
Generalizations of the Hartmanis–Immerman–Sewelson Theorem

and Applications to Infinite Subsets of P-Selective Sets

Till Tantau

Institut für Theoretische Informatik
Universität zu Lübeck

D-23538 Lübeck, Germany

December 4, 2007

Abstract

The Hartmanis–Immerman–Sewelson theorem is the classical link between the exponen-
tial and the polynomial time realm. It states that NE = E if, and only if, every sparse set
in NP lies in P. We establish similar links for classes other than sparse sets:

1. E = UE ⇐⇒ all functions f : {1}∗ → Σ∗ in NPSVg lie in FP.
2. E = NE ⇐⇒ all functions f : {1}∗ → Σ∗ in NPFewV lie in FP.
3. E = ENP ⇐⇒ all functions f : {1}∗ → Σ∗ in OptP lie in FP.
4. E = ENP ⇐⇒ all standard left cuts in NP lie in P.
5. E = EH ⇐⇒ PH ∩ P/poly = P.

We apply these results to the immunity of P-selective sets. It is known that they can be
bi-immune, but not Πp

2/1-immune. Their immunity is closely related to top-Toda languages,
whose complexity we link to the exponential realm, and also to king languages. We introduce
the new notion of superkings, which are characterized in terms of ∃∀-predicates rather than
∀∃-predicates, and show that king languages cannot be Σp

2-immune. As a consequence,
P-selective sets cannot be Σp

2/1-immune and, if EΣ
p

2 = E, not even P/1-immune.

1 Introduction

The exponential time realm and the polynomial time realm are related by a line of implications:
P = NP =⇒ E = EH =⇒ E = NE, where E and NE denote the deterministic and non-
deterministic classes of languages decidable in time 2O(n), respectively, and EH = EPH denotes
the exponential time hierarchy. It is is not known whether any of the reverse implications hold.
In particular, it is not known whether E = NE forces all languages in NP to lie in P. The
Hartmanis–Immerman–Sewelson theorem [8] tells us that the link between exponential time
and polynomial time seems to be of a different nature: E = NE holds if, and only if, all sparse
sets in NP lie in P.

The two implications directions of the Hartmanis–Immerman–Sewelson theorem are known
as an upward collapse (a collapse down in the polynomial realm forcing a collapse up in the
exponential realm) and a downward collapse (a collapse up in the exponential time realm
forcing a collapse down in the polynomial realm). Upward collapses, like the implication
P = NP =⇒ E = NE, are typically proved by padding arguments. Downward collapses are
more rare and generally harder to prove, celebrated results include the Hartmanis–Immerman–
Sewelson theorem and the implication E = EH =⇒ P = BPP proved in [2]. There are
also downward collapses inside the polynomial time realm, see [9] for a starting point to the
literature on this. In the present paper we explore two kinds of generalizations of the Hartmanis–
Immerman–Sewelson theorem.

1

Electronic Colloquium on Computational Complexity, Report No. 27 (2008)

ISSN 1433-8092

Generalizations of the Hartmanis–Immerman–Sewelson Theorem. The first kind of
results concern links between collapses in the exponential realm and polynomial-time function
classes rather then language classes. The function classes that will be used are Krentel’s class
OptP [23] and the nondeterministic function classes NPSV of Book, Long, and Selman [4] and
NPFewV, thus named by Hemaspaandra and Ogihara [16] and also known as FewPF [31]. When
we say that a multi-valued function f ∈ NPFewV lies in FP, we mean that there is a polynomial-
time machine that on input of a word x will output exactly all values of f(x). A tally function
is a function of the form f : {1}∗ → Σ∗. We prove the following results, each of which contains
a downward and an upward collapse:

1. E = UE ⇐⇒ all tally functions in NPSVg lie in FP.
2. E = NE ⇐⇒ all tally functions in NPFewV lie in FP.
3. E = ENP ⇐⇒ all tally functions in OptP lie in FP.

