
Towards an Optimal Separation of
Space and Length in Resolution∗

Jakob Nordström† Johan Håstad

Royal Institute of Technology (KTH)
SE-100 44 Stockholm, Sweden

{jakobn,johanh}@kth.se

February 29, 2008

Abstract

Most state-of-the-art satisfiability algorithms today arevariants of the DPLL procedure
augmented with clause learning. The main bottleneck for such algorithms, other than the obvi-
ous one of time, is the amount of memory used. In the field of proof complexity, the resources
of time and memory correspond to the length and space of resolution proofs. There has been a
long line of research trying to understand these proof complexity measures, as well as relating
them to the width of proofs, i.e., the size of the largest clause in the proof, which has been
shown to be intimately connected with both length and space.While strong results have been
proven for length and width, our understanding of space is still quite poor. For instance, it has
remained open whether the fact that a formula is provable in short length implies that it is also
provable in small space (which is the case for length versus width), or whether on the con-
trary these measures are completely unrelated in the sense that short proofs can be arbitrarily
complex with respect to space.

In this paper, we present some evidence that the true answer should be that the latter case
holds and provide a possible roadmap for how such an optimal separation result could be ob-
tained. We do this by proving a tight bound ofΘ(

√
n) on the space needed for so-called

pebbling contradictions over pyramid graphs of sizen. This yields the first polynomial lower
bound on space that is not a consequence of a corresponding lower bound on width, as well as
an improvement of the weak separation of space and width in (Nordström 2006) from logar-
ithmic to polynomial.

Also, continuing the line of research initiated by (Ben-Sasson 2002) into trade-offs between
different proof complexity measures, we present a simplified proof of the recent length-space
trade-off result in (Hertel and Pitassi 2007), and show how our ideas can be used to prove a
couple of other exponential trade-offs in resolution.

1 Introduction

Ever since the fundamentalNP-completeness result of Cook [21], the problem of deciding whether
a given propositional logic formula in conjunctive normal form (CNF) is satisfiable or not has been
on center stage in Theoretical Computer Science. In more recent years,SATISFIABILITY has gone
from a problem of mainly theoretical interest to a practicalapproach for solving applied problems.
Although all known Boolean satisfiability solvers (SAT-solvers) have exponential running time in

∗This is the full-length version of the paper [44] to appear atSTOC ’08.
†Research supported in part by grants from the foundationsJohan och Jakob Söderbergs stiftelseand Sven och

Dagmar Saléns stiftelse.

Electronic Colloquium on Computational Complexity, Report No. 26 (2008)

ISSN 1433-8092

TOWARDS AN OPTIMAL SEPARATION

the worst case, enormous progress in performance has led to satisfiability algorithms becoming a
standard tool for solving a large number of real-world problems such as hardware and software
verification, experiment design, circuit diagnosis, and scheduling.

A somewhat surprising aspect of this development is that themost successful SAT-solvers to
date are still variants of the resolution-based Davis-Putnam-Logemann-Loveland (DPLL) proced-
ure [25, 26] augmented withclause learning. For instance, the great majority of the best algorithms
at the 2007 round of the international SAT competitions [53]fit this description. DPLL procedures
perform a recursive backtrack search in the space of partialtruth value assignments. The idea
behind clause learning, orconflict-driven learning, is that at each failure (backtrack) point in the
search tree, the system derives a reason for the inconsistency in the form of a new clause and then
adds this clause to the original CNF formula (“learning” theclause). This can save a lot of work
later on in the proof search, when some other partial truth value assignment fails for similar reas-
ons. The main bottleneck for this approach, other than the obvious one of time, is the amount of
memory used by the algorithms. Since there is only a finite amount of space, all clauses cannot
be stored. The difficulty lies in obtaining a highly selective and efficient clause caching scheme
that nevertheless keeps the clauses needed. Thus, understanding time and memory requirements
for clause learning algorithms, and how these requirementsare related to one another, is a question
of great practical importance. We refer to e.g. [9, 36, 51] for a more detailed discussion of clause
learning (and SAT-solving in general) with examples of applications.

The study of proof complexity originated with the seminal paper of Cook and Reckhow [23]. In
its most general form, a proof system for a languageL is a predicateP (x, π), computable in time
polynomial in|x| and|π|, such that for allx ∈ L there is a stringπ (aproof) for whichP (x, π) = 1,
whereas for anyx 6∈ L it holds for all stringsπ that P (x, π) = 0. A proof system is said to be
polynomially bounded if for everyx ∈ L there is a proofπx of size at most polynomial in|x|. A
propositional proof systemis a proof system for the language of tautologies in propositional logic.

From a theoretical point of view, one important motivation for proof complexity is the intimate
connection with the fundamental question ofP versusNP. SinceNP is exactly the set of languages
with polynomially bounded proof systems, and sinceTAUTOLOGY can be seen to be the dual prob-
lem of SATISFIABILITY , we have the famous theorem of [23] thatNP = co-NP if and only if there
exists a polynomially bounded propositional proof system.Thus, if it could be shown that there are
no polynomially bounded proof systems for propositional tautologies,P 6= NP would follow as a
corollary sinceP is closed under complement. One way of approaching this distant goal is to study
stronger and stronger proof systems and try to prove superpolynomial lower bounds on proof size.
However, although great progress has been made in the last couple of decades for a variety of proof
systems, it seems that we are still very far from fully understanding the reasoning power of even
quite simple ones.

A second important motivation is that, as was mentioned above, designing efficient algorithms
for proving tautologies (or, equivalently, testing satisfiability), is a very important problem not only
in the theory of computation but also in applied research andindustry. All automated theorem
provers, regardless of whether they actually produce a written proof, explicitly or implicitly define
a system in which proofs are searched for and rules which determine what proofs in this system
look like. Proof complexity analyzes what it takes to simplywrite down and verify the proofs that
such an automated theorem-prover might find, ignoring the computational effort needed to actually
find them. Thus a lower bound for a proof system tells us that any algorithm, even an optimal
(non-deterministic) one making all the right choices, mustnecessarily use at least the amount of a
certain resource specified by this bound. In the other direction, theoretical upper bounds on some
proof complexity measure give us hope of finding good proof search algorithms with respect to
this measure, provided that we can design algorithms that search for proofs in the system in an
efficient manner. For DPLL procedures with clause learning,the time and memory resources used
are measured by thelengthandspaceof proofs in the resolution proof system.

2

1 INTRODUCTION

The field of proof complexity also has rich connections to cryptography, artificial intelligence
and mathematical logic. Some good surveys providing more details are [7, 10, 54].

1.1 Previous Work

Any formula in propositional logic can be converted to a CNF formula that is only linearly larger
and is unsatisfiable if and only if the original formula is a tautology. Therefore, any sound and
complete system for refuting CNF formulas can be consideredas a general propositional proof
system.

Perhaps the single most studied proof system in propositional proof complexity,resolution, is
such a system that produces proofs of the unsatisfiability ofCNF formulas. The resolution proof
system appeared in [16] and began to be investigated in connection with automated theorem proving
in the 1960s [25, 26, 50]. Because of its simplicity—there isonly one derivation rule—and because
all lines in a proof are clauses, this proof system readily lends itself to proof search algorithms.

Being so simple and fundamental, resolution was also a natural target to attack when developing
methods for proving lower bounds in proof complexity. In this context, it is most straightforward
to prove bounds on thelengthof refutations, i.e., the number of clauses, rather than on the total size
of refutations. The length and size measures are easily seento be polynomially related. In 1968,
Tseitin [58] presented a superpolynomial lower bound on refutation length for a restricted form
of resolution, calledregular resolution, but it was not until almost 20 years later that Haken [32]
proved the first superpolynomial lower bound for general resolution. This weakly exponential
bound of Haken has later been followed by many other strong results, among others truly expo-
nential lower bound on resolution refutation length for different formula families in, for instance,
[8, 15, 20, 59].

A second complexity measure for resolution, first made explicit by Galil [30], is thewidth,
measured as the maximal size of a clause in the refutation. Ben-Sasson and Wigderson [15] showed
that the minimal widthW(F ` 0) of any resolution refutation of ak-CNF formulaF is bounded
from above by the minimal refutation lengthL(F ` 0) by

W(F ` 0) = O
(
√

n log L(F ` 0)
)

, (1.1)

where n is the number of variables inF . Since it is also easy to see that resolution refuta-
tions of polynomial-size formulas in small width must necessarily be short (for the reason that
(2 · #variables)w is an upper bound on the total number of distinct clauses of width w), the result
in [15] can be interpreted as saying roughly that there exists a short refutation of thek-CNF formu-
la F if and only if there exists a (reasonably) narrow refutationof F . This gives rise to a natural
proof search heuristic: to find a short refutation, search for refutations in small width. It was shown
in [14] that there are formula families for which this heuristic exponentially outperforms any DPLL
procedure regardless of branching function.

The formal study ofspacein resolution was initiated by Esteban and Torán [28, 56]. Intuitively,
the spaceSp(π) of a resolution refutationπ is the maximal number of clauses one needs to keep
in memory while verifying the refutation, and the spaceSp(F ` 0) of refutingF is defined as the
minimal space of any refutation ofF . A number of upper and lower bounds for refutation space
in resolution and other proof systems were subsequently presented in, for example, [2, 13, 27, 29].
Just as for width, the minimum space of refuting a formula canbe upper-bounded by the size of the
formula. Somewhat unexpectedly, however, it also turned out that the lower bounds on resolution
refutation space for several different formula families exactly matched previously known lower
bounds on refutation width. Atserias and Dalmau [5] showed that this was not a coincidence, but
that the inequality

W(F ` 0) ≤ Sp(F ` 0) + O(1) (1.2)

3

TOWARDS AN OPTIMAL SEPARATION

holds for anyk-CNF formulaF , where the (small) constant term depends onk. In [42], the first
author proved that the inequality (1.2) is asymptotically strict by exhibiting ak-CNF formula family
of sizeO(n) refutable in widthW(Fn ` 0) = O(1) but requiring spaceSp(Fn ` 0) = Θ(log n).

The space measure discussed above is known asclause space. A less well-studied space meas-
ure, introduced by Alekhnovich et al. [2], isvariable space, which counts the maximal number of
variable occurrences that must be kept in memory simultaneously. Ben-Sasson [11] used this meas-
ure to obtain a trade-off result for clause space versus width in resolution, proving that there are
k-CNF formulasFn that can be refuted in constant clause space and constant width, but for which
any refutationπn must haveSp(πn) ·W(πn) = Ω(n/ log n). More recently, Hertel and Pitassi [33]
showed that there are CNF formulasFn for which any refutation ofFn in minimal variable space
VarSp(Fn ` 0) must have exponential length, but by adding just3 extra units of storage one can
instead get a resolution refutation in linear length.

1.2 Questions Left Open by Previous Research

Despite all the research that has gone into understanding the resolution proof system, a number of
fundamental questions still remain unsolved. We touch briefly on two such questions below, and
then discuss a third one, which is the main focus of this paper, in somewhat more detail.

Equation (1.1) says that short refutation length implies narrow refutation width. Combining
Equation (1.2) with the observation above that narrow refutations are trivially short, we get a similar
statement that small refutation clause space implies shortrefutation length. Note, however, that
this doesnot mean that there is a refutation that is both short and narrow,or that any small-space
refutation must also be short. The reason is that the resolution refutations on the left- and right-hand
sides of (1.1) and (1.2) need not (and in general will not) be the same one.

In view of the minimum-width proof search heuristic mentioned above, an important question
is whether short refutation length of a formula does in fact entail that there is a refutation of it that
is both short and narrow. Also, it would be interesting to know if small space of a refutation implies
that it is short. It is not known whether there are such connections or whether on the contrary there
exist some kind of trade-off phenomena here similar to the one for space and width in [11].

A third, even more interesting problem is to clarify the relation between length and clause
space. For width, rewriting the bound in (1.1) in terms of thenumber of clauses|Fn| instead of
the number of variables we get that that if the width of refuting Fn is ω

(
√

|Fn| log|Fn|
)

, then the
length of refutingFn must be superpolynomial in|Fn|. This is known to be almost tight, since
[18] shows that there is ak-CNF formula family{Fn}∞n=1 with W(Fn ` 0) = Ω

(

3
√

|Fn|
)

but
L(Fn ` 0) = O(|Fn|). Hence, formula families refutable in polynomial length can have somewhat
wide minimum-width refutations, but not arbitrarily wide ones.

What does the corresponding relation between space and length look like? The inequality (1.2)
tells us that any correlation between length and clause space cannot be tighter than the correlation
between length and width, so in particular we get from the previous paragraph thatk-CNF formulas
refutable in polynomial length may have at least “somewhat spacious” minimum-space refutations.
At the other end of the spectrum, given any resolution refutation π of F in lengthL it can be proven
using results from [28, 34] thatSp(π) = O(L/ log L). This gives an upper bound on any possible
separation of the two measures. But is there a Ben-Sasson–Wigderson kind of upper bound on
space in terms of length similar to (1.1)? Or are length and space on the contrary unrelated in the
sense that there existk-CNF formulasFn with short refutations but maximal possible refutation
spaceSp(Fn ` 0) = Ω

(

L(Fn ` 0)/ log L(Fn ` 0)
)

in terms of length?
We note that for the restricted case of so-called tree-like resolution, [28] showed that there is

a tight correspondence between length and space, exactly asfor length versus width. The case for
general resolution has been discussed in, for instance, [11, 29, 57], but there seems to have been no
consensus on what the right answer should be. However, thesepapers identify a plausible formula

4

2 PROOF OVERVIEW AND PAPER ORGANIZATION

family for answering the question, namely so-calledpebbling contradictionsdefined in terms of
pebble games over directed acyclic graphs.

1.3 Our Contribution

The main result in this paper provides some evidence that thetrue answer to the question about
the relationship between space and length is more likely to be at the latter extreme, i.e., that the
two measures can be separated in the strongest sense possible. More specifically, as a step towards
reaching this goal we prove an asymptotically tight bound onthe clause space of refuting pebbling
contradictions over pyramid graphs.

Theorem 1.1. The clause space of refuting pebbling contradictions over pyramids of heighth
in resolution grows asΘ(h), provided that the number of variables per vertex in the pebbling
contradictions is at least2.

This yields the first separation of space and length (in the sense of a polynomial lower bound
on space for formulas refutable in polynomial length) that is not a consequence of a corresponding
lower bound on width, as well as an exponential improvement of the separation of space and width
in [42].

Corollary 1.2. For all k ≥ 4, there is a family{Fn}∞n=1 of k-CNF formulas of sizeΘ(n) that can
be refuted in resolution in lengthL(Fn ` 0) = O(n) and widthW(Fn ` 0) = O(1) but require
clause spaceSp(Fn ` 0) = Θ(

√
n).

In addition to our main result, we also make the the observation that the proof of the recent
trade-off result in [33] can be greatly simplified, and the parameters slightly improved. Using
similar ideas, we can also prove exponential trade-offs forlength with respect to clause space
and width. Namely, we show that there arek-CNF formulas such that if we insist on finding the
resolution refutation in smallest clause space or smallestwidth, respectively, then we have to pay
with an exponential increase in length. We state the theoremonly for length versus clause space.

Theorem 1.3. There is a family ofk-CNF formulas{Fn}∞n=1 of sizeΘ(n) such that:
• The minimal clause space of refutingFn in resolution isSp(Fn ` 0) = Θ

(

3
√

n
)

.
• Any resolution refutationπ : Fn ` 0 in minimal clause space must have lengthL(π) =

exp
(

Ω
(

3
√

n
))

.
• There are resolution refutationsπ′ : Fn ` 0 in asymptotically minimal clause spaceSp(π′) =

O
(

Sp(Fn ` 0)
)

and lengthL(π′) = O(n), i.e., linear in the formula size.

A theorem of exactly the same form can be proven for length versus width as well.

2 Proof Overview and Paper Organization

Since the proof of our main theorem is fairly involved, we start by giving an intuitive, high-level
description of the proofs of our results and outlining how this paper is organized.

2.1 Sketch of Preliminaries

A resolution refutationof a CNF formulaF can be viewed as a sequence of derivation steps on a
blackboard. In each step we may write a clause fromF on the blackboard (anaxiomclause), erase
a clause from the blackboard or derive some new clause implied by the clauses currently written

5

TOWARDS AN OPTIMAL SEPARATION

on the blackboard.1 The refutation ends when we reach the contradictory empty clause. Thelength
of a resolution refutation is the number of distinct clausesin the refutation, thewidth is the size of
the largest clause in the refutation, and theclause spaceis the maximum number of clauses on the
blackboard simultaneously. We writeL(F ` 0), W(F ` 0) andSp(F ` 0) to denote the minimum
length, width and clause space, respectively, of any resolution refutation ofF .

Thepebble gameplayed on a directed acyclic graph (DAG)G models the calculation described
by G, where the source vertices contain the input and non-sourcevertices specify operations on the
values of the predecessors. Placing a pebble on a vertexv corresponds to storing in memory the
partial result of the calculation described by the subgraphrooted atv. Removing a pebble fromv
corresponds to deleting the partial result ofv from memory. Apebblingof a DAGG is a sequence
of moves starting with the empty graphG and ending with all vertices inG empty except for a
pebble on the (unique) sink vertex. Thecostof a pebbling is the maximal number of pebbles used
simultaneously at any point in time during the pebbling. Thepebbling priceof a DAG G is the
minimum cost of any pebbling, i.e., the minimum number of memory registers required to perform
the complete calculation described byG.

The pebble game on a DAGG can be encoded as an unsatisfiable CNF formulaPebd
G, a so-

calledpebbling contradictionof degreed. See Figure 1 for a small example. Very briefly, pebbling
contradictions are constructed as follows:

• Associated variablesx(v)1, . . . , x(v)d with each vertexv (in Figure 1 we haved = 2).

• Specify that all sources have at least one true variable, forexample, the clausex(r)1 ∨ x(r)2
for the vertexr in Figure 1.

• Add clauses saying that truth propagates from predecessorsto successors. For instance, for
the vertexu with predecessorsr ands, clauses 4–7 in Figure 1 are the CNF encoding of the
implication(x(r)1 ∨ x(r)2) ∧ (x(s)1 ∨ x(s)2) → (x(u)1 ∨ x(u)2).

• To get a contradiction, conclude the formula withx(z)1 ∧ · · · ∧ x(z)d wherez is the sink of
the DAG.

We will need the observation from [14] that a pebbling contradiction of degreed over a graph with
n vertices can be refuted by resolution in lengthO

(

d2 · n
)

and widthO(d).

2.2 Proof Idea for Pebbling Contradictions Space Bound

Pebble games have been used extensively as a tool to prove time and space lower bounds and
trade-offs for computation. Loosely put, a lower bound for the pebbling price of a graph says that
although the computation that the graph describes can be performed quickly, it requires large space.
Our hope is that when we encode pebble games in terms of CNF formulas, these formulas inherit
the same properties as the underlying graphs. That is, if we pick a DAGG with high pebbling price,
since the corresponding pebbling contradiction encodes a calculation which requires large memory
we would like to try to argue that any resolution refutation of this formula should require large
space. Then a separation result would follow since we already know from [14] that the formula can
be refuted in short length.

More specifically, what we would like to do is to establish a connection between resolu-
tion refutations of pebbling contradictions on the one hand, and the so-calledblack-white pebble
game[24] modeling the non-deterministic computations described by the underlying graphs on the

1For our proof, it turns out that the exact definition of the derivation rule is not essential—our lower bound holds for
any sound rule. What is important is that we are only allowed to derive new clauses that are implied by the set of clauses
currently on the blackboard.

6

2 PROOF OVERVIEW AND PAPER ORGANIZATION

(x(r)1 ∨ x(r)2) ∧ (x(u)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(s)1 ∨ x(s)2) ∧ (x(u)1 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(t)1 ∨ x(t)2) ∧ (x(u)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ (x(u)2 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(r)1 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2) ∧ x(z)1

∧ (x(r)2 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2) ∧ x(z)2

∧ (x(r)2 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2)

∧ (x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

z

u v

r s t

Figure 1: The pebbling contradiction Peb2

Π2
for the pyramid graph Π2 of height 2.

other. Our intuition is that the resolution proof system should have to conform to the combinator-
ics of the pebble game in the sense that from any resolution refutation of a pebbling contradiction
Pebd

G we should be able to extract a pebbling of the DAGG.
Ideally, we would like to give a proof of a lower bound on the resolution refutation space of

pebbling contradictions along the following lines:

1. First, find a natural interpretation of sets of clauses currently “on the blackboard” in a refuta-
tion of the formulaPebd

G in terms of black and white pebbles on the vertices of the DAGG.

2. Then, prove that this interpretation of clauses in terms of pebbles captures the pebble game
in the following sense: for any resolution refutation ofPebd

G, looking at consecutive sets of
clauses on the blackboard and considering the corresponding sets of pebbles in the graph we
get a black-white pebbling ofG in accordance with the rules of the pebble game.

3. Finally, show that the interpretation captures clause space in the sense that if the content of
the blackboard inducesN pebbles on the graph, then there must be at leastN clauses on the
blackboard.

Combining the above with known lower bounds on the pebbling price of G, this would imply a
lower bound on the refutation space of pebbling contradictions and a separation from length and
width. For clarity, let us spell out what the formal argumentof this would look like.

Consider an arbitrary resolution refutation ofPebd
G. From this refutation we extract a pebbling

of G. At some point in timet in the obtained pebbling, there must be a lot of pebbles on thevertices
of G since this graph was chosen with high pebbling price. But this means that at timet, there are a
lot of clauses on the blackboard. Since this holds for any resolution refutation, the refutation space
of Pebd

G must be large. The separation result now follows from the fact that pebbling contradictions
are known to be refutable in linear length and constant widthif d is fixed.

Unfortunately, this idea does not quite work. In the next subsection, we describe the modifica-
tions that we are forced to make, and show how we can make the bits and pieces of our construction
fit together to yield Theorem 1.1 and Corollary 1.2 for the special case of pyramid graphs.

7

TOWARDS AN OPTIMAL SEPARATION





















x(u)1 ∨ x(u)2

x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2





















(a) Clauses on blackboard.

z

u v

r s t

(b) Corresponding pebbles in the graph.

Figure 2: Example of intuitive correspondence between sets of clauses and pebbles.

2.3 Detailed Overview of Formal Proof of Space Bound

The black-white pebble game played on a DAGG can be viewed as a way of proving the end result
of the calculation described byG. Black pebbles denote proven partial results of the computation.
White pebbles denote assumptions about partial results which have been used to derive other partial
results (i.e., black pebbles), but these assumptions will have to be verified for the calculation to
be complete. The final goal is a black pebble on the sinkz and no other pebbles in the graph,
corresponding to an unconditional proof of the end result ofthe calculation with any assumptions
made along the way having been eliminated.

Translating this to pebbling contradictions, it turns out that a fruitful way to think of a black
pebble onv is that it should correspond to truth of the disjunction

∨d
i=1 x(v)i of all positive literals

overv, or to “truth ofv”. A white pebble on a vertexw can be understood to mean that we need to
assumethe partial result onw to derive the black pebbles abovew in the graph. Needing to assume
the truth ofw is the opposite of knowing the truth ofw, so extending the reasoning above we get
that a white-pebbled vertex should correspond to “falsity of w”, i.e., to all negative literalsx(w)i,
i ∈ [d], overw.

Using this intuitive correspondence, we can translate setsof clauses in a resolution refutation
of Pebd

G into black and white pebbles inG as in Figure 2. It is easy to see that if we assume
x(s)1 ∨ x(s)2 and x(t)1 ∨ x(t)2, this assumption together with the clauses on the blackboard
in Figure 2(a) implyx(v)1 ∨ x(v)2, so v should be black-pebbled ands and t white-pebbled in
Figure 2(b). The vertexu is also black sincex(u)1 ∨ x(u)2 certainly is implied by the blackboard.
This translation from clauses to pebbles is arguably quite straightforward, and seems to yield well-
behaved black-white pebblings for all “sensible” resolution refutations ofPebd

G.
The problem is that we have no guarantee that the resolution refutations will be “sensible”.

Even though it might seem more or less clear how an optimal refutation of a pebbling contradic-
tion should proceed, a particular refutation might containunintuitive and seemingly non-optimal
derivation steps that do not make much sense from a pebble game perspective. In particular, a res-
olution derivation has no obvious reason always to derive truth that is restricted to single vertices.
For instance, it could add the axiomsx(u)i ∨ x(v)2 ∨ x(z)1 ∨ x(z)2, i = 1, 2, to the blackboard
in Figure 2(a), derive that the truth ofs and t implies the truth of eitherv or z, i.e., the clauses
x(s)i ∨ x(t)j ∨x(v)1 ∨ x(z)1 ∨x(z)2 for i, j = 1, 2, and then erasex(u)1 ∨ x(u)2 from the black-
board. Although it is hard to see from such a small example, this turns out to be a serious problem
in that there appears to be no way that we can interpret such derivation steps in terms of black and
white pebbles without making some component in the proof idea in Section 2.2 break down.

Instead, what we do is to invent a new pebble game, with white pebbles just as before, but
with blackblobsthat can cover multiple vertices instead of single-vertex black pebbles. A blob on
a vertex setV can be thought of as truth of some vertexv ∈ V . The derivation sketched in the
preceding paragraph, resulting in the set of clauses in Figure 3(a), will then be translated into white

8

2 PROOF OVERVIEW AND PAPER ORGANIZATION















x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2

x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2















(a) New set of clauses on blackboard.

z

u v

r s t

(b) Corresponding blobs and pebbles.

Figure 3: Intepreting sets of clauses as black blobs and white pebbles.

pebbles ons andt as before and a black blob covering bothv andz in Figure 3(b). We define rules
in this blob-pebble gamecorresponding roughly to black and white pebble placement and removal
in the usual black-white pebble game, and add a specialinflation ruleallowing us to inflate black
blobs to cover more vertices.

Once we have this blob-pebble game, we use it to construct a lower bound proof as outlined in
Section 2.2. First, we establish that for a fairly general class of graphs, any resolution refutation
of a pebbling contradiction can be interpreted as a blob-pebbling on the DAG in terms of which
this pebbling contradiction is defined. Intuitively, the reason that this works is that we can use the
inflation rule to analyze apparently non-optimal steps in the refutation.

Theorem 2.1. LetPebd
G denote the pebbling contradiction of degreed ≥ 1 over a layered DAGG.

Then there is a translation function from sets of clauses derived fromPebd
G into sets of black

blobs and white pebbles inG such that any resolution refutationπ of Pebd
G corresponds to a blob-

pebblingPπ of G under this translation.

In fact, the only property that we need from the layered graphs in Theorem 2.1 is that ifw is a
vertex with predecessorsu andv, then there is no path between the siblingsu andv. The theorem
holds for any DAG satisfying this condition.

Next, we carefully design a cost function for black blobs andwhite pebbles so that the cost of
the blob-pebblingPπ in Theorem 2.1 is related to the space of the resolution refutationπ.

Theorem 2.2. If π is a refutation of a pebbling contradictionPebd
G of degreed > 1, then the cost

of the associated blob-pebblingPπ is bounded by the space ofπ by cost(Pπ) ≤ Sp(π) + O(1).

Without going into too much detail, in order to make the proofof Theorem 2.2 work we can only
charge for black blobs having distinct lowest vertices (measured in topological order), so additional
blobs with the same bottom vertices are free. Also, we can only charge for white pebbles below
these bottom vertices.

Finally, we need lower bounds on blob-pebbling price. Because of the inflation rule in combin-
ation with the peculiar cost function, the blob-pebble gameseems to behave rather differently from
the standard black-white pebble game, and therefore we cannot appeal directly to known lower
bounds on black-white pebbling price. However, for a more restricted class of graphs than in The-
orem 2.1, but still including binary trees and pyramids, we manage to prove tight bounds on the
blob-pebbling price by generalizing the lower bound construction for black-white pebbling in [37].

Theorem 2.3.Any so-called layered spreading graphGh of heighth has blob-pebbling priceΘ(h).
In particular, this holds for pyramid graphsΠh.

Putting all of this together, we can prove our main theorem.

9

TOWARDS AN OPTIMAL SEPARATION

Theorem 1.1 (restated).Let Pebd
Πh

denote the pebbling contradiction of degreed > 1 defined

over the pyramid graph of heighth. Then the clause space of refutingPebd
Πh

by resolution is

Sp(Pebd
Πh

` 0) = Θ(h).

Proof. The upper boundSp(Pebd
Πh

` 0) = O(h) is easy. A pyramid of heighth can be pebbled
with h + O(1) black pebbles, and a resolution refutation can mimic such a pebbling in constant
extra clause space (independent ofd) to refute the corresponding pebbling contradiction.

The interesting part is the lower bound. Letπ be any resolution refutation ofPebd
Πh

. Con-
sider the associated blob-pebblingPπ provided by Theorem 2.1. On the one hand, we know
that cost(Pπ) = O(Sp(π)) by Theorem 2.2, provided thatd > 1. On the other hand, The-
orem 2.3 tells us that the cost of any blob-pebbling ofΠh is Ω(h), so in particular we must have
cost(Pπ) = Ω(h). Combining these two bounds oncost(Pπ), we see thatSp(π) = Ω(h).

The pebbling contradictionPebd
G is a (2+d)-CNF formula and for constantd the size of the

formula is linear in the number of vertices ofG (compare Figure 1). Thus, for pyramid graphsΠh

the corresponding pebbling contradictionsPebd
Πh

have size quadratic in the heighth. Also, when
d is fixed the upper bounds mentioned at the end of Section 2.1 becomeL(Pebd

G ` 0) = O(n)
andW(Pebd

G ` 0) = O(1). Corollary 1.2 now follows if we setFn = Pebd
Πh

for d = k − 2 and
h = b√nc and use Theorem 1.1.

Corollary 1.2 (restated). For all k ≥ 4, there is a family ofk-CNF formulas{Fn}∞n=1 of sizeO(n)
such thatL(Fn ` 0) = O(n) andW(Fn ` 0) = O(1) but Sp(Fn ` 0) = Θ(

√
n).

2.4 Overview of Trade-off Results

Let us also quickly sketch the ideas (or tricks, really) usedto prove our trade-off theorems for
resolution.

We show the following version of the length-variable space trade-off theorem of Hertel and
Pitassi [33], with somewhat improved parameters and a very much simpler proof.

Theorem 2.4. There is a family of CNF formulas{Fn}∞n=1 of sizeΘ(n) such that:
• The minimal variable space of refutingFn in resolution isVarSp(Fn ` 0) = Θ(n).
• Any resolution refutationπ : Fn ` 0 in minimal variable space has lengthexp(Ω(

√
n)).

• Adding at most2 extra units of storage, it is possible to obtain a resolutionrefutationπ′ in
variable spaceVarSp(π′) = VarSp(Fn ` 0) + 3 = Θ(n) and lengthL(π′) = O(n), i.e.,
linear in the formula size.

The idea behind our proof is as follows. Take formulasGn that are really hard for resolution and
formulasHm which have short refutations but require linear variable space, and setFn = Gn∧Hm

for m chosen so thatVarSp
(

Hm ` 0
)

is only just larger thanVarSp
(

Gn ` 0
)

. Then refutations in
minimal variable space will have to take care ofGn, which requires exponential length, but adding
one or two literals to the memory we can attackHm instead in linear length.

The trade-off result in Theorem 1.3 for length versus clausespace and its twin theorem for
length versus width are shown using similar ideas.

2.5 Paper Organization

Section 3 provides formal definitions of the concepts introduced in Sections 1 and 2, and Section 4
gives precise statements of the results mentioned there, aswell as some other result relevant to this
paper. The easy proofs of our trade-off theorems are then immediately presented in Section 5.

The bulk of the paper is spent proving our main result in Theorem 1.1. In Section 6, we
define our modified pebble game, the “blob-pebble game”, thatwe will use to analyze resolution

10

3 FORMAL PRELIMINARIES

refutations of pebbling contradictions. In Section 7 we prove that resolution refutations can be
translated into pebblings in this game, which is Theorem 2.1in Section 2.3. In Section 8, we
prove Theorem 2.2 saying that the blob-pebbling price accurately measures the clause space of the
corresponding resolution refutation. Finally, after giving a detailed description of the lower bound
on black-white pebbling of [37] in Section 9 (with a somewhatsimplified proof that might be of
independent interest), in Section 10 we generalize this result in a nontrivial way to our blob-pebble
game. This gives us Theorem 2.3. Now Theorem 1.1 and Corollary 1.2 follow as in the proofs
given at the end of Section 2.3.

We conclude in Section 11 by giving suggestions for further research.

3 Formal Preliminaries

In this section, we define resolution, pebble games and pebbling contradictions.

3.1 The Resolution Proof System

A literal is either a propositional logic variable or its negation, denotedx andx, respectively. We
definex = x. Two literalsa andb arestrictly distinct if a 6= b anda 6= b, i.e., if they refer to
distinct variables.

A clauseC = a1∨· · ·∨ak is a set of literals. Throughout this paper, all clausesC are assumed
to be nontrivial in the sense that all literals inC are pairwise strictly distinct (otherwiseC is trivially
true). We say thatC is asubclauseof D if C ⊆ D. A clause containing at mostk literals is called
ak-clause.

A CNF formulaF = C1 ∧ · · · ∧ Cm is a set of clauses. Ak-CNF formulais a CNF formula
consisting ofk-clauses. We define thesizeS (F) of the formulaF to be the total number of literals
in F counted with repetitions. More often, we will be interestedin the number of clauses|F | of F .

In this paper, when nothing else is stated it is assumed thatA,B,C,D denote clauses,C, D sets
of clauses,x, y propositional variables,a, b, c literals, α, β truth value assignments andν a truth
value0 or 1. We write

αx=ν(y) =

{

α(y) if y 6= x,

ν if y = x,
(3.1)

to denote the truth value assignment that agrees withα everywhere except possibly atx, to which
it assigns the valueν. We letVars(C) denote the set of variables andLit(C) the set of literals in
a clauseC.2 This notation is extended to sets of clauses by taking unions. Also, we employ the
standard notation[n] = {1, 2, . . . , n}.

A resolution derivationπ : F `A of a clauseA from a CNF formulaF is a sequence of clauses
π = {D1, . . . ,Dτ} such thatDτ = A and each lineDi, i ∈ [τ], either is one of the clauses inF
(axioms) or is derived from clausesDj ,Dk in π with j, k < i by theresolution rule

B ∨ x C ∨ x

B ∨ C
. (3.2)

We refer to (3.2) asresolution on the variablex and toB ∨ C as theresolventof B ∨ x andC ∨ x
on x. A resolution refutationof a CNF formulaF is a resolution derivation of the empty clause0
(the clause with no literals) fromF . Perhaps somewhat confusingly, this is sometimes also referred
to as aresolution proofof F .

For a formulaF and a set of formulasG = {G1, . . . , Gn}, we say thatG impliesF , denoted
G � F , if every truth value assignment satisfying all formulasG ∈ G satisfiesF as well. It is

2Although the notationLit(C) is slightly redundant given the definition of a clause as a setof literals, we include it
for clarity.

11

TOWARDS AN OPTIMAL SEPARATION

well known that resolution is sound and implicationally complete. That is, if there is a resolution
derivationπ : F `A, thenF � A, and ifF � A, then there is a resolution derivationπ : F `A′ for
someA′ ⊆ A. In particular,F is unsatisfiable if and only if there is a resolution refutation ofF .

With every resolution derivationπ : F `A we can associate a DAGGπ, with the clauses inπ
labelling the vertices and with edges from the assumption clauses to the resolvent for each applica-
tion of the resolution rule (3.2). There might be several different derivations of a clauseC in π, but
if so we can label each occurrence ofC with a timestamp when it was derived and keep track of
which copy ofC is used where. A resolution derivationπ is tree-likeif any clause in the derivation
is used at most once as a premise in an application of the resolution rule, i.e., ifGπ is a tree. (We
may make different “time-stamped” vertex copies of the axiom clauses in order to makeGπ into a
tree).

ThelengthL(π) of a resolution derivationπ is the number of clauses in it. We define the length
of deriving a clauseA from a formulaF asL(F ` A) = minπ:F `A{L(π)}, where the minimum
is taken over all resolution derivations ofA. In particular, the length of refutingF by resolution is
denotedL(F ` 0). The length of refutingF by tree-like resolutionLT(F ` 0) is defined by taking
the minimum over all tree-like resolution refutationsπT of F .

ThewidthW(C) of a clauseC is |C|, i.e., the number of literals appearing in it. The width of
a set of clausesC is W(C) = maxC∈C{W(C)}. The width of derivingA from F by resolution is
W(F ` A) = minπ:F `A{W(π)}, and the width of refutingF is denotedW(F ` 0). Note that
the minimum width measures in general and tree-like resolution coincide, so it makes no sense to
make a separate definition forWT(F ` 0).

We next define the measure ofspace. Following the exposition in [28], a proof can be seen as
a Turing machine computation, with a special read-only input tape from which the axioms can be
downloaded and a working memory where all derivation steps are made. Theclause spaceof a
resolution proof is the maximum number of clauses that need to be kept in memory simultaneously
during a verification of the proof. Thevariable spaceis the maximum total space needed, where
also the width of the clauses is taken into account.

For the formal definitions, it is convenient to use an alternative definition of resolution intro-
duced in [2].

Definition 3.1 (Resolution). A clause configurationC is a set of clauses. A sequence of clause
configurations{C0, . . . , Cτ} is a resolution derivationfrom a CNF formulaF if C0 = ∅ and for
all t ∈ [τ], Ct is obtained fromCt−1 by one3 of the following rules:

Axiom Download Ct = Ct−1 ∪ {C} for someC ∈ F .

Erasure Ct = Ct−1 \ {C} for someC ∈ Ct−1.

Inference Ct = Ct−1 ∪ {D} for someD inferred by resolution fromC1, C2 ∈ Ct−1.

A resolution derivationπ : F `A of a clauseA from a formulaF is a derivation{C0, . . . , Cτ}
such thatCτ = {A}. A resolution refutationof F is a derivation of the empty clause0 from F .

