this is the whadkerys—
it was also shown in [52] that the branching order is a ciitfeator, and that given some extra
structural information the algorithm can achieve an exptinespeed-up—we wonder whether the
high lower bound on clause space can nevertheless be pag ekplanation. It should be pointed
out that pebbling contradictions are the only formulas wevkiof that are really easy with respect
to length and width but hard for clause space. And if theraripidgcal data showing that for these
very formulas clause learning algorithms can have grefitudlifies finding refutations, it might be
worth investigating whether this is just a coincidence oiga sf some deeper connection.

Acknowledgements

We are grateful to Per Austrin and Mikael Goldmann for gensrieedback during various stages
of this work, and to Gunnar Kreitz for quickly spotting somegb in a preliminary version of the

1The “grid pebbling formulas” in [52] are exactly our peblginontradictions of degre®= 2 over pyramid graphs.

85

TOWARDS AN OPTIMAL SEPARATION

blob-pebble game. Also, we would like to thank Paul Beamerididlawe, Philipp Hertel, and
Toniann Pitassi for valuable correspondence concernigigwork, Nathan Segerlind for comments
and pointers regarding clause learning, and Eli Ben-Sass@iimulating discussions about proof
complexity in general and the problems in Section 11 in paldr.

References

[1]

2]

[3]

[4]

Ron Aharoni and Nathan Linial. Minimal nhon-two-colotathypergraphs and minimal unsat-
isfiable formulas.Journal of Combinatorial Theory3:196—-204, 1986.

Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Ramt, and Avi Wigderson. Space
complexity in propositional calculussIAM Journal on Computingd1(4):1184-1211, 2002.

Michael Alekhnovich, Jan Johannsen, Toniann Pitassl Adasdair Urquhart. An exponential
separation between regular and general resolutiorRréceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC, @2pes 448—-456, May 2002.

Noga Alon and Michael Capalbo. Smaller explicit superentrators. IrProceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorit QA '03) pages 340-346,
2003.

[5] Albert Atserias and Victor Dalmau. A combinatorical cheterization of resolution width. In

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

Proceedings of the 18th IEEE Annual Conference on CompuatiComplexity (CCC '03)
pages 239-247, July 2003. Journal version to appedoumnal of Computer and System
Sciences

Sven Baumer, Juan Luis Esteban, and Jacobo Toran. Miimnsatisfiable CNF formulas.
Bulletin of the European Association for Theoretical CoteplBcience 74:190-192, June
2001.

Paul Beame. Proof complexity. In Steven Rudich and Avgidrson, editorsComputa-
tional Complexity Theoryolume 10 oflAS/Park City Mathematics Seriegages 199—-246.
American Mathematical Society, 2004.

Paul Beame, Richard Karp, Toniann Pitassi, and MichadisS The efficiency of resolution
and Davis-Putnam procedureSlAM Journal on Computing1(4):1048-1075, 2002.

Paul Beame, Henry Kautz, and Ashish Sabharwal. Undaugtg the power of clause learn-
ing. In Proceedings of the 18th International Joint Conference riifigial Intelligence (1J-
CAI '03), pages 94-99, 2003.

Paul Beame and Toniann Pitassi. Propositional proofglexity: Past, present, and future.
Bulletin of the European Association for Theoretical Cotep&cience65:66—89, June 1998.

Eli Ben-Sasson. Size space tradeoffs for resolutiarPrbceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC,@2pes 457-464, May 2002.

Eli Ben-Sasson. Personal communication, 2007.

Eli Ben-Sasson and Nicola Galesi. Space complexitanfiom formulae in resolutiorRan-
dom Structures and Algorithm23(1):92-109, August 2003.

Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigdarddear optimal separation of treelike
and general resolutiorCombinatorica 24(4):585-603, September 2004.

86

REFERENCES

[15] Eli Ben-Sasson and Avi Wigderson. Short proofs are avarrresolution made simple.
Journal of the ACM48(2):149-169, March 2001.