The classical Hartmanis–Immerman–Sewelson theorem is a special case of the second claim:
Given a sparse set in NP, an NPFewV-machine can for each input 1n guess a word of length n,
verify that the word is in the language, and, if so, output the word. Then the set of outputs of
this machine on input 1n is exactly the set of words in the language of length n. By the above
characterization, E = NE implies that this mapping is in FP and, thus, the language is in P

(and even P-printable).
The second kind of results concern links between collapses in the exponential realm and

languages classes other than the sparse sets. It is well known that we can restrict ourselves to
tally sets: E = NE also holds if, and only if, all tally sets in NP lie in P. Our first new result
concerns standard left cuts, which have the property that together with any word they also
contain all lexicographically smaller words. We can now ask, what consequences does it have
that all standard left cuts in NP lie in P? We show the following:

4. ENP = E ⇐⇒ every standard left cut in NP lies in P.

An interesting aspect of this result is that it is “harder” to store information in standard left
cuts than in sparse sets: a standard left cut contains just one relevant bit of information for
each word length relative to the previous word length.

Next, we study the class P-sel of P-selective sets. They were introduced by Selman [30] as the
polynomial-time analogues of the semirecursive sets [18, 19] and they generalize polynomial-time
decidable sets. For their definition selectors are used, which – for the purposes of this paper –
are commutative, polynomial-time computable functions f taking two arguments x and y such
that f(x, y) ∈ {x, y} holds for all x and y (the selector function selects one of its inputs). A set
A is called P-selective if there exists a selector f for A, which means that x ∈ A∨ y ∈ A implies
f(x, y) ∈ A. This is sometimes informally described as “f chooses the more likely element,”
but note that no randomness is involved. An example of P-selective sets are standard left cuts
since a selector can always choose the lexicographically smaller word. A closely related concept
are the slightly more general lengthwise P-selective sets. For them, the selector only needs to
choose the more likely element when x and y are of the same length.

The P-selective sets are well-studied and many of their properties are well understood, see
for instance the text book by Hemaspaandra and Torenvliet [17] and the survey [26]. On the one
hand, it is unlikely that NP-complete sets are P-selective, as was already noted by Selman [30],
since this would imply P = NP. This was later extend by three research groups [1, 3, 28] who
showed independently that NP-complete sets cannot be sublinear truth-table reducible to a P-
selective set, unless P = NP. On the other hand, every standard left cut is P-selective and, thus,
there are uncountably many P-selective sets – which in turn implies that there are non-recursive
P-selective sets.

We prove a downward collapse for P-selective sets, but no matching upward collapse:

2

5. ENPNP

= E =⇒ NP ∩ P-sel = P.

Since every standard left cut is in P-sel, we know at least that NP ∩ P-sel = P implies ENP = E.
Finally, we study the class P/poly. It has many characterization: by definition, it is the class

of languages decidable in polynomial time with polynomial advice; it is the class of languages
decidable by non-uniform polynomially-sized circuits; and it is the Turing-reduction closure of
each of the classes of tally sets, sparse sets, standard left cuts, and of P-selective sets. We prove
the following downward collapse:

6. ENPNP

= E =⇒ NP ∩ coNP ∩ P/poly = P.

This result relativizes in a nontrivial way: Given any two oracles X and Y , we show that

ENPNPX

⊆ EY =⇒ NPX ∩ coNPX ∩ P/poly ⊆ PY . Since ZPP ⊆ NP ∩ coNP ∩ P/poly and
BPP ⊆ Σp

2 ∩ Πp
2 ∩ P/poly, this relativized version has the following consequences:

7. ENPNP

= E =⇒ ZPP = P.
8. ENPNPNP

= E =⇒ BPP = P.
9. EH = E ⇐⇒ PH ∩ P/poly = P

Previously it was already known that EH = E =⇒ BPP = P, as shown by Babai et al. [2].

Infinite Subsets of P-Selective Sets. As we just saw, the equation NP ∩ P-sel = P is
intimately linked to collapses in the exponential time hierarchy. This is not only true for the
P-selective sets themselves, but also for important infinite subsets of P-selective sets. In the
second part of the present paper we explore these links.