Definition 3.2 (Clause space [2, 11]).Theclause spaceof a resolution derivationπ={C0, . . . ,Cτ}
is maxt∈[τ]{|Ct|}. The clause space of derivingA from F is Sp(F ` A) = minπ:F `A{Sp(π)},
andSp(F ` 0) denotes the minimum clause space of any resolution refutation ofF .

Definition 3.3 (Variable space [2]). The variable spaceof a configurationC is VarSp(C) =
∑

C∈C
W(C). The variable space of a derivation{C0, . . . , Cτ} is maxt∈[τ]{VarSp(Ct)}, and

VarSp(F ` 0) is the minimum variable space of any resolution refutation of F .

3In some previous papers, resolution is defined so as to allow every derivation step tocombineone or zero applications
of each of the three derivation rules. Therefore, some of thebounds stated in this paper for space as defined next are off
by a constant as compared to the cited sources.

12

3 FORMAL PRELIMINARIES

Restricting the resolution derivations to tree-like resolution, we get the measuresSpT(F ` 0)
andVarSpT(F ` 0) in analogy withLT(F ` 0) defined above.

Note that if one wanted to be really precise, the size and space measures should probably
measure the number ofbits needed rather than the number of literals. However, counting literals
makes matters substantially cleaner, and the difference isat most a logarithmic factor anyway.
Therefore, counting literals seems to be the established way of measuring formula size and variable
space.

In this paper, we will be almost exclusively interested in the clause space of general resolution
refutations. When we write simply “space” for brevity, we mean clause space.

3.2 Pebble Games and Pebbling Contradictions

Pebble games were devised for studying programming languages and compiler construction, but
have found a variety of applications in computational complexity theory. In connection with resol-
ution, pebble games have been employed both to analyze resolution derivations with respect to how
much memory they consume (using the original definition of space in [28]) and to construct CNF
formulas which are hard for different variants of resolution in various respects (see for example
[3, 14, 17, 19]). An excellent survey of pebbling up to ca 1980is [48].

The black pebbling price of a DAGG captures the memory space, i.e., the number of registers,
required to perform the deterministic computation described byG. The space of a non-deterministic
computation is measured by the black-white pebbling price of G. We say that vertices ofG with
indegree0 aresourcesand that vertices with outdegree0 aresinksor targets. In the following,
unless otherwise stated we will assume that all DAGs under discussion have a unique sink and
this sink will always be denotedz. The next definition is adapted from [24], though we use the
established pebbling terminology introduced by [34].

Definition 3.4 (Pebble game).Suppose thatG is a DAG with sourcesS and a unique targetz. The
black-white pebble gameon G is the following one-player game. At any point in the game, there
are black and white pebbles placed on some vertices ofG, at most one pebble per vertex. Apebble
configurationis a pair of subsetsP = (B,W) of V (G), comprising the black-pebbled verticesB
and white-pebbled verticesW . The rules of the game are as follows:

1. If all immediate predecessors of an empty vertexv have pebbles on them, a black pebble may
be placed onv. In particular, a black pebble can always be placed on any vertex inS.

2. A black pebble may be removed from any vertex at any time.

3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vertexv have pebbles on them, the white
pebble onv may be removed. In particular, a white pebble can always be removed from a
source vertex.

A black-white pebblingfrom (B1,W1) to (B2,W2) in G is a sequence of pebble configurations
P = {P0, . . . , Pτ} such thatP0 = (B1,W1), Pτ = (B2,W2), and for allt ∈ [τ], Pt follows from
Pt−1 by one of the rules above. If(B1,W1) = (∅, ∅), we say that the pebbling isunconditional,
otherwise it isconditional.

The cost of a pebble configurationP = (B,W) is cost(P) = |B ∪ W | and the cost of a
pebblingP = {P0, . . . , Pτ} is max0≤t≤τ{cost(Pt)}. Theblack-white pebbling priceof (B,W),
denotedBW-Peb(B,W), is the minimum cost of any unconditional pebbling reaching(B,W).

A complete pebblingof G, also called apebbling strategyfor G, is an unconditional pebbling
reaching({z}, ∅). The black-white pebbling priceof G, denotedBW-Peb(G), is the minimum
cost of any complete black-white pebbling ofG.

13

TOWARDS AN OPTIMAL SEPARATION

A black pebblingis a pebbling using black pebbles only, i.e., havingWt = ∅ for all t. The
(black) pebbling priceof G, denotedPeb(G), is the minimum cost of any complete black pebbling
of G.

We think of the moves in a pebbling as occurring at integral time intervalst = 1, 2, . . . and talk
about the pebbling move “at timet” (which is the move resulting in configurationPt) or the moves
“during the time interval[t1, t2]”.

The only pebblings we are really interested in are complete pebblings ofG. However, when we
prove lower bounds for pebbling price it will sometimes be convenient to be able to reason in terms
of partial pebbling move sequences, i.e., conditional pebblings.

A pebbling contradictiondefined on a DAGG encodes the pebble game onG by postulating the
sources to be true and the target to be false, and specifying that truth propagates through the graph
according to the pebbling rules. The definition below is a generalization of formulas previously
studied in [17, 49].

Definition 3.5 (Pebbling contradiction [15]). Suppose thatG is a DAG with sourcesS, a unique
targetz and with all non-source vertices having indegree2, and letd > 0 be an integer. Asso-
ciated distinct variablesx(v)1, . . . , x(v)d with every vertexv ∈ V (G). Thedth degreepebbling
contradictionoverG, denotedPebd

G, is the conjunction of the following clauses:

• ∨d
i=1 x(s)i for all s ∈ S (source axioms),

• x(z)i for all i ∈ [d] (target axioms),

• x(u)i ∨ x(v)j ∨
∨d

l=1 x(w)l for all i, j ∈ [d] and allw ∈ V (G) \ S, whereu, v are the two
predecessors ofw (pebbling axioms).

The formulaPebd
G is a (2+d)-CNF formula withO

(

d2 · |V (G)|
)

clauses overd · |V (G)| vari-
ables. An example pebbling contradiction is presented in Figure 1 on page 7.

4 Review of Related Work

This section is an overview of related work, including formal statements of some previously known
results that we will need. At the end of Section 4.3 we also tryto provide some of the intuition
behind the result proven in this paper.

4.1 General Results About Resolution

It is not hard to show that any CNF formulaF overn variables is refutable in length2n+1 − 1 and
width n. Esteban and Torán [28] proved that the clause space of refuting F is upper-bounded by the
formula size. More precisely, the minimal clause space is atmost the number of clauses, or the num-
ber of variables, plus a small constant, or in formal notation Sp(F ` 0) ≤ min

{

|F |, |Vars(F)|
}

+
O(1).

We will need the fact that there are polynomial-size families of k-CNF formulas that are very
hard with respect to length, width and clause space, essentially meeting the upper bounds just
stated.

Theorem 4.1 ([2, 8, 13, 15, 20, 56, 59]).There are arbitrarily large unsatisfiable3-CNF formu-
las Fn of sizeΘ(n) with Θ(n) clauses andΘ(n) variables for which it holds thatL(Fn ` 0) =
exp(Θ(n)), W(Fn ` 0) = Θ(n) andSp(Fn ` 0) = Θ(n).

14

4 REVIEW OF RELATED WORK

Clearly, for such formulasFn it must also hold thatΩ(n) = VarSp(Fn ` 0) = O
(

n2
)

. We
note in passing that determining the exact variable space complexity of a formula family as in
Theorem 4.1 was mentioned as an open problem in [2]. To the best of our knowledge this problem
is still unsolved.

If a resolution refutation has constant width, it is easy to see that it must be of size polynomial in
the number of variables (just count the maximum possible number of distinct clauses). Conversely,
if all refutations of a formula are very wide, it seems reasonable that any refutation of this formula
must be very long as well. This intuition was made precise by Ben-Sasson and Wigderson [15]. We
state their theorem in the more explicit form of Segerlind [54].

Theorem 4.2 ([15]). The width of refuting a CNF formulaF is bounded from above by

W(F ` 0) ≤ W(F) + 1 + 3
√

n lnL(F ` 0) ,

wheren is the number of variables inF .

Bonet and Galesi [18] showed that this bound on width in termsof length is essentially optimal.
For the special case of tree-like resolution, however, it ispossible get rid of the dependence of the
number of variables and obtain a tighter bound.

Theorem 4.3 ([15]).The width of refuting a CNF formulaF in tree-like resolution is bounded from
above byW(F ` 0) ≤ W(F) + log LT(F ` 0).

For reference, we collect the result in [18] together with some other bounds showing that there
are formulas that are easy with respect to length but moderately hard with respect to width and
clause space and state them as a theorem.4

Theorem 4.4 ([2, 18, 55]).There are arbitrarily large unsatisfiable3-CNF formulasFn of size
Θ

(

n3
)

with Θ
(

n3
)

clauses andΘ
(

n2
)

variables such thatW(Fn ` 0) = Θ(n) andSp(Fn ` 0) =
Θ(n), but for which there are resolution refutationsπn : Fn ` 0 in lengthL(πn) = O

(

n3
)

, width
W(πn) = O(n) and clause spaceSp(πn) = O(n).

As was mentioned above, the fact that all known lower bounds on refutation clause space co-
incided with lower bounds on width lead to the conjecture that the width measure is a lower bound
for the clause space measure. This conjecture was proven true by Atserias and Dalmau [5].

Theorem 4.5 ([5]). For any CNF formulaF , it holds thatSp(F ` 0) − 3 ≥ W(F ` 0) − W(F).

In other words, the extra clause space exceeding the minimum3 needed for any resolution
derivation is bounded from below by the extra width exceeding the width of the formula. This
inequality was later shown by the first author to be asymptotically strict in the following sense.

Theorem 4.6 ([42]). For all k ≥ 4, there is a family{Fn}∞n=1 of k-CNF formulas of sizeΘ(n)
such thatL(Fn ` 0) = O(n) andW(Fn ` 0) = O(1) but Sp(Fn ` 0) = Θ(log n).

An immediate corollary of Theorem 4.5 is that for polynomial-sizek-CNF formulas constant
clause space implies polynomial proof length. We are interested in finding out what holds in the
other direction, i.e., if upper bounds on length imply upperbounds on space.

For the special case of tree-like resolution, it is known that there is an upper bound on clause
space in terms of length exactly analogous to the one on widthin terms of length in Theorem 4.3.

4Note that [18], where an explicit resolution refutation upper-bounding the proof complexity measures is presen-
ted, does not talk about clause space, but it is straightforward to verify that the refutation there can be carried out in
lengthO

`

n3
´

and clause spaceO(n).

15

TOWARDS AN OPTIMAL SEPARATION

Theorem 4.7 ([28]). For any tree-like resolution refutationπ of a CNF formulaF it holds that
Sp(π) ≤ dlog L(π)e + 2. In particular, Sp(F ` 0) ≤ dlog LT(F ` 0)e + 2.

For general resolution, since clause space is lower-bounded by width according to Theorem 4.5,
the separation of width and length of [18] in Theorem 4.4 tells us thatk-CNF formulas refutable
in polynomial length can still have “somewhat spacious” minimum-space refutations. But exactly
how spacious can they be? Does space behave as width with respect to length also in general
resolution, or can one get stronger lower bounds on space forformulas refutable in polynomial
length?

All polynomial lower bounds on clause space known prior to this paper can be explained as im-
mediate consequences of Theorem 4.5 applied on lower boundson width. Clearly, any space lower
bounds derived in this way cannot get us beyond the “Ben-Sasson–Wigderson barrier” implied by
Theorem 4.2 saying that if the width of refutingF is ω

(
√

|F | log|F |
)

, then the length of refuting
F must be superpolynomial in|F |. Also, since matching upper bounds on clause space have been
known for all of these formula families, they have not been candidates for showing stronger sep-
arations of space and length. Thus, the best known separation of clause space and length has been
the formulas in Theorem 4.4 refutable in linear lengthL(Fn ` 0) = O(|Fn|) but requiring space
Sp(Fn ` 0) = Θ

(

3
√

|Fn|
)

, as implied by the same bound on width.
Let us also discuss upper bounds on what kind of separations are a priori possible. Given

any resolution refutationπ : F ` 0, we can write down its DAG representationGπ (described on
page 12) withL(π) vertices corresponding to the clauses, and with all non-source vertices having
fan-in 2. We can then transformπ into as space-efficient a refutation as possible by considering
an optimal black pebbling ofGπ as follows: when a pebble is placed on a vertex we derive the
corresponding clause, and when the pebble is removed again we erase the clause from memory.
This yields a refutationπ′ in clause spacePeb(Gπ) (incidentally, this is the original definition
in [28] of the clause space of a resolution refutionπ). Since it is known that any constant indegree
DAG on n vertices can be black-pebbled in costO(n/ log n) (see Theorem 4.10), this shows that
Sp(F ` 0) = O

(

L(F ` 0)/ log L(F ` 0)
)

is a trivial upper bound on space in terms of length.
Now we can rephrase the question above about space and lengthin the following way: Is there

a Ben-Sasson–Wigderson kind of lower bound, sayL(F ` 0) = exp
(

Ω
(

Sp(F ` 0)2/|F |
))

or
so, on length in terms of space? Or do there existk-CNF formulasF with short refutations but
maximum possible refutation spaceSp(F ` 0) = Ω

(

L(F ` 0)/ log L(F ` 0)
)

in terms of length?
Note that the refutation lengthL(F ` 0) must indeed be short in this case—essentially linear, since
any formulaF can be refuted in spaceO(|F |) as was noted above. Or is the relation between
refutation space and refutation length somewhere in between these extremes?

This is the main question addressed in this paper. We believethat clause space and length can
be strongly separated in the sense that there are formula families with maximum possible refutation
space in terms of length. As a step towards proving this we improve the lower bound in Theorem 4.6
from Θ(log n) to Θ(

√
n), thus providing the first polynomial lower bound on space that is not the

consequence of a corresponding bound on width. We next review some results about the tools that
we use to do this.

4.2 Results About Pebble Games

There is an extensive literature on pebbling, mostly from the 70s and 80s. We just quickly mention
four results relevant to this paper.

Perhaps the simplest graphs to pebble are complete binary treesTh of height h. The black
pebbling price ofTh can be established by an easy induction over the tree height.For black-white
pebbling, general bounds for the pebbling price of trees of any arity were presented in [39]. For
the case of binary trees, this result can be simplified to an exact equality (a proof of which can be
found in Section 4 of [41]).

16

4 REVIEW OF RELATED WORK

Theorem 4.8. For a complete binary treeTh of heighth ≥ 1 it holds thatPeb(Th) = h + 2 and
BW-Peb(Th) =

⌊

h
2

⌋

+ 3.

In this paper, we will focus on pyramid graphs, an example of which can be found in Figure 1.

Theorem 4.9 ([22, 37]).For a pyramid graphΠh of heighth ≥ 1 it holds thatPeb(Πh) = h + 2
andBW-Peb(Πh) = h/2 + O(1).

As we wrote in Section 2, we are interested in DAGs with as higha pebbling price as possible
measured in terms of the number of vertices. For a DAGG with n vertices and constant in-degree,
the best we can hope for isO(n/ log n).

Theorem 4.10 ([34]).For directed acyclic graphsG with n vertices and constant maximum inde-
gree, it holds thatPeb(G) = O

(

n/ log n
)

.

This bound is asymptotically tight both for black and black-white pebbling.

Theorem 4.11 ([31, 47]).There is a family of explicitly constructible5 DAGsGn withΘ(n) vertices
and vertex indegrees0 or 2 such thatPeb(G) = Θ(n/ log n) andBW-Peb(G) = Θ(n/ log n).

It should be pointed out that although the black and black-white pebbling prices coincide
asymptotically in all of the theorems above, this is not the case in general. In [35], a family of
DAGs with a quadratic difference in the number of pebbles between the black and the black-white
pebble game was presented. We note that this is the best separation possible, since by [40] the
difference in black and black-white pebbling price can be atmost quadratic.

4.3 Results About Pebbling Contradictions Plus Some Intuit ion

Although any constant indegree will be fine for the results covered in this subsection, we restrict
our attention to DAGs with vertex indegrees0 or 2 since these are the graphs that will be studied in
the rest of this paper.

It was observed in [14] thatPebd
G can be refuted in resolution by deriving

∨d
i=1 x(v)i for all

v ∈ V (G) inductively in topological order and then resolving with the target axiomsx(z)i, i ∈ [d].
Writing down this resolution proof, one gets the following proposition (which is proven together
with Proposition 4.15 below).

Proposition 4.12 ([14]). For any DAGG with all vertices having indegree0 or 2, there is a resol-
ution refutationπ : Pebd

G ` 0 in lengthL(π) = O
(

d2 · |V (G)|
)

and widthW(π) = O(d).

Tree-like resolution is good at refuting first-degree pebbling contradictionsPeb1
G but is bad at

refutingPebd
G for d ≥ 2.

Theorem 4.13 ([11]).For any DAGG with all vertices having indegree0 or 2, there is a tree-like
resolution refutationπ of Peb1

G such thatL(π) = O(|V (G)|) andSp(π) = O(1).

Theorem 4.14 ([14]).For any DAGG with all vertices having indegree0 or 2, LT(Peb2
G ` 0) =

2Ω(Peb(G)).

As to space, it is not too difficult to see that the black pebbling price ofG provides an upper
bound for the refutation clause space ofPebd

G.

Proposition 4.15.For any DAGG with vertex indegrees0 or 2, Sp(Pebd
G ` 0) ≤ Peb(G) + O(1).

5This was not known at the time of the original theorems in [31,47]. What is needed is an explicit construction of
superconcentrators of linear density, and it has since beenshown how to do this (with [4] apparently being the currently
best construction).

17

TOWARDS AN OPTIMAL SEPARATION

Essentially, this is just a matter of combining an optimal black pebbling ofG with the resolution
refutation idea from [14] sketched above. Since we need the upper bounds on width and space
in Propositions 4.12 and 4.15 in the proof of our main theorem, we write down the details for
completeness.

Proof of Propositions 4.12 and 4.15.Consider first the bound on space.
Given a black pebbling ofG, we construct a resolution refutation ofPebd

G such that if at
some point in time there are black pebbles on a set of verticesV , then we have the clauses
{
∨d

i=1 x(v)i | v ∈ V
}

in memory. When some new vertexv is pebbled, we derive
∨d

i=1 x(v)i
from the clauses already in memory. We claim that with a little care, this can be done in con-
stant extra space independent ofd. When a black pebble is removed fromv, we erase the clause
∨d

i=1 x(v)i. We conclude the resolution proof by resolving
∨d

i=1 x(z)i for the targetz with all
target axiomsx(z)i, i ∈ [d], in space3.

It is clear that given our claim about the constant extra space needed when a vertex is black-
pebbled, this yields a resolution refutation in space equalto the pebbling cost plus some constant.
In particular, given an optimal black pebbling ofG, we get a refutation in spacePeb(G) + O(1).

To prove the claim, note first that it trivially holds for source verticesv, since
∨d

i=1 x(v)i is
an axiom of the formula. Suppose for a non-source vertexr with predecessorsp and q that at
some point in time a black pebble is placed onr. Thenp and q must be black-pebbled, so by
induction we have the clauses

∨d
i=1 x(p)i and

∨d
j=1 x(q)j in memory. We will use that the clause

x(p)i ∨
∨d

l=1 x(r)l for any i can be derived in additional space3 by resolving
∨d

j=1 x(q)j with

x(p)i ∨ x(q)j ∨
∨d

l=1 x(r)l for j ∈ [d], leaving the easy verification of this fact to the reader. To

derive
∨d

l=1 x(r)l, first resolve
∨d

i=1 x(p)i with x(p)1∨
∨d

l=1 x(r)l to get
∨d

i=2 x(p)i∨
∨d

l=1 x(r)l,
and then resolve this clause with the clausesx(p)i ∨

∨d
l=1 x(r)l for i = 2, . . . , d one by one to get

∨d
l=1 x(r)l in total extra space4.

It is easy to see that this proof has widthO(d), which proves the claim about width in Pro-
position 4.12. To get the claim about length, we observe thatthe subderivation needed when
a vertex is black-pebbled has lengthO

(

d2
)

. If we use a pebbling that black-pebbles all ver-
tices once in topological order without ever removing a pebble, we get a refutation in length
L(π) = O

(

d2 · |V (G)|
)

.

Thus, the refutation clause space of a pebbling contradiction is upper-bounded by the black
pebbling price of the underlying DAG. Proposition 4.15 is not quite an optimal strategy with respect
to clause space, though. For binary trees [29] improved thisbound somewhat toSp(Peb2

Th
` 0) ≤

2
3h + O(1) by constructing resolution proofs that try to mimic not black pebblings but instead
optimalblack-whitepebblings ofTh as presented in [39]. And for one variable per vertex, we know
from Theorem 4.13 thatSp(Peb1

G ` 0) = O(1).
Proving lower bounds on space for pebbling contradictions of degreed ≥ 2 has turned out

to be much harder. For quite some time there was no lower boundon Sp(Pebd
G ` 0) for any

DAG G in general resolution (in terms of pebbling price or otherwise). In [29], a lower bound
SpT(Pebd

Th
` 0) = h + O(1) was obtained for the special case of tree-like resolution. Unfortu-

nately, this does not tell us anything about general resolution. For tree-like resolution, if the only
way of deriving a clauseD is from clausesC1, C2 such thatSpT(F ` Ci) ≥ s, then it holds that
SpT(F ` D) ≥ s + 1 since one of the clausesCi must be kept in memory while deriving the
other clause. This seems to be very different from how general resolution works with respect to
space. In [42], the first author showed a lower boundSp(Pebd

Th
` 0) = Ω(h) for binary trees and

d ≥ 2, which matches the upper bound up to a constant factor. As thetechniques in [42] do not
yield anything for more general graphs, this is all that was known prior to this paper.

18

4 REVIEW OF RELATED WORK

We now try to present our own intuition for what the correct lower bound on the refutation
clause space of pebbling contradictionsshould be. Although the reasoning is quite informal and
non-rigorous, our hope is that it will help the reader to navigate the formal proofs that will follow.

As we noted above, the resolution refutation ofPeb2
Th

in [29] used to prove the23h + O(1)
upper bound for binary tree pebbling contradictions is structurally quite similar to the optimal
black-white pebbling ofTh presented in [39], and it somehow feels implausible that anyresolution
refutation would be able to do significantly better. Also, the lower bound in [42] is proven by relat-
ing resolution refutations to black-white pebblings and deriving a lower bound on clause space in
terms of pebbling price. This raises the suspicion that the black-white pebbling priceBW-Peb(G)
might be a lower bound forSp(Pebd

G ` 0) also for more general graphs as long asd ≥ 2.
This suspicion is somewhat strengthened by the fact that forvariable space, we do have such a

lower bound in terms of black-white pebbling price.6

Theorem 4.16 ([11]).For anyd ∈ N+, VarSp(Pebd
G ` 0) ≥ BW-Peb(G).

If the refutation clause space of pebbling contradictions for general DAGs would be constant or
very slowly growing, Theorem 4.16 would imply that asBW-Peb(G) grows larger, the clauses in
memory get wider, and thus weaker. Still it would somehow be possible to derive a contradiction
from a very small number of these clauses of unbounded width.This appears counterintuitive.

On the other hand, for one variable per vertex, i.e.,d = 1, refutations ofPeb1
G in constant

space have exactly these “counterintuitive” properties. The resolution refutation ofPeb1
G in The-

orem 4.13 is constructed by first downloading the pebbling axiom for the targetz and then moving
the false literals downwards by resolving with pebbling axioms for verticesv ∈ V (G)\S in reverse
topological order. This finally yields a clause

∨

v∈S x(v)1 ∨ x(z)1 of width |S| + 1, which can be
eliminated by resolving with the source axiomsx(v)1 one by one for allv ∈ S and then with the
target axiomx(z)1 to yield the empty clause0.

If we want to establish a non-constant lower bound onSp(Pebd
G ` 0) for d ≥ 2, we have to pin

down why this case is different. Intuitively, the difference is that with only one variable per vertex, a
single clausex(v1)1∨ . . .∨x(vm)1 can express the disjunction of the falsity of an arbitrary number
of verticesv1, . . . , vm, but for d = 2, the straightforward way of expressing that both variables
x(vi)1 andx(vi)2 are false for at least one out ofm vertices requires2m clauses.

As was argued in Section 2, to prove a lower bound on the refutation clause space of pebbling
contradictions it seems natural to try to interpret resolution refutations ofPebd

G in terms of peb-
blings of the underlying graphG. Let us say that a vertexv is “true” if

∨d
i=1 x(v)i has been derived

and “false” ifx(v)i has been derived for alli ∈ [d]. Any resolution proof refutes a pebbling contra-
diction by deriving that some vertexv is both true and false and then resolving to get0. Let w be
any vertex with predecessorsu, v. Then we can see that if we have derived thatu andv are true, by
downloadingx(u)i ∨ x(v)j ∨

∨d
l=1 x(w)l for all i, j ∈ [d] we can derive

∨d
l=1 x(w)l. This appears

analogous to the rule that ifu andv are black-pebbled we can place a black pebble onw. In the
opposite direction, if we knowx(w)l for all l ∈ [d], using the axiomsx(u)i ∨ x(v)j ∨

∨d
l=1 x(w)l

we can derive that eitheru or v is false. This looks similar to eliminating a white pebble onw by
placing white pebbles on the predecessorsu andv, and then removing the pebble fromw. Gen-
eralizing this loose, intuitive reasoning, we argue that a set of black-pebbled verticesV should
correspond to the derived conjunction of truth of allv ∈ V , and that a set of white-pebbled vertices
W should correspond to the derived disjunction of falsity of somew ∈ W .

Suppose that we could show that as the resolution derivationproceeds, the black and white
pebbles corresponding to different clause configurations as outlined above move about on the ver-
tices ofG in accordance with the rules of the pebble game. If so, we would get that there is some
clause configurationC corresponding to a lot of pebbles. This could in turn hopefully yield a lower

6To be precise, the result in [11] is ford = 1, but the proof generalizes easily to anyd ∈ N+.

19

TOWARDS AN OPTIMAL SEPARATION

bound for the refutation clause space. For ifC corresponds toN black pebbles, i.e., impliesN
disjoint clauses, it seems likely that|C| should be linear inN . And if C corresponds toN white
pebbles,|C| should grow withN if d ≥ 2, sinceC has to forced literals false simultaneously for
one out ofN vertices.

This is the guiding intuition that served as a starting pointfor proving the results in this paper.
And although quite a few complications arise along the way, we believe that it is important when
reading the paper not to let all technical details obscure the rather simple intuitive correspondence
sketched above.

5 A Simplified Way of Proving Trade-off Results

Before we launch into the proof of the main result of this paper, however, we quickly present
our simplification of the length-space trade-off result in [33], and show how the same ideas can
be used to prove other related theorems. We also point out twokey ingredients needed for our
proofs to work and discuss possible conclusions to be drawn regarding proving trade-off results for
resolution. We remark that this section is a somewhat polished write-up of the results previously
announced in [43].

We will need the following easy observation.

Observation 5.1. Suppose thatF = G ∧ H whereG andH are unsatisfiable CNF formulas over
disjoint sets of variables. Then any resolution refutationπ : F ` 0 must contain a refutation of
eitherG or H.

Proof. By induction, we can never resolve a clause derived fromG with a clause derived fromH,
since the sets of variables of the two clauses are disjoint.

5.1 A Proof of Hertel and Pitassi’s Trade-off Result

Using the notation in Section 3, and improving the parameters somewhat, the length-variable space
trade-off theorem of Hertel and Pitassi [33] can be stated asfollows.

Theorem 2.4 (restated).There is a family of CNF formulas{Fn}∞n=1 of sizeΘ(n) such that:
• The minimal variable space of refutingFn in resolution isVarSp(Fn ` 0) = Θ(n).
• Any resolution refutationπ : Fn ` 0 in minimal variable space has lengthexp(Ω(

√
n)).

• Adding at most2 extra units of storage, one can obtain a refutationπ′ in spaceVarSp(π′) =
VarSp(Fn ` 0) + 3 = Θ(n) and lengthL(π′) = O(n), i.e., linear in the formula size.

We note that the CNF formulas used by Hertel and Pitassi, as well as those in our proof, have
clauses of widthΘ(n).

Proof of Theorem 2.4.Let Gn be CNF formulas as in Theorem 4.1 having sizeΘ(n), refutation
lengthL(Gn ` 0) = exp(Ω(n)) and refutation clause spaceSp(Gn ` 0) = Θ(n). Let us define
g(n) = VarSp(Gn ` 0) to be the refutation variable space of the formulas. Then it holds that
Ω(n) = g(n) = O

(

n2
)

.
Let Hm be the formulas

Hm = y1 ∧ · · · ∧ ym ∧ (y1 ∨ · · · ∨ ym) . (5.1)

It is not hard to see that there are resolution refutationsπ : Hm ` 0 in lengthL(π) = 2m + 1 and
variable spaceVarSp(π) = 2m, and thatL(Hm ` 0) = 2m + 1 andVarSp(Hm ` 0) = 2m are
also the lower bounds (all clauses must be used in any refutation, and the minimum space refutation
must start by downloading the wide clause and some unit clause, and then resolve).

20

5 A SIMPLIFIED WAY OF PROVING TRADE-OFF RESULTS

Now define

Fn = Gn ∧ Hbg(n)/2c+1 (5.2)

whereGn and Hbg(n)/2c+1 have disjoint sets of variables. By Observation 5.1, any resolution
refutation ofFn refutes eitherGn or Hbg(n)/2c+1. We have

VarSp
(

Hbg(n)/2c+1 ` 0
)

= 2 · (bg(n)/2c + 1) > g(n) = VarSp(Gn ` 0) , (5.3)

so a resolution refutation in minimal variable space must refuteGn in lengthexp(Ω(n)). However,
allowing at most two more literals in memory, the resolutionrefutation can disprove the formula
Hbg(n)/2c+1 instead in length linear in the (total) formula size.

Thus, we have a formula family{Fn}∞n=1 of sizeΩ(n) = S (Fn) = O
(

n2
)

refutable in length
and variable space both linear in the formula size, but whereany minimum variable space refutation
must have lengthexp(Ω(n)). Adjusting the indices as needed, we get a formula family with a trade-
off of the form stated in Theorem 2.4.

5.2 Some Other Trade-off Results for Resolution

Using a similar trick as in the previous subsection, we can prove the following length-clause space
trade-off.

Theorem 1.3 (restated).There is a family ofk-CNF formulas{Fn}∞n=1 of sizeΘ(n) such that:
• The minimal clause space of refutingFn in resolution isSp(Fn ` 0) = Θ

(

3
√

n
)

.
• Any resolution refutationπ : Fn ` 0 in minimal clause space must have lengthL(π) =

exp
(

Ω
(

3
√

n
))

.
• There are resolution refutationsπ′ : Fn ` 0 in asymptotically minimal clause spaceSp(π′) =

O
(

Sp(Fn ` 0)
)

and lengthL(π′) = O(n), i.e., linear in the formula size.

The same game can be played with refutation width as well.

Theorem 5.2. There is a family ofk-CNF formulas{Fn}∞n=1 of sizeΘ(n) such that:
• The minimal width of refutingFn is W(Fn ` 0) = Θ

(

3
√

n
)

.
• Any refutationπ : Fn ` 0 in minimal width must have lengthL(π) = exp

(

Ω
(

3
√

n
))

.
• There are refutationsπ′ : Fn ` 0 with W(π′) = O

(

W(Fn ` 0)
)

andL(π′) = O(n).

We only present the proof of Theorem 1.3, as Theorem 5.2 is proved in exactly the same manner.

Proof of Theorem 1.3.Let Gn be a3-CNF formula family as in Theorem 4.1 having sizeΘ(n),
refutation lengthL(Gn ` 0) = exp(Θ(n)), and refutation clause spaceSp(Gn ` 0) = Θ(n). Let
Hm be a3-CNF formula family as in Theorem 4.4 of sizeΘ

(

m3
)

such thatL(Hm ` 0) = O
(

m3
)

andSp(Hm ` 0) = Θ(m). Define

g(n) = min
{

m |Sp(Hm ` 0) > Sp(Gn ` 0)
}

. (5.4)

Note that sinceSp(Hm ` 0) = Ω(m) andSp(Gn ` 0) = O(n), we know thatg(n) = O(n).
Now as before letFn = Gn ∧ Hg(n), whereGn andHg(n) have disjoint sets of variables. By

Observation 5.1, any resolution refutation ofFn is a refutation of eitherGn or Hg(n). Sinceg(n)
has been chosen so thatSp

(

Hg(n) ` 0
)

> Sp(Gn ` 0), a refutation in minimal clause space has to
refuteGn, which requires exponential length. However, sinceg(n) = O(n), Theorem 4.4 tells us
that there are refutations ofHg(n) in lengthO

(

n3
)

and clause spaceO(n).

21

TOWARDS AN OPTIMAL SEPARATION

5.3 Making the Main Trick Explicit

The proofs of the theorems in Sections 5.1 and 5.2 come very easily; in fact almosttoo easily.
What is it that makes this possible? In this and the next subsection, we want to highlight two key
ingredients in the constructions.

The common paradigm for the proofs of Theorems 1.3, 2.4, and 5.2 is as follows. We are given
two complexity measuresM1 andM2 that we want to trade off against one another. We do this by
finding formulasGn andHm such that

• The formulasGn are very hard with respect to the first resource measured byM1, while
M2

(

Gn

)

is at most some (more or less trivial) upper bound,

• The formulasHm are very easy with respect toM1, but there is some nontriviallower bound
on the usageM2

(

Hm

)

of the second resource,

• The indexm = m(n) is chosen so as to minimizeM2

(

Hm(n)

)

− M2

(

Gn

)

> 0, i.e., so that
Hm(n) requiresjust a little bit more of the second resource thanGn.

Then forFn = Gn ∧ Hm(n), if we demand that a resolution refutationπ must use the minimal
amount of the second resource, it will have to use a large amount of the first resource. However, re-
laxing the requirement on the second resource by the very small expressionM2

(

Hm(n)

)

−M2

(

Gn

)

,
we can get a refutationπ′ using small amounts of both resources.

Clearly, the formula families{Fn}∞n=1 that we get in this way are “redundant” in the sense
that each formulaFn is the conjunction of two formulasGn andHm which are themselves already
unsatisfiable. Formally, we say that a formulaF is minimally unsatisfiableif F is unsatisfiable, but
removing any clauseC ∈ F , the remaining subformulaF \ {C} is satisfiable. We note that if we
would add the requirement in Sections 5.1 and 5.2 that the formulas under consideration should be
minimally unsatisfiable, the proof idea outlined above fails completely. In contrast, the result in
[33] seems to be independent of any such conditions. What conclusions can be drawn from this?

On the one hand, trade-off results for minimally unsatisfiable formulas seem more interesting,
since they tell us something about a property that some natural formula family has, rather than
about some funny phenomena arising because we glue togethertwo totally unrelated formulas.

On the other hand, one could argue that the main motivation for studying space is the connection
to memory requirements for proof search algorithms, for instance algorithms using clause learning.
And for such algorithms, a minimality condition might appear somewhat arbitrary. There are no
guarantees that “real-life” formulas will be minimally unsatisfiable, and most probably there is no
efficient way of testing this condition.7 So in practice, trade-off results for non-minimal formulas
might be just as interesting.

5.4 An Auxiliary Trick for Variable Space

A second important reason why our proof of Theorem 2.4 gives sharp results is that we are allowed
to use CNF formulas of growing width. It is precisely becauseof this that we can easily construct
the needed formulasHm that are hard with respect to variable space but easy with respect to length.
If we would have to restrict ourselves tok-CNF formulas fork constant, it would be much more
difficult to find such examples. Although the formulas in Theorem 4.4 could be plugged in to give a
slightly weaker trade-off, we are not aware of any family ofk-CNF formulas that can provably give
the very sharp result in Theorem 2.4. (Note, though, that theformula families used in the proofs of
Theorems 1.3 and 5.2 consist ofk-CNF formulas).

7The problem of deciding minimal unsatisfiability isNP-hard but not known to be inNP. Formally, a languageL is
in the complexity classDP if and only if there are two languagesL1 ∈ NP andL2 ∈ co-NP such thatL = L1∩L2 [45].
MINIMAL UNSATISFIABILITY is DP-complete [46], and it seems to be commonly believed thatDP * NP ∪ co-NP.

22

6 A GAME FOR ANALYZING PEBBLING CONTRADICTIONS

v

G
\v
M

GO

\v

G \
(

Gv
M
∪ GO

v

)

Figure 4: Notation for sets of vertices in DAG G with respect to a vertex v.

This is not the only example of a space measure behaving badlyfor formulas of growing width.
We already discussed the lower boundSp(F ` 0) ≥ W(F ` 0) − W(F) + 3 on clause space
in terms of length in Theorem 4.5, and the result in Theorem 4.6 that this inequality is asymptot-
ically strict in the sense that there arek-CNF formula familiesFn with W(Fn ` 0) = O(1) but
Sp(Fn ` 0) = Θ(log n).

However, if we are allowed to consider formulas of growing width, the fact that the inequality
in Theorem 4.5 is not tight is entirely trivial. Namely, let us say that a CNF formulaF is k-wide
if all clauses inF have size at leastk. In [28], it was proven that forF a k-wide unsatisfiable
CNF formula it holds thatSp(F ` 0) ≥ k + 2. So in order to get a formula familyFn such that
W(Fn ` 0) −W(Fn) = O(1) butSp(Fn ` 0) = ω(1), just pick some suitable formulas{Fn}∞n=1

of growing width.
In our opinion, these phenomena are clearly artificial. Since every CNF formula can be re-

written as an equivalentk-CNF formula without increasing the size more than linearly, the right
approach when studying space measures in resolution seems to be to require that the formulas
under study should have constant width.

As a final comment before moving on to our main result, we note that the open trade-off ques-
tions mentioned in Section 11 do not suffer from the technical problems discussed above.