[16] Archie Blake.Canonical Expressions in Boolean AlgebRhD thesis, University of Chicago,
1937.

[17] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesd daan Johannsen. On the relative
complexity of resolution refinements and cutting planesopgystems. SIAM Journal on
Computing 30(5):1462-1484, 2000.

[18] Maria Luisa Bonet and Nicola Galesi. Optimality of siadth tradeoffs for resolutionCom-
putational Complexityl0(4):261-276, December 2001.

[19] Josh Buresh-Oppenheim and Toniann Pitassi. The codityplef resolution refinements. In
Proceedings of the 18th IEEE Symposium on Logic in Compuien& (LICS '03) pages
138-147, June 2003.

[20] Va3ek Chvatal and Endre Szemerédi. Many hard exesnfdr resolution. Journal of the
ACM, 35(4):759-768, October 1988.

[21] Stephen A. Cook. The complexity of theorem-provinggadures. IrfProceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOGC [dges 151-158, 1971.

[22] Stephen A. Cook. An observation on time-storage trdfieJournal of Computer and System
Sciences9:308-316, 1974.

[23] Stephen A. Cook and Robert Reckhow. The relative efiimyeof propositional proof systems.
Journal of Symbolic Logizt4(1):36-50, March 1979.

[24] Stephen A. Cook and Ravi Sethi. Storage requirememntsidterministic polynomial time
recognizable languagedournal of Computer and System Sciende¥1):25-37, 1976.

[25] Martin Davis, George Logemann, and Donald Loveland. Achine program for theorem
proving. Communications of the ACNB(7):394-397, July 1962.

[26] Martin Davis and Hilary Putnam. A computing proceduoe duantification theoryJournal
of the ACM 7(3):201-215, 1960.

[27] Juan Luis Esteban, Nicola Galesi, and Jochen Messmeth@®complexity of resolution with
bounded conjunctionsTheoretical Computer Sciencg21(2-3):347-370, August 2004.

[28] Juan Luis Esteban and Jacobo Toran. Space boundssfidutien. Information and Compu-
tation, 171(1):84-97, 2001.

[29] Juan Luis Esteban and Jacobo Toran. A combinatoriatacherization of treelike resolution
space.Information Processing Letter87(6):295-300, 2003.

[30] zvi Galil. On resolution with clauses of bounded sizeSIAM Journal on Computing
6(3):444-459, 1977.

[31] John R. Gilbert and Robert Endre TarjanVariations of a Pebble Game on Graphs
Technical Report STAN-CS-78-661, Stanford University789 Available at the webpage
http://infol ab. stanford. edu/ TR/ CS- TR-78-661. ht m .

[32] Armin Haken. The intractability of resolution. Theoretical Computer Science9(2-
3):297-308, August 1985.

87

TOWARDS AN OPTIMAL SEPARATION

[33] Philipp Hertel and Toniann Pitassi. Exponential tispelce speedups for resolution and the
PSPACE-completeness of black-white pebbling. Phoceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCSpages 137-149, October 2007.

[34] John Hopcroft, Wolfgang Paul, and Leslie Valiant. Onéiversus spacdournal of the ACM
24(2):332-337, April 1977.

[35] Balasubramanian Kalyanasundaram and George Schri@gehe power of white pebbles. In
Proceedings of the 20th Annual ACM Symposium on Theory opQtimy (STOC '88)pages
258-266, 1988.

[36] Henry Kautz and Bart Selman. The state of SATDiscrete Applied Mathematics
155(12):1514-1524, June 2007.

[37] Maria M. Klawe. A tight bound for black and white pebbles the pyramid.Journal of the
ACM, 32(1):218-228, January 1985.

[38] Oliver Kullmann. An application of matroid theory todtSAT problem. InProceedings of
the 15th Annual IEEE Conference on Computational Compl€<iCC '00) pages 116-124,
July 2000.