One approach to better understanding a difficult problem is to study whether it has at
least an efficient special case algorithm. Consider for instance the computationally difficult
satisfiability problem. Even though we do not know how to decide the satisfiability of an
arbitrary formula efficiently, for an infinite number of special cases we can do so quite easily.
This can be formalized by observing that the language sat has an infinite subset in P (for
instance, the set of all formulas consisting of a single variable). Many other difficult problems,
including even the halting problem, exhibit this property of having an efficiently decidable
infinite subset. Languages that do not have this property are called immune. More generally,
a language is C-immune if it is infinite and does not have an infinite subset that is an element
of C. An even stronger form of immunity is bi-immunity, which means that both the language
and its complement are immune.

The question of whether there are immune P-selective sets and, if so, “how” immune these
sets can become, has been studied independently by different authors. Recently, Hemaspaandra
and Torenvliet [13] have shown that there exist EXP-immune P-selective sets, and they in fact
show that exponential time can be replaced by any recursive time bound. It turns out that a
much stronger result holds: In his PhD thesis, Nickelsen [25] mentions in passing that there are
REC-bi-immune (also known just as bi-immune) P-selective sets – a considerably stronger result
than the more recent one presented in [13]. Nickelsen’s main observation (and it takes a keen
eye to see this) was that the work of Goldsmith, Joseph, and Young [7], who study so-called
P-cheatable sets, implicitly also applies to P-selective sets.

These results bash all hopes of finding efficiently decidable infinite subsets of arbitrary P-
selective sets. However, there are loop-holes: Hemaspaandra and Torenvliet [13] have shown
that P-sel is not immune against Πp

2/1, that is, it is not immune against a nonuniform class
with very limited non-uniformity. In a different paper [12] it was shown that P-sel is also not
immune against weakly PΣp

2 -rankable sets.
In Section 4.3 of the present paper we prove the following new nonimmunity results for

P-selective sets:

3

1. P-sel is not immune against Σp
2/1.

2. If ENPNP

= E, then P-sel is not immune against P/1.

We can also ask whether the reverse implication holds, that is, if P-sel is not P/1-immune, does
this imply at least, say, NE = E? While we do not know whether this is the case, we can at
least show a link between the exponential hierarchy and the question of whether P-sel has finder
functions in FP. A finder for a set A is a function g : {1}∗ → Σ∗ such that for all n ≥ 0 we have
A∩Σn 6= ∅ =⇒ g(1n) ∈ A∩Σn; in other words, a finder gets a word length coded in unary as
input and outputs a word in the language having this particular length, if possible.

3. If ENPNP

= E, then every lengthwise P-selective set has a finder in FP.
4. If every lengthwise P-selective set has a finder in FP, then NE = E.

The proofs of all known non-immunity results of P-selective sets are based on the study
of the properties of certain natural infinite subsets of P-selective sets, namely of the top-Toda
equivalence classes [12] and of the king languages [12, 11] induced by the selector.

For the class TOP-TODA of all top-Toda languages we establish nearly matching upward
and downward collapses:

5. UENPNP

= E =⇒ TOP-TODA ⊆ P

6. TOP-TODA ⊆ P =⇒ ENPNP

= E

Concerning the class KINGS of king languages, we prove the following new results:

7. KINGS is not immune against Σp
2 .

8. Every set in KINGS has a finder in FPNPNP

.
9. If ENPNP

= E, then every set in KINGS has a finder in FP.
10. If every set in KINGS has a finder in FP, then NE = E.

Organization of this paper. In following preliminaries section we fix the terminology and
notation and provide detailed definitions of the key concepts. In Section 3 we present the
generalizations of the Hartmanis–Immerman–Sewelson theorem. In Section 4 we study top-
Toda languages and king languages and apply our findings to P-selectivity. In the conclusion
we list open problems.

2 Preliminaries

We use the alphabet Σ = {0, 1}. A word is, thus, the same as a bit string. We write |x|
for the length of the word x. The lexicographical ordering <lex on words is the same as the
telephone book ordering, so 0 <lex 00 <lex 01 <lex 1 <lex 10. For a set A ⊆ Σ∗, let χA : Σ∗ →
{0, 1} denote the characteristic function. We extend χA to tuples by setting χA(x1, . . . , xn) =
χA(x1) . . . χA(xn).