6 A Game for Analyzing Pebbling Contradictions

We now start our construction for the proof of Theorem 1.1, which will require the rest of this paper.
In this section we present the modified pebble game that we will use to study the clause space of
resolution refutations of pebbling contradictions.

6.1 Some Graph Notation and Definitions

We first present some notation and terminology that will be used in what follows. See Figure 4 for
an illustration of the next definition.

Definition 6.1. We letsucc(v) denote the immediate successors andpred(v) denote the immediate
predecessors of a vertexv in a DAG G. Taking the transivite closures ofsucc(·) andpred(·), we

23

TOWARDS AN OPTIMAL SEPARATION

let GO

v denote all vertices reachable fromv (vertices “above”v) andGv
M

denote all vertices from

which v is reachable (vertices “below”v). We writeG
\v
M andGO

\v to denote the corresponding sets
with the vertexv itself removed. Ifpred(v) = {u,w}, we say thatu andw aresiblings. If u 6∈ Gv

M

andv 6∈ Gu
M

, we say thatu andv arenon-comparablevertices. Otherwise they arecomparable.

When reasoning about arbitrary vertices we will often use asa canonical example a vertexr
with assumed predecessorspred (r) = {p, q}.

Note that for a leafv we havepred(v) = ∅, and for the sinkz of G we havesucc(z) = ∅.
Also note thatGv

M
andGO

v are sets of vertices, not subgraphs. However, we will allow ourselves
to overload the notation and sometimes use this notation both for the subgraph and its vertices.
Moreover, as a rule we will overload the notation for the graph G itself and its vertices, and usually
write onlyG when we meanV (G), and when this should be clear from context.

For our pebble game to work, we require of the graphs under study that they have the following
property.

Property 6.2 (Sibling non-reachability). We say that a DAGG has theSibling non-reachability
propertyif for all verticesu andv that are siblings inG, it holds thatu /∈ Gv

M
andv /∈ Gu

M
, i.e., the

siblings are not reachable from one another.

Phrased differently, Property 6.2 asserts that siblings are non-comparable.
A sufficient condition for Property 6.2 to hold is that ifv is reachable fromu, then all paths

P : u v have the same length. This holds for instance for the class oflayered graphs, and it is
also easy to see directly that layered graphs possess Property 6.2.

Definition 6.3 (Layered DAG). A layered DAGG is a DAG whose vertices are partitioned into
(nonempty) sets oflayersV0, V1, . . . , Vh on levels0, 1, . . . , h, and whose edges run between con-
secutive layers. That is, if(u, v) is a directed edge, then the level ofu is L − 1 and the level ofv is
L for someL ∈ [h]. We say thath is theheightof the layered DAGG.

Throughout this paper, we will assume that all source vertices in a layered DAG are located on
the bottom level0. Let us next give a formal definitions of the pyramid graphs that are the focus of
this paper.

Definition 6.4 (Pyramid graph). Thepyramid graphΠh of heighth is a layered DAG withh + 1
levels, where there is one vertex on the highest level (the sink z), two vertices on the next level et
cetera down toh + 1 vertices at the lowest level0. The ith vertex at levelL has incoming edges
from theith and(i + 1)st vertices at levelL − 1.

We also need some notation for contiguous and non-contiguous topologically ordered sets of
vertices in a DAG.

Definition 6.5 (Paths and chains).We say thatV is a(totally) orderedset of vertices in a DAGG,
or achain, if all vertices inV are comparable (i.e., if for allu, v ∈ V , eitheru ∈ Gv

M
or v ∈ Gu

M
). A

pathP is a contiguous chain, i.e., such thatsucc(v) ∩ P 6= ∅ for all v ∈ P except the top vertex.
We writeP : v w to denote a path starting inv and ending inw. A source pathis a path that

starts at some source vertex ofG. A path viaw is a path such thatw ∈ P . We will also say thatP
visitsw. For a chainV , we let

• bot(V) denote the bottom vertex ofV , i.e., the uniquev ∈ V such thatV ⊆ GO

v ,

• top(V) denote the top vertex ofV , i.e., the uniquev ∈ V such thatV ⊆ Gv
M

,

• Pin(V) denote the set of all pathsP : bot(V) top(V) via V or agreeing withV , i.e.,
such thatV ⊆ P , and

24

6 A GAME FOR ANALYZING PEBBLING CONTRADICTIONS

• Pvia(V) denote the set of all source pathsagreeing withV .

We write
⋃

Pin(V) to denote the union of the vertices in all pathsP ∈ Pin(V) and
⋃

Pvia(V) for
the union of all vertices in pathsP ∈ Pvia(V).

In the rest of this paper, we will almost exclusively discussDAGs with certain structural prop-
erties. The next definition is so that we will not have to repeat these properties over and over again.

Definition 6.6 (Blob-pebblable DAG). A blob-pebblable DAGis a DAG that has a unique sink,
which we will alway denotez, that has vertex indegree2 for all non-sources, and that satisfies the
Sibling non-reachability property 6.2.

6.2 Description of the Blob-Pebble Game and Formal Definitio n

To prove a lower bound on the refutation space of pebbling contradictions, we want to interpret de-
rivation steps in terms of pebble placements and removals inthe corresponding graph. In Section 2,
we outlined an intuitive correspondence between clauses and pebbles. The problem is that if we
try to use this correspondence, the pebble configurations that we get do not obey the rules of the
black-white pebble game. Therefore, we are forced to to change the pebbling rules. In this section,
we present the modified pebble game used for analyzing resolution derivations.

Our first modification of the pebble game is to alter the rule for white pebble removal so that a
white pebble can be removed from a vertex when a black pebble is placed on that same vertex. This
will make the correspondence between pebblings and resolution derivations much more natural.
Clearly, this is only a minor adjustment, and it is easy to prove formally that it does not really
change anything.

Our second, and far more substantial, modification of the pebble game is motivated by the fact
that in general, a resolution refutation a priori has no reason to follow our pebble game intuition.
Since pebbles are induced by clauses, if at some derivation step the refutation chooses to erase “the
wrong clause” from the point of view of the induced pebble configuration, this can lead to pebbles
just disappearing. Whatever our translation from clauses to pebbles is, a resolution proof that
suddenly out of spite erases practically all clauses must surely lead to practically all pebbles dis-
appearing, if we want to maintain a correspondence between clause space and pebbling cost. This
is all in order for black pebbles, but if we allow uncontrolled removal of white pebbles we cannot
hope for any nontrivial lower bounds on pebbling price (justwhite-pebble the two predecessors of
the sink, then black-pebble the sink itself and finally remove the white pebbles).

Our solution to this problem is to keep track of exactly whichwhite pebbles have been used
to get a black pebble on a vertex. Loosely put, removing a white pebble from a vertexv without
placing a black pebble on the same vertex should be in order, provided that all black pebbles placed
on vertices abovev in the DAG with the help of the white pebble onv are removed as well. We do
the necessary bookkeeping by definingsubconfigurationsof pebble configurations, each subcon-
figuration consisting of black pebble together with all the white pebbles this black pebble depends
on, and require that if any pebble in a subconfiguration is removed, then all other pebbles in this
subconfiguration must be removed as well.

Another problem is that resolution derivation steps can be made that appear intuitively bad given
that we know that the end goal is to derive the empty clause, but where formally it appears where
hard to nail down wherein this supposed badness lies. To analyze such apparently non-optimal
derivation steps, we introduce aninflation rule in which a black pebble can be inflated to ablob
covering multiple vertices. The way to think of this is that ablack pebble on a vertexv corresponds
to derived truth ovv, whereas for a blob pebble onV we only know that some vertexv ∈ V is true,
but not which one. For reasons that will perhaps become clearer in Sections 9 and 10, in is natural
to consider blobs that are chains (Definition 6.5).

25

TOWARDS AN OPTIMAL SEPARATION

We now present the formal definition of the concept used to “label” each black blob pebble
with the set of white pebbles (if any) this black pebble is dependent on. The intended meaning
of the notation[B]〈W 〉 is a black blob onB together with the white pebblesW belowv with the
help of which we have been able to place the black blob onB. These “associated” or “supporting”
white pebbles can be located on any vertexw /∈ B that can be visited by a source pathP to top(B)
agreeing withB. Formally, thelegal pebble positionswith respect to a chainB with b = bot(B)
is the set of vertices

lpp(B) = G
\b
M ∪

(

⋃

Pin(B) \ B
)

=
⋃

Pvia(B) \ B . (6.1)

We refer to the structure[B]〈W 〉 grouping together a black blobB and its associated white pebbles
W as ablob subconfiguration, or justsubconfigurationfor short.

Definition 6.7 (Blob subconfiguration). For sets of verticesB,W in a blob-pebblable DAGG,
[B]〈W 〉 is a blob subconfigurationif B 6= ∅ is a chain andW ⊆ lpp(B). We refer toB as a
(single) blackblob and toW as (a number of different) white pebblessupportingB. We also say
that B is dependenton W . If W = ∅, B is independent. BlobsB with |B| = 1 are said to be
atomic.

A set of blob subconfigurationsS =
{

[Bi]〈Wi〉 | i = 1, . . . ,m
}

together constitute ablob-
pebbling configuration.

Note in particular that it always holds thatB ∩ W = ∅ for a blob subconfiguration[B]〈W〉.
Since the definition of the game we will play with these blobs and pebbles is somewhat in-

volved, let us first try to give an intuitive description.

• There is one single rule corresponding to the two rules 1 and 3for black and white pebble
placement in the black-white pebble game of Definition 3.4. This introductionrule says that
we can place a black pebble on a vertexv together with white pebbles on its predecessors
(unlessv is a source, in which case no white pebbles are needed).

• The analogy for rule 2 for black pebble removal in Definition 3.4 is a rule for “shrinking”
black blobs. A vertexv in a blob can be eliminated bymergingtwo blob subconfigurations,
provided that there is both a black blob and a white pebble onv, and provided that the two
black blobs involved in thismergerdo not intersect the supporting white pebbles of one
another in any other vertex thanv. Removing black pebbles in the black-white pebble game
corresponds to shrinking atomic black blobs.

• A black blob can beinflatedto cover more vertices, as long as it does not collide with itsown
supporting white vertices. Also, new supporting white pebbles can be added at an inflation
move. There is no analogy of this move in the usual black-white pebble game.

• The rule 4 for white pebble removal also corresponds to merging in the blob-pebble game,
since the white pebble used in the merger is eliminated as well. In addition, however, a white
pebble onw can also disappear if its black blobB changes so thatw no longer can be visited
on a path viaB (i.e., if w is no longer a legal pebble position with respect toB).

• Other than that, individual white pebbles, and individual black vertices covered by blobs, can
never just disappear. If we want to remove a white pebble or parts of a black blob, we can do
so only byerasingthe whole blob subconfiguration.

The formal definition follows. See Figure 5 for some examplesof blob-pebbling moves.

26

6 A GAME FOR ANALYZING PEBBLING CONTRADICTIONS

(a) Empty pyramid. (b) Introduction move.

(c) Two subconfigurations before merger. (d) The merged subconfiguration.

(e) Subconfiguration before inflation. (f) Subconfiguration after inflation.

(g) Another subconfiguration before inflation. (h) After inflation with vanished white pebbles.

Figure 5: Examples of moves in the blob-pebble game.

27

TOWARDS AN OPTIMAL SEPARATION

Definition 6.8 (Blob-pebble game).For a blob-pebblable DAGG and blob-pebbling configura-
tions S0 andSτ on G, a blob-pebblingfrom S0 to Sτ in G is a sequenceP =

{

S0, . . . , Sτ

}

of
configurations such that for allt ∈ [τ], St is obtained fromSt−1 by one of the following rules:

Introduction St = St−1 ∪
{

[v]〈pred (v)〉
}

.

Merger St = St−1 ∪
{

[B]〈W〉
}

if there are[B1]〈W1〉, [B2]〈W2〉 ∈ St−1 such that

1. B1 ∪ B2 is (totally) ordered,

2. B1 ∩ W2 = ∅,

3. |B2 ∩ W1| = 1; let v∗ denote this unique element inB2 ∩ W1,

4. B = (B1 ∪ B2) \ {v∗}, and

5. W =
(

(W1 ∪ W2) \ {v∗}
)

∩ lpp(B),

We write[B]〈W〉 = merge([B1]〈W1〉, [B2]〈W2〉) and refer to this as amerger onv∗.

Inflation St = St−1 ∪
{

[B]〈W〉
}

if there is a[B′]〈W ′〉 ∈ St−1 such that

1. B ⊇ B′,

2. B ∩ W ′ = ∅, and

3. W ⊇ W ′ ∩ lpp(B).

We say that[B]〈W〉 is derived from[B′]〈W ′〉 by inflation or that[B′]〈W ′〉 is inflatedto yield
[B]〈W〉.

Erasure St = St−1 \
{

[B]〈W〉
}

for [B]〈W〉 ∈ St−1.

The blob-pebblingP is unconditional if S0 = ∅ and conditional otherwise. Acomplete blob-
pebblingof G is an unconditional pebblingP ending inSτ =

{

[z]〈∅〉
}

for z the unique sink ofG.

6.3 Blob-Pebbling Price

We have not yet defined what the price of a blob-pebbling is. The reason is that it is not a priori
clear what the “correct” definition of blob-pebbling price should be.

It should be pointed out that the blob-pebble game has no obvious intrinsic value—its function
is to serve as a tool to prove lower bounds on the resolution refutation space of pebbling contra-
dictions. The intended structure of our lower bound proof for resolution space is that we want
look at resolution refutations of pebbling contradictions, interpret them in terms of blob-pebblings
on the underlying graphs, and then translate lower bounds onthe price of these blob-pebblings
into lower bounds on the size of the corresponding clause configurations. Therefore, we have two
requirements for the blob-pebbling priceBlob-Peb(G):

1. It should be sufficiently high to enable us to prove good lower bounds onBlob-Peb(G),
preferrably by relating it to the standard black-white pebbling priceBW-Peb(G).

2. It should also be sufficiently low, so that lower bounds onBlob-Peb(G) translate back to
lower bounds on the size of the clause configurations.

So when defining pebbling price in Definition 6.9 below, we also have to have in mind the coming
Definition 7.2 saying how we will interpret clauses in terms of blobs and pebbles and that these
two definitions together should make it possible for us to lower-bound clause set size in terms of
pebbling cost.

28

7 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

For black pebbles, we could try to charge1 for each distinct blob. But this will not work, since
then the second requirement above fails. For the translation of clauses to blobs and pebbles sketched
in Section 2.3 it is possible to construct clause configurations that correspond to an exponential
number of distinct black blobs measured in the clause set size. The other natural extreme seems
to be to charge only for mutually disjoint black blobs. But this is far too generous, and the first
requirement above fails. To get a trivial example of this, take any ordinary black pebbling ofG
and translate in into an (atomic) blob-pebbling, but then change it so that each black pebble[v] is
immediately inflated to[{v, z}] after each introduction move. It is straightforward to verify that this
would yield a pebbling ofG in constant cost. For white pebbles, the first idea might be tocharge1
for every white-pebbled vertex, just as in the standard pebble game. On closer inspection, though,
this seems to be not quite what we need.

The definition presented below turns out to give us both of thedesired properties above, and
allows us to prove an optimal bound. Namely, we define blob-pebbling price so as to charge1 for
each distinct bottom vertexamong the black blobs, and so as to charge for the subset of supporting
white pebblesW ∩ Gb

M
in a subconfiguration[B]〈W〉 that arelocated below the bottom vertex

bot(B) of its black blobB. Multiple distinct blobs with the same bottom vertex come for free,
however, and any supporting white pebbles above the bottom vertex of its own blob are also free,
although we still have to keep track of them.

Definition 6.9 (Blob-pebbling price). For a subconfiguration[B]〈W〉, we say thatB([B]〈W〉) =

{bot(B)} is thechargeable black vertexand thatWM([B]〈W〉) = W ∩ G
bot(B)
M

are thechargeable
white vertices. Thechargeable verticesof the subconfiguration[B]〈W〉 are all vertices in the union
B([B]〈W〉) ∪ WM([B]〈W〉). This definition is extended to blob-pebbling configurations S in the
natural way by letting

B(S) =
⋃

[B]〈W〉∈S

B([B]〈W〉) =
{

bot(B) | [B]〈W〉 ∈ S
}

and
WM(S) =

⋃

[B]〈W〉∈S

WM([B]〈W〉) =
⋃

[B]〈W〉∈S

(

W ∩ G
bot(B)
M

)

.

The cost of a blob-pebbling configurationS is cost(S) =
∣

∣B(S) ∪ WM(S)
∣

∣, and the cost of a
blob-pebblingP =

{

S0, . . . , Sτ

}

is cost(P) = maxt∈[τ]

{

cost(St)
}

.
The blob-pebbling priceof a blob subconfiguration[B]〈W〉, denotedBlob-Peb([B]〈W〉), is

the minimal cost of any unconditional blob-pebblingP = {S0, . . . , Sτ} such thatSτ =
{

[B]〈W〉
}

.
The blob-pebbling price of a DAGG is Blob-Peb(G) = Blob-Peb([z]〈∅〉), i.e., the minimal cost
of any complete blob-pebbling ofG.

We will also writeW(S) to denote the set of all white-pebbled vertices inS, including non-
chargeable ones.

7 Resolution Derivations Induce Blob-Pebblings

For simplicity, in this section, as well as in the next one, wewill write v1, . . . , vd instead of
x(v)1, . . . , x(v)d for thed variables associated withv in adth degree pebbling contradiction. That
is, in Sections 7 and 8 small letters with subscripts will denote only variables in propositional logic
and nothing else.

It turns out that for technical reasons, it is more natural toignore the target axiomsz1, . . . , zd

and focus on resolution derivations of
∨d

l=1 zl from the rest of the formula rather than resolution
refutations of all ofPebd

G. Let us write*Pebd
G = Pebd

G \
{

z1, . . . , zd

}

to denote the pebbling

29

TOWARDS AN OPTIMAL SEPARATION

formula overG with the target axioms in the pebbling contradiction removed. The next lemma is
the formal statement saying that we may just as well study derivations of

∨d
l=1 zl from this pebbling

formula*Pebd
G instead of refutations ofPebd

G.

Lemma 7.1. For any DAGG with sinkz, it holds thatSp(Pebd
G ` 0) = Sp(*Pebd

G ` ∨d
l=1 zl).

Proof. For any resolution derivationπ∗ : *Pebd
G `∨d

l=1 zl, we can get a resolution refutation of
Pebd

G from π∗ in the same space by resolving
∨d

l=1 zl with all zl, l = 1, . . . , d, in space3.
In the other direction, forπ : Pebd

G ` 0 we can extract a derivation of
∨d

l=1 zl in at most the
same space by simply omitting all downloads of and resolution steps onzl in π, leaving the literals
zl in the clauses. Instead of the final empty clause0 we get some clauseD ⊆ ∨d

l=1 zl, and since
*Pebd

G 2 D $
∨d

l=1 zl and resolution is sound, we haveD =
∨d

l=1 zl.

In view of Lemma 7.1, from now on we will only consider resolution derivations from*Pebd
G

and try to convert clause configurations in such derivationsinto sets of blob subconfigurations.
To avoid cluttering the notation with an excessive amount ofbrackets, we will sometimes use

sloppy notation for sets. We will allow ourselves to omit curly brackets around singleton sets when
this is clear from context, writing for instanceV ∪ v instead ofV ∪ {v} and[B ∪ b]〈W ∪ w〉
instead of[B ∪ {b}]〈W ∪ {w}〉. Also, we will sometimes omit the curly brackets around setsof
vertices in black blobs and write, for instance,[u, v] instead of[{u, v}].

7.1 Definition of Induced Configurations and Theorem Stateme nt

If r is a non-source vertex with predecessorspred(r) = {p, q}, we say that theaxioms forr in
*Pebd

G is the set
Axd(r) =

{

pi ∨ qj ∨
∨d

l=1 rl | i, j ∈ [d]
}

(7.1)

and ifr is a source, we defineAxd(r) =
{
∨d

i=1 ri

}

. ForV a set of vertices inG, we letAxd(V) =
{

Axd(v) | v ∈ V
}

. Note that with this notation, we have*Pebd
G =

{

Axd(v) | v ∈ V (G)
}

. For
brevity, we introduce the shorthand notation

B(V) =
{
∨d

i=1 vi | v ∈ V
}

(7.2)

and
All+(V) =

∨

v∈V

∨d
i=1 vi . (7.3)

One can think ofB(V) as “truth of all vertices inV ” andAll+(V) as “truth of some vertex inV ”.
We say that a set of clausesC implies a clauseD minimally if C � D but for all C′ $ C

it holds thatC′ 2 D. If C � 0 minimally, C is said to beminimally unsatisfiable. We say that
C implies a clauseD maximallyif C � D but for all D′ $ D it holds thatC′ 2 D′. To define
our translation of clauses to blob subconfigurations, we useimplications that are in a sense both
minimal and maximal. We remind the reader that the vertex setlpp(B) of legal pebble positions
for white pebbles with respect to the chainB was defined in Equation (6.1) on page 26.

Definition 7.2 (Induced blob subconfiguration). Let G be a blob-pebblable DAG andC a clause
configuration derived from*Pebd

G. ThenC induces the blob subconfiguration[B]〈W〉 if there is a
clause setCB ⊆ C and a vertex setS ⊆ G \ B with W = S ∩ lpp(B) such that

CB ∪ B(S) � All+(B) (7.4a)

but for which it holds for all strict subsetsC′
B $ CB , S′ $ S andB′ $ B that

C′
B ∪ B(S) 2 All+(B) , (7.4b)

CB ∪ B(S′) 2 All+(B) , and (7.4c)

CB ∪ B(S) 2 All+(B′) . (7.4d)

30

7 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

We writeS(C) to denote the set of all blob subconfigurations induced byC.
To save space, when all conditions (7.4a)–(7.4d) hold, we write

CB ∪ B(S) B All+(B) (7.5)

and refer to this asprecise implicationor say that the clause setCB ∪ B(S) implies the clause
All+(B) precisely. Also, we say that the precise implicationCB ∪ B(S) B All+(B) witnessesthe
induced blob subconfiguration[B]〈W〉.

In the following, we will use the definition of precise implicationB also for clausesAll+(V)
where the vertex setV is not a chain.

Let us see that this definition agrees with the intuition presented in Section 2.3. An atomic black
pebble on a single vertexv corresponds, as promised, to the fact that

∨d
i=1 vi is implied by the cur-

rent set of clauses. A black blob onV without supporting white pebbles is induced precisely when
the disjunctionAll+(V) =

∨

v∈V

∨d
i=1 vi of the corresponding clauses follow from the clauses in

memory, but no disjunction over a strict subset of verticesV ′ $ V is implied. Finally, the sup-
porting white pebbles just indicate that if we indeed had theinformation corresponding to black
pebbles on these vertices, the clause corresponding to the supported black blob could be derived.
Remember that our cost measure does not take into account thesize of blobs. This is natural since
we are interested in clause space, and since large blobs, in an intuitive sense, corresponds to large
(i.e., wide) clauses rather than many clauses.

The main result of this section is as follows.

Theorem 7.3. Letπ =
{

C0, . . . , Cτ

}

be a resolution derivation of
∨d

i=1 zi from*Pebd
G for a blob-

pebblable DAGG. Then the induced blob-pebbling configurations
{

S(C0), . . . , S(Cτ)
}

form the
“backbone” of a complete blob-pebblingP of G in the sense that

• S(C0) = ∅,

• S(Cτ) = {[z]〈∅〉}, and

• for everyt ∈ [τ], the transitionS(Ct−1) S(Ct) can be accomplished in accordance with
the blob-pebbling rules in costmax

{

cost(S(Ct−1)), cost(S(Ct))
}

+ O(1).

In particular, to any resolution derivationπ : *Pebd
G `∨d

i=1 zi we can associate a complete blob-
pebblingPπ of G such thatcost(Pπ) ≤ maxC∈π

{

cost(S(C))
}

+ O(1).

We prove the theorem by forward induction over the derivation π. By the pebbling rules in
Definition 6.8, any subconfiguration[B]〈W〉 may be erased freely at any time. Consequently, we
need not worry about subconfigurations disappearing duringthe transition fromCt−1 to Ct. What
we do need to check, though, is that no subconfiguration[B]〈W〉 appears inexplicably inS(Ct) as a
result of a derivation stepCt−1 Ct, but that we can always derive any[B]〈W〉 ∈ S(Ct)\S(Ct−1)
from S(Ct−1) by the blob-pebbling rules. Also, when several pebbling moves are needed to get
from S(Ct) to S(Ct−1), we need to check that these intermediate moves do not affectthe pebbling
cost by more than an additive constant.

The proof boils down to a case analysis of the different possibilities for the derivation step
Ct−1 Ct. Since the analysis is quite lengthy, we divide it into subsections. But first of all we
need some technical lemmas.

7.2 Some Technical Lemmas

The next three lemmas are not hard, but will prove quite useful. We present the proofs for com-
pleteness.

31

TOWARDS AN OPTIMAL SEPARATION

Lemma 7.4. LetC be a set of clauses andD a clause such thatC � D minimally anda ∈ Lit(C)
buta 6∈ Lit(C). Thena ∈ Lit(D).

Proof. Suppose not. LetC1 = {C ∈ C | a ∈ Lit(C)} andC2 = C \ C1. SinceC2 2 D there
is a truth value assignmentα such thatα(C2) = 1 andα(D) = 0. Note thatα(a) = 0, since
otherwiseα(C1) = 1 which would contradictC1 ∪ C2 = C � D. It follows thata /∈ Lit(D). Flip
a to true and denote the resulting truth value assignment byαa=1. By constructionαa=1(C1) = 1
andC2 andD are not affected since{a, a} ∩

(

Lit(C2) ∪ Lit(D)
)

= ∅, soαa=1(C) = 1 and
αa=1(D) = 0. Contradiction.

Lemma 7.5. Suppose thatC,D are clauses andC is a set of clauses. ThenC ∪
{

C
}

� D if and
only if C � a ∨ D for all a ∈ Lit(C).

Proof. Assume thatC ∪
{

C
}

� D and consider any assignmentα such thatα(C) = 1 and
α(D) = 0 (if there is no suchα, thenC � D ⊆ a ∨ D). Such anα must setC to false, i.e., alla
to true. Conversely, ifC � a ∨ D for all a ∈ Lit(C) andα is such thatα(C) = α(C) = 1, it must
hold thatα(D) = 1, since otherwiseα(a ∨ D) = 0 for some literala ∈ Lit(C) satisfied byα.

Lemma 7.6. Suppose thatC � D minimally. Then no literal fromD can occur negated inC, i.e.,
it holds that{a | a ∈ Lit(D)} ∩ Lit(C) = ∅.

Proof. Suppose not. LetC1 = {C ∈ C | ∃a such thata ∈ Lit(C) anda ∈ Lit(D)} and C2 =
C \ C1. SinceC2 2 D there is anα such thatα(C2) = 1 andα(D) = 0. But thenα(C1) = 1,
since everyC ∈ C1 contains a negated literala from D, and these literals are all set to true byα.
Contradiction.

We also need the following key technical lemma connecting implication with inflation moves.

Lemma 7.7. Let C be a clause set derived from*Pebd
G. Suppose thatB is a chain and that

S ⊆ G\B is a vertex set such thatC ∪ B(S) � All+(B) and letW = S ∩ lpp(B). Then the blob
subconfiguration[B]〈W〉 is derivable by inflation from some[B′]〈W ′〉 ∈ S(C).

Proof. Pick C′ ⊆ C, S′ ⊆ S andB′ ⊆ B minimal such thatC′ ∪ B(S′) � All+(B′). Then
C′ ∪ B(S′) B All+(B′) by definition. Note, furthermore, thatB′ 6= ∅ since the clause set on
the left-hand side must be non-contradictory. Also,C′ 6= ∅ sinceB′ ∩ S′ ⊆ B ∩ S = ∅,
so by Lemma 7.4 it cannot be thatB(S′) � All+(B′). This means thatC induces[B′]〈W ′〉 for
W ′ = S′ ∩ lpp(B′). We claim that[B′]〈W ′〉 can be inflated to[B]〈W〉, from which the lemma
follows.

To verify this claim, note that first two conditionsB′ ⊆ B andB ∩ W ′ ⊆ B ∩ S = ∅ for
inflation moves in Definition 6.8 clearly hold by construction. As to the third condition, we get

W ′ ∩ lpp(B) =
(

S′ ∩ lpp(B′)
)

∩ lpp(B) ⊆ S ∩ lpp(B) = W

which proves the claim.

We now start the case analysis in the proof of Theorem 7.3 for the different possible derivation
steps in a resolution derivation.

7.3 Erasure

Suppose thatCt = Ct−1 \ {C} for C ∈ Ct−1. It is easy to see that the only possible outcome
of erasing clauses is that blob subconfigurations disappear. We note for future reference that this
implies that the blob-pebbling cost decreases monotonically when going fromS(Ct−1) to S(Ct).

32

7 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

7.4 Inference

Suppose thatCt = Ct−1 ∪ {C} for some clauseC derived fromCt−1. No blob subconfigurations
can disappear at an inference move sinceCt−1 ⊆ Ct. Suppose that[B]〈W〉 is a new subcon-
figuration at timet arising fromCB ⊆ Ct−1 andS ⊆ G \ B such thatW = S ∩ lpp(B) and
CB ∪ {C} ∪ B(S) B All+(B). SinceC is derived fromCt−1, we haveCt−1 � C. Thus it
holds thatCt−1 ∪ B(S) � All+(B) and Lemma 7.7 tells us that[B]〈W〉 is derivable by inflation
from S(Ct−1).

Since no subconfiguration disappears, the pebbling cost increases monotonically when going
from S(Ct−1) to S(Ct) for an inference step, which is again noted for future reference.

7.5 Axiom Download

This is the interesting case. Assume that a new blob subconfiguration [B]〈W〉 is induced at timet
as the result of a download of an axiomC ∈ Axd(r). ThenC must be one of the clauses inducing
the subconfiguration, and we get that there areCB ⊆ Ct−1 andS ⊆ G \B with W = S ∩ lpp(B)
such that

CB ∪ {C} ∪ B(S) B All+(B) . (7.6)

Our intuition is that download of an axiom clauseC ∈ Axd(r) in the resolution derivation should
correspond to an introduction of[r]〈pred(r)〉 in the induced blob-pebbling. We want to prove
that any other blob subconfiguration[B]〈W〉 in S(Ct) is derivable by the pebbling rules from
S(Ct−1) ∪ [r]〈pred(r)〉. Also, we need to prove that the pebbling moves needed to go from
S(Ct−1) to S(Ct) do not increase the blob-pebbling cost by more than an additive constant com-
pared tomax

{

cost(S(Ct−1)), cost(S(Ct))
}

= cost(S(Ct)).
We do the proof by a case analysis overr depending on where in the graph this vertex is located

in relation toB. To simplify the proofs for the different cases, we first showa general technical
lemma about pebble induction at axiom download.

Lemma 7.8. Suppose thatCt = Ct−1 ∪ C for an axiomC ∈ Axd(r) and that[B]〈W〉 is a new
blob subconfiguration induced at timet as witnessed by(7.6). Then it holds that:

1. r /∈ S.

2. pred(r) ∩ B = ∅.

3. If r /∈ B, thenCt−1 induces[B]〈W ∪ ({r} ∩ lpp(B))〉 if r is a source, and otherwise this
subconfiguration can be derived fromS(Ct−1) by inflation.

4. If r is a non-source vertex andv ∈ pred(r) is such thatv ∈ lpp(B) \ S, then we can derive
[B ∪ v]〈S ∩ lpp(B ∪ v)〉 from S(Ct−1) by inflation.

Proof. Suppose that[B]〈W〉 ∈ S(Ct) \ S(Ct−1). For part 1, noting thatB(r) � C for C ∈ Axd(r)
we see thatr /∈ S, as otherwise the implication (7.6) cannot be precise sinceC can be omitted.

If r is a source part 2 is trivial, so supposepred(r) = {p, q} andC = pi ∨ qj ∨
∨d

l=1 rl. Then
it follows from Lemma 7.6 that{p, q} ∩ B = ∅.

For part 3, ifr is a source, we haveC =
∨d

i=1 ri and (7.6) becomes

CB ∪ B(S ∪ r) B All+(B) (7.7)

for S ∪ r ⊆ G \ B, which shows thatCt−1 induces

[B]〈(S ∪ r) ∩ lpp(B)〉 = [B]〈(S ∩ lpp(B)) ∪ (r ∩ lpp(B))〉
= [B]〈(W ∪ (r ∩ lpp(B))〉 .

(7.8)

33

TOWARDS AN OPTIMAL SEPARATION

If r is a non-source we do not get a precise implication but still have

CB ∪ B(S ∪ r) � All+(B) (7.9)

and Lemma 7.7 yields that[B]〈(S ∪ r) ∩ lpp(B)〉 = [B]〈W ∪ (r ∩ lpp(B))〉 is derivable by
inflation fromS(Ct−1).

If v ∈ pred (r) in part 4, the downloaded axiom can be written on the formC = C ′ ∨ vi.
Applying Lemma 7.5 on (7.6) we get

CB ∪ B(S) � All+(B) ∨ vi ⊆ All+(B ∪ v) . (7.10)

By assumption, we have thatB ∪ v is a chain and thatS ⊆ G \ (B ∪ v), so Lemma 7.7 says that
[B ∪ v]〈S ∩ lpp(B ∪ v)〉 is derivable fromS(Ct−1) by inflation.

What we get from Lemma 7.8 is not in itself sufficient to derivethe new blob subconfiguration
[B]〈W〉 in the blob-pebble game, but the lemma provides subconfigurations that will be used as
building blocks in the derivations of[B]〈W〉 below.

Now we are ready for the case analysis over the vertexr for the downloaded axiom clause
C ∈ Axd(r). Recall that the assumption is that there exists a blob subconfiguration [B]〈W〉 ∈
S(Ct) \ S(Ct−1) induced through (7.6) forCB ⊆ Ct−1 andS ⊆ G \ B with W = S ∩ lpp(B).
Remember also that we want to explain all new subconfigurations inS(Ct) \ S(Ct−1) in terms of
pebbling moves fromS(Ct) ∪ {[r]〈pred (r)〉}. As illustrated in Figure 6, the cases forr are:

1. r ∈ G \
(

Gb
M
∪ ⋃

Pin(B)
)

for b = bot(B),

2. r ∈ ⋃

Pin(B) \ B,

3. r ∈ B \ {b} for b = bot(B),

4. r = bot(B), and

5. r ∈ G
\b
M

for b = bot(B).

7.5.1 Case 1: r ∈ G \
(

Gb
M
∪ ⋃

Pin(B)
)

for b = bot(B)

If r ∈ G \
(

Gb
M
∪ ⋃

Pin(B)
)

, this means that the vertexr is outside the set of vertices covered by
source paths viaB to top(B). In other words,r /∈ lpp(B) ∪ B and part 3 of Lemma 7.8 yields that
[

B
]〈

W ∪ (r ∩ lpp(B))
〉

= [B]〈W〉 is derivable fromS(Ct−1) by inflation. Note that we need
no intermediate subconfigurations in this case.

7.5.2 Case 2: r ∈ ⋃

Pin(B) \ B

This is the first more challenging case, and we do it in some detail to show how the reasoning goes.
The proofs for the rest of the cases are analogous and will be presented in slightly more condensed
form.

The conditionr ∈ ⋃

Pin(B) \ B says that the vertexr is located on some path frombot(B)
via B to top(B) strictly above the bottom vertexb = bot(B). In particular, this means that
r cannot be a source vertex. Letpred(r) = {p, q} and denote the downloaded axiom clause
C = pi ∨ qj ∨

∨d
l=1 rl.

Part 3 of Lemma 7.8 says that we can derive the blob subconfiguration

[B]〈W ∪ (r ∩ lpp(B))〉 = [B]〈W ∪ r〉 (7.11)

34

7 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

B

b = bot(B)

⋃

Pin(B) \ B

G
\b
M

G \
(

Gb
M
∪ ⋃

Pin(B)
)

Figure 6: Cases for vertex r with respect to new black blob B at download of axiom C ∈ Axd(r).

by inflation fromS(Ct−1), where the equality holds sincer ∈ ⋃

Pin(B) \ B ⊆ lpp(B) by Defini-
tion 6.7. Also, sincer is on some path aboveb, at least one of the predecessors ofr must be located
on some path fromb as well. That is, translating what was just said into our notation we have that
the fact thatr ∈ ⋃

Pin(B) ∩ GO

\b implies that eitherp ∈ ⋃

Pin(B) or q ∈ ⋃

Pin(B) or both. By
symmetry, we get two cases:p ∈ ⋃

Pin(B), q /∈ ⋃

Pin(B) and{p, q} ⊆ ⋃

Pin(B). Let us look
at them in order.

I. p ∈ ⋃

Pin(B), q /∈ ⋃

Pin(B): We make a subcase analysis depending on whetherp ∈
B ∪ W or not. Recall from part 2 of Lemma 7.8 thatp /∈ B. The two remaining cases are
p ∈ W andp /∈ B ∪ W .

(a) p ∈ W : Let v be the uppermost vertex inB belowp, or in formal notation

v = top(Gp
M ∩ B) . (7.12)

Such a vertexv must exist sincep ∈ ⋃

Pin(B) \ B. Sincep is abovev and is a
predecessor ofr, it lies on some path fromv to r, i.e.,p ∈ ⋃

Pin({v, r}) \ {v, r}. For
the siblingq we haveq /∈ ⋃

Pin({v, r}). This is so sinceq /∈ ⋃

Pin(B) and for any
pathP ∈ Pin({v, r}) it holds thatP ⊆ ⋃

Pin(B) since there is nothing inbetweenv

andr in B, i.e.,
(
⋃

Pin({v, r}) \ {v, r}
)

∩ B = ∅. Also, q /∈ G
\p
M ⊇ G

\v
M because of

the Sibling non-reachability property 6.2. Hence, it must hold thatq /∈ lpp({v, r}).
We can use this information to make blob-pebbling moves resulting in [B]〈W〉 as fol-
lows. First introduce[r]〈p, q〉 and inflate this subconfiguration to

[v, r]〈{p, q} ∩ lpp({v, r})〉 = [v, r]〈p〉 . (7.13)

Then derive the subconfiguration[B]〈W ∪ r〉 in (7.11) by inflation fromS(Ct−1).
Finally, merge the two subconfigurations (7.11) and (7.13).The result of this merger
move is[B ∪ v]〈W ∪ p〉 = [B]〈W〉.