[39] Thomas Lengauer and Robert Endre Tarjan. The spaceleritypof pebble games on trees.
Information Processing Letterd0(4/5):184-188, July 1980.

[40] Friedhelm Meyer auf der Heide. A comparison of two vaoias of a pebble game on graphs.
Theoretical Computer SciencE3(3):315-322, 1981.

[41] Jakob NordstromNarrow Proofs May Be Spacious: Separating Space and WidResol-
ution. Technical Report TR05-066, Revision 02, Electronic Gmpliom on Computational
Complexity (ECCC), November 2005.

[42] Jakob Nordstrom. Narrow proofs may be spacious: Simgy space and width in resolution
(Extended abstract). IRroceedings of the 38th Annual ACM Symposium on Theory of Com
puting (STOC '06)pages 507-516, May 2006. Journal version to appealAiM Journal on
Computing

[43] Jakob Nordstrom.A Simplified Way of Proving Trade-off Results for Resolutidachnical
Report TR07-114, Electronic Colloquium on Computationair@lexity (ECCC), September
2007.

[44] Jakob Nordstrom and Johan Hastad. Towards an opsejadration of space and length in
resolution (Extended abstract). Pmoceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC '08May 2008. To appeatr.

[45] Christos H. PapadimitriouComputational ComplexityAddison-Wesley, 1994.

[46] Christos H. Papadimitriou and David Wolfe. The comexf facets resolved.Journal of
Computer and System Sciencg&s(1):2—-13, 1988.

[47] Wolfgang J. Paul, Robert Endre Tarjan, and James R.nCelgpace bounds for a game on
graphs.Mathematical Systems Theopfy0:239-251, 1977.

[48] Nicholas Pippenger.Pebbling Technical Report RC8258, IBM Watson Research Center,
1980. Appeared in Proceedings of the 5th IBM Symposium orhifagatical Foundations of
Computer Science, Japan.

88

REFERENCES

[49] Ran Raz and Pierre McKenzie. Separation of the monok@éierarchy. Combinatorica
19(3):403-435, March 1999.

[50] John Alan Robinson. A machine-oriented logic basedhanrésolution principleJournal of
the ACM 12(1):23-41, January 1965.

[51] Ashish SabharwalAlgorithmic Applications of Propositional Proof Complixi PhD thesis,
University of Washington, Seattle, 2005.

[52] Ashish Sabharwal, Paul Beame, and Henry Kautz. Usiallpm structure for efficient clause
learning. In6th International Conference on Theory and ApplicationSatisfiability Testing
(SAT '03), Selected Revised Paperslume 2919 ofLecture Notes in Computer Science
pages 242-256. Springer, 2004.

[53] The international SAT Competitions web pabét p: / / ww. sat conpeti ti on. org.

[54] Nathan Segerlind. The complexity of propositional gdfgo Bulletin of Symbolic Logic
13(4):482-537, December 2007.

[55] Gunnar Stalmarck. Short resolution proofs for a segaeof tricky formulas Acta Informat-
ica, 33(3):277-280, May 1996.

[56] Jacobo Toran. Lower bounds for space in resolutiorRrbteedings of the 13th International
Workshop on Computer Science Logic (CSL,9®Jume 1683 of.ecture Notes in Computer
Sciencepages 362—-373. Springer, 1999.

[57] Jacobo Toran. Space and width in propositional resmiu Bulletin of the European Associ-
ation for Theoretical Computer Scien@38:86—104, June 2004.

[58] Grigori Tseitin. On the complexity of derivation in grositional calculus. In A. O. Si-
lenko, editor,Structures in Constructive Mathematics and Mathematicait, Part Il, pages
115-125. Consultants Bureau, New York-London, 1968.

[59] Alasdair Urquhart. Hard examples for resolutidournal of the ACM34(1):209-219, Janu-
ary 1987.

ECCC ISSN 1433-809
89
http://eccc.hpi-web.de/