Given two words x = x1 . . . xn and y = y1 . . . ym, where xi and yj are the individual bits
of x and y, we define the pairing 〈x, y〉 ∈ Σ∗ to be the bitstring 0x10x2 . . . 0xn1y11y2 . . . 1ym.
Then |〈x, y〉| = |〈y, x〉| = 2(|x| + |y|). We extend this to tuples by 〈x1, . . . , xn〉 = 〈x1, 〈x2, . . . 〉〉.
For a finite set S ⊆ Σ∗, we define an encoding 〈S〉 ∈ Σ∗ as follows: We encode the empty set as
the empty word. If S contains at least one element, let x be the lexicographically smallest one.
Then 〈S〉 = 〈x, 〈S − {x}〉〉.

A language L ⊆ Σ∗ is sparse if there exists a polynomial p such that for each word length
n there are at most p(n) words of length n in L. A language L is a tally set (also known as a

4

unary language) if L ⊆ {1}∗. We call a language populated if for each n ≥ 0 it contains at least
one word of length n. Top-Toda and king languages are examples of populated languages.

For a number n ≥ 0 let bin(n) ∈ Σ∗ denote its binary representation and for n ≥ 1 let
bin′(n) denote the binary representation of n without the leading 1. Clearly, bin′ is a bijection
between the positive integers and the set {0, 1}∗ and |bin′(n)| = dlog2 ne.

A directed graph is a pair (V,E) with E ⊆ V × V . A path of length ` in a graph is a
sequence (v0, . . . , v`) of ` distinct vertices such that (vi−1, vi) ∈ E holds for all i ∈ {1, . . . , `}. A
tournament is a directed graph such that for every pair (u, v) ∈ V 2 the set {(u, v), (v, u)} ∩ V
has size 1, that is, there is exactly one edge between u and v. This definition enforces that there
are self-loops at every vertex of a tournament (in the literature it is often required that there
are no self-loops in a tournament, but this just a matter of taste).

Given a graph G = (V,E) and a subset U ⊆ V , let dom(U) = U ∪{v ∈ V | ∃u ∈ U : (u, v) ∈
E} be the set of all vertices that are dominated by U . A dominating set of graph G is a set U
with dom(U) = V . The opposite of domination is anti-domination. Let anti-dom(U) = U∪{v ∈
V | ∃u ∈ U : (v, u) ∈ E} and an anti-dominating set is a set U with anti-dom(U) = V . It is well
known that every tournament has a dominating set of size log2(n + 1), but see Lemma 4.15 for
an even stronger claim.

Complexity Classes. We use the standard definitions of the complexity classes P, NP, coNP,
and UP. We write CX to denote the class C relativized in the standard manner to oracles
from X. The classes of the polynomial hierarchy are defined in the standard way as Σp

i = NPΣp

i−1

and Πp
i = coNPΣp

i−1 and ∆p
i = PΣp

i−1 . The polynomial hierarchy is the union PH =
⋃

i Σp
i =

⋃

i Π
p
i =

⋃

i ∆
p
i .

The exponential time classes E and NE denote “linear exponential time,” that is, E =
DTIME[2O(n)] and NE = NTIME[2O(n)]. We will also use the class UE of unambiguous linear
exponential time, which means that the nondeterministic machines that decide languages in
this class may have at most one accepting path for each input. The classes of the exponential
hierarchy are Σe

i = NEΣp

i−1 and Πe
i = coNEΣp

i−1 and ∆e
i = EΣp

i−1 . Note that the oracles in
the definition of the exponential hierarchy are the same as for the polynomial hierarchy; only
the “bases” differ. The exponential hierarchy itself is the union over all these classes, that is,
EH = NEPH = coNEPH = EPH.

Advice classes, a concept due to Karp and Lipton [20], model the concept of precomputation.
The idea is that for each word length we have access to a small amount of hard-to-compute
advice. Formally, given a complexity class C and an advice length function l : N → N, the class
C/l contains the following languages A: There must exist a B ∈ C and an advice function
f : N → {0, 1}∗ with ∀n : |f(n)| = l(n), such that x ∈ A iff 〈x, f(|x|)〉 ∈ B.