35

TOWARDS AN OPTIMAL SEPARATION

(b) p /∈ B ∪ W : Note thatp ∈ Pin(B) \ B by assumption. Also, it must hold thatp /∈ S
since otherwise we would get the contradictionp ∈ S ∩ (Pin(B)\B) ⊆ S ∩ lpp(B) =
W . Thus,p ∈ lpp(B) \ S and part 4 of Lemma 7.8 yields that we can derive the blob
subconfiguration

[B ∪ p]〈Wp〉 for Wp ⊆ W (7.14)

by inflation fromS(Ct−1), whereWp = S ∩ lpp(B ∪ p) ⊆ S ∩ lpp(B) = W since
lpp(B ∪ p) ⊆ lpp(B) if p ∈ ⋃

Pin(B). (This last claim is easily verified directly from
Definition 6.7.)

With v = top(Gp
M ∩ B) as in (7.12), introduce[r]〈p, q〉 and inflate to[v, r]〈p〉 as in

(7.13). Merging the subconfigurations (7.13) and (7.14) yields

[B ∪ {v, r}]〈Wp〉 = [B ∪ r]〈Wp〉 (7.15)

and a second merger of the resulting subconfiguration (7.15)with the subconfiguration
in (7.11) produces[B]〈W ∪ Wp〉 = [B]〈W〉.

This finishes the casep ∈ ⋃

Pin(B), q /∈ ⋃

Pin(B).

II. {p, q} ⊆ ⋃

Pin(B): By part 2 of Lemma 7.8{p, q} ∩ B = ∅, so{p, q} ⊆ Pin(B) \ B. By
symmetry, we have the following subcases forp andq with respect to membership inB and
W .

(a) {p, q} ⊆ W ,

(b) p ∈ W, q /∈ W ,

(c) {p, q} ∩ (B ∪ W) = ∅.

We analyze these subcases one by one.

(a) {p, q} ⊆ W : This is easy. Just introduce[r]〈p, q〉 and merge this subconfiguration with
the subconfiguration (7.11) to get[B]〈W ∪ {p, q}〉 = [B]〈W〉.

(b) p ∈ W, q /∈ W : In this case it must hold thatq /∈ S since otherwise we would have
q ∈ S ∩ (Pin(B) \ B) ⊆ S ∩ lpp(B) = W contradicting the assumption. Thus
q ∈ (Pin(B) \ B) \ S ⊆ lpp(B) \ S and part 4 of Lemma 7.8 allows us to derive

[B ∪ q]〈Wq〉 for Wq ⊆ W (7.16)

by inflation fromS(Ct−1). Here we haveWq = S ∩ lpp(B ∪ q) ⊆ S ∩ lpp(B) = W
sincelpp(B ∪ q) ⊆ lpp(B) whenq ∈ ⋃

Pin(B).

Introduce[r]〈p, q〉 and merge with the subconfiguration (7.16) to get

[B ∪ r]〈Wq ∪ p〉 (7.17)

and then merge (7.17) with[B]〈W ∪ r〉 from (7.11) to get[B]〈W ∪ Wq ∪ p〉 =
[B]〈W〉.

(c) {p, q} ∩ B ∪ W = ∅: Just as for the vertexq in case case IIb, here it holds for
bothp andq that{p, q} ⊆ lpp(B) \ S. Part 4 of Lemma 7.8 yields subconfigurations
[B ∪ p]〈Wp〉 for Wp ⊆ W as in (7.14) and[B ∪ q]〈Wq〉 for Wq ⊆ W as in (7.16)
derived by inflation fromS(Ct−1).

Introduce[r]〈p, q〉 and merge with (7.14) onp to get

[B ∪ r]〈Wp ∪ q〉 (7.18)

36

7 RESOLUTION DERIVATIONS INDUCE BLOB-PEBBLINGS

and then merge (7.18) with (7.16) onq resulting in

[B ∪ r]〈Wp ∪ Wq〉 . (7.19)

Finally, merge (7.19) with (7.11) onr to get[B]〈W ∪ Wp ∪ Wq〉 = [B]〈W〉.

This concludes the caser ∈ ⋃

Pin(B) \ B. We can see that in all subcases, the new blob
subconfiguration[B]〈W〉 is derivable fromS(Ct−1) ∪ [r]〈pred (r)〉 by inflation moves followed by
mergers on some subset of{p, q, r}.

Let us analyze the cost of deriving[B]〈W〉. We want to bound the cost of the intermedi-
ate subconfigurations that are used in the transition fromS(Ct−1) to S(Ct) but are not present
in S(Ct). We first note that for the subconfigurations[B]〈W ∪ r〉, [B ∪ p]〈Wp〉, [B ∪ q]〈Wq〉
and [B ∪ r]〈W ′〉 for variousW ′ ⊆ W , the chargeable vertices are all subsets of the chargeable
vertices of the final subconfiguration[B]〈W〉. This is so sinceb = bot(B) is the bottom vertex in
all these black blobs, and all chargeable white vertices arecontained inW ∩ Gb

M
. The subconfigu-

rations[r]〈p, q〉 and[v, r]〈p〉 for v = top(Gp
M ∩ B) can incur an extra cost, however, but this cost

is clearly bounded by|{p, q, r, v}| = 4.

7.5.3 Case 3: r ∈ B \ {b} for b = bot(B)

First we note that in this case, we can no longer use part 3 of Lemma 7.8 to derive the blob sub-
configuration[B]〈W ∪ r〉 of (7.11). The vertexr cannot be added to the supportS since it is
contained inB. Also, we note thatr cannot be a source since it is above the bottom vertexb. As
usual, let us writepred(r) = {p, q}.

Observe that just as in case 2 (Section 7.5.2) we must have either p ∈ ⋃

Pin(B) or q ∈
⋃

Pin(B) or both. By symmetry we get the same two cases for membership of p andq in
⋃

Pin(B),
namelyp ∈ ⋃

Pin(B), q /∈ ⋃

Pin(B) and{p, q} ⊆ ⋃

Pin(B).

I. p ∈ ⋃

Pin(B), q /∈ ⋃

Pin(B): As before,p /∈ B by part 2 of Lemma 7.8. We make a
subcase analysis depending on whetherp ∈ W or p /∈ B ∪ W .

As in (7.12) we letv = top(Gp
M

∩ B) and note thatp ∈ ⋃

Pin({v, r}) \ {v, r}. For q we
haveq /∈ ⋃

Pin({v, r}) sinceq /∈ ⋃

Pin(B) but {v, r} ⊆ ⋃

Pin(B) and there is nothing

inbetweenv and r in B. Also, q /∈ G
\p
M ⊇ G

\v
M because of the Sibling non-reachability

property 6.2. Hence, it holds thatq /∈ lpp({v, r}).

(a) p ∈ W : Introduce[r]〈p, q〉, inflate [r]〈p, q〉 to [v, r]〈{p, q} ∩ lpp({v, r})〉 = [v, r]〈p〉
as in (7.13) and continue the inflation to[B ∪ {v, r}]〈W ∪ p〉 = [B]〈W〉.

(b) p /∈ B ∪ W : Just as in case 2,p /∈ W impliesp /∈ S, sop ∈ lpp(B) \ S and we can
use part 4 of Lemma 7.8 to derive[B ∪ p]〈Wp〉 for Wp ⊆ W as in (7.14). Introduce
[r]〈p, q〉, inflate to[v, r]〈p〉 as in (7.13) and merge (7.13) and (7.14) onp resulting in
[B ∪ {v, r}]〈Wp〉 = [B]〈Wp〉, which can be inflated to[B]〈W〉.

II. {p, q} ⊆ ⋃

Pin(B): We have the same possibilities to consider for containmentof p andq
in B ∪ W as in case 2(II) on page 36.

(a) {p, q} ⊆ W : This is immediate. Introduce the subconfiguration[r]〈p, q〉 and inflate to
[B ∪ r]〈W ∪ {p, q}〉 = [B]〈W〉.

(b) p ∈ W, q /∈ B ∪ W : Apply part 4 of Lemma 7.8 to derive[B ∪ q]〈Wq〉 for Wq ⊆ W
by inflation from S(Ct−1). Then introduce[r]〈p, q〉 and merge onq to get the sub-
configuration[B ∪ r]〈Wq ∪ p〉 = [B]〈Wq ∪ p〉, which can be inflated further to
[B]〈Wq ∪ p ∪ W 〉 = [B]〈W〉.

37

TOWARDS AN OPTIMAL SEPARATION

(c) {p, q} ∩ (B ∪ W) = ∅: In the same way as in case IIb, derive the subconfigurations
[B ∪ p]〈Wp〉 and[B ∪ q]〈Wq〉 with Wp ∪ Wq ⊆ W from S(Ct−1) by inflation. Intro-
duce[r]〈p, q〉 and merge twice, first onp and then onq, to get[B]〈Wp ∪ Wq〉, which
can be inflated to[B]〈W〉.

This concludes the caser ∈ B \ {b}. We see that in all subcases the new blob subconfiguration
[B]〈W〉 is derivable fromS(Ct−1) ∪ [r]〈pred(r)〉 by inflation moves followed by mergers on some
subset of{p, q}, possibly followed by one more inflation move.

As in the previous case, the bottom vertex in all of the black blobs [B ∪ p], [B ∪ q] and
[B ∪ r] is b = bot(B), and the corresponding chargeable white pebbles are subsets of those ofW .
The extra cost caused by the subconfigurations[r]〈p, q〉 and[v, r]〈p〉 is at most4.

7.5.4 Case 4: r = bot(B)

If r is a source, any[B]〈W〉 with r ∈ B can be derived by introducing[r]〈pred(r)〉 = [r]〈∅〉 and
inflating. Suppose therefore thatr = bot(B) is not a source and letpred (r) = {p, q}. Then it

holds that{p, q} ⊆ G
\r
M ⊆ lpp(B), i.e., the vertex setsB ∪ p andB ∪ q are both chains.

By symmetry, we have three cases forp andq with respect to membership inW . (It is still true
that{p, q} ∩ B = ∅ by part 2 of Lemma 7.8.)

(a) {p, q} ⊆ W : Immediate. Introduce[r]〈p, q〉 and inflate to[B ∪ r]〈W ∪ {p, q}〉 = [B]〈W〉.

(b) p ∈ W, q /∈ W : Enlist the help of our old friend Lemma 7.8, part 4, to derive[B ∪ q]〈Wq〉
for Wq ⊆ W by inflation fromS(Ct−1) (whereWq ⊆ W holds sincelpp(B ∪ v) ⊆ lpp(B)

if v ∈ G
\b
M). Introduce[r]〈p, q〉 and merge with[B ∪ q]〈Wq〉 to get [B ∪ r]〈Wq ∪ p〉 =

[B]〈Wq ∪ p〉. Then inflate[B]〈Wq ∪ p〉 to [B]〈Wq ∪ p ∪ W 〉 = [B]〈W〉.

(c) {p, q} ∩ W = ∅: Following an established tradition, mimic case b and derive [B ∪ p]〈Wp〉
and [B ∪ q]〈Wq〉 with Wp ∪ Wq ⊆ W by inflation fromS(Ct−1). Introduce[r]〈p, q〉, do
two mergers to get[B]〈Wp ∪ Wq〉 and inflate to[B]〈W〉.

This takes care of the caser = b. Again, in all subcases our new subconfiguration[B]〈W〉 is
derivable fromS(Ct−1) ∪ [r]〈pred (r)〉 by inflation moves followed by mergers on some subset of
{p, q}, possibly followed by one more inflation move.

This time the blobs[B ∪ p] and [B ∪ q] can cause an extra intermediate cost of1 each for
the bottom verticesp and q, and [r]〈p, q〉 potentially adds an extra cost1 for r, giving that the
intermediate extra cost is bounded by3.

7.5.5 Case 5: r ∈ G
\b
M for b = bot(B)

This final case is very similar to the previous caser = bot(B). Note first thatr ∈ G
\b
M ⊆ lpp(B).

If r is a source, thenC =
∨d

i=1 ri and we have

CB ∪ {C} ∪ B(S) = CB ∪ B(S ∪ r) B All+(B) (7.20)

at timet − 1, which shows that[B]〈W ∪ r〉 ∈ S(Ct−1). Hence, we can introduce[r]〈pred (r)〉 =
[r]〈∅〉 and merge onr to get[B]〈W〉.

As usual, the more interesting case is whenr is a non-source withpred(r) = {p, q}. The case
analysis is just as in case 4 (Section 7.5.4). However, note that now we can again use part 3 of
Lemma 7.8 to derive[B]〈W ∪ r〉 from S(Ct−1) by inflation since it holds thatr /∈ B.

(a) {p, q} ⊆ W : Introducing[r]〈p, q〉 and merging with[B]〈W ∪ r〉 yields [B]〈W〉.

38

8 INDUCED BLOB CONFIGURATIONS MEASURE CLAUSE SET SIZE

(b) p ∈ W, q /∈ W : Appeal to part 4 of Lemma 7.8 to get[B ∪ q]〈Wq〉 for Wq ⊆ W by inflation
from S(Ct−1). Introduce[r]〈p, q〉 and merge to get[B ∪ r]〈Wq ∪ p〉, and merge again with
[B]〈W ∪ r〉 to get[B]〈W〉.

(c) {p, q} ∩ W = ∅: As in case b above forq, derive [B ∪ p]〈Wp〉 and [B ∪ q]〈Wq〉 with
Wp ∪ Wq ⊆ W by inflation fromS(Ct−1). Introduce[r]〈p, q〉 and do two mergers to get
[B ∪ r]〈Wp ∪ Wq〉. Finally merge[B ∪ r]〈Wp ∪ Wq〉 with [B]〈W ∪ r〉 to get[B]〈W〉.

This takes care of the caser = G
\b
M. We note that in all subcases of this case,[B]〈W〉 is derivable

from S(Ct−1) ∪ [r]〈pred(r)〉 by inflation moves followed by mergers on some subset of{p, q, r}.
Again, the extra intermediate pebbling cost is bounded by|{p, q, r}| = 3.

7.6 Wrapping up the Proof

If π =
{

C0, . . . , Cτ

}

is a derivation of
∨d

i=1 zi from *Pebd
G, it is easily verified from Definition 7.2

thatS(C0) = S(∅) = ∅ andS(Cτ) = S({∨d
i=1 zi}) = {[z]〈∅〉}.

In Sections 7.3, 7.4, and 7.5, we have shown how to do the intermediate blob-pebbling moves
to get fromS(Ct−1) to S(Ct) in the case of erasure, inference and axiom download, respectively.
For erasure and inference, the blob-pebbling cost changes monotonically during the transition
S(Ct−1) S(Ct). In the case of axiom download, there can be an extra cost of4 incurred for
deriving each[B]〈W〉 ∈ S(Ct) \ S(Ct−1). We have no a priori upper bound on

∣

∣S(Ct) \ S(Ct−1)
∣

∣,
but if we just derive the new subconfigurations one by one and erase all intermediate subconfigu-
rations inbetween these derivations, we will keep the totalextra cost below4.

This shows that the complete blob-pebblingPπ of G associated to a resolution derivation
π : *Pebd

G `∨d
i=1 zi by the construction in this section has blob-pebbling cost bounded from above

by cost(Pπ) ≤ maxC∈π

{

cost(S(C))
}

+ 4. Theorem 7.3 is thereby proven.

8 Induced Blob Configurations Measure Clause Set Size

In this section we prove that if a set of clausesC induces a blob-pebbling configurationS(C)
according to Definition 7.2, then the cost ofS(C) as specified in Definition 6.9 is at most|C|. That
is, the cost of an induced blob-pebbling configuration provides a lower bound on the size of the set
of clauses inducing it. This is Theorem 8.5 below.

Note that we cannot expect a proof of this fact to work regardless of the pebbling degreed. The
induced blob-pebbling in Section 7 makes no assumptions about d, but for first-degree pebbling
contradictions we know thatSp(*Peb1

G ` z1) = Sp(Peb1
G ` 0) = O(1). Providedd ≥ 2, though,

we show that one has to pay at least|C| ≥ N clauses to get an induced blob-pebbling configuration
of costN .

We introduce some notation to simply the proofs in what follows. Let us defineVarsd(u) =
{u1, . . . , ud}. We say that a vertexu is representedin a clauseC derived from*Pebd

G, or thatC
mentionsu, if Varsd(u) ∩ Vars(C) 6= ∅. We write

V (C) =
{

u ∈ V (G)
∣

∣Varsd(u) ∩ Vars(C) 6= ∅
}

(8.1)

to denote all vertices represented inC. We will also refer toV (C) as the set of verticesmentioned
by C. This notation is extended to sets of clauses by taking unions. Furthermore, we write

CJUK = {C ∈ C | V (C) ∩ U 6= ∅} (8.2)

to denote the subset of all clauses inC mentioning vertices in a vertex setU .

39

TOWARDS AN OPTIMAL SEPARATION

We now show some technical results about CNF formulas that will come in handy in the proof
of Theorem 8.5. Intuitively, we will use Lemma 8.1 below together with Lemma 7.4 on page 32 to
argue that if a clause setC induces a lot of subconfigurations, then there must be a lot ofvariable
occurrences inC for variables corresponding to these vertices. Note, however, that this alone will
not be enough, since this will be true also for pebbling degreed = 1.

Lemma 8.1. Suppose for a set of clausesC and clausesD1 andD2 withVars(D1) ∩ Vars(D2) =
∅ that C � D1 ∨ D2 but C 2 D2. Then there is a literala ∈ Lit(C) ∩ Lit(D1).

Proof. Pick a truth value assignmentα such thatα(C) = 1 butα(D2) = 0. SinceC � D, we must
haveα(D1) = 1. Letα′ be the same assignment except that all satisfied literals inD1 are flipped to
false (which is possible since they are all strictly distinct by assumption). Thenα′(D1 ∨ D2) = 0
forcesα′(C) = 0, so the flip must have falsified some previously satisfied clause inC.

The fact that a minimally unsatisfiable CNF formula must havemore clauses than variables
seems to have been proven independently a number of times (see, for instance, [1, 6, 20, 38]).
We will need the following formulation of this result, relating subsets of variables in a minimally
implicating CNF formula and the clauses containing variables from these subsets.

Theorem 8.2. Suppose thatF is CNF formula that implies a clauseD minimally. For any subset
of variablesV of F , let FV = {C ∈ F | Vars(C) ∩ V 6= ∅} denote the set of clauses containing
variables fromV . Then ifV ⊆ Vars(F) \ Vars(D), it holds that|FV | > |V |. In particular, if F
is a minimally unsatisfiable CNF formula, we have|FV | > |V | for all V ⊆ Vars(F).

Proof. The proof is by induction overV ⊆ Vars(F) \ Vars(D).
The base case is easy. If|V | = 1, then|FV | ≥ 2, since anyx ∈ V must occur both unnegated

and negated inF by Lemma 7.4.
The inductive step just generalizes the proof of Lemma 7.4. Suppose that|FV ′ | > |V ′| for

all strict subsetsV ′ $ V ⊆ Vars(F) \ Vars(D) and considerV . SinceFV ′ ⊆ FV if V ′ ⊆ V ,
choosing anyV ′ of size|V | − 1 we see that|FV | ≥ |FV ′ | ≥ |V ′| + 1 = |V |.

If |FV | > |V | there is nothing to prove, so assume that|FV | = |V |. Consider the bipartite graph
with the variablesV and the clauses inFV as vertices, and edges between variables and clauses for
all variable occurrences. Since for allV ′ ⊆ V the set of neighboursN(V ′) = FV ′ ⊆ FV satisfies
|N(V ′)| ≥ |V ′|, by Hall’s marriage theorem there is a perfect matching betweenV andFV . Use
this matching to satisfyFV assigning values to variables inV only.

The clauses inF ′ = F \ FV are not affected by this partial truth value assignment, since they
do not contain any occurrences of variables inV . Furthermore, by the minimality ofF it must
hold thatF ′ can be satisfied andD falsified simultaneously by assigning values to variables in
Vars(F ′) \ V .

The two partial truth value assignments above can be combined to an assignment that satisfies
all of F but falsifiesD, which is a contradiction. Thus|FV | > |V |. The theorem follows by
induction.

Continuing our intuitive argument, given that Lemmas 7.4 and 8.1 tell us that many induced sub-
configurations implies the presence of many variables inC, we will use Theorem 8.2 to demonstrate
that a lot of different variable occurrences will have to translate into a lot of different clauses
provided that the pebbling degreed is at least2. Before we prove this formally, let us try to
provide some intuition for why it should be true by studying two special cases. Recall the notation
B(V) =

{
∨

i∈[d] vi

∣

∣v ∈ V
}

andAll+(V) =
∨

v∈V

∨

i∈[d] vi from Section 7.

Example8.3. Suppose thatC is a clause set derived from*Pebd
G that inducesN independent black

blobsB1, . . . , BN that are pairwise disjoint, i.e.,Bi ∩ Bj = ∅ if i 6= j. Then the implications

C � All+(Bi) (8.3)

40

8 INDUCED BLOB CONFIGURATIONS MEASURE CLAUSE SET SIZE

hold for i = 1, . . . , N . Remember that since*Pebd
G is non-contradictory, so isC.

It is clear that a non-contradictory clause setC satisfying (8.3) fori = 1, . . . , N is quite simply
the set

C =
{

All+(Bi)
∣

∣i = 1, . . . N
}

(8.4)

consisting precisely of the clauses implied. Also, it seemsplausible that this is the best one can
do. Informally, if there would be strictly fewer clauses than N , some clause would have to mix
variables from different blobsBi andBj . But then Lemma 7.4 says that there will be extra clauses
needed to “neutralize” the literals fromBj in the implicationC � All+(Bi) and vice versa, so that
the total number of clauses would have to be strictly greaterthanN .

As it turns out, the proof that|C| ≥ N whenC inducesN pairwise disjoint and independent
black blobs is very easy. Suppose on the contrary that (8.3) holds for i = 1, . . . , N but that
|C| < N . Let α be a satisfying assignment forC. Chooseα′ ⊆ α to be any minimal partial truth
value assignment fixingC to true. Then for the size of the domain ofα′ we have|Dom(α′)| < N ,
since at most one distinct literal is needed for every clauseC ∈ C to fix it to true. This means
that there is someBi such thatα′ does not set any variables inVarsd(Bi). Consequentlyα′ can be
extended to an assignmentα′′ settingC to true butAll+(Bi) to false, which is a contradiction. With
some more work, and using Theorem 8.2, one can show that|C| > N if variables from distinct
blobs are mixed.

Note that the above argument works for any pebbling degree includingd = 1. Intuitively, this
means that one can charge for black blobs even in the case of first degree pebbling formulas.

Example8.4. Suppose that the clause setC induces an blob subconfiguration[B]〈W〉 with W 6= ∅,
and let us assume for simplicity thatC is minimal andW = S so that the implication

C ∪ B(W) � All+(B) (8.5)

holds and is minimal. We claim that|C| ≥ |W | + 1 provided thatd > 1.
Since by definitionB ∩W = ∅we haveVars(All+(B)) ∩Vars(B(W)) = ∅, and Theorem 8.2

yields that|C ∪ B(W)| ≥ |CJW K ∪ B(W)| > |Vars(B(W))|, using the notation from (8.2). This
is not quite what we want—we have a lower bound on|C ∪ B(W)|, but what we need is a bound
on |C|. But if we observe that|Vars(B(W))| = d|W | while |B(W)| = |W |, we get that

|C| ≥ |Vars(B(W))| − |B(W)| + 1 = (d − 1)|W | + 1 ≥ |W | + 1 (8.6)

as claimed.
We remark that this time we had to use thatd > 1 in order to get a lower bound on the clause

set size. And indeed, it is not hard to see that a single clauseon the formC = v1 ∨
∨

w∈W w1 can
induce an arbitrary number of white pebbles ifd = 1. Intuitively, white pebbles can be had for free
in first degree pebbling formulas.

In general, matters are more complicated than in Examples 8.3 and 8.4. If[B1]〈W1〉 and
[B2]〈W2〉 are two induced blob subconfigurations, the black blobsB1 andB2 need not be dis-
joint, the supporting white pebblesW1 andW2 might also intersect, and the black blobB1 can
intersect the supporting white pebblesW2 of the other blob. Nevertheless, if we choose with some
care which vertices to charge for, the intuition provided byour examples can still be used to prove
the following theorem.

Theorem 8.5. Suppose thatG is a blob-pebblable DAG and letC be a set of clauses derived from
the pebbling formula*Pebd

G for d ≥ 2. Then|C| ≥ cost(S(C)).

Proof. Suppose that the induced set of blob subconfigurations isS(C) =
{

[Bi]〈Wi〉
∣

∣i ∈ [m]
}

. By
Definition 6.9, we havecost(S(C)) =

∣

∣B ∪ WM
∣

∣ where

B =
{

bot(Bi)
∣

∣[Bi]〈Wi〉 ∈ S(C)
}

(8.7)

41

TOWARDS AN OPTIMAL SEPARATION

and
WM =

⋃

[Bi]〈Wi〉∈S(C)

(

Wi ∩ G
bot(Bi)
M

)

. (8.8)

We need to prove that|C| ≥
∣

∣B ∪ WM
∣

∣.
We first show that all vertices inB ∪WM are represented in some clause inC. By Definition 7.2,

for each[Bi]〈Wi〉 ∈ S(C) there is a clause setCi ⊆ C and a vertex setSi ⊆ G \ Bi with
Wi = Si ∩ lpp(Bi) ⊆ Si such that

Ci ∪ B(Si) � All+(Bi) (8.9)

and such that this implication does not hold for any strict subset ofCi, Si or Bi. Fix (arbitrarily)
suchCi andSi for every[Bi]〈Wi〉 ∈ S(C) for the rest of this proof.

For the induced black blobsBi we claim thatBi ⊆ V (Ci), which certainly impliesbot(Bi) ∈
V (C). To establish this claim, note that for anyv ∈ Bi we can apply Lemma 8.1 withD1 =
∨d

j=1 vj andD2 = All+(Bi \ {v}) on the implication (8.9), which yields that the vertexv must be
represented inCi ∪ B(Wi) by some positive literalvj. SinceBi ∩ Si = ∅, we haveVars(B(Si)) ∩
Vars(All+(Bi)) = ∅ and thusvj ∈ Lit(Ci).

Also, we claim thatSi ⊆ V (Ci). To see this, note that sinceBi ∩ Si = ∅ and the implica-
tion (8.9) is minimal, it follows from Lemma 7.4 that for every w ∈ Si, all literalswj, j ∈ [d], must

be present inCi. Thus, in particular, it holds thatWi ∩ G
bot(Bi)
M ⊆ V (Ci).

We now prove by induction over subsetsR ⊆ B ∪ WM that|CJRK| ≥ |R|. The theorem clearly
follows from this since|C| ≥ |CJRK|. (The reader can think ofR as the set of verticesrepresenting
the blob-pebbling configurations[Bi]〈Wi〉 ∈ S(C) in the clause setC.)

The base case|R| = 1 is immediate, since we just demonstrated that all verticesr ∈ R are
represented inC.

For the induction step, suppose that|CJR′K| ≥ |R′| for all R′ $ R. Pick a “topmost” vertex
r ∈ R, i.e., such thatGO

\r ∩ R = ∅. We associate a blob subconfiguration[Bi]〈Wi〉 ∈ S(C) with
r as follows. If r = bot(Bi) for some[Bi]〈Wi〉, fix [Bi]〈Wi〉 arbitrarily to such a subconfigu-

ration. Otherwise, there must exist some[Bi]〈Wi〉 such thatr ∈ Wi ∩ G
bot(Bi)
M , so fix any such

subconfiguration. We note that it holds that

R ∩ GO

bot(Bi)
⊆ {r} (8.10)

for [Bi]〈Wi〉 chosen in this way.
Consider the clause setCi ⊆ C and vertex setSi ⊇ Wi from (8.9) associated with[Bi]〈Wi〉

above. Clearly, by constructionr ∈ V (Ci) is one of the vertices ofR mentioned byCi. We claim
that the total number of vertices inR mentioned byCi is upper-bounded by the number of clauses
in Ci mentioning these vertices, i.e., that

∣

∣CiJRK
∣

∣ ≥
∣

∣R ∩ V (Ci)
∣

∣ . (8.11)

Let us first see that this claim is sufficient to prove the theorem. To this end, let

R[i] = R ∩ V (Ci) (8.12)

denote the set of all vertices inR mentioned byCi and assume that|CiJRK| = |CiJR[i]K| ≥ |R[i]|.
Observe thatCiJR[i]K ⊆ CJRK, sinceCi ⊆ C andR[i] ⊆ R. Or in words: the set of clauses in
Ci mentioning vertices inR[i] is certainly a subset of all clauses inC mentioning any vertex inR.
Also, by constructionCi does not mention any vertices inR \ R[i] sinceR[i] = R ∩ V (Ci). That
is,

CJR \ R[i]K ⊆ CJRK \ Ci (8.13)

42

8 INDUCED BLOB CONFIGURATIONS MEASURE CLAUSE SET SIZE

in our notation. Combining the (yet unproven) claim (8.11) for CiJRK = CiJR[i]K asserting that
∣

∣CiJR[i]K
∣

∣ ≥ |R[i]| with the induction hypothesis forR \ R[i] ⊆ R \ {r} $ R we get

∣

∣CJRK
∣

∣ =
∣

∣CiJRK
.∪ (C \ Ci)JRK

∣

∣

≥
∣

∣CiJR ∩ V (Ci)K
.∪ CJR \ V (Ci)K

∣

∣

=
∣

∣CiJR[i]K
∣

∣ +
∣

∣CJR \ R[i]K
∣

∣ (8.14)

≥ |R[i]| + |R \ R[i]|
= |R|

and the theorem follows by induction.
It remains to verify the claim (8.11) that|CiJR[i]K| ≥ |R[i]| for R[i] = R ∩ V (Ci) 6= ∅. To do

so, recall first thatr ∈ R[i]. Thus,R[i] 6= ∅ and if R[i] = {r} we trivially have|CiJR[i]K| ≥ 1 =
|R[i]|. Suppose therefore thatR[i] % {r}.

We want to apply Theorem 8.2 on the formulaF = Ci ∪ B(Si) on the left-hand side of the
minimal implication (8.9). LetR′ = R[i] \ {r}, write R′ = R1

.∪ R2 for R1 = R′ ∩ Si and
R2 = R′ \ R1, and consider the subformula

FR′ =
{

C ∈
(

Ci ∪ B(Si)
)
∣

∣V (C) ∩ R′ 6= ∅
}

= CiJR
′K ∪ B(R1)

(8.15)

of F = Ci ∪ B(Si). A key observation for the concluding part of the argument isthat by (8.10)
we haveVarsd(R′) ∩ Vars(All+(Bi)) = ∅.

For eachw ∈ R1, the clauses inB(R1) containd literals w1, . . . , wd and these literals must
all occur negated inCi by Lemma 7.4. For eachu ∈ R2, the clauses inCiJR

′K contain at least
one variableui. Appealing to Theorem 8.2 with the subset of variablesVarsd(R′) ∩ Vars(Ci) ⊆
Vars(F) \ Vars(All+(Bi)), we get

∣

∣FR′

∣

∣ =
∣

∣CiJR
′K ∪ B(R1)

∣

∣

≥
∣

∣Varsd(R′) ∩ Vars(Ci)
∣

∣ + 1 (8.16)

≥ d
∣

∣R1

∣

∣ +
∣

∣R2

∣

∣ + 1 ,

and rewriting this as

∣

∣CiJR[i]K
∣

∣ ≥
∣

∣CiJR
′K
∣

∣

=
∣

∣FR′

∣

∣ −
∣

∣B(R1)
∣

∣

≥ (d − 1)
∣

∣R1

∣

∣ +
∣

∣R2

∣

∣ + 1

≥
∣

∣R[i]
∣

∣

(8.17)

establishes the claim.

We have two concluding remarks. Firstly, we note that the place where the conditiond ≥ 2 is
needed is the very final step (8.17). This is where an attempted lower bound proof for first degree
pebbling formulas*Peb1

G would fail for the reason that the presence of many white pebbles inS(C)
says absolutely nothing about the size of the clause setC inducing these pebbles. Secondly, another
crucial step in the proof is that we can choose our representative verticesr ∈ R so that (8.10) holds.
It is thanks to this fact that the inequalities in (8.16) go through. The way we make sure that (8.10)
holds is to charge only for (distinct) bottom vertices in theblack blobs, and only for supporting
white pebbles below these bottom vertices.

43

TOWARDS AN OPTIMAL SEPARATION

9 Black-White Pebbling and Layered Graphs

Having come this far in the paper, we know that resolution derivations induce blob-pebblings. We
also know that blob-pebbling cost gives a lower bound on clause set size and hence on the space of
the derivation. The final component needed to make the proof of Theorem 1.1 complete is to show
lower bounds on the blob-pebbling priceBlob-Peb(Gi) for some nice family of blob-pebblable
DAGsGi.

Perhaps the first idea that comes to mind is to try to establishlower bounds on blob-pebbling
price by reducing this problem to the problem of proving lower bounds for the standard black-
white pebble game of Definition 3.4. This is what is done in [42] for the restricted case of trees.
There, for the pebblingsPπ that one gets from resolution derivationsπ : *Pebd

T `∨d
i=1 zi in a rather

different so-called “labelled” pebble game, an explicit procedure is presented to transformPπ into a
complete black-white pebblings ofT in asymptotically the same cost. The lower bound on pebbling
price in the labelled pebbel game then follows immediately by using the known lower bound for
black-white pebbling of trees in Theorem 4.8.

Unfortunately, the blob-pebble game seems more difficult than the game in [42] to analyze in
terms of the standard black-white pebble game. The problem is the inflation rule (in combination
with the cost function). It is not hard to show that without inflation, the blob-pebble game is
essentially just a disguised form of black-white pebbling.Thus, if we could convert any blob-
pebbling into an equivalent pebbling not using inflation moves without increasing the cost by more
than, say, some constant factor, we would be done. But in contrast to the case for the labelled
pebble game in [42] played on binary trees, we are currently not able to transform blob-pebblings
into black-white pebblings in a cost-preserving way.

Instead, what we do is to prove lower bounds directly for the blob-pebble game. This is not
immediately clear how to do, since the lower bound proofs forblack-white pebbling price in, for
instance, [24, 31, 37, 39] all break down for the more generalblob-pebble game. We are currently
able to obtain lower bounds only for the limited class oflayered spreading graphs(to be defined
below), a class that includes binary trees and pyramid graphs. In our proof, we borrow heavily from
the corresponding bound for black-white pebbling in [37], but we need to go quite deep into the
construction in order to make the changes necessary for the proof go through in the blob-pebbling
case. In this section, we therefore give a detailed exposition of the lower bound in [37], in the
process simplifying the proof somewhat. In the next sectionwe build on this result to generalize
the bound from the black-white pebble game to the blob-pebble game in Definition 6.8.

9.1 Some Preliminaries and a Tight Bound for Black Pebbling

Unless otherwise stated, in the followingG denotes a layered DAG;u, v,w, x, y denote vertices
of G; U, V,W,X, Y denote sets of vertices;P denotes a path; andP denotes a set of paths. We
will also use the following notation.

Definition 9.1 (Layered DAG notation). For a vertexu in a layered DAGG we let level(u)
denote the level ofu. For a vertex setU we let minlevel(U) = min{level(u) : u ∈ U} and
maxlevel(U) = max{level(u) : u ∈ U} denote the lowest and highest level, respectively, of any
vertex inU . Vertices inU on particular levels are denoted as follows:

• U{�j} = {u ∈ U | level(u) ≥ j} denotes the subset of all vertices inU on levelj or higher.

• U{�j} = {u ∈ U | level(u) > j} denotes the vertices inU strictly above levelj.

• U{∼j} = U{�j} \ U{�j} denotes the vertices exactly on levelj.

The vertex setsU{�j} andU{≺j} are defined wholly analogously.

44

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Pyramid graph of height h = 6.

z y1

y2

x1

x2

x3

w1

w2

w3

w4

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

u6

s1

s2

s3

s4

s5

s6

s7

1

2

3

4

..
.

h

h+1

1 2 3 4 . . . h h+1

(b) Pyramid as fragment of 2D rectilinear lattice.

Figure 7: The pyramid Π6 of height 6 with labelled vertices.

For the layered DAGsG under consideration we will assume that all sources are on level 0,
that all non-sources have indegree2, and that there is a a unique sinkz. Since all layered DAGs
also possess the Sibling non-reachability property 6.2, this means that we are considering blob-
pebblable DAGs (Definition 6.6), and so the blob-pebble gamecan be played on them.

Although most of what will be said in what follows holds for arbitrary layered DAGs, we will
focus on pyramids since these are the graphs that we are most interested in. Figure 7(a) presents a
pyramid graph with labelled vertices that we will use as a running example. Pyramid graphs can
also be visualized as triangular fragments of a directed two-dimensional rectilinear lattice. Perhaps
this can sometimes make it easier for the reader to see that “obvious” statements about properties of
pyramids in some of the proofs below are indeed obvious. In Figure 7(b), the pyramid in Figure 7(a)
is redrawn as such a lattice fragment.

In the standard black and black-white pebble games, we have the following upper bounds on
pebbling price of layered DAGs.

Lemma 9.2. For any layered DAGGh of heighth with a unique sinkz and all non-sources having
vertex indegree2, it holds thatPeb(Gh) ≤ h + O(1) andBW-Peb(Gh) ≤ h/2 + O(1).

Proof. The bounds above are true for complete binary trees of heighth according to Theorem 4.8.
It is not hard to see that the corresponding pebbling strategies can be used to pebble any layered
graph of the same height with at most the same amount of pebbles.

Formally, suppose that the sinkz of the DAGGh has predecessorsx andy. Label the root of
Th by z1 and its predecessors byx1 andy1. Recursively, for a vertex inTh labelled bywi, look
at the corresponding vertexw in Gh and suppose thatpred(w) = {u, v}. Then label the vertices
pred(wi) in Th by uj andvk for the smallest positive indicesj, k such that there are not already
other vertices inTh labelleduj andvk. In Figure 8 there is an illustration of how the vertices in a
pyramidΠ3 of height3 are mapped to vertices in the complete binary treeT3 in this manner.

The result is a labelling ofTh where every vertexv in Gh corresponds to one or more distinct
verticesv1, . . . , vkv

in Th, and such that ifpred(wi) = {uj , vk} in Th, thenpred(w) = {u, v}
in Gh. Given a pebbling strategyP for Th, we can pebbleGh with at most the same amount of
pebbles by mimicking any move on anyvi in Th by performing the same move onv in Gh. The
details are easily verified.

45

TOWARDS AN OPTIMAL SEPARATION

z

u v

r s t

p q m n

(a) Pyramid graph Π3 of height 3.

z1

u1 v1

r1 s1 s2 t1

p1 q1 q2 m1 q3 m2 m3 n1

(b) Binary tree T3 with vertex labels from Π3.

Figure 8: Binary tree with vertices labelled by pyramid graph vertices as in proof of Lemma 9.2.

In this section, we will identify some layered graphsGh for which the bound in Lemma 9.2 is
also the asymptotically correct lower bound. As a warm-up, and also to introduce some important
ideas, let us consider the black pebbling price of the pyramid Πh of heighth.

Theorem 9.3 ([22]). Peb(Πh) = h + 2 for h ≥ 1.

To prove this lower bound, it turns out that it is sufficient tostudy blocked paths in the pyramid.

Definition 9.4. A vertex setU blocksa pathP if U ∩ P 6= ∅. U blocks a set of pathsP if U
blocks allP ∈ P.

Proof of Theorem 9.3.It is easy to devise (inductively) a black pebbling strategythat usesh + 2
pebbles (using, for instance, Lemma 9.2). We show that this is also a lower bound.

Consider the first timet when all possible paths from sources to the sink are blocked by black
pebbles. Suppose thatP is (one of) the last path(s) blocked. Obviously,P is blocked by placing
a pebble on some source vertexu. The pathP containsh + 1 vertices, and for each vertexv ∈
P \ {u} there is a unique pathPv that coincides withP from v onwards to the sink but arrives at
v in a straight line from a source “in the opposite direction” of that of P , i.e., via the immediate
predecessor ofv not contained inP . At time t− 1 all such paths{Pv | v ∈ P \ {u}} must already
be blocked, and sinceP is still open no pebble can block two pathsPv 6= Pv′ for v, v′ ∈ P \ {u},
v 6= v′. Thus at timet there are at leasth+1 pebbles onΠh. Furthermore, without loss of generality
each pebble placement on a source vertex is followed by another pebble placement (otherwise
perform all removals immediately following after timet before making the pebble placement at
time t). Thus at timet + 1 there areh + 2 pebbles onΠh.

We will use the idea in the proof above about a set of paths converging at different levels to
another fixed path repeatedly, so we write it down as a separate observation.

Observation 9.5. Suppose thatu andw are vertices inΠh on levelsLu < Lw and thatP : u w
is a path fromu to w. Let K = Lw − Lv and writeP = {v0 = u, v1, . . . , vK = w}. Then
there is a set ofK pathsP = {P1, . . . , PK} such thatPi coincides withP from vi onwards tow
arrives tovi in a straight line from a source vertex via the immediate predecessor ofvi which is not
contained inP , i.e., is distinct fromvi−1. In particular, for anyi, j with 1 ≤ i < j ≤ k it holds
thatPi ∩ Pj ⊆ Pj ∩ P ⊆ P \ {u}.

We will refer to the pathsP1, . . . , PK as a set ofconverging source paths, or just converging
paths, forP : u w. See Figure 9 for an example.

46

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

Figure 9: Set of converging source paths (dashed) for the path P : u4 y1 (solid).

9.2 A Tight Bound on the Black-White Pebbling Price of Pyrami ds

The rest of this section contains an exposition of Klawe [37], with some simplifications of the
proofs. Much of the notation and terminology has been changed from [37] to fit better with this
paper in general and (in the next section) the blob-pebble game in particular. Also, it should be
noted that we restrict all definitions to layered graphs, in contrast to Klawe who deals with a some-
what more general class of graphs. We concentrate on layeredgraphs mainly to avoid unnecessary
complications in the exposition, and since it can be proven that no graphs in [37] can give a better
size/pebbling price trade-off than one gets for layered graphs anyway.

Recall from Definition 6.5 that apath viaw is a pathP such thatw ∈ P . We will also say that
P visits w. The notationPvia(w) is used to denote all source paths visitingw. Note that a path
P ∈ Pvia(w) visiting w may continue afterw, or may end inw.

Definition 9.6 (Hiding set). A vertex setU hidesa vertexw if U blocks all source paths visitingw,
i.e., if U blocksPvia(w). U hidesW if U hides allw ∈ W . If so, we say thatU is ahiding set
for W . We writeVUW to denote the set of all vertices hidden byU .

Our perspective is that we are standing at the sources ofG and looking towards the sink. Then
U hidesw if we “cannot see”w from the sources sinceU completely hidesw. WhenU blocks
a pathP is is possible that we can “see” the beginning of the path, butwe cannot walk all of the
path since it is blocked somewhere on the way. The reason why this terminological distinction is
convenient will become clearer in the next section.

Note that ifU should hidew, then in particular it must block all paths ending inw. Therefore,
when looking at minimal hiding sets we can assume without loss of generality that no vertex inU
is on a level higher thanw.

It is an easy exercise to show that the hiding relation is transitive, i.e., that ifU hidesV andV
hidesW , thenU hidesW .

Proposition 9.7. If V ⊆ VUW andW ⊆ VV W thenW ⊆ VUW.

One key concept in Klawe’s paper is that ofpotential. The potential ofP = (B,W) is intended
to measure how “good” the configurationP is, or at least how hard it is to reach in a pebbling.
Note that this is not captured by the cost of the current pebble configuration. For instance, the final
configurationPτ = ({z}, ∅) is the best configuration conceivable, but only costs1. At the other

47

TOWARDS AN OPTIMAL SEPARATION

extreme, the configurationP in a pyramid with, say, all vertices on levelL white-pebbled and all
vertices on levelL + 1 black-pebbled is potentially very expensive (for low levels L), but does
not seem very useful. Since this configuration on the one handis quite expensive, but on the other
hand is extremely easy to derive (just white-pebble all vertices on levelL, and then black-pebble
all vertices on levelL + 1), here the cost seems like a gross overestimation of the “goodness” ofP.

Klawe’s potential measure remedies this. The potential of apebble configuration(B,W) is
defined as the minimum measure of any setU that together withW hidesB. Recall thatU{�j}
denotes the subset of all vertices inU on levelj or higher in a layered graphG.

Definition 9.8 (Measure). Thejth partial measureof the vertex setU in G is

mj
G(U) =

{

j + 2|U{�j}| if U{�j} 6= ∅,

0 otherwise,

and themeasureof U is mG(U) = maxj

{

mj
G(U)

}

.

Definition 9.9 (Potential). We say thatU is a hiding set for a black-white pebble configuration
P = (B,W) in a layered graphG if U ∪ W hidesB. We define thepotential of the pebble
configuration to be

potG(P) = potG(B,W) = min{mG(U) : U is a hiding set for(B,W)} .

If U is a hiding set for(B,W) with minimal measuremG(U) among all vertex setsU ′ such that
U ′ ∪ W hidesB, we say thatU is aminimum-measurehiding set forP.

Since the graph under consideration will almost always be clear from context, we will tend to
omit the subindexG in measures and potentials.

We remark that although this might not be immediately obvious, there is quite a lot of nice
intuition why Definition 9.9 is a relevant estimation of how “good” a pebble configuration is. We
refer the reader to Section 2 of [37] for a discussion about this. Let us just note that with this
definition, the pebble configurationPτ = ({z}, ∅) has high potential, as we shall soon see, while
the configuration with all vertices on levelL white-pebbled and all vertices on levelL + 1 black-
pebbled has potential zero.

Remark9.10. Klawe does not use the level of a vertexu in Definitions 9.8 and 9.9, but instead the
black pebbling pricePeb({u}, ∅) of the configuration with a black pebble onu and no other pebbles
in the DAG. For pyramids, these two concepts are equivalent,and we feel that the exposition can
be made considerably simpler by using levels.

Klawe proves two facts about the potentials of the pebble configurations in any black-white
pebblingP = {P0, . . . , Pτ} of a pyramid graphΠh:

1. The potential correctly estimates the goodness of the current configurationPt by taking into
account the whole pebbling that has led toPt. Namely,pot(Pt) ≤ 2 · maxs≤t{cost(Ps)}.

2. The final configurationPτ = ({z}, ∅) has high potential, namelypot({z}, ∅) = h + O(1).

Combining these two parts, one clearly gets a lower bound on pebbling price.
For pyramids, part 2 is not too hard to show directly. In fact,it is a useful exercise if one wants

to get some feeling for how the potential works. Part 1 is muchtrickier. It is proven by induction
over the pebbling. As it turns out, the whole induction proofhinges on the following key property.

Property 9.11 (Limited hiding-cardinality property). We say that the black-white pebble con-
figurationP = (B,W) in G has theLimited hiding-cardinality property, or just theLHC property
for short, if there is a vertex setU such that

48

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

1. U is a hiding set forP,

2. potG(P) = m(U),

3. U = B or |U | < |B| + |W | = cost(P).

We say that the graphG has the Limited hiding-cardinality property if all black-white pebble con-
figurationsP = (B,W) onG have the Limited hiding-cardinality property.

Note that requirements 1 and 2 just say thatU is a vertex set that witnesses the potential ofP.
The important point here is requirement 3, which says (basically) that if we are given a hiding set
U with minimum measure but with size exceeding the cost of the black-white pebble configura-
tion P, then we can pickanotherhiding setU ′ which keeps the minimum measure but decreases
the cardinality to at mostcost(P).

Given Property 9.11, the induction proof for part 1 follows quite easily. The main part of the
paper [37] is then spent on proving that a class of DAGs including pyramids have Property 9.11.
Let us see what the lower bound proof looks like, assuming that Property 9.11 holds.

Lemma 9.12 (Theorem 2.2 in [37]).Let G be a layered graph possessing the LHC property and
suppose thatP = {P0 = ∅, P1, . . . , Pτ} is any unconditional black-white pebbling onG. Then it
holds for allt = 1, . . . , τ thatpotG(Pt) ≤ 2 · maxs≤t{cost(Ps)}.

Proof. To simplify the proof, let us assume without loss of generality that no white pebble is ever
removed from a source. IfP contains such moves, we just substitute for each such white pebble
placement onv a black pebble placement onv instead, and when the white pebble is removed we
remove the corresponding black pebble. It is easy to check that this results in a legal pebblingP ′

that has exactly the same cost.
The proof is by induction. The base caseP0 = ∅ is trivial. For the induction hypothesis,

suppose thatpot(Pt) ≤ 2 · maxs≤t{cost(Ps)} and letUt be a vertex set as in Property 9.11, i.e.,
such thatUt ∪ Wt hidesBt, pot(Pt) = m(Ut) and|Ut| ≤ cost(Pt) = |B| + |W |.

ConsiderPt+1. We need to show thatpot(Pt+1) ≤ 2 ·maxs≤t+1{cost(Ps)}. By the induction
hypothesis, it is sufficient to show that

pot(Pt+1) ≤ max{pot(Pt), 2 · cost(Pt+1)} . (9.1)

We also note that ifUt ∪ Wt+1 hidesBt+1 we are done, since if sopot(Pt+1) ≤ m(Ut) = pot(Pt).
We make a case analysis depending on the type of move made to get from Pt to Pt+1.

1. Removal of black pebble: In this case,Ut ∪ Wt+1 = Ut ∪ Wt obviously hidesBt+1 ⊂ Bt

as well, sopot(Pt+1) ≤ pot(Pt).

2. Placement of white pebble: Again,Ut ∪ Wt+1 ⊃ Ut ∪ Wt hidesBt+1 = Bt, sopot(Pt+1) ≤
pot(Pt).

3. Removal of white pebble: Suppose that a white pebble is removed from the vertexw, so
Wt+1 = Wt \ {w}. As noted above, without loss of generalityw is not a source vertex. We
claim thatUt ∪ Wt+1 still hidesBt+1 = Bt, from whichpot(Pt+1) ≤ pot(Pt) follows as
above.

To see that the claim is true, note thatpred (w) ⊆ Bt ∪ Wt by the pebbling rules, for
otherwise we would not be able to remove the white pebble onw. If pred(w) ⊆ Wt we are
done, since thenUt ∪ Wt+1 hidesUt ∪ Wt and we can use the transitivity in Proposition 9.7.
If instead there is somev ∈ pred(w) ∩ Bt, thenUt ∪ Wt = Ut ∪ Wt+1 ∪ {w} hidesv
by assumption. Sincew is a successor ofv, and therefore on a higher level thanv, we must
haveUt ∪ Wt \{w} hiding v. Thus in any caseUt ∪ Wt+1 hidespred(w), so by transitivity
Ut ∪ Wt+1 hidesBt+1.

49

TOWARDS AN OPTIMAL SEPARATION

4. Placement of black pebble: Suppose that a black pebble is placed onv. If v is not a source,
by the pebbling rules we again have thatpred (v) ⊆ Bt ∪ Wt. In particular,Bt ∪ Wt hidesv
and by transitivity we have thatUt ∪ Wt+1 = Ut ∪ Wt hidesBt ∪ {v} = Bt+1.

The case whenv is a source turns out to be the only interesting one. NowUt ∪ Wt does not
necessarily hideBt ∪ {v} = Bt+1 any longer. An obvious fix is to try withUt ∪ {v} ∪ Wt

instead. This set clearly hidesBt+1, but it can be the case thatm(Ut ∪ {v}) > m(Ut).
This is problematic, since we could havepot(Pt+1) = m(Ut ∪ {v}) > m(Ut) = pot(Pt).
And we do not know that the inequalitypot(Pt) ≤ 2 · cost(Pt) holds, only thatpot(Pt) ≤
2 · maxs≤t{cost(Ps)}. This means that it can happen thatpot(Pt+1) > 2 · cost(Pt+1),
in which case the induction step fails. However, we claim that using the Limited hiding-
cardinality property 9.11 we can prove forUt+1 = Ut ∪ {v} that

m(Ut+1) = m(Ut ∪ {v}) ≤ max{m(Ut), 2 · cost(Pt+1)} , (9.2)

which shows that (9.1) holds and the induction steps goes through.

Namely, suppose thatUt is chosen as in Property 9.11 and considerUt+1 = Ut ∪ {v}. Then
Ut+1 is a hiding set forPt+1 = (Bt ∪ {v},Wt) and hencepot(Pt+1) ≤ m(Ut+1). For
j > 0, it holds thatUt+1{�j} = Ut{�j} and thusmj(Ut+1) = mj(Ut). On the bottom
level, using that the inequality|Ut| ≤ cost(Pt) holds by the LHC property, we have

m0(Ut+1) = 2 · |Ut+1| = 2 · (|Ut| + 1) ≤ 2 · (cost(Pt) + 1) = 2 · cost(Pt+1) (9.3)

and we get that

m(Ut+1) = maxj

{

mj(Ut+1)
}

= max
{

maxj>0

{

mj(Ut)
}

,m0(Ut+1)
}

≤ max{m(Ut), 2 · cost(Pt+1)} = max{pot(Pt), 2 · cost(Pt+1)} (9.4)

which is exactly what we need.

We see that the inequality (9.1) holds in all cases in our caseanalysis, which proves the lemma.

The lower bound on black-white pebbling price now follows byshowing that the final pebble
configuration({z}, ∅) has high potential.

Lemma 9.13. For z the sink of a pyramidΠh of heighth, the pebble configuration({z}, ∅) has
potentialpotΠh

({z}, ∅) = h + 2.

Proof. This follows easily from the Limited hiding-cardinality property (which says thatU can be
chosen so that eitherU ⊆ {z} or |U | ≤ 0), but let us show that this assumption is not necessary
here. The setU = {z} hides itself and has measurem(U) = mh(U) = h+2 ·1 = h+2. Suppose
thatz is hidden by someU ′ 6= {z}. Without loss of generalityU ′ is minimal, i.e., no strict subset
of U ′ hidesz. Let u be a vertex inU ′ on minimal levelminlevel(U) = L < h. The fact thatU ′ is
minimal implies that there is a pathP : u z such that(P \ {u}) ∩ U ′ = ∅ (otherwiseU ′ \ {u}
would hidez). By Observation 9.5, there must existh − L converging paths from sources toz that
are all blocked by distinct pebbles inU ′ \ {u}. It follows that

m(U ′) ≥ mL
(

U ′
)

= L + 2
∣

∣U ′{�L}
∣

∣ = L + 2
∣

∣U ′
∣

∣ ≥ L + 2 · (h + 1 − L) > h + 2 (9.5)

(where we used thatU ′{�L} = U ′ sinceL = minlevel(U)). ThusU = {z} is the unique
minimum-measure hiding set for({z}, ∅), and the potential ispot({z}, ∅) = h + 2.

Since [37] proves that pyramids possess the Limited hiding-cardinality property, and since there
are pebblings that yield matching upper bounds, we have the following theorem.

50

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Theorem 9.14 ([37]).BW-Peb(Πh) = h
2 + O(1).

Proof. The upper bound was shown in Lemma 9.2. For the lower bound, Lemma 9.13 says that the
final pebble configuration({z}, ∅) in any complete pebblingP of Πh has potentialpot({z}, ∅) =
h+2. According to Lemma 9.12,pot({z}, ∅) ≤ 2 · cost(P). ThusBW-Peb(Πh) ≥ h/2+1.

In the final two subsections of this section, we provide a fairly detailed overview of the proof
that pyramids do indeed possess the Limited hiding-cardinality property. As was discussed above,
the reason for giving all the details is that we will need to use and modify the construction in non-
trivial ways in the next section, where we will use ideas inspired by Klawe’s paper to prove lower
bounds on the pebbling price of pyramids in the blob-pebble game.

9.3 Proving the Limited Hiding-Cardinality Property

We present the proof of that pyramids have the Limited hiding-cardinality property in a top-down
fashion as follows.

1. First, we study what hiding sets look like in order to better understand their structure. Along
the way, we make a few definitions and prove some lemmas culminating in Definition 9.20
and Lemma 9.24.

2. We conclude that it seems like a good idea to try to split ourhiding set into disjoint com-
ponents, prove the LHC property locally, and then add everything together to get a proof
that works globally. We make an attempt to do this in Theorem 9.25, but note that the argu-
ment does not quite work. However, if we assume a slightly stronger property locally for our
disjoint components (Property 9.27), the proof goes through.

3. We then prove this stronger local property by assuming that pyramid graphs have a certain
spreadingproperty (Definition 9.34 and Theorem 9.35), and by showing in Lemmas 9.33
and 9.36 that the stronger local property holds for such spreading graphs.

4. Finally, in Section 9.4, we give a simplified proof of the theorem in [37] that pyramids are
indeed spreading.

From this, the desired conclusion follows.
For a start, we need two definitions. The intuition for the first one is that the vertex setU is

tight if is does not contain any “unnecessary” vertexu hidden by the other vertices inU .

Definition 9.15 (Tight vertex set). The vertex setU is tight if for all u ∈ U it holds thatu /∈
VU \ {u}W.

If x is a vertex hidden byU , we can identify a subset ofU that is necessary for hidingx.

Definition 9.16 (Necessary hiding subset).If x ∈ VUW, we defineUTxU to be the subset ofU
such that for eachu ∈ UTxU there is a source pathP ending inx for whichP ∩ U = {u}.

We observe that ifU is tight andu ∈ U , thenUTuU = {u}. This is not the case for non-tight
sets. If we letU = {u} ∪ pred(u) for some non-sourceu, Definition 9.16 yields thatUTuU = ∅.
The vertices inUTxU must be contained in every subset ofU that hidesx, since for eachv ∈ UTxU

there is a source path tox that intersectsU only in v. But if U is tight, the setUTxU is alsosufficient
to hidex, i.e.,x ∈ VUTxUW.

Lemma 9.17 (Lemma 3.1 in [37]).If U is tight andx ∈ VUW, thenUTxU hidesx and this set is
also contained in every subset ofU that hidesx.

51

TOWARDS AN OPTIMAL SEPARATION

Proof. The necessity was argued above, so the interesting part is that x ∈ VUTxUW. Suppose not.
Let P1 be a source path tox such thatP1 ∩ UTxU = ∅. SinceU hidesx, U blocksP1. Let v be
the highest-level element inP1 ∩ U (i.e., , the vertex on this path closest tox). SinceU is tight,
U \ {v} does not hidev. Let P2 be a source path tov such thatP2 ∩ (U \ {v}) = ∅. Then going
first alongP2 and switching toP1in v we get a path tox that intersectsU only in v. But if so, we
havev ∈ UTxU contrary to assumption. Thus,x ∈ VUTxUW must hold.

Given a vertex setU , the tight subset ofU hiding the same elements is uniquely determined.

Lemma 9.18. For any vertex setU in a layered graphG there is a uniquely determined minimal
subsetU∗ ⊆ U such thatVU∗W = VUW, U∗ is tight, and for anyU ′ ⊆ U with VU ′W = VUW it
holds thatU∗ ⊆ U ′.

Proof. We construct the setU∗ bottom-up, layer by layer. We will letU∗
i be the set of vertices on

level i or lower in the tight hiding set under construction, andU r
i be the set of vertices inU strictly

above leveli remaining to be hidden.
Let L = minlevel(U). Fori < L, we defineU∗

i = ∅. Clearly, all vertices on levelL in U must
be present also inU∗, since no vertices inU{�L} can hide these vertices and vertices on the same
level cannot help hiding each other. SetU∗

L = U{∼L} = U \ U{�L}. Now we can remove from
U all vertices hidden byU∗

L, so setU r
L = U \ VU∗

LW. Note that there are no vertices on or below
levelL left in U r

L, i.e.,U r
L = U r

L{�L}, and thatU∗
L hides the same vertices as doesU{�L} (since

the two sets are equal).
Inductively, suppose we have constructed the vertex setsU∗

i−1 andU r
i−1. Just as above, set

U∗
i = U∗

i−1 ∪ U r
i−1{∼ i} andU r

i = U r
i−1 \ VU∗

i W. If there are no vertices remaining on leveli
to be hidden, i.e., ifU r

i−1{∼ i} = ∅, nothing happens and we getU∗
i = U∗

i−1 andU r
i = U r

i−1.
Otherwise the vertices on leveli in U r

i−1 are added toU∗
i and all of these vertices, as well as any

vertices above inU r
i−1 now being hidden, are removed fromU r

i−1 resulting in a smaller setU r
i .

To conclude, we setU∗ = U∗
M for M = maxlevel(U). By construction, the invariant

VU∗
i W = VU{� i}W (9.6)

holds for all levelsi. Thus,VU∗W = VUW. Also,U∗ must be tight since ifv ∈ U∗ andlevel(v) = i,
by constructionU∗{≺ i} does not hidev, and (as was argued above) neither doesU∗{� i} \ {v}.
Finally, suppose thatU ′ ⊆ U is a hiding set forU with U∗ * U ′. Considerv ∈ U∗\U ′ and suppose
level(v) = i. On the one hand, we havev /∈ VU∗

i−1W by construction. On the other hand, by
assumption it holds thatv ∈ VU ′{≺ i}W and thusv ∈ VU{≺ i}W. But then by the invariant (9.6) we
know thatv ∈ VU∗

i−1W, which yields a contradiction. Hence,U∗ ⊆ U ′ and the lemma follows.

We remark thatU∗ can in fact be seen to contain exactly those elementsu ∈ U such thatu is
not hidden byU \ {u}.

It follows from Lemma 9.18 that ifU is a minimum-measure hiding set forP = (B,W), we
can assume without loss of generality thatU ∪ W is tight. More formally, ifU ∪ W is not tight,
we can consider minimal subsetsU ′ ⊆ U andW ′ ⊆ W such thatU ′ ∪ W ′ hidesB and is tight,
and prove the LHC property forB andW ′ with respect to thisU ′ instead. Then clearly the LHC
property holds also forB andW .

Suppose that we have a setU that together withW hidesB. Suppose furthermore thatB
contains vertices very far apart in the graph. Then it might very well be the case thatU ∪ W can
be split into a number of disjoint subsetsUi ∪ Wi responsible for hiding different partsBi of B,
but which are wholly independent of one another. Let us give an example of this.

Example9.19. Suppose we have the pebble configuration(B,W) = ({x1, y1, v5}, {w3, s6, s7})
and the hiding setU = {v1, u2, u3, v3, s5} in Figure 10(a). ThenU ∪ W hidesB, butU seems un-
necessarily large. To get a better hiding setU∗, we can leaves5 responsible for hidingv5 but replace

52

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Hiding set U with large size and measure.

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(b) Smaller hiding set U∗ with smaller measure.

Figure 10: Illustration of hiding sets in Example 9.19 (with vertices in hiding sets cross-marked).

{v1, u2, u3, v3} by {x1, y1}. The resulting setU∗ = {x1, y1, s5} in Figure 10(b) has both smaller
size and smaller measure (we leave the straightforward verification of this fact to the reader).

Intuitively, it seems that the configuration can be split in two components, namely(B1,W1) =
({x1, y1}, {w3}) with hiding setU1 = {v1, u2, u3, v3} and (B2,W2) = ({v5}, {s6, s7}) with
hiding setU2 = {s5}, and that these two components are independent of one another. To improve
the hiding setU , we need to do something locally about the bad hiding setU1 in the first component,
namely replace it withU∗

1 = {x1, y1}, but we should keep the locally optimal hiding setU2 in the
second component.

We want to formalize this understanding of how vertices inB, W andU depend on one another
in a hiding setU ∪ W for B. The following definition constructs a graph that describesthe structure
of the hiding sets that we are studying in terms of these dependencies.

Definition 9.20 (Hiding set graph). For a tight (and non-empty) set of verticesX in G, thehiding
set graphH = H(G,X) is an undirected graph defined as follows:

• The set of vertices ofH is V (H) = VXW.

• The set of edgesE(H) of H consists of all pairs of vertices(x, y) for x, y ∈ VXW such that
Gx

M
∩ VXTxUW ∩ Gy

M ∩ VXTyUW 6=∅.

We say that the vertex setX is hiding-connectedif H(G,X) is a connected graph.

When the graphG and vertex setX are clear from context, we will sometimes write onlyH(X)
or even justH. To illustrate Definition 9.20, we give an example.

Example9.21. Consider again the pebble configuration(B,W) = ({x1, y1, v5}, {w3, s6, s7}) from
Example 9.19 with hiding setU = {v1, u2, u3, v3, s5}, where we have shaded the set of hidden ver-
tices in Figure 11(a). The hiding set graphH(X) for X = U ∪ W = {v1, u2, u3, v3, w3, s5, s6, s7}
has been drawn in Figure 11(b). In accordance with the intuition sketched in Example 9.19,H(X)
consists of two connected components.

Note that there are edges from the top vertexy1 in the first component to every other vertex
in this component and from the top vertexv5 to every other vertex in the second component. We
will prove presently that this is always the case (Lemma 9.22). Perhaps a more interesting edge
in H(X) is, for instance,(w1, x2). This edge exists sinceXTw1U = {v1, u2, u3} andXTx2U =
{u2, u3, v3, w3} intersect and since as a consequence of this (which is easilyverified) we have
Πw1

M
∩ VXTw1UW ∩ Πx2

M
∩ VXTx2UW 6= ∅. For the same reason, there is an edge(u5, u6) since

XTu5U = {s5, s6} andXTu6U = {s6, s7} intersect.

53

TOWARDS AN OPTIMAL SEPARATION

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Vertices hidden by U ∪ W .

y1

x1 x2

w1 w2 w3

v1 v2 v3 v5

u2 u3 u5 u6

s5 s6 s7

(b) Hiding set graph H(U ∪ W).

Figure 11: Pebble configuration with hiding set and corresponding hiding set graph.

Lemma 9.22. Suppose for a tight vertex setX that x ∈ VXW andy ∈ XTxU. Thenx andy are in
the same connected component ofH(X).

Proof. Note first thatx, y ∈ VXW by assumption, sox andy are both vertices inH(X). Sincex
is abovey we haveGx

M
⊇ Gy

M and we getGx
M

∩ VXTxUW ∩ Gy
M ∩ VXTyUW = VXTxUW ∩ Gy

M ∩
{y} = {y} 6= ∅. Thus,(x, y) is an edge inH(X), sox andy are certainly in the same connected
component.

Corollary 9.23. If X is tight andx ∈ VXW thenx and all of XTxU are in the same connected
component ofH(X).

The next lemma says that ifH(X) is a hiding set graph with vertex setV = VXW, then
the connected componentsV1, . . . , Vk of H(X) are themselves hiding set graphs defined over the
hiding-connected subsetsX ∩ V1, . . . ,X ∩ Vk.

Lemma 9.24 (Lemma 3.3 in [37]).Let X be a tight set and letVi be one of the connected com-
ponents inH(X). Then the subgraph ofH(X) induced byVi is identical to the hiding set graph
H(X ∩ Vi) defined on the vertex subsetX ∩ Vi. In particular, it holds thatVi = VX ∩ ViW.

Proof. We need to show thatVi = VX ∩ ViW and that the edges ofH(X) in Vi are exactly the
edges inH(X ∩ Vi). Let us first show thaty ∈ Vi if and only if y ∈ VX ∩ ViW.

(⇒) Supposey ∈ Vi. ThenXTyU ⊆ Vi by Corollary 9.23. Also,XTyU ⊆ X by definition, so
XTyU ⊆ X ∩ Vi. Sincey ∈ VXTyUW by Lemma 9.17, clearlyy ∈ VX ∩ ViW.

(⇐) Supposey ∈ VX ∩ ViW. SinceX is tight, its subsetX ∩ Vi must be tight as well.
Applying Lemma 9.17 twice, we deduce that(X ∩ Vi)TyU hidesy and thatXTyU ⊆ (X ∩ Vi)TyU

sinceXTyU is contained in any subset ofX that hidesy. But then a third appeal to Lemma 9.17
yields that(X ∩ Vi)TyU ⊆ XTyU sinceXTyU ⊆ (X ∩ Vi)TyU ⊆ X ∩ Vi and consequently

XTyU = (X ∩ Vi)TyU . (9.7)

By Corollary 9.23,y and all of(X ∩ Vi)TyU = XTyU are in the same connected component. Since
XTyU ⊆ Vi it follows thaty ∈ Vi.

This shows thatVi = VX ∩ ViW. Plugging (9.7) into Definition 9.20, we see that(x, y) is an
edge inH(X) for x, y ∈ Vi if and only if (x, y) is an edge inH(X ∩ Vi).

Now we are in a position to describe the structure of the proofthat pyramid graphs have the
LHC property.

54

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Theorem 9.25 (Analogue of Theorem 3.7 in [37]).Let P = (B,W) be any black-white pebble
configuration on a pyramidΠ. Then there is a vertex setU such thatU ∪ W hidesB, potΠ(P) =
m(U) and eitherU = B or |U | < |B| + |W |.

The idea is to construct the graphH = H(Π, U ∪ W), study the different connected compon-
ents inH, find good hiding sets locally that satisfy the LHC property (which we prove is true for
each local hiding-connected subset ofU ∪ W), and then add all of these partial hiding sets together
to get a globally good hiding set.

Unfortunately, this does not quite work. Let us nevertheless attempt to do the proof, note where
and why it fails, and then see how Klawe fixes the broken details.

Tentative proof of Theorem 9.25.Let U be a set of vertices inΠ such thatU ∪ W hidesB and
pot(P) = m(U). Suppose thatU has minimal size among all such sets, and furthermore that
among all such minimum-measure and minimum-size setsU has the largest intersection withB.

Assume without loss of generality (Lemma 9.18) thatU ∪ W is tight, so that we can con-
structH. Let the connected components ofH beV1, . . . , Vk. For alli = 1, . . . , k, letBi = B ∩ Vi,
Wi = W ∩ Vi, andUi = U ∩ Vi. Lemma 9.24 says thatUi ∪ Wi hidesBi. In addition, allVi are
pairwise disjoint, so|B| =

∑k
i=1|Bi|, |W | =

∑k
i=1|Wi| and|U | =

∑k
i=1|Ui|.

Thus, if the LHC property 9.11 does not hold forU globally, there is some hiding-connected
subsetUi ∪ Wi that hidesBi but for which|Ui| ≥ |Bi|+ |Wi| andUi 6= Bi. Note that this implies
thatBi * Ui since otherwiseUi would not be minimal.

Suppose that we would know that the LHC property is true for each connected component.
Then we could find a vertex setU∗

i with U∗
i ⊆ Bi or

∣

∣U∗
i

∣

∣ < |Bi|+ |Wi| such thatU∗
i ∪ Wi hides

Bi andm
(

U∗
i

)

≤ m(Ui). SettingU∗ = (U \ Ui) ∪ U∗
i , we would get a hiding set with either

|U∗| < |U | or |U∗ ∩ B| > |U ∩ B|. The second inequality would hold since if|U∗| = |U |, then
∣

∣U∗
i

∣

∣ = |Ui| ≥ |Bi ∪ Wi| and this would implyU∗
i = Bi and thus

∣

∣U∗
i ∩ Bi

∣

∣ > |Ui ∩ Bi|. This
would contradict howU was chosen above, and we would be home.

Almost. We would also need thatU∗
i could be substituted forUi in U without increasing the

measure, i.e., thatm
(

U∗
i

)

≤ m
(

Ui

)

should implym
(

(U \ Ui) ∪ U∗
i

)

≤ m
(

(U \ Ui) ∪ Ui

)

.
And this turns out not to be true.

The reason that the proof above does not quite work is that themeasure in Definition 9.8 is
ill-behaved with respect to unions. Klawe provides the following example of what can happen.

Example9.26. With vertex labels as in Figures 7 and 9–11, letX1 = {s1, s2}, X2 = {w1}
and X3 = {s3}. Thenm(X1) = 4 and m(X2) = 5 but taking unions withX3 we get that
m(X1 ∪ X3) = 6 and m(X2 ∪ X3) = 5. Thus m(X1) < m(X2) but m(X1 ∪ X3) >
m(X2 ∪ X3).

So it is not enough to show the LHC property locally for each connected component in the
graph. We also need that setsUi from different components can be combined into a global hiding
set while maintaining measure inequalities. This leads to the following strengthened condition for
connected components ofH.

Property 9.27 (Local limited hiding-cardinality property). We say that the pebble configuration
P = (B,W) has theLocal limited hiding-cardinality property, or just theLocal LHC propertyfor
short, if for any vertex setU such thatU ∪ W hidesB and is hiding-connected, we can find a
vertex setU∗ such that

1. U∗ is a hiding set for(B,W),

2. for any vertex setY with Y ∩ U = ∅ it holds thatm
(

Y ∪ U∗
)

≤ m(Y ∪ U),

3. U∗ ⊆ B or
∣

∣U∗
∣

∣ < |B| + |W |.

55

TOWARDS AN OPTIMAL SEPARATION

We say that the graphG has the Local LHC property if all black-white pebble configurationsP =
(B,W) onG do.

Note that if the Local LHC property holds, this in particularimplies thatm
(

U∗
)

≤ m(U) (just
chooseY = ∅). Also, we immediately get that the LHC property holds globally.

Lemma 9.28. If G has the Local limited hiding-cardinality property 9.27, thenG has the Limited
hiding-cardinality property 9.11.

Proof. Consider the tentative proof of Theorem 9.25 and look at the point where it breaks down.
If we instead use the Local LHC property to findU∗

i , this time we get thatm
(

U∗
i

)

≤ m
(

Ui

)

does
indeed implym

(

(U \ Ui) ∪ U∗
i

)

≤ m
(

(U \ Ui) ∪ Ui

)

, and the theorem follows.

An obvious way to get the inequalitym(Y ∪ U∗) ≤ m(Y ∪ U) in Property 9.27 would be
to require thatmj(U∗) ≤ mj(U) for all j, but we need to be slightly more general. The next
definition identifies a sufficient condition for sets to behave well under unions with respect to the
measure in Definition 9.8.

Definition 9.29. We writeU -m V if for all j ≥ 0 there is ani ≤ j such thatmj(U) ≤ mi(V).

Note that it is sufficient to verify the condition in Definition 9.29 forj = 1, . . . ,maxlevel(U).
For j > maxlevel(U) we getmj(U) = 0 and the inequality trivially holds.

It is immediate thatU -m V implies m(U) ≤ m(V), but the relation-m gives us more
information than that. Usual inequalitym(U) ≤ m(V) holds if and only if for everyj we can
find ani such thatmj(U) ≤ mi(V), but in the definition of-m we are restricted to finding such
an indexi that is less than or equal toj. So not only ism(U) ≤ m(V) globally, but we can also
explain locally at each level, by “looking downwards”, whyU has smaller measure thanV .

In Example 9.26,X1 6-m X2 since the relative cheapness ofX1 compared toX2 is explained
not by a lot of vertices inX2 on low levels, but by one single high-level, and therefore expensive,
vertex inX2 which is far aboveX1. This is why these sets behave badly under union. If we have
two setsX1 andX2 with X1 -m X2, however, reversals of measure inequalities when taking
unions as in Example 9.26 can no longer occur.

Lemma 9.30 (Lemma 3.4 in [37]).If U -m V andY ∩ V = ∅, thenm(Y ∪ U) ≤ m(Y ∪ V).