Function Classes. A tally function is a function of the form f : {1}∗ → Σ∗. We use the
notation FP for the class of all functions f : Σ∗ → Σ∗ that are computable in polynomial time.
For the definition of nondeterministic function classes, we follow the lines of Selman [31]. A
multi-valued function f is a “function” that can map a single value to more than one value
and also, possibly, to no value at all. Formally, a multi-valued function f is a relation on
two sets A and B and we write f : A → B to denote it. Let set-f(x) denote the set of all
values in B that f relates to x ∈ A. For a polynomially time-bounded nondeterministic Turing
machine M and an input x, we write outputsM (x) for the set of all outputs produced by M on
accepting computation paths. We say that M computes the multi-valued function f : Σ∗ → Σ∗

if set-f(x) = outputsM (x) holds for all words x.
The class NPMV contains all multi-valued functions that can be computed (in the above

sense) by polynomially time-bounded nondeterministic Turing machines. The class NPSV is

5

the restriction to functions f with |set-f(x)| ≤ 1 for all x ∈ Σ∗. The class NPFewV is the
restriction to functions f with |set-f(x)| ≤ |x|O(1). The class NPSVg is the restriction of NPSV

to functions f whose graph {〈x, y〉 | x ∈ Σ∗, y ∈ set-f(x)} lies in P. The relativized versions of
these classes are defined in the obvious manner.

In order to be able to compare classes like NPFewV to the class FP, let us extend the
definition of FP so that it also contains all multi-valued functions f for which a polynomially
time-bounded Turing machine can, on any input x, output the code 〈set-f(x)〉 of set-f(x).

Optimization classes can be defined in different ways, we use the more theory-oriented
formalism of Krentel [23] in the present paper. For a polynomially time-bounded nondeter-
ministic Turing machine M , let max-outputM (x) denote lexicographically maximal element of
outputsM (x). If M has not accepting computation path, let max-outputM (x) be undefined.
The class MaxP contains all functions f : Σ∗ → Σ∗ for which there is a polynomially time-
bounded nondeterministic Turing machine M with ∀x ∈ Σ∗ : f(x) = max-outputM (x). One can
define the class MinP in the same way and define OptP = MinP ∪ MaxP. All results proved in
the following hold regardless of whether one uses OptP, MinP, or MaxP, and we use MaxP for
simplicity. The definition relativizes readily, so let us write MaxPX for the class that results
when the machines M have access to the oracle X.

P-Selectivity. Before we define P-selective sets, let us first define standard left cuts. A word
w ∈ {0, 1}∗ induces a rational number rw if we consider the bits of w as the fractional digits of

the “number 0.w.” Formally, if w = w1 . . . w|w| with wi ∈ {0, 1}, then rw =
∑|w|

i=1 wi · 2
−i. For

a real number r with 0 ≤ r ≤ 1 the standard left cut of r is the set {w ∈ Σ∗ | rw ≤ r}.
A function f : Σ∗ × Σ∗ → Σ∗ is a selector if it has the following properties:

1. For all x, y ∈ Σ∗ we have f(x, y) ∈ {x, y}.
2. For all x, y ∈ Σ∗ we have f(x, y) = f(y, x).
3. It is computable in polynomial time.

Strictly speaking, the above selectors should be called “commutative P-selectors” or even “com-
mutative FP-selectors,” but we will not use any other kind of selector in the present paper. The
commutativity property does not change the power of selectors, see [15] for a detailed account
of the algebraic properties of selectors.

A language A is P-selective if there exists a selector f such that for all words x, y ∈ Σ∗ the
following implication holds: x ∈ A ∨ y ∈ A =⇒ f(x, y) ∈ A. A language A is lengthwise
P-selective if there exists a selector f such that for all words x, y ∈ Σ∗ with |x| = |y| the same
implication holds.