Proof. To show thatm(Y ∪ U) ≤ m(Y ∪ V), for each levelj = 1, . . . ,maxlevel(Y ∪ U) we
want to find a leveli such thatmj(Y ∪ U) ≤ mi(Y ∪ V). We pick thei ≤ j provided by
the definition ofU -m V such thatmj(U) ≤ mi(V). SinceV ∩ W = ∅ and i ≤ j implies
Y {�j} ⊆ Y {� i}, we get

mj(Y ∪ U) = j + 2 · |(U ∪ Y){�j}| ≤ j + 2 · |U{�j}| + 2 · |Y {�j}| ≤
i + 2 · |V {� i}| + 2 · |Y {� i}| = mi(Y ∪ V) (9.8)

and the lemma follows.

So when locally improving a blocking setU that does not satisfy the LHC property to some set
U∗ that does, if we can take care thatU∗ -m U in the sense of Definition 9.29 we get the Local
LHC property. All that remains is to show that this can indeedbe done.

When “improving” U to U∗, we will strive to pick hiding sets of minimal size. The next
definition makes this precise.

Definition 9.31. For any set of verticesX, let

L�j(X) = min{|Y | : X{�j} ⊆ VY W andY {�j} = Y }
denote the size of a smallest setY such that all vertices inY are on levelj or higher andY hides
all vertices inX on levelj or higher.

56

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Note that we only require ofY to hideX{�j} and not all ofX. Given the condition that
Y = Y {�j}, this set cannot hide any vertices inX{≺j}. We make a few easy observations.

Observation 9.32.Suppose thatX is a set of vertices in a layered graphG. Then:

1. L�0(X) is the minimal size of any hiding set forX.

2. If X ⊆ Y , thenL�j(X) ≤ L�j(Y) for all j.

3. It always holds thatL�j(X) ≤ |X{�j}| ≤ |X|.
Proof. Part 1 follows from the fact thatV {�0} = V for any setV . If X ⊆ Y , thenX{�j} ⊆
Y {�j} and any hiding set forX{�j} works also forY {�j}, which yields part 2. Part 3 holds
sinceX{�j} ⊆ X is always a possible hiding set for itself.

For any vertex setV in any layered graphG, we can always find a set hidingV that has
“minimal cardinality at each level” in the sense of Definition 9.31.

Lemma 9.33 (Lemma 3.5 in [37]).For any vertex setV we can find a hiding setV ∗ such that
∣

∣V ∗{�j}
∣

∣ ≤ L�j(V) for all j, and eitherV ∗ = V or |V ∗| < |V |.
Proof. If |V {�j}| ≤ L�j(V) for all j, we can chooseV ∗ = V . Suppose this is not the case, and
let k be minimal such that|V {�k}| > L�k(V). Let V ′ be a minimum-size hiding set forV {�k}
with V ′ = V ′{�k} and

∣

∣V ′
∣

∣ = |L�k(V)| and setV ∗ = V {≺k} .∪ V ′. SinceV {≺k} hides itself
(any set does), we have thatV ∗ hidesV = V {≺k} .∪ V {�k} and that

∣

∣V ∗
∣

∣ = |V {≺k}| + |V ′| < |V {≺k}| + |V {�k}| = |V | . (9.9)

Combining (9.9) with part 1 of Observation 9.32, we see that the minimal index found above must
bek = 0. Going through the same argument as above again, we see that

∣

∣V ∗{�j}
∣

∣ ≤ L�j(V) for
all j, since otherwise (9.9) would yield a contradiction to the fact thatV ′ = V ′{�0} was chosen
as a minimum-size hiding set forV .

We noted above thatL�0(X) is the cardinality of a minimum-size hiding set ofX. Forj > 0,
the quantityL�j(X) is large if one needs many vertices on level≥ j to hide X{�j}, i.e., if
X{�j} is “spread out” in some sense. Let us consider a pyramid graphand suppose thatX is a
tight and hiding-connected set in which the level-differencemaxlevel(X) − minlevel(X) is large.
Then it seems that|X| should also have to be large, since the pyramid “fans out” so quickly. This
intuition might be helpful when looking at the next, crucialdefinition of Klawe.

Definition 9.34 (Spreading graph). We say that the layered DAGG is a spreading graphif for
every (non-empty) hiding-connected setX in G and every levelj = 1, . . . ,maxlevel(VXW), the
spreading inequality

|X| ≥ L�j(VXW) + j − minlevel(X) (9.10)

holds.

Let us try to give some more intuition for Definition 9.34 by considering two extreme cases in
a pyramid graph:

• Forj ≤ minlevel(X), we have that the termj−minlevel(X) is non-positive,X{�j} = X,
andVX{�j}W = VXW. In this case, (9.10) is just the trivial fact that no set thathidesVXW
need be larger thanX itself.

• Considerj = maxlevel(VXW), and suppose thatVX{�j}W is a single vertexv with XTxU =
X. Then (9.10) requires that|X| ≥ 1 + level(x) − minlevel(X), and this can be proven to
hold by the “converging paths” argument of Theorem 9.3 and Observation 9.5.

57

TOWARDS AN OPTIMAL SEPARATION

Very loosely, Definition 9.34 says that ifX contains vertices at low levels that help to hide other
vertices at high levels, thenX must be a large set. Just as we tried to argue above, the spreading
inequality (9.10) does indeed hold for pyramids.

Theorem 9.35 ([37]).Pyramids are spreading graphs.

Unfortunately, the proof of Theorem 9.35 in [37] is rather involved. The analysis is divided into
two parts, by first showing that a class of so-callednice graphsare spreading, and then demonstrat-
ing that pyramid graphs are nice. In Section 9.4, we give a simplified, direct proof of the fact that
pyramids are spreading that might be of independent interest.

Accepting Theorem 9.35 on faith for now, we are ready for the decisive lemma: If our layered
DAG is a spreading graph and ifU ∪ W is a hiding-connected set hidingB such thatU is too large
for the conditions in the Local limited hiding-cardinalityproperty 9.27 to hold, then replacingU by
the minimum-size hiding set in Lemma 9.33 we get a hiding set in accordance with the Local LHC
property.

Lemma 9.36 (Lemma 3.6 in [37]).Suppose thatB,W,U are vertex sets in a layered spreading
graphG such thatU ∪ W hidesB and is tight and hiding-connected. Then there is a vertex set
U∗ such thatU∗ ∪ W hidesB, U∗ -m U , and eitherU∗ = B or |U∗| < |B| + |W |.

Postponing the proof of Lemma 9.36 for a moment, let us note that if we combine this lemma
with Lemma 9.30 and Theorem 9.35, the Local limited hiding-cardinality property for pyramids
follows.

Corollary 9.37. Pyramid graphs have the Local limited hiding-cardinality property 9.27.

Proof of Corollary 9.37.This is more or less immediate, but we write down the details for com-
pleteness. Since pyramids are spreading by Theorem 9.35, Lemma 9.36 says thatU∗ is a hiding set
for (B,W) and thatU∗ -m U . Lemma 9.30 then yields thatm(Y ∪ U∗) ≤ m(Y ∪ U) for all Y
with Y ∩ U = ∅. Finally, Lemma 9.36 also tells us thatU∗ ⊆ B or |U∗| < |B| + |W |, and thus
all conditions in Property 9.27 are satisfied.

Continuing by plugging Corollary 9.37 into Lemma 9.28, we get the global LHC property in
Theorem 9.25 on page 55. So all that is needed to conclude Klawe’s proof of the lower bound for
the black-white pebbling price of pyramids is to prove Theorem 9.35 and Lemma 9.36. We attend
to Lemma 9.36 right away, deferring a proof of Theorem 9.35 tothe next subsection.

Proof of Lemma 9.36.If |U | < |B| + |W | we can pickU∗ = U and be done, so suppose that
|U | ≥ |B| + |W |. Intuitively, this should mean thatU is unnecessarily large, so it ought to be
possible to do better. In fact,U is so large that we can just ignoreW and pick a betterU∗ that hides
B all on its own.

Namely, letU∗ be a minimum-size hiding set forB as in Lemma 9.33. Then eitherU∗ = B or
∣

∣U∗
∣

∣ < |B| ≤ |B| + |W |. To prove the lemma, we also need to show thatU∗ -m U , which will
guarantee thatU∗ behaves well under union with other sets with respect to measure.

Before we do the the formal calculations, let us try to provide some intuition for why it should be
the case thatU∗ -m U holds, i.e., that for everyj we can find ani ≤ j such thatmj

(

U∗
)

≤ mi(U).
Perhaps it will be helpful at this point for the reader to lookat Example 9.19 again, where the
replacement ofU1 = {v1, u2, u3, v3} in Figure 10(a) byU∗

1 = {x1, y1} in Figure 10(b) shows
Lemmas 9.33 and 9.36 in action.

Suppose first thatj ≤ minlevel(U ∪ W) ≤ minlevel(U). Then the measure inequality
mj(U∗) ≤ mj(U) is obvious, sinceU{�j} = U is so large that it can easily pay for all ofU∗, let
aloneU∗{�j} ⊆ U∗.

58

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

For j > minlevel(U ∪ W), however, we can worry that although our hiding setU∗ does in-
deed have small size, the vertices inU∗ might be located on high levels in the graph and be very
expensive since they were chosen without regard to measure.Just throwing away all white pebbles
and picking a new setU∗ that hidesB on its own is quite a drastic move, and it is not hard to con-
struct examples where this is very bad in terms of potential (say, exchangings5 for v5 in the hiding
set of Example 9.19). The reason that this nevertheless works is that|U | is so large, that, in addition,
U ∪ W is hiding-connected, and that, finally, the graph under consideration is spreading. Thanks
to this, if there are a lot of expensive vertices inU∗{�j} on or above some high levelj resulting in
a large partial measuremj

(

U∗
)

, the number of vertices on or above levelL = minlevel(U ∪ W)
in U = U{�L} is large enough to yield at least as large a partial measuremL

(

U
)

.
Let us do the formal proof, divided into the two cases above.

1. j ≤ minlevel(U ∪ W): Using the lower bound on the size ofU and that levelj is no higher
than the minimal level ofU , we get

mj
(

U∗
)

= j + 2 ·
∣

∣U∗{�j}
∣

∣

[

by definition ofmj(·)
]

≤ j + 2 ·
∣

∣U∗
∣

∣

[

sinceV {�j} ⊆ V for anyV
]

≤ j + 2 · |B|
[

by construction ofU∗ in Lemma 9.33
]

≤ j + 2 · |U |
[

by assumption|U | ≥ |B| + |W | ≥ |B|
]

= j + 2 ·
∣

∣U{�j}
∣

∣

[

U{�j} = U sincej ≤ minlevel(U)
]

= mj(U)
[

by definition ofmj(·)
]

and we can choosei = j in Definition 9.29.

2. j > minlevel(U ∪ W): Let L = minlevel(U ∪ W). The black pebbles inB are hidden by
U ∪ W , or in formal notationB ⊆ VU ∪ WW, so

L�j(B) ≤ L�j

(

VU ∪ WW
)

(9.11)

holds by part 2 of Observation 9.32. Moreover,U ∪ W is a hiding-connected set of vertices
in a spreading graphG, so the spreading inequality in Definition 9.34 says that|U ∪ W | ≥
L�j

(

VU ∪ WW
)

+ j − L, or

j + L�j

(

VU ∪ WW
)

≤ L + |U ∪ W | (9.12)

after reordering. Combining (9.11) and (9.12) we have that

j + L�j(B) ≤ L + |U ∪ W | (9.13)

and it follows that

mj(U∗) = j + 2 ·
∣

∣U∗{�j}
∣

∣

[

by definition ofmj(·)
]

≤ j +
∣

∣U∗{�j}
∣

∣ +
∣

∣U∗
∣

∣

[

sinceV {�j} ⊆ V for anyV
]

≤ j + L�j(B) + |B|
[

by construction ofU∗ in Lemma 9.33
]

≤ L + |U ∪ W | + |B|
[

by the inequality (9.13)
]

≤ L + 2 · |U |
[

by assumption|U | ≥ |B| + |W |
]

= L + 2 · |U{�L}|
[

U{�L} = U sinceL ≤ minlevel(U)
]

= mL(U)
[

by definition ofmL(·)
]

Thus, the partial measure ofU at the minimum levelL is always larger than the partial meas-
ure ofU∗ at levelsj above this minimum level, and we can choosei = L in Definition 9.29.

59

TOWARDS AN OPTIMAL SEPARATION

Consequently,U∗ -m U , and the lemma follows.

Concluding this subsection, we want to make a comment about Lemmas 9.33 and 9.36 and try
to rephrase what they say about hiding sets. Given a tight setU ∪ W such thatB ⊆ VU ∪ WW,
we can always pick aU∗ as in Lemma 9.33 withU∗ = B or

∣

∣U∗
∣

∣ < |B| and with
∣

∣U∗{�j}
∣

∣ ≤
L�j(B) for all j. This will sometimes be a good idea, and sometimes not. Just as in Lemma 9.36,
for j > minlevel(U ∪ W) we can always prove that

mj(U∗) ≤ minlevel(U ∪ W) + |U | + (|B| + |W |) . (9.14)

The key message of Lemma 9.36 is that replacingU by U∗ is a good idea ifU is sufficiently
large, namely if|U | ≥ |B| + |W |, in which case we are guaranteed to getmj(U∗) ≤ mL(U) for
L = minlevel(U ∪ W).

9.4 Pyramids Are Spreading Graphs

The fact that pyramids are spreading graphs, that is, that they satisfy the inequality (9.10), is a
consequence of the following lemma.

Lemma 9.38 (Ice-Cream Cone Lemma).If X is a tight vertex set in a pyramidΠ such that
H(X) is a connected graph with vertex setV = VXW, then there is a unique vertexx ∈ V such
thatX = XTxU andV = VXTxUW ⊆ Πx

M
.

What the lemma says it that for any tight vertex setX, the connected componentsV1, . . . , Vk

look like ragged ice-cream cones turned upside down. Moreover, for each “ice-cream cone”Vi, all
vertices inX ∩ Vi are needed to hide the top vertex. The two connected components in Figure 11
are both examples of such “ice-cream cones.”

Before proving Lemma 9.38, we show how this lemma can be used to establish that pyramid
graphs are spreading by a converging-paths argument as in Observation 9.5.

Proof of Theorem 9.35.Suppose thatX is a tight and hiding-connected set, i.e., such thatH(X) is
a single connected component with set of verticesV = VXW. Let x ∈ V be the vertex given by
Lemma 9.38 such thatX = XTxU andV = VXTxUW ⊆ Πx

M
, and letM = level(x).

For anyj ≤ M we have
L�j(VXW) ≤ M − j + 1 . (9.15)

This is so since there are only so many vertices on levelj in Πx
M

and the set of all these vertices
must hide everything inVXW above levelj sinceVXW ⊆ Πx

M
.

By assumptionX is tight and all ofX is needed to hidex, i.e., X = XTxU. Pick a vertex
v ∈ X on bottom levelL = minlevel(X). Sincev ∈ XTxU there is a pathP : v x such
that P ∩ X = {v}. Consider the set of converging source paths forP in Observation 9.5. All
these converging pathsP1, P2, . . . , PM−L must be blocked by distinct vertices inX \ {v}, since
Pi ∩ Pj ⊆ P \ {v} andP \ {v} does not intersectX. From this the inequality

|X| ≥ M − L + 1 (9.16)

follows. By combining (9.15) and (9.16), we get that

|X| − L�j(VXW) ≥ M − L + 1 − (M − j + 1) = j − L (9.17)

which is the required spreading inequality (9.10).

The rest of this subsection is devoted to proving the Ice-Cream Cone Lemma. We will use that
fact that pyramids are planar graphs where we can talk about left and right. More precisely, the
following (immediate) observation will be central in our proof.

60

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

Observation 9.39. Suppose for a planar DAGG that we have a source pathP to a vertexw and
two verticesu, v ∈ G

\w
M

on opposite sides ofP . Then any pathQ : u v must intersectP .

Given a vertexv in a pyramidΠ, there is a unique path that passes throughv and in every vertex
u moves to the right-hand successor ofu. We will refer to this path as thenorth-east paththroughv,
or just theNE-paththroughv for short, and denote it byPNE(v). The path throughv always moving
to the left is thenorth-west pathor NW-paththroughv, and is denotedPNW(v). For instance, for
the vertexv4 in our running example pyramid in Figure 7 we havePNE(v4) = {s4, u4, v4, w4} and
PNW(v4) = {s6, u5, v4, w3, x2, y1}. To simplify the proofs in what follows, we make a couple of
observations.

Observation 9.40. Suppose thatX is a tight set of vertices in a pyramidΠ and thatv ∈ VXW.
ThenVXTvUW ⊆ Πv

M
.

Proof. Since all vertices inXTvU have a path tov by definition, it holds thatXTvU ⊆ Πv
M

. Any
vertexu ∈ Π \ Πv

M
must lie either to the left ofPNE(v) or to the right ofPNW(v) (or both). In the

first case,PNE(u) is a path viau that does not intersectXTvU, sou /∈ VXTvUW. In the second case,
we can draw the same conclusion by looking atPNW(u). Thus,

(

Π \ Πv
M

)

∩ VXTvUW = ∅.

Observation 9.41. Suppose thatX is a tight set of vertices in a DAGG and thatv ∈ VXW. Then
there is a source pathP to v such that|P ∩ X| = 1.

Proof. Let P1 be any source path tov and note thatP1 intersectsX sincev ∈ VXW. Let y be the
last vertex onP1 in P1 ∩ X, i.e., the vertex on the highest level in this intersection.SinceX is
tight, there is a source pathP2 to y that does not intersectX \{y}. LetP be the path that starts like
P2 and then switches toP1 in y. Then|P ∩ X| = |{y}| = 1.

Using Observations 9.40 and 9.41, we can simplify the definition of the hiding set graph. Note
that Observation 9.40 is not true for arbitrary layered DAGs, however, or even for arbitrary layered
planar DAGs, so the simplification below does not work in general.

Proposition 9.42. Let H = H(Π,X) be the hiding set graph for a tight set of verticesX in a
pyramidΠ, and suppose thatu, v ∈ VXW. Then the following conditions are equivalent:

1. (u, v) is an edge inH, i.e.,Πu
M
∩ VXTuUW ∩ Πv

M
∩ VXTvUW 6= ∅.

2. VXTuUW ∩ VXTvUW 6= ∅.

3. XTuU ∩ XTvU 6= ∅.

Proof. The directions (1)⇒ (2) and (3)⇒ (2) are immediate. The implication (2)⇒ (1) also
follows easily, sinceVXTuUW ⊆ Πu

M
andVXTvUW ⊆ Πv

M
by Observation 9.40. To prove (2)⇒ (3),

fix some vertexw ∈ VXTuUW ∩ VXTvUW and letP be a source path tow as in Observation 9.41
with P ∩ X = {y} for some vertexy. SinceP ∩ XTuU 6= ∅ 6= P ∩ XTuU by assumption, we
havey ∈ XTuU ∩ XTvU 6= ∅.

As the first part of the proof of Lemma 9.38, we show that all vertices hidden by a hiding-
connected setX are contained in a subpyramid, the top vertex of which is alsohidden byX. This
gives the ice-cream cone shape alluded to by the name of the lemma.

Lemma 9.43. LetH = H(Π,X) be the hiding set graph of a hiding-connected vertex setX in a
pyramidΠ. Then there is a unique vertexx ∈ VXW such thatVXW ⊆ Πx

M
.

61

TOWARDS AN OPTIMAL SEPARATION

z

x

u

v

w

si s∗ sj

P ∗

PNW(x)

PNE(x)

X

Figure 12: Illustration of proof of Lemma 9.43 that H is not connected if x /∈ VXW.

Proof. It is clear that at most one vertexx ∈ VXW can have the properties stated in the lemma.
We show that such a vertex exists. As a quick preview of the proof, we note that it is easy to find
a unique vertexx on minimal level such thatVXW ⊆ Πx

M
. The crucial part of the lemma is thatx

is hidden byX. The reason that this holds is that the graphH is connected. Ifx /∈ VXW, we can
find a source pathP to the top vertexz of the pyramid such thatP does not intersectX but there
are vertices inH both to the left and to the right ofP . But there is no way we can have an edge
crossingP in H, so the hiding set graph cannot be connected after all. Contradiction.

The above paragraph really is the whole proof, but let us alsoprovide the (somewhat tedious)
formal details for completeness. To follow the formalization of the argument, the reader might be
helped by looking at Figure 12. Suppose thatΠ has heighth and lets1, s2, . . . , sh+1 be the sources
enumerated from left to right. Look at the north-east pathsPNE(s1), PNE(s2), . . . and letsi be the
first vertex such thatPNE(si) ∩ VXW 6= ∅. Similarly, considerPNW(sh+1), PNW(sh), . . . and letsj

be the first vertex such thatPNW(sj) ∩ VXW 6= ∅. It clearly holds thati ≤ j.

Let x be the unique vertex wherePNE(si) andPNW(sj) intersect. By construction, we have
VXW ⊆ Πx

M
, since no NE-path to the left ofPNE(si) = PNE(x) intersectsVXW and neither does

any NW-path to the right ofPNW(sj) = PNW(x). We need to show that it also holds thatx ∈ VXW.

To derive a contradiction, suppose instead thatx /∈ VXW. By definition, there is a pathP from
some sources∗ to x such thatP ∩ VXW = ∅. P cannot coincide withPNE(x) or PNW(x) since
the latter two paths both intersectVXW by construction. SinceΠO

\x ∩ VXW = ∅, we can extend
P to a pathP ∗ : s∗ z via x having the property thatP ∗ ∩ VXW = ∅ but there are vertices in
H(X) both to the left and to the right ofP ∗, namely, the non-empty setsPNE(x) ∩ VXW ∩ Πx

M
and

PNW(x) ∩ VXW ∩ Πx
M

. We claim that this implies thatH is not connected. This is a contradiction
to the assumptions in the statement of the lemma and it follows thatx ∈ VXW must hold.

To establish the claim, note that ifH is connected, there must exist some edge(u, v) between
a vertexu to the left ofP ∗ and a vertexv to the right ofP ∗. Then Proposition 9.42 says that
VXTuUW ∩ VXTvUW 6= ∅. Pick any vertexw ∈ VXTuUW ∩ VXTvUW and assume without loss of
generality thatw is on the right-hand side ofP ∗. We prove that such a vertexw cannot exist. See
the example vertices labelledu, v andw in Figure 12, which illustrate the fact thatw /∈ VXTuUW if

62

9 BLACK-WHITE PEBBLING AND LAYERED GRAPHS

x

w

v

u

r

s

VXTxUW

XTxU

XTuU \ XTxU

P

PE
s

Pr

Figure 13: Illustration of proof of Lemma 9.44 that all of X is needed to hide x.

w ∈ VXTvUW.
Sincew is assumed to be hidden byVXTuUW, the NW-path throughw must intersectXTuU

somewhere beforew or in w. Fix any y ∈ PNW(w) ∩ XTuU ∩ Πw
M

and note thaty must also
be located to the right ofP ∗. By Definition 9.16, there is a source pathP ′ via y to u such that
P ′ ∩ X = {y}. But P ′ must intersectP ∗ somewhere abovey, sincey is to the right andu is to
the left ofP ∗. (Here we use Observation 9.39.) Consider the source path that starts likeP ∗ and
then switches toP ′ at some intersection point inP ′ ∩ P ∗ ∩ ΠO

\y . This path reachesu but does not
intersectX, contradicting the assumptionu ∈ VXW. It follows thatVXTuUW ∩ VXTvUW = ∅ for all
u andv on different sides ofP ∗, so there are no edges acrossP ∗ in H. This proves the claim.

The second part needed to prove Lemma 9.38 is that all vertices in X are required to hide the
top vertexx ∈ VXW found in Lemma 9.43.

Lemma 9.44. LetH = H(Π,X) be the hiding set graph of a hiding-connected vertex setX in a
pyramidΠ and letx ∈ VXW be the unique vertex such thatVXW ⊆ Πx

M
. ThenX = XTxU.

Proof. By definition, XTxU ⊆ X. We want to show thatXTxU = X. Again, let us first try to
convey some intuition why the lemma is true. IfX \ XTxU 6= ∅, sinceX is hiding-connected there
must exist some vertex hidden by all ofX but not by justXTxU or X \ XTxU (otherwise there can
be no edge between the components ofH containingXTxU andX \XTxU, respectively). But if so,
it can be shown that the extra vertices inX \ XTxU helpXTxU to hide one of its own vertices. This
contradicts the fact thatX is tight, so we must haveXTxU = X which proves the lemma.

Let us fill in the formal details in this proof sketch. Assume,to derive a contradiction, that
XTxU 6= X. SinceX is tight, it holds that(X \ XTxU) ∩ VXTxUW = ∅, soH contains vertices
outside ofVXTxUW. SinceH is connected, there must exist some edge

(

u, u′
)

between a pair
of verticesu ∈ VXW \ VXTxUW andu′ ∈ VXTxUW. Lemma 9.17 says thatXTu′U ⊆ XTxU and
Proposition 9.42 then tells us thatXTuU ∩ XTxU 6= ∅. Also, XTuU \ XTxU 6= ∅ sinceu /∈ XTxU.
For the rest of this proof, fix some arbitrary verticesr ∈ XTuU ∩ XTxU ands ∈ XTuU \ XTxU. We
refer to Figure 13 for an illustration of the proof from here onwards.

63

TOWARDS AN OPTIMAL SEPARATION

By Definition 9.16, there are source pathsPr via r to u andPs via s to u that intersectX only
in r ands, respectively. Also, there is a source pathP to x such thatP ∩ X = {r} sincer ∈ XTxU.
Suppose without loss of generality thats is to the right ofP . The pathsPs andP cannot intersect
betweens andu. To see this, observe that ifPs crossesP afters but beforer, then by starting with
P and switching toPs at the intersection point we get a source path tou that is not blocked byX.
And if the crossing is afterr, we can start withPs and then switch toP when the paths intersect,
which implies thats ∈ XTxU contrary to assumption. Thusu is located to the right ofP as well.

ExtendPs by going north-west fromu until hitting P , which must happen somewhere in
betweenr and x, and then followingP to x. Denote this extended path byPE

s and letw be
the vertex starting from whichPE

s andP coincide. The pathPE
s must intersectX in some more

vertex afters sinces /∈ XTxU. Pick anyv ∈ PE
s ∩ (X \ {s}). By construction,v must be located

strictly betweenu andw. We claim thatX \ {v} hidesv. This contradicts the tightness ofX and
the lemma follows.

To prove the claim, consider any source pathPv to v and assume thatPv ∩ (X \ {v}) = ∅.
Then, in particular,r /∈ Pv. Suppose thatPv passes to the left ofr. By planarity,Pv must intersect
P somewhere abover. But if so, we can construct a source pathP ′ to x that starts likePv and
switches toP at this intersection point. We getP ′ ∩ X = ∅, which contradictsx ∈ XTxU. If
insteadPv passesr on the right, thenPv must crossPr in order to get tov. This implies that there
is a source pathP ′′ to u such thatP ′′ ∩ X = ∅, namely the path obtained by starting to go along
Pv and then changing toPr when the two paths intersect abover. Thus we get a contradiction in
this case as well. Hence,X \ {v} blocks any source path tov as claimed.

The Ice-Cream Cone Lemma 9.38 now follows. Thereby, the proof of the lower bound on the
black-white pebbling price of pyramid graphs in Theorem 9.14 on page 51 is complete.

10 A Tight Bound for Blob-Pebbling the Pyramid

Inspired by Klawe’s ideas in Section 9, we want to do something similar for the blob-pebble game
in Definition 6.8 on page 28. In this section, we study blob-pebblable DAGs (Definition 6.6) that
are also layered. We show that for all such DAGsGh of heighth that are spreading in the sense
of Definition 9.34, it holds thatBlob-Peb(Gh) = Θ(h). In particular, this bound holds for pyram-
idsΠh since they are spreading by Theorem 9.35.

The constant factor that we get in our lower bound is moderately small and explicit. In fact, we
believe that it should hold thatBlob-Peb(Gh) ≥ h/2 + O(1) for layered spreading graphsGh of
heighth, just as in the standard black-white pebble game. As we have not made any real attempt
to get optimal constants, the factor in our lower bound can beimproved with a minor effort, but
additional ideas seems to be needed to push the constant all the way up to1

2 .

10.1 Definitions and Notation for the Blob-Pebbling Price Lo wer Bound

Recall that a vertex setU hides a black pebble onb if it blocks all source paths visitingv. For a
blob B, which is a chain by Definition 6.7, it appears natural to extend this definition by requiring
thatU should block all paths going through all ofB. We recall the terminology and notation from
Definition 6.5 that a black blobB and a pathP agreewith each other, or thatP is a pathvia B, if
B ⊆ P , and thatPvia(B) denotes the set of all source paths agreeing withB.

Definition 10.1 (Blocked black blob).A vertex setU blocksa blobB if U blocks allP ∈ Pvia(B).

A terminological aside: Recalling the discussion in the beginning of Section 9.2, it seems
natural to say thatU blocksa black blobB rather than hides it, since standing at the sources we
might “see” the beginning ofB, but if we try to walk any path viaB we will fail before reaching

64

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

the top ofB sinceU blocks the path. This distinction between hiding and blocking turns out to be
a very important one in our lower bound proof for blob-pebbling price. Of course, ifB is an atomic
black pebble, i.e.,|B| = 1, the hiding and blocking relations coincide.

Let us next define what it means to block a blob-pebbling configuration.

Definition 10.2 (Unblocked paths).For [B]〈W 〉 an blob subconfiguration, the set ofunblocked
pathsfor [B]〈W 〉 is

unblocked([B]〈W 〉) = {P ∈ Pvia(B) | W does not blockP}

and we say thatU blocks [B]〈W 〉 if U blocks all paths inunblocked([B]〈W 〉). We say thatU
blocks the blob-pebbling configurationS if U blocks all [B]〈W 〉 ∈ S. If so, we say thatU is a
blockerof [B]〈W 〉 or S, respectively, or ablocking setfor [B]〈W 〉 or S.

Comparing to Section 9.2, note that when blocking a pathP ∈ Pvia(B), U can only use the
white pebblesW that are associated withB in [B]〈W〉. Although there might be white pebbles
from other subconfigurations[B′]〈W ′〉 6= [B]〈W〉 that would be really helpful,U cannot enlist the
help of the white pebbles inW ′ when blockingB. The reason for defining the blocking relation in
this way is that these white pebbles can suddenly disappear due to pebbling moves performed on
such subconfigurations[B′]〈W ′〉.

Reusing the definition of measure in Definition 9.8 on page 48,we generalize the concept of
potentialto blob-pebbling configurations as follows.

Definition 10.3 (Blob-pebbling potential). Thepotentialof an a blob-pebbling configurationS is

pot(S) = min{m(U) : U blocksS} .

If U is such thatU blocksS andU has minimal measurem(U) among all blocking sets forS, we
say thatU is aminimum-measureblocking set forS.

To compare blob-pebbling potential with the black-white pebbling potential in Definition 9.9,
consider the following examples with vertex labels as in Figures 7 and 9–11.

Example10.4. For the blob-pebbling configurationS =
{

[z]〈y1〉, [z]〈y2〉
}

, the minimum-measure
blocker isU = {z}. In comparison, the standard black-white pebble configuration P = (B,W) =
({z}, {y1, y2}) hasU = ∅ as minimum-measure hiding set.

Example10.5. For the blob-pebbling configurationS =
{

[z]〈∅〉, [y1]〈x1, x2〉
}

, the minimum-
measure blocker is againU = {z}. In comparison, for the standard black-white pebble config-
urationP = (B,W) = ({z, y1}, {x1, x2}) we have the minimum-measure hiding setU = {x3}.

Remark10.6. Perhaps it is also worth pointing out that Definition 10.3 is indeed a strict generaliz-
ation of Definition 9.9. Given a black-white pebble configuration P = (B,W) we can construct an
equivalent blob-pebbling configurationS(P) with respect to potential by setting

S(P) =
{[

b
]〈

W ∩ Gb
M

〉
∣

∣b ∈ B
}

(10.1)

but as the examples above show going in the other direction isnot possible.

Since we have accumulated a number of different minimality criteria for blocking sets, let us
pause to clarify the terminology:

• The vertex setU is a subset-minimal, or just minimal, blocking set for the blob-pebbling
configurationS if no strict subsetU ′ $ U is a blocking set forS.

• U is a minimum-measureblocking set forS if it has minimal measure among all blocking
sets forS (and thus yields the potential ofS).

65

TOWARDS AN OPTIMAL SEPARATION

• U is aminimum-sizeblocking set forS if it has minimal size among all blocking sets forS.

Note that we can assume without loss of generality that minimum-measure and minimum-size
blockers are both subset-minimal, since throwing away superfluous vertices can only decrease the
measure and size, respectively. However, minimum-measureblockers need not have minimal size
and vice versa. For a simple example of this, consider (with vertex labels as in Figures 7 and 9–11)
the blob-pebbling configurationS =

{

[z]〈w3, w4〉
}

and the two blocking setsU1 = {z} and
U2 = {w1, w2}.

10.2 A Lower Bound Assuming a Generalized LHC Property

For the blob-pebble game, a useful generalization of Property 9.11 on page 48 turns out to be the
following.

Property 10.7 (Generalized limited hiding-cardinality property). We say that a blob-pebbling
configurationS on a layered blob-pebblable DAGG has theGeneralized limited hiding-cardinality
property with parameterCK if there is a vertex setU such that

1. U blocksS,

2. pot(S) = m(U), i.e.,U is a minimum-measure blocker ofS,

3. |U | ≤ CK · cost(S).

For brevity, in what follows we will just refer to theGeneralized LHC property.
We say that the graphG has the Generalized LHC property with parameterCK if all blob-

pebbling configurationsS onG have the Generalized LHC property with parameterCK .

When the parameterCK is clear from context, we will just write thatS orG has the Generalized
LHC property.

For all layered blob-pebblable DAGsGh of heighth that have the Generalized LHC property
and are spreading, it holds thatBlob-Peb(Gh) = Θ(h). The proof of this fact is very much in
the spirit of the proofs of Lemma 9.12 and Theorem 9.14, although the details are slightly more
complicated.

Theorem 10.8 (Analogue of Theorem 9.14).Suppose thatGh is a layered blob-pebblable DAG
of heighth possessing the Generalized LHC property 10.7 with some fixedparameterCK . Then
for any unconditional blob-pebblingP =

{

S0 = ∅, S1, . . . , Sτ

}

of Gh it holds that

pot(St) ≤ (2CK + 1) · max
s≤t

{cost(Ss)} . (10.2)

In particular, for any family of layered blob-pebblable DAGs Gh that are also spreading in the
sense of Definition 9.34, we haveBlob-Peb(Gh) = Θ(h).

We make two separate observations before presenting the proof.

Observation 10.9.For any layered DAGGh of heighth it holds thatBlob-Peb(Gh) = O(h).

Proof. Any layered DAGGh can be black-pebbled withh + O(1) pebbles by Theorem 9.2 on
page 45, and it is easy to see that a blob-pebbling can mimic a black pebbling in the same cost.

Observation 10.10. If Gh is a layered blob-pebblable DAG of heighth that is spreading in the
sense of Definition 9.34, thenpotGh

([z]〈∅〉) = h + 2.

66

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

Proof. The proof is fairly similar to the corresponding case for pyramids in Lemma 9.13. Note,
though, that in contrast to Lemma 9.13, here we cannot get thestatement from the Generalized
LHC property, but instead have to prove it directly.

Since[z] is an atomic blob, the blocking and hiding relations coincide. The setU = {z} hides
itself and has measureh+2. We show that any other blocking set must have strictly larger measure.

Suppose thatz is hidden by some vertex setU ′ 6= {z}. This U ′ is minimal without loss of
generality. In particular, we can assume thatU ′ is tight in the sense of Definition 9.15 and thatU ′ =
U ′TzU. Then by Corollary 9.23 it holds thatU ′ is hiding-connected. LettingL = minlevel

(

U ′
)

and settingj = h in the spreading inequality (9.10), we get that
∣

∣U ′
∣

∣ ≥ 1 + h − L and hence
m

(

U ′
)

≥ mL
(

U ′
)

≥ L + 2(1 + h − L) = 2h − L + 2 > h + 2 sinceL < h.

Proof of Theorem 10.8.The statement in the theorem follows from Observations 10.9and 10.10
combined with the inequality (10.2), so just as for Theorem 9.14 the crux of the matter is the
induction proof needed to get this inequality.

Suppose thatUt is such that it blocksSt andpot(St) = m(Ut). By the inductive hypothesis, we
have thatpot(St) ≤ (2CK + 1) ·maxs≤t{cost(Ss)}. We want to show forSt+1 thatpot(St+1) ≤
(2CK + 1) · maxs≤t+1{cost(Ss)}. Clearly, this follows if we can prove that

pot(St+1) ≤ max{pot(St), (2CK + 1) · cost(St)} . (10.3)

We also note that ifUt blocksSt+1 we are done, since if sopot(St+1) ≤ m(Ut) = pot(St).
We make a case analysis depending on the type of move in Definition 6.8 made to get fromSt

to St+1. Analogously with the proof of Lemma 9.12, we want to show that we can useUt to block
St+1 as long as the move is not an introduction on a source vertex and then use the Generalized
LHC property to take care of such black pebble placements on sources.

Erasure St+1 = St \
{

[B]〈W〉
}

for [B]〈W〉 ∈ St. Obviously,Ut blocksSt+1 ⊆ St.

Inflation St+1 = St ∪
{

[B]〈W〉
}

for [B]〈W〉 inflated from some[B′]〈W ′〉 ∈ St such that

B′ ⊆ B , (10.4a)

W ′ ∩ lpp(B) ⊆ W , and (10.4b)

B ∩ W ′ = ∅ . (10.4c)

We claim thatUt blocks [B]〈W〉 and thus all ofSt+1. Let us first argue intuitively why.
Suppose thatP is any source path agreeing withB. This path also agrees withB′, and so
must be blocked byUt ∪ W ′ by assumption. IfUt blocksB we are done. We can worry,
though, thatUt does not blockP , but that insteadP was blocked by somew ∈ W ′ that
disappeared as a result of the inflation move. But ifw ∈ W ′ is on a path viaB, it cannot
have disappeared, so this can never happen.

We now write down the formal details. With the notation in Definition 10.2, fix any path
P ∈ unblocked([B]〈W 〉). We need to show thatP ∩ Ut 6= ∅. Let us assume without loss
of generality thatP ends intop(B), for Ut blocks [B]〈W〉 precisely if it blocks the paths

P ∩ G
top(B)
M for all P ∈ unblocked([B]〈W 〉). We note that by definition, the fact thatP

agrees with a chainV and ends intop(V) implies that

P ⊆ V
.∪ lpp(V) . (10.5)

SinceP agrees withB, or in formal notationP ∈ Pvia(B), and sinceB′ ⊆ B by (10.4a),
we haveP ∈ Pvia(B

′). By assumption,Ut blocks[B′]〈W ′〉, which in particular means that

67

TOWARDS AN OPTIMAL SEPARATION

Ut ∪ W ′ intersects the pathP agreeing withB′. We get

∅ 6= P ∩
(

Ut ∪ W ′
) [

by definition of blocking
]

= (P ∩ Ut)∪
(

(P \ B) ∩ W ′
) [

sinceB ∩ W ′ = ∅ by (10.4c)
]

= (P ∩ Ut) ∪
(

P ∩ lpp(B) ∩ W ′
) [

sinceP ⊆ B
.∪ lpp(B) by (10.5)

]

⊆ (P ∩ Ut) ∪ (P ∩ W)
[

sincelpp(B) ∩ W ′ ⊆ W by (10.4b)
]

= P ∩ Ut

[

P ∩ W = ∅ if P ∈ unblocked([B]〈W〉)
]

soP ∩ Ut 6= ∅ and the desired conclusion thatUt blocks the pathP follows.

Merger St+1 = St ∪
{

[B]〈W〉
}

for [B]〈W〉 derived by merger of[B1]〈W1〉, [B2]〈W2〉 ∈ St such
that

B1 ∩ W2 = ∅ , (10.6a)

B2 ∩ W1 = {v∗} , (10.6b)

B = (B1 ∪ B2) \ {v∗} , and (10.6c)

W =
(

(W1 ∪ W2) \ {v∗}
)

∩ lpp(B) . (10.6d)

Let us again first argue informally that if a set of verticesUt blocks two subconfigurations
[B1]〈W1〉 and [B2]〈W2〉, it must also block their merger. LetP be any path viaB, and
suppose in addition thatP visits the merger vertexv∗. If so, P agrees withB2 and must be
blocked byUt ∪ W2. If on the other handP agrees withB but doesnot visit v∗, it is a path
via B1 that in addition does not pass through the white pebble inW1 eliminated in the merger.
This means thatUt ∪ W1 \ {v∗} must blockP . Again, we have to argue that the blocking
white vertices do not disappear when we apply the intersection with lpp(B) in (10.6d), but
this is straightforward to verify.

So let us show formally thatUt blocks [B]〈W〉, i.e., that for anyP ∈ unblocked([B]〈W〉)
it holds thatP ∩ Ut 6= ∅. As above, without loss of generality we consider only pathsP
ending intop(B) = top(B1 ∪ B2). Recall that

Bi ∩ Wi = ∅ (10.7)

holds for all subconfigurations by definition. We divide the analysis into two subcases.

1. P ∈ Pvia(B1 ∪ B2) = Pvia(B ∪ {v∗}). If so, in particular it holds thatP ∈ Pvia(B2)
and sinceUt blocks[B2]〈W2〉 we have

∅ 6= P ∩
(

Ut ∪ W2

) [

by definition of blocking
]

= (P ∩ Ut)∪
(

(P \ (B1 ∪ B2)) ∩ W2

) [

by (10.6a) and (10.7)
]

= (P ∩ Ut) ∪
(

P ∩ lpp(B1 ∪ B2) ∩ W2

) [

by (10.5)
]

= (P ∩ Ut)∪
(

P ∩ lpp(B ∪ v∗) ∩ W2

) [

just rewriting using (10.6c)
]

⊆ (P ∩ Ut)∪
(

P ∩ (W2 \ {v∗}) ∩ lpp(B)
[

lpp(B ∪ {v∗}) ⊆ lpp(B) \ {v∗}
]

⊆ (P ∩ Ut) ∪ (P ∩ W)
[

by (10.6d)
]

= P ∩ Ut

[

sinceP ∈ unblocked([B]〈W〉)
]

soUt blocks the pathP in this case.

2. P ∈ Pvia(B) \ Pvia(B ∪ {v∗}). This means thatB ⊆ P but B ∪ {v∗} * P , so the
pathP does not pass throughv∗. SinceP agrees withB1 andUt blocks[B1]〈W1〉 by

68

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

assumption, we get that

∅ 6= P ∩
(

Ut ∪ W1

) [

by definition of blocking
]

= (P ∩ Ut)∪
(

(P \ B) ∩ W1

) [

by (10.6b) and (10.7)
]

= (P ∩ Ut) ∪
(

P ∩ lpp(B) ∩ W1

) [

P ⊆ B
.∪ lpp(B) by (10.5)

]

= (P ∩ Ut) ∪
(

P ∩ (W1 \ {v∗}) ∩ lpp(B)
) [

sincev∗ /∈ P by assumption
]

⊆ (P ∩ Ut) ∪ (P ∩ W)
[

by (10.6d)
]

= (P ∩ Ut)
[

P ∈ unblocked([B]〈W〉)
]

andUt blocks the pathP in this case as well.

Introduction St+1 = St ∪
{

[v]〈pred (v)〉
}

. Clearly,Ut blocksSt+1 if v is a non-source vertex,
i.e., if pred(v) 6= ∅, sinceUt blocksSt and[v]〈pred (v)〉 blocks itself.

Suppose however thatv is a source vertex, so that the subconfiguration introduced is [v]〈∅〉.
As in the proof of Lemma 9.12,Ut does not necessarily blockSt+1 any longer butUt+1 =
Ut ∪ {v} clearly does. Forj > 0, it holds thatUt+1{�j} = Ut{�j} and thusmj(Ut+1) =
mj(Ut). On the bottom levelj = 0, using that|Ut| ≤ CK · cost(St) Generalized LHC
property 10.7 we have

m0(Ut+1) = 2 · |Ut+1| = 2 · (|Ut| + 1) ≤
2 ·

(

CK · cost(St) + 1
)

≤ 2 ·
(

CK · cost(St+1) + 1
)

≤
2 ·

(

CK · cost(St+1) + cost(St+1)
)

≤ 2(CK + 1) · cost(St+1) (10.8)

and we get that

pot(St+1) ≤ m(Ut+1) ≤ maxj

{

mj(Ut+1)
}

≤ max
{

m(Ut), (2CK + 1) · cost(St+1)
}

=

max
{

pot(St), (2CK + 1) · cost(St+1)
}

(10.9)

which is what is needed for the induction step to go through.

We see that regardless of the pebbling move made in the transition St St+1, the inequality (10.3)
holds. The theorem follows by the induction principle.

Hence, in order to prove a lower bound onBlob-Peb(Gh) for layered spreading graphsGh, it is
sufficient to find some constantCK such that these DAGs can be shown to possess the Generalized
LHC property 10.7 with parameterCK .

10.3 Some Structural Transformations

As we tried to indicate by presenting the small toy blob-pebbling configurations in Examples 10.4
and 10.5, the potential in the blob-pebble game behaves somewhat differently from the potential in
the standard pebble game. There are (at least) two importantdifferences:

• Firstly, for the white pebbles we have to keep track of exactly which black pebbles they can
help to block. This can lead to slightly unexpected consequences such as the blocking setU
and the set of white pebbles overlapping.

69

TOWARDS AN OPTIMAL SEPARATION

• Secondly, for black blobs there is a much wider choice where to block the blob-pebbles
than for atomic pebbles. It seems that to minimize the potential, blocking black blobs on
(reasonably) low levels should still be a good idea. However, we cannot a priori exclude the
possibility that if a lot of black blobs intersect in some high-level vertex, adding this vertex
to a blocking setU might be a better idea.

In this subsection we address the first of these issues. The second issue, which turns out to be much
trickier, is dealt with in the next subsection.

One simplifying observation is that we do not have to prove Property 10.7 for arbitrary blob-
pebbling configurations. Below, we show that one can do some technical preprocessing of the blob-
pebbling configurations so that it suffices to prove the Generalized LHC property for the subclass
of configurations resulting from this preprocessing.8 Throughout this subsection, we assume that
the parameterCK is some fixed constant.

We start slowly by taking care of a pretty obvious redundancy. Let us say that the blob sub-
configuration[B]〈W〉 is self-blockingif W blocksB. The blob-pebbling configurationS is self-
blocker-freeif there are no self-blocking subconfigurations inS. That is, if[B]〈W〉 is self-blocking,
W needs no extra help blockingB. Perhaps the simplest example of this is[B]〈W〉 = [v]〈pred (v)〉
for a non-source vertexv. The following proposition is immediate.

Proposition 10.11. For S any blob-pebbling configuration, letS′ be the blob-pebbling configura-
tion with all self-blockers inS removed. Thencost(S′) ≤ cost(S), pot(S′) = pot(S) and any
blocking setU ′ for S′ is also a blocking set forS.

Corollary 10.12. Suppose that the Generalized LHC property holds for self-blocker-free blob-
pebbling configurations. Then the Generalized LHC propertyholds for all blob-pebbling configu-
rations.

Proof. If S is not self-blocker-free, take the maximalS′ ⊆ S that is and the blocking setU ′ that the
Generalized LHC property provides for thisS′. ThenU ′ blocksS and since the two configurationsS
andS′ have the same blocking sets their potentials are equal, sopot(S) = m(U ′). Finally, we have
that |U | ≤ CK · cost(S′) ≤ CK · cost(S). Thus the Generalized LHC property holds forS.

We now move on to a more interesting observation. Looking atS =
{

[z]〈y1〉, [z]〈y2〉
}

in
Example 10.4, it seems that the white pebbles really do not help at all. One might ask if we could
not just throw them away? Perhaps somewhat surprisingly, the answer is yes, and we can capture
the intuitive concept of necessary white pebbles and formalize it as follows.

Definition 10.13 (White sharpening). Given S =
{

[Bi]〈Wi〉
}

i∈[m]
, we say thatS′ is a white

sharpeningof S if S′ =
{

[B′
i]〈W ′

i 〉
}

i∈[m]
for B′

i = Bi andW ′
i ⊆ Wi.

That is, a white sharpening removes white pebbles and thus makes the blob-pebbling configu-
ration stronger or “sharper” in the sense that the cost can only decrease and the potential can only
increase.

Proposition 10.14. If S′ is a white sharpening ofS it holds thatcost(S′) ≤ cost(S) andpot(S′) ≥
pot(S). More precisely, any blocking setU ′ for S′ is also a blocking set forS.

Proof. The statement about cost is immediate from Definition 6.9. The statement about potential
clearly follows from Definition 10.3 since it holds that any blocking setU ′ for S′ is also a blocking
set forS.

8Note that we did something similar in Section 9.3 after Lemma9.18, when we argued that ifU is a minimum-
measure hiding set forP = (B,W), we can assume without loss of generality thatU ∪ W is tight. For if not, we
just prove the Limited hiding-cardinality property for some tight subsetU ′ ∪ W ′ ⊆ U ∪ W instead. This is wholly
analogous to the reasoning here, but since matters become more complex we need to be a bit more careful.

70

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

In the next definition, we suppose that there is some fixed but arbitrary ordering of the vertices
in G, and that the vertices are considered in this order.

Definition 10.15 (White elimination). For [B]〈W〉 a subconfiguration andU any blocking set
for [B]〈W〉, write W = {w1, . . . , ws}, setW 0 := W and iteratively perform the following for
i = 1, . . . , s: If U ∪ (W i−1\{wi}) blocksB, setW i := W i−1\{wi}, otherwise setW i := W i−1.
We define thewhite eliminationof [B]〈W〉with respect toU to beW-elim([B]〈W〉, U) = [B]〈W s〉
for W s the final set resulting from the procedure above.

ForS a blob-pebbling configuration andU a blocking set forS, we define

W-elim(S, U) =
{

W-elim([B]〈W〉, U)
∣

∣[B]〈W〉 ∈ S
}

. (10.10)

We say that the elimination isstrict if S 6= W-elim(S, U). If S = W-elim(S, U) we say thatS is
white-eliminated, orW-eliminatedfor short, with respect toU .

ClearlyW-elim(S, U) is a white sharpening ofS. And if we pick the rightU , we simplify the
problem of proving the Generalized LHC property a bit more.

Lemma 10.16. If U is a minimum-measure blocking set forS, thenS′ = W-elim(S, U) is a white
sharpening ofS such thatpot(S′) = pot(S) andU blocksS′.

Proof. SinceS′ = W-elim(S, U) is a white sharpening ofS (which is easily verified from Defin-
itions 10.13 and 10.15), it holds by Proposition 10.14 thatpot(S′) ≥ pot(S). Looking at the
construction in Definition 10.15, we also see that the white pebbles are “sharpened away” with care
so thatU remains a blocking set. Thusm(U) ≥ pot(S′) = pot(S) = m(U), and the lemma
follows.

Corollary 10.17. Suppose that the Generalized LHC property holds for the set of all blob-pebbling
configurationsS having the property that for all minimum-measure blocking setsU for S it holds
that S = W-elim(S, U). Then the Generalized LHC property holds for all blob-pebbling configu-
rations.

Proof. This is essentially the same reasoning as in the proof of Corollary 10.12 plus induction.
Let S be any blob-pebbling configuration. Suppose that there exists a minimum-measure blocker
U for S such thatS is not W-eliminated with respect toU . Let S1 = W-elim(S, U). Then
cost(S1) ≤ cost(S) by Proposition 10.14 andpot(S1) = pot(S) by Lemma 10.16.

If there is a minimum-measure blockerU1 for S1 such thatS1 is notW-eliminated with respect
to U1, setS2 = W-elim(S1, U1). Continuing in this manner, we get a chainS1, S2, S3, . . . of
strictW-eliminations such thatcost(S1) ≥ cost(S2) ≥ cost(S3) . . . andpot(S1) = pot(S2) =
pot(S3) = . . . This chain must terminate at some configurationSk since the total number of white
pebbles (counted with repetitions) decreases in every round.

Let Uk be the blocker that the Generalized LHC property provides for Sk. ThenUk blocksS,
pot(S) = pot(Sk) = m(Uk), and|Uk| ≤ CK · cost(Sk) ≤ CK · cost(S). Thus the Generalized
LHC property holds forS.

We note that in particular, it follows from the constructionin Definition 10.15 combined with
Corollary 10.17 that we can assume without loss of generality for any blocking setU and any
blob-pebbling configurationS thatU does not intersect the set of white-pebbled vertices inS.

Proposition 10.18. If S = W-elim(S, U), then in particular it holds thatU ∩ W(S) = ∅.

Proof. Any w ∈ W(S) ∩ U would have been removed in theW-elimination.

71

TOWARDS AN OPTIMAL SEPARATION

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a) Minimum-measure but non-tight blocking set.

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(b) Tight but non-connected blocker for blob.

Figure 14: Two blob-pebbling configurations with problematic blocking sets.

10.4 A Proof of the Generalized Limited Hiding-Cardinality Property

We are now ready to embark on the proof of the Generalized LHC property for layered spreading
DAGs.

Theorem 10.19. All layered blob-pebblable DAGs that are spreading possessthe Generalized
limited hiding-cardinality property 10.7 with parameterCK = 13.

Since pyramids are spreading graphs by Theorem 9.35, this isall that we need to get the lower
bound on blob-pebbling price on pyramids from Theorem 10.8.We note that the parameterCK

in Theorem 10.19 can easily be improved. However, our main concern here is not optimality of
constants but clarity of exposition.

We prove Theorem 10.19 by applying the preprocessing in the previous subsection and then
(almost) reducing the problem to the standard black-white pebble game. However, some twists
are added along the way since our potential measure for blobsbehave differently from Klawe’s
potential measure for black and white pebbles. Let us first exemplify two problems that arise if we
try to do naive pattern matching on Klawe’s proof for the standard black-white pebble game.

In the standard black-white pebble game, ifU is a minimum-measure hiding set forP =
(B,W), Lemma 9.18 tells us that we can assume without loss of generality that U ∪ W is tight.
This isnot true in the blob-pebble game, not even after the transformations in Section 10.3.

Example10.20. Consider the configurationS = {[w1]〈u2, u3〉, [w4, x3]〈u4, u5〉, [x2, y2, z]〈∅〉}
with blocking setU = {x2, u1, u6} in Figure 14(a). It can be verified thatU is a minimum-
measure blocking set and that the configurationS is W-eliminated with respect toU , but the set
U ∪ W(S) = {u1, u2, u3, u4, u5, u6, x2} is not tight (because ofx2).

This can be handled, but a more serious problem is that even ifthe setU ∪ W blocking the
chainB is tight, there is no guarantee that the vertices inU ∪ W end up in the same connected
component of the hiding set graphH(U ∪ W) in Definition 9.20.

Example10.21. Consider the single-blob configurationS = {[u5, z]〈∅〉} in Figure 14(b). It is
easy to verify thatU = {v4, y2} is a subset-minimal blocker ofS and also a tight vertex set. This
highlights the fact that blocking sets for blob-pebbling configurations can have rather different prop-
erties than hiding sets for standard pebbles. In particular, a minimal blocking set for a single blob
can have several “isolated” vertices at large distances from one another. Among other problems,
this leads to difficulties in defining connected components of blocking sets for subconfigurations.

The naive attempt to generalize Definition 9.20 of connectedcomponents in a hiding set graph
to blocking sets would place the verticesv4 andy2 in different connected components{v4} and

72

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

{y2}, none of which blocksS = {[u5, z]〈∅〉}. This is not what we want (compare Corollary 9.23
for hiding sets for black-white pebble configurations). We remark that there really cannot be any
other sensible definition that placesv4 andy2 in the same connected component either, at least not
if we want to appeal to the spreading properties in Definition9.34. Since the level difference inU
is 3 but the size of the set is only2, the spreading inequality (9.10) cannot hold for this set.

To get around this problem, we will instead use connected components defined in terms of
hiding the singleton black pebbles given by the bottom vertices of our blobs. For a start, recalling
Definitions 9.6 and 10.1, let us make an easy observation relating the hiding and blocking relations
for a blob.

Observation 10.22.If a vertex setV hides some vertexb ∈ B, thenV blocksB.

Proof. If V blocks all paths visitingb, then in particular it blocks the subset of paths that not only
visits b but agree with all ofB.

We will focus on the case when the bottom vertex of a blob is hidden.

Definition 10.23 (Hiding blob-pebbling configurations). We say that the vertex setU hidesthe
subconfiguration[B]〈W〉 if U ∪ W hides the vertexbot(B), and thatU hides the blob-pebbling
configurationS if U hides all[B]〈W〉 ∈ S.

If U does not hide[B]〈W 〉, thenU blocks[B]〈W 〉 only if U ∩ GO

bot(B) does.

Proposition 10.24. Suppose that a vertex setU in a layered DAGG blocks but does not hide the
subconfiguration[B]〈W 〉 and that[B]〈W 〉 does not block itself. ThenU ∩ G

bot(B)
M

does not block
[B]〈W 〉, but there is a subsetU ′ ⊆ U ∩ GO

bot(B) that blocks[B]〈W 〉.

Proof. Suppose thatU ∪ W blocksB but does not hideb = bot(B), and thatW does not blockB.
Then there is a source pathP2 via B such thatP2 ∩ W = ∅. Also, there is a source pathP1 to b
such thatP1 ∩ (U ∪ W) = ∅. Let P =

(

P1 ∩ Gb
M

)

∪
(

P2 ∩ GO

b

)

be the source path that starts
like P1 and continues likeP2 from b onwards. Clearly,

P ∩
((

U ∩ Gb
M

)

∪ W
)

=
(

P1 ∩ (U ∪ W)
)

∪
(

P2 ∩ W
)

= ∅ (10.11)

soU ∩ Gb
M

does not block[B]〈W 〉.
Suppose thatU ∩ GO

b does not block[B]〈W 〉. SinceU ∪ W does not hideb, there is some
source pathP1 to b with P1 ∩ (U ∪ W) = ∅. Also, sinceU ∪ W blocksB but

(

U ∩ GO

b

)

∪ W does
not, there is a source pathP2 via B such thatP2 ∩ (U ∪ W) 6= ∅ butP2 ∩ (U ∪ W) ∩ GO

b = ∅.
But then letP =

(

P1 ∩ Gb
M

)

∪
(

P2 ∩ GO

b

)

be the source path that starts likeP1 and continues
like P2 from b onwards. We get thatP agrees withB and thatP ∩ (U ∪ W) = ∅, contradicting
the assumption thatU blocks[B]〈W 〉.

We want to distinguish between subconfigurations that are hidden and subconfigurations that
are just blocked, but not hidden. To this end, let us introduce the notation

SH(S, U) =
{

[B]〈W〉 ∈ S
∣

∣U hides[B]〈W〉
}

(10.12)

to denote the subconfigurations inS hidden byU and

SB(S, U) = S \ SH(S, U) (10.13)

to denote the subconfigurations that are just blocked. We write

BH(S, U) = {bot(B) | [B]〈W 〉 ∈ SH(S, U)} (10.14)

BB(S, U) = {bot(B) | [B]〈W 〉 ∈ SB(S, U)} (10.15)

73

TOWARDS AN OPTIMAL SEPARATION

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(a)
˘

[s4, y1, z]〈v2〉, [u3, w3]〈s3〉, [w4, x3]〈v5〉
¯

.

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

(b)
˘

[s4,v4,w3,x3,y2]〈∅〉, [w2,y1]〈s3,u3,x1〉, [w4]〈v5〉
¯

.

Figure 15: Examples of blob-pebbling configurations with hidden and just blocked blobs.

to denote the black bottom vertices in these two subsets of subconfigurations and note that we can
haveBH(S, U) ∩ BB(S, U) 6= ∅. The white pebbles in these subsets located below the bottom
vertices of the black blobs that they are supporting are denoted

WM

H(S, U) =
{

W ∩ Gb
M

∣

∣[B]〈W 〉 ∈ SH(S, U), b = bot(B)
}

(10.16)

and

WM

B(S, U) =
{

W ∩ Gb
M

∣

∣[B]〈W 〉 ∈ SB(S, U), b = bot(B)
}

. (10.17)

This notation will be used heavily in what follows, so we givea couple of simple but hopefully
illuminating examples before we continue.

Example10.25. Consider the blob-pebbling configurations and blocking sets in Figure 15. For
the blob-pebbling configurationS1 =

{

[s4, y1, z]〈v2〉, [u3, w3]〈s3〉, [w4, x3]〈v5〉
}

with blocking
setU1 = {v3, v4} in Figure 15(a), the vertex set{v4, v5} hidesw4 = bot([w4, x3]) but [s4, y1, z]
is blocked but not hidden by{v2, v3, v4} and[u3, w3] is blocked but not hidden by{v3}. Thus, we
have

SH(S1, U1) =
{

[w4, x3]〈v5〉
}

SB(S1, U1) =
{

[s4, y1, z]〈v2〉, [u3, w3]〈s3〉
}

BH(S1, U1) = {w4}
BB(S1, U1) = {s4, u3}
WM

H(S1, U1) = {v5}
WM

B(S1, U1) = {s3}

in this example. For the configurationS2 =
{

[s4, v4, w3, x3, y2]〈∅〉, [w2, y1]〈s3, u3, x1〉, [w4]〈v5〉
}

with blockerU2 = {s2, u4, u5} in Figure 15(b), it is straightforward to verify that

SH(S2, U2) =
{

[w2, y1]〈s3, u3, x1〉, [w4]〈v5〉
}

SB(S2, U2) =
{

[s4, v4, w3, x3, y2]〈∅〉
}

BH(S2, U2) = {w2, w4}
BB(S2, U2) = {s4}
WM

H(S2, U2) = {s3, u3, v5}
WM

B(S2, U2) = ∅

74

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

are the corresponding sets.
Let us also use the opportunity to illustrate Definition 10.15. The blob-pebbling configuration

S1 is notW-eliminated with respect toU1, sinceU1 also blocks this configuration with the white
pebble ons3 removed. However, a better idea measure-wise is to change the blocking set forS1 to
U ′

1 = {s4, v4}, which has measurem(U ′
1) = 4 < 6 = m(U1). The vertex setU2 can be verified to

be a minimum-measure blocker forS2, but whenS2 is W-eliminated with respect toU2 the white
pebble onx1 disappears.

As a final remark in this example, we comment that although we have not indicated explicitly
in Figures 15(a) and 15(b) which white pebblesW are associated with which black blobB (as
was done in Figure 14(a)), this is uniquely determined by therequirement in Definition 6.7 that
W ⊆ lpp(B).

For the rest of this section we will assume without loss of generality (in view of Proposi-
tion 10.11 and Corollary 10.17) that we are dealing with a blob-pebbling configurationS and a
minimum-measure blockerU of S such thatS is free from self-blocking subconfigurations and is
W-eliminated with respect toU . As an aside, we note that it is not hard to show (using Defini-
tion 10.15 and Proposition 10.24) that this implies thatWM

B(S, U) = ∅. We will tend to drop the
argumentsS andU for SH , SB ,BH ,BB ,WM

H , andWM

B, since from now on the blob-pebbling con-
figurationS and the blockerU will be fixed. With this notation, Theorem 10.19 clearly follows if
we can prove the following lemma.

Lemma 10.26. Let S be any blob-pebbling configuration on a layered spreading DAG andU be
any blocking set forS such that

1. pot(S) = m(U), i.e.,U is a minimum-measure blocker ofS,

2. S is free from self-blocking subconfigurations and isW-eliminated with respect toU , and

3. U has minimal size among all blocking setsU ′ for S such thatpot(S) = m(U ′).

Then|U | ≤ 13 ·
∣

∣BH ∪ BB ∪ WM

H

∣

∣.

The proof is by contradiction, although we will have to work harder than for the corresponding
Theorem 9.25 for black-white pebbling and also use (the proof of) the latter theorem as a subroutine.
Thus, for the rest of this section, let us assume on the contrary thatU has all the properties stated in
Lemma 10.26 but that|U | > 13·

∣

∣BH ∪ BB ∪WM

H

∣

∣. We will show that this leads to a contradiction.
For the subconfiguration inSH that are hidden byU , one could argue that matters should be

reasonably similar to the case for standard black-white pebbling, and hopefully we could apply
similar reasoning as in Section 9.3 to prove something useful about the vertex set hiding these sub-
configurations. The subconfigurations inSB that are just blocked but not hidden, however, seem
harder to get a handle on (compare Example 10.21).

Let UH ⊆ U be a smallest vertex set hidingSH and letUB = U \ UH . The setUB consists
of vertices that are not involved in any hiding of subconfigurations inSH , but only in blocking
subconfigurations inSB on levels above their bottom vertices. As a first step towardsproving
Lemma 10.26, and thus Theorem 10.19, we want to argue thatUB cannot be very large.

Consider the blobs inSB. By definition they are not hidden, but are blocked at some level above
level(bot(B)). Since the vertices inUB are located on high levels, a naive attempt to improve the
blocking set would be to pick someu ∈ UB and replace it by the vertices inBB corresponding
to the subconfigurations inSB thatu is involved in blocking, i.e., by the setBu =

{

bot(B)
∣

∣U \
{u} does not block[B]〈W〉 ∈ SB

}

. Note thatBu is lower down in the graph thanu, so(U \{u}) ∪
Bu is obtained fromU by moving vertices downwards and by construction(U \{u}) ∪ Bu blocksS.
But by assumption,U has minimal potential and cardinality, so this new blockingset cannot be an
improvement measure- or cardinality-wise. The same holds if we extend the construction to subsets

75

TOWARDS AN OPTIMAL SEPARATION

U ′ ⊆ UB and the corresponding bottom verticesBU ′ ⊆ BB . By assumption we can never find any
subset such that(U \ {U ′}) ∪ BU ′

is a better blocker thanU . It follows that the cost of the blobs
thatUB helps to block must be larger than the size ofUB , and in particular that|UB | ≤ |BB |. Let
us write this down as a lemma and prove it properly.

Lemma 10.27.LetS be any blob-pebbling configuration on a layered DAG andU be any blocking
set forS such thatpot(S) = m(U), U has minimal size among all blocking setsU ′ for S with
pot(S) = m(U ′), and S is free from self-blocking subconfigurations and isW-eliminated with
respect toU . Then ifUH ⊆ U is any smallest set hidingSH and UB = U \ UH , it holds that
|UB | ≤ |BB |.

Before proving this lemma, we note the immediate corollary that if the whole blocking set
U is significantly larger thancost(S), the lion’s share ofU by necessity consists not of vertices
blocking subconfigurations inSB, but of vertices hiding subconfigurations inSH . And recall that
we are indeed assuming, to get a contradiction, thatU is large.

Corollary 10.28. Assume thatS andU are as in Lemma 10.26 but with|U |>13·
∣

∣BH ∪BB ∪WM

H

∣

∣.
LetUH ⊆ U be a smallest set hidingSH . Then|UH | > 12 ·

∣

∣BH ∪ BB ∪ WM

H

∣

∣.

As was indicated in the informal discussion preceding Lemma10.27, the proof of the lemma
uses the easy observation that moving vertices downwards can only decrease the measure.

Observation 10.29.Suppose thatU , V1 andV2 are vertex sets in a layered DAG such thatU ∩V2 =
∅ and there is a one-to-one (but not necessarily onto) mappingf : V1 7→ V2 with the property that
level(v) ≤ level(f(v)). Thenm(U ∪ V1) ≤ m(U ∪ V2).

Proof. This follows immediately from Definition 9.8 on page 48 sincethe mappingf tells us that

|(U ∪ V1){�j}| ≤ |U{�j}| + |V1{�j}| ≤ |U{�j}| + |f(V1{�j})|
≤ |U{�j}| + |V2{�j}| ≤ |(U ∪ V2){�j}|

for all j.

Proof of Lemma 10.27.Note first that by Proposition 10.24, for every[B]〈W〉 ∈ SB with b =
bot(B) it holds thatU ∩ GO

b = (UH
.∪ UB) ∩ GO

b blocks[B]〈W〉. Therefore, all vertices inUB

needed to block[B]〈W〉 can be found inUB ∩ GO

b . Rephrasing this slightly, the blob-pebbling
configurationS is blocked byUH

.∪
(

UB ∩ ⋃

b∈BB
GO

b

)

, and sinceU is subset-minimal we get that

UB = UB ∩ ⋃

b∈BB
GO

b . (10.18)

Consider the bipartite graph withBB andUB as the left- and right-hand vertices, where the neigh-
bours of eachb ∈ BB are the verticesN(b) = UB ∩ GO

b in UB aboveb. We have thatN(BB) =
UB ∩ ⋃

b∈BB
GO

b = UB by (10.18). LetB′ ⊆ BB be a largest set such that
∣

∣N
(

B′
)∣

∣ <
∣

∣B′
∣

∣. If
B′ = BB we are done since this is the inequality|UB | < |BB |. Suppose therefore thatB′ $ BB

and|UB | = |N(BB)| > |BB |.
For allB′′ ⊆ BB \B′ we must have

∣

∣N
(

B′′
)

\N
(

B′
)
∣

∣ ≥
∣

∣B′′
∣

∣, for otherwiseB′′ could be added
to B′ to yield an even larger setB∗ = B′ ∪ B′′ with

∣

∣N
(

B∗
)
∣

∣ < |B∗| contrary to the assumption
thatB′ has maximal size among all sets with this property. It follows by Hall’s marriage theorem
that there must exist a matching ofBB \ B′ into N

(

BB \ B′
)

\ N
(

B′
)

= UB \ N
(

B′
)

. Thus,
∣

∣BB \B′
∣

∣ ≤
∣

∣UB \N
(

B′
)
∣

∣ and in addition it follows from the way our bipartite graph isconstructed
that everyb ∈ BB \ B′ is matched to someu ∈ UB \ N

(

B′
)

with level(u) ≥ level(b).
Clearly, all subconfigurations in

S1
B =

{

[B]〈W〉 ∈ SB

∣

∣ bot(B) ∈ BB \ B′
}

(10.19)

76

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

are blocked byBB \B′ (even hidden by this set, to be precise). Also, as was argued in the beginning
of the proof, every[B]〈W〉 ∈ SB with b = bot(B) is blocked byUH ∪

(

UB ∩ GO

b

)

= UH ∪ N(b),
so all subconfigurations in

S2
B =

{

[B]〈W〉 ∈ SB

∣

∣ bot(B) ∈ B′
}

(10.20)

are blocked byUH ∪ N
(

B′
)

where
∣

∣N
(

B′
)
∣

∣ <
∣

∣B′
∣

∣. And we know thatSH is blocked (even
hidden) byUH . It follows that if we let

U∗ = UH ∪ N
(

B′
)

∪
(

BB \ B′
)

(10.21)

we get a vertex setU∗ that blocksSH ∪ S1
B ∪ S2

B = S, has measurem
(

U∗
)

≤ m(U) because of
Observation 10.29, and has size

∣

∣U∗
∣

∣ ≤ |UH | +
∣

∣N
(

B′
)∣

∣ +
∣

∣BB \ B′
∣

∣ < |UH | +
∣

∣B′
∣

∣ +
∣

∣BB \ B′
∣

∣ = |U | (10.22)

strictly less than the size ofU . But this is a contradiction, sinceU was chosen to be of minimal
size. The lemma follows.

The idea in the remaining part of the proof is as follows: Fix some smallest subsetUH ⊆ U
that hidesSH , and letUB = U \ UH . Corollary 10.28 says thatUH is the totally dominating part
of U and hence thatUH is very large. ButUH hides the blob subconfigurations inSH very much
in a similar way as for hiding sets in the standard black-white pebble game. And we know from
Section 9.3 that such sets need not be very large. Therefore we want to use Klawe-like ideas to
derive a contradiction by transformingUH locally into a (much) better blocking set forSH . The
problem is that this might leave some subconfigurations inSB not being blocked any longer (note
that in generalUB will not on its own blockSB). However, since we have chosen our parameter
CK = 13 for the Generalized LHC property 10.7 so generously and since the transformation in
Section 9.3 works for the (non-generalized) LHC property with parameter1, we expect our locally
transformed blocking set to be so much cheaper that we can afford to take care of any subconfigu-
rations inSB that are no longer blocked simply by adding all bottom vertices for all black blobs in
these subconfigurations to the blocking set.

We will not be able to pull this off by just making one local improvement of the hiding set as
was done in Section 9.3, though. The reason is that the local improvement toUH could potentially
be very small, but lead to very many subconfigurations inSB becoming unblocked. If so, we
cannot afford adding new vertices blocking these subconfigurations without risking to increase the
size and/or potential of our new blocking set too much. To make sure that this does not happen,
we instead make multiple local improvements ofUH simultaneously. Our next lemma says that we
can do this without losing control of how the measure behaves.

Lemma 10.30 (Generalization of Lemma 9.30).Suppose thatU1, . . . , Uk, V1, . . . , Vk, Y are ver-
tex sets in a layered graph such that for alli, j ∈ [k], i 6= j, it holds thatUi -m Vi, Vi ∩ Vj = ∅,
Ui ∩ Vj = ∅ andY ∩ Vi = ∅. Thenm

(

Y ∪ ⋃k
i=1 Ui

)

≤ m
(

Y ∪ ⋃k
i=1 Vi

)

.

Proof. By induction overk. The base casek = 1 is Lemma 9.30 on page 56.
For the induction step, letY ′ = Y ∪ ⋃k−1

i=1 Ui. SinceUk -m Vk and Y ′ ∩ Vk = ∅ by
assumption, we get from Lemma 9.30 that

m
(

Y ∪ ⋃k
i=1 Ui

)

= m
(

Y ′ ∪ Uk

)

≤ m
(

Y ′ ∪ Vk

)

= m
(

Y ∪ ⋃k−1
i=1 Ui ∪ Vk

)

. (10.23)

Letting Y ′′ = Y ∪ Vk, we see that (again by assumption) it holds for alli, j ∈ [k − 1], i 6= j, that
Ui -m Vi, Vi ∩ Vj = ∅, Ui ∩ Vj = ∅ andY ′′ ∩ Vi = ∅. Hence, by the induction hypothesis we
have

m
(

Y ∪ ⋃k−1
i=1 Ui ∪ Vk

)

=m
(

Y ′′ ∪ ⋃i−1
k=1 Ui

)

≤m
(

Y ′′ ∪ ⋃i−1
k=1 Vi

)

=m
(

Y ∪ ⋃k
i=1 Vi

)

(10.24)

and the lemma follows.

77

TOWARDS AN OPTIMAL SEPARATION

We also need an observation about the white pebbles inSH .

Observation 10.31.For any [B]〈W 〉 ∈ SH with b = bot(B) it holds thatW = W ∩ Gb
M

.

Proof. This is so sinceS is W-eliminated with respect toU . SinceU ∪ W hidesb = bot(B),
any vertices inW ∩ GO

b are superfluous and will be removed by theW-elimination procedure in
Definition 10.15.

Recalling from (10.16) thatWM

H =
{

W ∩ Gb
M

∣

∣[B]〈W 〉 ∈ SH , b = bot(B)
}

this leads to the
next, simple but crucial observation.

Observation 10.32.The vertex setUH ∪WM

H hides the vertices inBH in the sense of Definition 9.6.

That is, we can consider
(

BH ,WM

H

)

to be (almost)9 a standard black-white pebble configura-
tion. This sets the stage for applying the machinery of Section 9.3.

Appealing to Lemma 9.18 on page 52, letX ⊆ UH
.∪WM

H be the unique, minimal tight set such
that

VXW = VUH
.∪WM

HW (10.25)

and define

WM

T = WM

H ∩ X (10.26a)

UT = UH ∩ X (10.26b)

to be the vertices inWM

H and UH that remains inX after the bottom-up pruning procedure of
Lemma 9.18.

LetH = H(G,X) be the hiding set graph of Definition 9.20 forX = UT
.∪WM

T . Suppose that
V1, . . . , Vk are the connected components ofH, and define fori = 1, . . . , k the vertex sets

Bi
H = BH ∩ Vi (10.27a)

Wi
H = WM

H ∩ Vi (10.27b)

U i
H = UH ∩ Vi (10.27c)

to be the black, white and “hiding” vertices within component Vi, and

Wi
T = WM

T ∩ Vi (10.27d)

U i
T = UT ∩ Vi (10.27e)

to be the vertices ofWM

H andUH in componentVi that “survived” when moving to the tight sub-
setX. Note that we have the disjoint union equalitiesWM

H =
.
⋃

k
i=1Wi

H , UH =
.
⋃

k
i=1U

i
H , et cetera

for all of these sets.
Let us also generalize Definition 9.8 of measure and partial measure to multi-sets of vertices

in the natural way, where we charge separately for each copy of every vertex. This is our way of
doing the bookkeeping for the extra vertices that might be needed later to blockSB in the final step
of our construction.

This brings us to the key lemma stating how we will locally improve the blocking sets.

Lemma 10.33 (Generalization of Lemma 9.36).With the assumptions on the blob-pebbling con-
figuration S and the vertex setU as in Lemma 10.26 and with notation as above, suppose that
U i

H ∪ Wi
H hidesBi

H , thatH
(

U i
T ∪ Wi

T

)

is a connected graph, and that
∣

∣U i
H

∣

∣ ≥ 6 ·
∣

∣Bi
H ∪ Wi

H

∣

∣ . (10.28)

9Not quite, since we might haveBH ∩ WM

H 6= ∅. But at least we know thatUH ∩ WM

H = ∅ byW-elimination and
the roles ofU andW in U ∪ W are fairly indistinguishable in Klawe’s proof anyway, so this does not matter.

78

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

Then we can find a multi-setU i
∗ ⊆ VU i

T ∪ Wi
T W that hides the vertices inBi

H , has
⌊

|U i
H |/3

⌋

extra
copies of some fixed but arbitrary vertex on levelLU = maxlevel

(

U i
H

)

, and satisfiesU i
∗ -m U i

H

and
∣

∣U i
∗

∣

∣ <
∣

∣U i
H

∣

∣ (whereU i
∗ is measured and counted as a multi-set with repetitions).

Proof. Let U i
∗ be the set found in Lemma 9.33 on page 57, which certainly is inVU i

T ∪ Wi
TW,

together with the prescribed extra copies of some (fixed but arbitrary) vertex that we place on level
maxlevel

(

VU i
H ∪ Wi

HW
)

≥ LU to be on the safe side. By Lemma 9.33,U i
∗ hidesBi

H , and the size
of U i

∗ counted as a multi-set with repetitionsis

∣

∣U i
∗

∣

∣ ≤
∣

∣Bi
H

∣

∣ +
⌊

|U i
H |/3

⌋

≤
(

1
6 + 1

3

)

·
∣

∣U i
H

∣

∣ <
∣

∣U i
H

∣

∣ . (10.29)

It remains to show thatU i
∗ -m U i

H .
The proof of this last measure inequality is very much as in Lemma 9.36, but with the distinction

that the connected graph that we are dealing with is defined overU i
T

.∪Wi
T , but we count the vertices

in U i
H

.∪ Wi
H . Note, however, that by construction these two unions hide exactly the same set of

vertices, i.e.,

VU i
T

.∪Wi
T W = VU i

H

.∪Wi
HW . (10.30)

Recall that by Definition 9.29 on page 56, what we need to do in order to show thatU i
∗ -m U i

H is
to find for eachj an l ≤ j such thatmj

(

U i
∗

)

≤ ml
(

U i
H

)

. As in Lemma 9.36, we divide the proof
into two cases.

1. If j ≤ minlevel
(

U i
T ∪ Wi

T

)

= minlevel
(

U i
H ∪ Wi

H

)

, we get

mj
(

U i
∗

)

= j + 2 ·
∣

∣U i
∗{�j}

∣

∣

[

by definition ofmj(·)
]

≤ j + 2 ·
∣

∣U i
∗

∣

∣

[

sinceV {�j} ⊆ V for anyV
]

≤ j + 2 ·
(

|Bi
H | +

⌊

|U i
H |/3

⌋) [

by Lemma 9.33 plus extra vertices
]

< j + 2 ·
∣

∣U i
H

∣

∣

[

by the assumption in (10.28)
]

= j + 2 ·
∣

∣U i
H{�j}

∣

∣

[

U i
H{�j} = U i

H sincej ≤ minlevel(U i
H)

]

= mj(U i
H)

[

by definition ofmj(·)
]

and we can choosel = j in Definition 9.29.

2. Consider insteadj > minlevel
(

U i
T ∪ Wi

T

)

and letL = minlevel
(

U i
T ∪ Wi

T

)

. Since the
black pebbles inBi

H are hidden byU i
T ∪ Wi

T , i.e.,Bi
H ⊆ VU i

T ∪ Wi
TW in formal notation,

recollecting Definition 9.31 and Observation 9.32, part 2, we see that

L�j

(

Bi
H

)

≤ L�j

(

VU i
T ∪ Wi

T W
)

(10.31)

for all j. Also, sinceU i
T ∪ Wi

T is a hiding-connected vertex set in a spreading graphG,
combining Definition 9.34 with the fact thatU i

T ∪ Wi
T ⊆ U i

H ∪ Wi
H we can derive that

j + L�j

(

VU i
T ∪ Wi

T W
)

≤ L +
∣

∣U i
T ∪ Wi

T

∣

∣ ≤ L +
∣

∣U i
H ∪ Wi

H

∣

∣ . (10.32)

Together, (10.31) and (10.32) say that

j + L�j

(

Bi
H

)

≤ L +
∣

∣U i
H ∪ Wi

H

∣

∣ (10.33)

79

TOWARDS AN OPTIMAL SEPARATION

and using this inequality we can show that

mj(U i
∗) = j + 2 ·

∣

∣U i
∗{�j}

∣

∣

[

by definition ofmj(·)
]

≤ j + L�j

(

Bi
H

)

+
∣

∣Bi
H

∣

∣ + 2 ·
⌊

|U i
H |/3

⌋ [

by Lemma 9.33 + extra vertices
]

≤ L +
∣

∣U i
H ∪ Wi

H

∣

∣ +
∣

∣Bi
H

∣

∣ + 2 ·
⌊

|U i
H |/3

⌋ [

using the inequality (10.33)
]

≤ L + 5
3

∣

∣U i
H

∣

∣ +
∣

∣Bi
H

∣

∣ +
∣

∣Wi
H

∣

∣

[

|A ∪ B| ≤ |A| + |B|
]

≤ L + 5
3

∣

∣U i
H

∣

∣ + 2 ·
∣

∣Bi
H ∪ Wi

H

∣

∣

[

|A| + |B| ≤ 2 · |A ∪ B|
]

≤ L + 2 ·
∣

∣U i
H

∣

∣

[

by the assumption in (10.28)
]

= L + 2 · |U i
H{�L}|

[

sinceL ≤ minlevel(U i
H)

]

= mL(U i
H)

[

by definition ofmL(·)
]

Thus, the partial measure ofU i
H at the minimum levelL is always at least as large as the

partial measure ofU i
∗ at levelsj above this minimum level, and we can choosel = L in

Definition 9.29.

Consequently,U i
∗ -m U i

H and the lemma follows.

Now we want to determine in which connected components of thehiding set graphH we should
apply Lemma 10.33. Loosely put, we want to be sure that changing U i

H to U i
∗ is worthwhile, i.e.,

that we gain enough from this transformation to compensate for the extra hassle of reblocking blobs
in SB that turn unblocked when we changeU i

H . With this in mind, let us define theweightof a
componentVi in H as

w(Vi) =

{

⌈

|U i
H |/6

⌉

if
∣

∣U i
H

∣

∣ ≥ 6 ·
∣

∣Bi
H ∪ Wi

H

∣

∣,

0 otherwise.
(10.34)

The idea is that a componentVi has large weight if the hiding setU i
H in this component is large

compared to the number of bottom black vertices inBi
H hidden and the white pebblesWi

H helping
U i

H to hideBi
H . If we concentrate on changing the hiding sets in componentswith non-zero weight,

we hope to gain more from the transformation ofU i
H into U i

∗ than we lose from then having to
reblockingSB. And sinceUH is large, the total weight of the non-zero-weight components is
guaranteed to be reasonably large.

Proposition 10.34.With notation as above, the total weight of all connected componentsV1, . . . ,Vk

in the hiding set graphH = H
(

G,UT ∪ WM

T

)

is
∑k

i=1 w(Vi) >
∣

∣BH ∪ BB ∪ WM

H

∣

∣.

Proof. The total size of the union of all subsetsU i
H ⊆ UH with sizes

∣

∣U i
H

∣

∣ < 6 ·
∣

∣Bi
H ∪ Wi

H

∣

∣

resulting in zero-weight componentsVi in H is clearly strictly less than

6 ·
k

∑

i=1

∣

∣Bi
H ∪ Wi

H

∣

∣ = 6 ·
∣

∣BH ∪ WM

H

∣

∣ ≤ 6 ·
∣

∣BH ∪ BB ∪ WM

H

∣

∣ . (10.35)

Since according to Corollary 10.28 we have that
∣

∣UH

∣

∣ ≥ 12 ·
∣

∣BH ∪ BB ∪ WM

H

∣

∣, it follows that the
size of the union

⋃

w(Vi)>0 U i
H of all subsetsU i

H corresponding to non-zero-weight componentsVi

must be strictly larger than6 ·
∣

∣BH ∪ BB ∪ WM

H

∣

∣. But then

∑

w(Vi)>0

w(Vi) ≥
∑

w(Vi)>0

⌈

|U i
H |/6

⌉

≥ 1

6
·
∣

∣

∣

∣

∣

⋃

w(Vi)>0

U i
H

∣

∣

∣

∣

∣

>
∣

∣BH ∪ BB ∪ WM

H

∣

∣ (10.36)

as claimed in the proposition.

80

10 A TIGHT BOUND FOR BLOB-PEBBLING THE PYRAMID

We have now collected all tools needed to establish the Generalized limited hiding-cardinality
property for spreading graphs. Before we wrap up the proof, let us recapitulate what we have shown
so far.

We have divided the blocking setU into a disjoint unionUH
.∪ UB of the verticesUH not only

blocking but actuallyhiding the subconfigurations inSH ⊆ S, and the verticesUB just helpingUH

to block the remaining subconfigurations inSB = S \ SH . In Lemma 10.27 and Corollary 10.28,
we proved that ifU is large (which we are assuming) thenUB must be very small compared toUH ,
so we can basically just ignoreUB . If we want to do something interesting, it will have to be done
with UH .

And indeed, Lemma 10.33 tells us that we can restructureUH to get a new vertex set hiding
SH and make considerable savings, but that this can lead toSB no longer being blocked. By
Proposition 10.34, there is a large fraction ofUH that resides in the non-zero-weight components of
the hiding set graphH (as defined in Equation (10.34)). We would like to show that byjudiciously
performing the restructuring of Lemma 10.33 in these components, we can also take care ofSB .

More precisely, we claim that we can combine the hiding setsU i
∗ from Lemma 10.33 with

some subsets ofUH ∪ UB andBB into a new blocking setU∗ for all of SH ∪ SB = S in such
a way that the measurem

(

U∗
)

does not exceedm(U) = pot(S) but so that
∣

∣U∗
∣

∣ < |U |. But
this contradicts the assumptions in Lemma 10.26. It followsthat the conclusion in Lemma 10.26,
which we assumed to be false in order to derive a contradiction, must instead be true. That is,
any setU that is chosen as in Lemma 10.26 must have size|U | ≤ 13 ·

∣

∣BH ∪ BB ∪ WM

H

∣

∣. This
in turn implies Theorem 10.19, i.e., that layered spreadinggraphs possess the Generalized limited
hiding-cardinality property that we assumed in order to geta lower bound on blob-pebbling price,
and we are done.

We proceed to establish this final claim. Our plan is once again to do some bipartite match-
ing with the help of Hall’s theorem. Create a weighted bipartite graph with the vertices inBB =
{

bot(B)
∣

∣[B]〈W〉 ∈ SB

}

on the left-hand side and with the non-zero-weight connected compon-
ents amongV1, . . . , Vk in H in the sense of (10.34) acting as “supervertices” on the right-hand side.
Reorder the indices among the connected componentsV1, . . . , Vk if needed so that the non-zero-
weight components areV1, . . . , Vk′ . All vertices in the weighted graphs are assigned weights so
that each right-hand side supervertexVi gets its weight according to (10.34), and each left-hand
vertex has weight1.10 We define the neighbours of each fixed vertexb ∈ BB to be

N(b) =
{

Vi

∣

∣w(Vi) > 0 and maxlevel
(

U i
H

)

> level(b)
}

, (10.37)

i.e., all non-zero-weight componentsVi that contain vertices in the hiding setUH that could possibly
be involved in blocking any subconfiguration[B]〈W〉 ∈ SB having bottom vertexbot(B) = b.
This is so since by Proposition 10.24, any vertexu ∈ UH helping to block such a subconfiguration
[B]〈W〉 ∈ SB must be strictly aboveb, so if the highest-level vertices inU i

H are on a level belowb,
no vertex inU i

H can be responsible for blocking[B]〈W〉.
LetB′ ⊆ BB be a largest set such thatw

(

N
(

B′
))

≤
∣

∣B′
∣

∣. We must have

N
(

B′
)

6= ⋃k′

i=1 Vi (10.38)

sincew
(
⋃k′

i=1 Vi

)

>
∣

∣BH ∪ BB ∪ WM

H

∣

∣ ≥
∣

∣BB

∣

∣ by Proposition 10.34. For allB′′ ⊆ BB \ B′ it
holds that

w
(

N
(

B′′
)

\ N
(

B′
))

≥
∣

∣B′′
∣

∣ (10.39)

since otherwiseB′ would not be of largest size as assumed above. The inequality(10.39) plugged
into Hall’s marriage theorem tells us that there is a matching of the vertices inBB \ B′ to the

10Or, if we like, we can equivalently think of an unweighted graph, where eachVi is a cloud ofw(Vi) unique and
distinct vertices, and whereN(b) in (10.37) always containing either all or none of these vertices.

81

TOWARDS AN OPTIMAL SEPARATION

components in
⋃k′

i=1 Vi \ N
(

B′
)

6= ∅ with the property that no componentVi gets matched with
more thanw(Vi) vertices fromBB \ B′.

Reorder the components in the hiding set graphH so that the matched components inH
are V1, . . . , Vm and the rest of the components areVm+1, . . . , Vk and so thatU1

H , . . . , Um
H and

Um+1
H , . . . , Uk

H are the corresponding subsets of the hiding setUH . Then pick good local blockers
U i
∗ ⊆ Vi as in Lemma 10.33 for all componentsV1, . . . , Vm. Now the following holds:

1. By construction and assumption, respectively, the vertex set
⋃m

i=1 U i
∗ ∪ ⋃k

i=m+1 U i
H blocks

(and even hides)SH .

2. All subconfigurations in

S1
B =

{

[B]〈W〉 ∈ SB

∣

∣ bot(B) ∈ B′
}

(10.40)

are blocked byUB ∪ N
(

B′
)

= UB ∪ ⋃k
i=m+1 U i

H , as we have not moved any elements
in U aboveB′.

3. With notation as in Lemma 10.30, letY = UB ∪ ⋃k
i=m+1 U i

H and considerU i
∗ andU i

H

for i = 1, . . . ,m. We haveU i
∗ -m U i

H for i = 1, . . . ,m by Lemma 10.33. Also, since
UH ∩ UB = ∅ andU i

∗ ⊆ Vi andU i
H ⊆ Vi for V1, . . . , Vk pairwise disjoint sets of vertices,

it holds for all i, j ∈ [m], i 6= j, thatU i
∗ ∩ U j

∗ = ∅, U i
H ∩ U j

H = ∅, U i
∗ ∩ U j

H = ∅ and
Y ∩ U j

H = ∅. Therefore, the conditions in Lemma 10.30 are satisfied and we conclude that

m
(

UB ∪ ⋃m
i=1 U i

∗ ∪ ⋃k
i=m+1 U i

H

)

= m
(

Y ∪ ⋃m
i=1 U i

∗

)

≤ m
(

Y ∪ ⋃m
i=1 U i

H

)

= m
(

UB ∪ ⋃m
i=1 U i

H ∪ ⋃k
i=m+1 U i

H

)

= m(U) ,

(10.41)

where we note thatUB ∪ ⋃m
i=1 U i

∗ ∪
⋃k

i=m+1 U i
H is measured as a multi-set with repetitions.

Also, we have the strict inequality
∣

∣UB ∪ ⋃m
i=1 U i

∗ ∪ ⋃k
i=m+1 U i

H

∣

∣ < |U | , (10.42)

where again the multi-set iscounted with repetitions.

4. It remains to take care of the potentially unblocked subconfigurations in

S2
B =

{

[B]〈W〉 ∈ SB

∣

∣ bot(B) ∈ BB \ B′
}

. (10.43)

But we derived above that there is a matching ofBB \ B′ to V1, . . . , Vm such that noVi is
chosen by more than

w(Vi) =
⌈

|U i
H |/6

⌉

≤
⌊

|U i
H |/3

⌋

(10.44)

vertices fromBB \ B′ (where we used that
∣

∣U i
H

∣

∣ ≥ 6 if w(Vi) > 0 to get the last inequality).
This means that there is a spare blocker vertex inU i

∗ for eachb ∈ BB \ B′ that is matched
to Vi. Also, by the definition of neighbours in our weighted bipartite graph, eachb is matched
to a component withmaxlevel

(

U i
H

)

> level(b). By Observation 10.29, lowering these spare
vertices frommaxlevel

(

U i
H

)

to level(b) can only decrease the measure.

Finally, throw away any remaining multiple copies in our newblocking set, and denote the resulting
set byU∗. We have thatU∗ blocks S and thatm

(

U∗
)

≤ m(U) but
∣

∣U∗
∣

∣ < |U |. This is a
contradiction sinceU was chosen to be of minimal size, and thus Lemma 10.26 must hold. But
then Theorem 10.19 follows immediately as well, as was notedabove.

82

11 CONCLUSION AND OPEN PROBLEMS

10.5 Recapitulation of the Proof of Theorem 1.1 and Optimali ty of Result

Let us conclude this section by recalling why the tight boundon clause space for refuting pebbling
contradictions in Theorem 1.1 now follows and by showing that the current construction cannot be
pushed to give a better result.

Theorem 10.35 (rephrasing of Theorem 1.1).Suppose thatGh is a layered blob-pebblable DAG
of heighth that is spreading. Then the clause space of refuting the pebbling contradictionPebd

Gh

of degreed > 1 by resolution isSp(Pebd
Gh

` 0) = Θ(h).

Proof. TheO(h) upper bound on clause space follows from the boundPeb(Gh) ≤ h + O(1) on
the black pebbling price in Lemma 9.2 on page 45 combined withthe boundSp(Pebd

G ` 0) ≤
Peb(G) + O(1) from Proposition 4.15 on page 17.

For the lower bound, we instead consider the pebbling formula *Pebd
Gh

without target ax-

ioms x(z)1, . . . , x(z)d and use that by Lemma 7.1 on page 30 it holds thatSp
(

Pebd
Gh

` 0
)

=

Sp
(

*Pebd
Gh

` ∨d
i=1 x(z)i

)

. Fix any resolution derivationπ : *Pebd
Gh

`∨d
i=1 x(z)i and letPπ be

the complete blob-pebbling of the graphG associated toπ in Theorem 7.3 on page 31 such that
cost(Pπ) ≤ maxC∈π

{

cost(S(C))
}

+ O(1). On the one hand, Theorem 8.5 on page 41 says that
cost(S(C)) ≤ |C| provided thatd > 1, so in particular it must hold thatcost(Pπ) ≤ Sp(π)+O(1).
On the other hand,cost(Pπ) ≥ Blob-Peb(Gh) by definition, and by Theorems 10.8 and 10.19 it
holds thatBlob-Peb(Gh) = Ω(h). ThusSp(π) = Ω(h), and the theorem follows.

Plugging in pyramid graphsΠh in Theorem 10.35, we getk-CNF formulasFn of sizeΘ(n)
with refutation clause spaceΘ(

√
n). This is the best we can get from pebbling formulas over

spreading graphs.

Theorem 10.36.Let G be any layered spreading graph and suppose thatPebd
G has formula size

and number of clausesΘ(n). ThenSp
(

Pebd
G ` 0

)

= O(
√

n).

Proof. Suppose thatG has heighth. ThenSp
(

Pebd
G ` 0

)

= O(h) as was noted above. The size
of Pebd

G, as well as the number of clauses, is linear in the number of vertices |V (G)|. We claim
that the fact thatG is spreading implies that|V (G)| = Ω

(

h2
)

, from which the theorem follows.

To prove the claim, letVL denote the vertices ofG on levelL. Then |V (G)| =
∑h

L=0|VL|.
Obviously, for anyL the setVL hides the sinkz of G. Fix for everyL some arbitrary minimal subset
V ′

L ⊆ VL hiding z. ThenV ′
L is tight, the graphH(V ′

L) is hiding-connected by Corollary 9.23,
and settingj = h in the spreading inequality (9.10) we get that

∣

∣V ′
L

∣

∣ ≥ 1 + h − L. Hence

|V (G)| ≥ ∑h
L=0|V ′

L| = Ω
(

h2
)

.

The proof of Theorem 10.36 can also be extended to cover the original definition in [37] of
spreading graphs that are not necessarily layered, but we omit the details.

11 Conclusion and Open Problems

We have proven an asymptotically tight bound on the refutation clause space in resolution of peb-
bling contradictions over pyramid graphs. This yields the currently best known separation of length
and clause space in resolution. Also, in contrast to previous polynomial lower bounds on clause
space, our result does not not follow from lower bounds on width for the corresponding formulas.
Instead, a corollary of our result is an exponential improvement of the separation of width and space
in [42]. This is a first step towards answering the question ofthe relationship between length and
space posed in, for instance, [11, 29, 57].

83

TOWARDS AN OPTIMAL SEPARATION

More technically speaking, we have established that for allgraphsG in the class of “layered
spreading DAGs” (including complete binary trees and pyramid graphs) the heighth of G, which
coincides with the black-white pebbling price, is an asymptotical lower bound for the refutation
clause spaceSp

(

Pebd
G ` 0

)

of pebbling contradictionsPebd
G provided thatd ≥ 2. Plugging in

pyramid graphs we get anΩ(
√

n) bound on space, which is the best one can get for any spreading
graph.

An obvious question is whether this lower bound on clause space in terms of black-white peb-
bling price is true for arbitrary DAGs. In particular, does it hold for the family of DAGs{Gn}∞n=1

in [31] of sizeO(n) that have maximal black-white pebbling priceBW-Peb(Gn) = Ω(n/ log n)
in terms of size? If it could be proven for pebbling contradictions over such graphs that pebbling
price bounds clause space from below, this would immediately imply that there arek-CNF formulas
refutable in small length that can be maximally complex withrespect to clause space.

Open Problem 1. Is there a family of unsatisfiablek-CNF formulas{Fn}∞n=1 of sizeO(n) such
thatL(Fn ` 0) = O(n) andW(Fn ` 0) = O(1) but Sp(Fn ` 0) = Ω(n/ log n)?

We are currently working on this problem, but note that theseDAGs in [31] seem to have much
more challenging structural properties that makes it hard to lift the lower bound argument from
standard black-white pebblings to blob-pebblings.

A second question, more related to Theorem 1.3 and the other trade-off results presented in
Section 5, is as follows. We know from [15] (see Theorem 4.2) that short resolution refutations
imply the existence of narrow refutations, and in view of this an appealing proof search heuristic is
to search exhaustively for refutations in minimal width. One serious drawback of this approach is
that there is no guarantee that the short and narrow refutations are the same one. On the contrary,
the narrow refutationπ′ resulting from the proof in [15] is potentially exponentially longer than the
short proofπ that we start with. However, we have no examples of formulas where the refutation in
minimum width is actually known to be substantially longer than the minimum-length refutation.
Therefore, it would be valuable to know whether this increase in length is necessary. That is, is
there a formula family which exhibits a length-width trade-off in the sense that there are short
refutations and narrow refutations, but all narrow refutations have a length blow-up (polynomial or
superpolynomial)? Or is the exponential blow-up in [15] just an artifact of the proof?

Open Problem 2. If F is a k-CNF formula overn variables refutable in lengthL, is it true that
there is always a refutationπ of F in width W(π) = O

(√
n log L

)

with length no more than, say,
L(π) = O(L) or at mostpoly(L)?

A similar trade-off question can be posed for clause space. Given a refutation in small space,
we can prove using [5] (see Theorem 4.5) that there must exista refutation in short length. But
again, the short refutation resulting from the proof is not the same as that with which we started.
For concreteness, let us fix the space to be constant. If a polynomial-sizek-CNF formula has a
refutation in constant clause space, we know that it must be refutable in polynomial length. But can
we get a refutation in both short length and small space simultaneously?

Open Problem 3. Suppose that{Fn}∞n=1 is a family of polynomial-sizek-CNF formulas with
refutation clause spaceSp(Fn ` 0) = O(1). Does this imply that there are refutationsπn : Fn ` 0
simultaneously in lengthL(πn) = poly(n) and clause spaceSp(πn) = O(1)?

Or can it be that restricting the clause space, we sometimes have to end up with really long
refutations? We would like to know what holds in this case, and how it relates to the trade-off
results for variable space in [33].

Finally, we note that all bounds on clause space proven so faris in the regime where the clause
spaceSp(π) is less than the number of clauses|F | in F . This is quite natural, since the size of the
formula can be shown to be an upper bound on the minimal clausespace needed [28].

84

11 CONCLUSION AND OPEN PROBLEMS

Such lower bounds on space might not seem too relevant to clause learning algorithms, since
the size of the cache in practical applications usually willbe very much larger than the size of the
formula. For this reason, it seems to be a highly interestingproblem to determine what can be said
if we allow extra clause space. Assume that we have a CNF formula F of size roughlyn refutable
in lengthL(F ` 0) = L for L suitably large (say,L = poly(n) or L = nlog n or so). Suppose
that we allow clause space more than the minimumn + O(1), but less than the trivial upper bound
L/ log L. Can we then find a resolution refutation using at most that much space and achieving at
most a polynomial increase in length compared to the minimum?

Open Problem 4 ([12]). Let F be any CNF formula with|F | = n clauses (or|Vars(F)| = n
variables). Suppose thatL(F ` 0) = L. Does this imply that there is a resolution refutation
π : F ` 0 in clause spaceSp(π) = O(n) and lengthL(π) = poly(L)?

If so, this could be interpreted as saying that a smart enoughclause learning algorithm can
potentially find any short resolution refutation in reasonable space (and for formulas that cannot be
refuted in short length we cannot hope to find refutations efficiently anyway).

We conclude with a couple of comments on clause space versus clause learning.
Firstly, we note that it is unclear whether one should expectany fast progress on Open Prob-

lem 4, at least if if our experience from the case whereSp(π) ≤ |F | is anything to go by. Proving
lower bounds on space in this “low-end regime” for formulas easy with respect to length has been
(and still is) very challenging. However, it certainly cannot be excluded that problems in the range
Sp(π) > |F | might be approached with different and more successful techniques.

Secondly, we would like to raise the question of whether, in spite of what was just said before
Open Problem 4, lower bounds on clause space can nevertheless give indications as to which for-
mulas might be hard for clause learning algorithms and why. Suppose that we know for some CNF
formulaF thatSp(F ` 0) is large. What this tells us is that any algorithm, even a non-deterministic
one making optimal choices concerning which clauses to saveor throw away at any given point in
time, will have to keep a fairly large number of “active” clauses in memory in order to carry out the
refutation. Since this is so, a real-life deterministic proof search algorithm, which has no sure-fire
way of knowing which clauses are the right ones to concentrate on at any given moment, might
have to keep working on a lot of extra clauses in order to be sure that the fairly large critical set of
clauses needed to find a refutation will be among the “active”clauses.

Intriguingly enough, pebbling contradictions over pyramids might in fact be an example of this.
We know that these formulas are very easy with respect to length and width, having constant-width
refutations that are essentially as short as the formulas themselves. But in [52], it was shown that
state-of-the-art clause learning algorithms can have serious problems with even moderately large
pebbling contradictions.11 Although we are certainly not arguing that this is the whole story—
it was also shown in [52] that the branching order is a critical factor, and that given some extra
structural information the algorithm can achieve an exponential speed-up—we wonder whether the
high lower bound on clause space can nevertheless be part of the explanation. It should be pointed
out that pebbling contradictions are the only formulas we know of that are really easy with respect
to length and width but hard for clause space. And if there is empirical data showing that for these
very formulas clause learning algorithms can have great difficulties finding refutations, it might be
worth investigating whether this is just a coincidence or a sign of some deeper connection.

Acknowledgements

We are grateful to Per Austrin and Mikael Goldmann for generous feedback during various stages
of this work, and to Gunnar Kreitz for quickly spotting some bugs in a preliminary version of the

11The “grid pebbling formulas” in [52] are exactly our pebbling contradictions of degreed = 2 over pyramid graphs.

85

TOWARDS AN OPTIMAL SEPARATION

blob-pebble game. Also, we would like to thank Paul Beame, Maria Klawe, Philipp Hertel, and
Toniann Pitassi for valuable correspondence concerning their work, Nathan Segerlind for comments
and pointers regarding clause learning, and Eli Ben-Sassonfor stimulating discussions about proof
complexity in general and the problems in Section 11 in particular.

References

[1] Ron Aharoni and Nathan Linial. Minimal non-two-colorable hypergraphs and minimal unsat-
isfiable formulas.Journal of Combinatorial Theory, 43:196–204, 1986.

[2] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space
complexity in propositional calculus.SIAM Journal on Computing, 31(4):1184–1211, 2002.

[3] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential
separation between regular and general resolution. InProceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC ’02), pages 448–456, May 2002.

[4] Noga Alon and Michael Capalbo. Smaller explicit superconcentrators. InProceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’03), pages 340–346,
2003.

[5] Albert Atserias and Victor Dalmau. A combinatorical characterization of resolution width. In
Proceedings of the 18th IEEE Annual Conference on Computational Complexity (CCC ’03),
pages 239–247, July 2003. Journal version to appear inJournal of Computer and System
Sciences.

[6] Sven Baumer, Juan Luis Esteban, and Jacobo Torán. Minimally unsatisfiable CNF formulas.
Bulletin of the European Association for Theoretical Computer Science, 74:190–192, June
2001.

[7] Paul Beame. Proof complexity. In Steven Rudich and Avi Wigderson, editors,Computa-
tional Complexity Theory, volume 10 ofIAS/Park City Mathematics Series, pages 199–246.
American Mathematical Society, 2004.

[8] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of resolution
and Davis-Putnam procedures.SIAM Journal on Computing, 31(4):1048–1075, 2002.

[9] Paul Beame, Henry Kautz, and Ashish Sabharwal. Understanding the power of clause learn-
ing. In Proceedings of the 18th International Joint Conference in Artificial Intelligence (IJ-
CAI ’03), pages 94–99, 2003.

[10] Paul Beame and Toniann Pitassi. Propositional proof complexity: Past, present, and future.
Bulletin of the European Association for Theoretical Computer Science, 65:66–89, June 1998.

[11] Eli Ben-Sasson. Size space tradeoffs for resolution. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC ’02), pages 457–464, May 2002.

[12] Eli Ben-Sasson. Personal communication, 2007.

[13] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution.Ran-
dom Structures and Algorithms, 23(1):92–109, August 2003.

[14] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of treelike
and general resolution.Combinatorica, 24(4):585–603, September 2004.

86

REFERENCES

[15] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
Journal of the ACM, 48(2):149–169, March 2001.

[16] Archie Blake.Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago,
1937.

[17] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the relative
complexity of resolution refinements and cutting planes proof systems. SIAM Journal on
Computing, 30(5):1462–1484, 2000.

[18] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolution.Com-
putational Complexity, 10(4):261–276, December 2001.

[19] Josh Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution refinements. In
Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS ’03), pages
138–147, June 2003.

[20] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759–768, October 1988.

[21] Stephen A. Cook. The complexity of theorem-proving procedures. InProceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOC ’71), pages 151–158, 1971.

[22] Stephen A. Cook. An observation on time-storage trade off. Journal of Computer and System
Sciences, 9:308–316, 1974.

[23] Stephen A. Cook and Robert Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, March 1979.

[24] Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polynomial time
recognizable languages.Journal of Computer and System Sciences, 13(1):25–37, 1976.

[25] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962.

[26] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.Journal
of the ACM, 7(3):201–215, 1960.

[27] Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution with
bounded conjunctions.Theoretical Computer Science, 321(2-3):347–370, August 2004.

[28] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Compu-
tation, 171(1):84–97, 2001.

[29] Juan Luis Esteban and Jacobo Torán. A combinatorial characterization of treelike resolution
space.Information Processing Letters, 87(6):295–300, 2003.

[30] Zvi Galil. On resolution with clauses of bounded size.SIAM Journal on Computing,
6(3):444–459, 1977.

[31] John R. Gilbert and Robert Endre Tarjan.Variations of a Pebble Game on Graphs.
Technical Report STAN-CS-78-661, Stanford University, 1978. Available at the webpage
http://infolab.stanford.edu/TR/CS-TR-78-661.html.

[32] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2-
3):297–308, August 1985.

87

TOWARDS AN OPTIMAL SEPARATION

[33] Philipp Hertel and Toniann Pitassi. Exponential time/space speedups for resolution and the
PSPACE-completeness of black-white pebbling. InProceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’07), pages 137–149, October 2007.

[34] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space.Journal of the ACM,
24(2):332–337, April 1977.

[35] Balasubramanian Kalyanasundaram and George Schnitger. On the power of white pebbles. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC ’88), pages
258–266, 1988.

[36] Henry Kautz and Bart Selman. The state of SAT.Discrete Applied Mathematics,
155(12):1514–1524, June 2007.

[37] Maria M. Klawe. A tight bound for black and white pebbleson the pyramid.Journal of the
ACM, 32(1):218–228, January 1985.

[38] Oliver Kullmann. An application of matroid theory to the SAT problem. InProceedings of
the 15th Annual IEEE Conference on Computational Complexity (CCC ’00), pages 116–124,
July 2000.

[39] Thomas Lengauer and Robert Endre Tarjan. The space complexity of pebble games on trees.
Information Processing Letters, 10(4/5):184–188, July 1980.

[40] Friedhelm Meyer auf der Heide. A comparison of two variations of a pebble game on graphs.
Theoretical Computer Science, 13(3):315–322, 1981.

[41] Jakob Nordström.Narrow Proofs May Be Spacious: Separating Space and Width inResol-
ution. Technical Report TR05-066, Revision 02, Electronic Colloquium on Computational
Complexity (ECCC), November 2005.

[42] Jakob Nordström. Narrow proofs may be spacious: Separating space and width in resolution
(Extended abstract). InProceedings of the 38th Annual ACM Symposium on Theory of Com-
puting (STOC ’06), pages 507–516, May 2006. Journal version to appear inSIAM Journal on
Computing.

[43] Jakob Nordström.A Simplified Way of Proving Trade-off Results for Resolution. Technical
Report TR07-114, Electronic Colloquium on Computational Complexity (ECCC), September
2007.

[44] Jakob Nordström and Johan Håstad. Towards an optimalseparation of space and length in
resolution (Extended abstract). InProceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC ’08), May 2008. To appear.

[45] Christos H. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.

[46] Christos H. Papadimitriou and David Wolfe. The complexity of facets resolved.Journal of
Computer and System Sciences, 37(1):2–13, 1988.

[47] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on
graphs.Mathematical Systems Theory, 10:239–251, 1977.

[48] Nicholas Pippenger.Pebbling. Technical Report RC8258, IBM Watson Research Center,
1980. Appeared in Proceedings of the 5th IBM Symposium on Mathematical Foundations of
Computer Science, Japan.

88

REFERENCES

[49] Ran Raz and Pierre McKenzie. Separation of the monotoneNC hierarchy. Combinatorica,
19(3):403–435, March 1999.

[50] John Alan Robinson. A machine-oriented logic based on the resolution principle.Journal of
the ACM, 12(1):23–41, January 1965.

[51] Ashish Sabharwal.Algorithmic Applications of Propositional Proof Complexity. PhD thesis,
University of Washington, Seattle, 2005.

[52] Ashish Sabharwal, Paul Beame, and Henry Kautz. Using problem structure for efficient clause
learning. In6th International Conference on Theory and Applications ofSatisfiability Testing
(SAT ’03), Selected Revised Papers, volume 2919 ofLecture Notes in Computer Science,
pages 242–256. Springer, 2004.

[53] The international SAT Competitions web page. http://www.satcompetition.org.

[54] Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic,
13(4):482–537, December 2007.

[55] Gunnar Stålmarck. Short resolution proofs for a sequence of tricky formulas.Acta Informat-
ica, 33(3):277–280, May 1996.

[56] Jacobo Torán. Lower bounds for space in resolution. InProceedings of the 13th International
Workshop on Computer Science Logic (CSL ’99), volume 1683 ofLecture Notes in Computer
Science, pages 362–373. Springer, 1999.

[57] Jacobo Torán. Space and width in propositional resolution. Bulletin of the European Associ-
ation for Theoretical Computer Science, 83:86–104, June 2004.

[58] Grigori Tseitin. On the complexity of derivation in propositional calculus. In A. O. Si-
lenko, editor,Structures in Constructive Mathematics and Mathematical Logic, Part II, pages
115–125. Consultants Bureau, New York-London, 1968.

[59] Alasdair Urquhart. Hard examples for resolution.Journal of the ACM, 34(1):209–219, Janu-
ary 1987.

89

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