A selector f induces tournaments in the following manner. For a word length n ≥ 0, the
tournament T n

f has the vertex set Σn and the edge set
{(

f(x, y), y
)

| x, y ∈ Σn
}

. This means
that there is an edge from x to y in the tournament iff f(x, y) = x. A simple, but important
observation is the following:

Lemma 2.1. Let f witness that A is lengthwise P-selective. Let n ≥ 0 and let p be a path in
T n

f . If the last vertex of the path lies in A, so do all vertices on the path.

3 Generalizations of the

Hartmanis–Immerman–Sewelson Theorem

3.1 Function Classes and Upward and Downward Collapses

In the present section we show how upward and downward collapses link the exponential hierar-
chy to the complexity of maximization problems and nondeterministic function classes. Recall

6

that a tally function is a function of the form f : {1}∗ → Σ∗. Also recall that when we write
“all tally functions in NPFewV lie in FP,” then this means that all tally functions mapping an
input to the coded set of outputs of an NPFewV-machine lie in FP.

Theorem 3.1. Let X and Y be oracles. Then:

1. UEX ⊆ EY if, and only if, all tally functions in NPSVX
g lie in FPY .

2. NEX ⊆ EY if, and only if, all tally functions in NPFewVX lie in FPY .
3. ENPX

⊆ EY if, and only if, all tally functions in MaxPX lie in FPY .

For the proof some lemmas are needed. We start with the well-known padding lemma.

Lemma 3.2 (Padding Lemma). Let A ⊆ Σ∗ and let A′ = {1n | bin′(n) ∈ A}. Then we
have A ∈ E ⇐⇒ A′ ∈ P and A ∈ UE ⇐⇒ A′ ∈ UP and A ∈ NE ⇐⇒ A′ ∈ NP and
A ∈ ENP ⇐⇒ A′ ∈ PNP.

The lemma relativizes. The next lemma is a direct consequence of the padding lemma.

Lemma 3.3 (Upward and Downward Collapse Lemma). Let X and Y be oracles.

1. UEX ⊆ EY ⇐⇒ UPX ∩ TALLY ⊆ PY ∩ TALLY.
2. NEX ⊆ EY ⇐⇒ NPX ∩ TALLY ⊆ PY ∩ TALLY.
3. ENPX

⊆ EY ⇐⇒ PNPX

∩ TALLY ⊆ PY ∩ TALLY.

The collapse lemma and the following lemma together imply the theorem.

Lemma 3.4. Let X and Y be oracles.

1. UPX ∩ TALLY ⊆ PY ∩ TALLY ⇐⇒ all tally functions in NPSVX
g lie in FPY .

2. NPX ∩ TALLY ⊆ PY ∩ TALLY ⇐⇒ all tally functions in NPFewVX lie in FPY .
3. PNPX

∩ TALLY ⊆ PY ∩ TALLY ⇐⇒ all tally functions in MaxPX lie in FPY .

Proof of Lemma 3.4. We start with the first claim. For the implication from left to right, let
a tally function f ∈ NPSVX

g be given. We define a tally coding tc(f) of f , which is a tally
language that contains all information about f . In detail, tc(f) contains 1n if, and only if,
bin′(n) = 〈bin(m),bin(k), b〉, where m,k are nonnegative integers and b ∈ {0, 1} is a bit, such
that (a) f(1m) is defined and (b) f(1m) has length at most k and (c) the kth bit of f(1m) is b.
We claim tc(f) ∈ UPX . A UPX-machine can, on input 1n with bin′(n) = 〈bin(m),bin(k), b〉,
guess f(1m), verify that the guess is correct, and then accept if the kth bit is b. By assumption,
this implies tc(f) ∈ PY , from which we can conclude f ∈ FPY : On input 1m an FPY -machine
can check for all k ∈ {1, . . . ,m} and all b ∈ {0, 1} whether 1n(k,b) ∈ tc(f) holds, where n(k, b)
has the property bin′

(

n(k, b)
)

= 〈bin(m),bin(k), b〉. Note that n(k, b) is polynomial in m and,

hence, the length of 1n(k,b) is polynomial in the length m of the input word. For the implication
from right to left, start with a tally set in UPX . Then the function f for which set-f(1n)
contains all accepting computations of the UPX -machine (of which there can be at most one)
lies in NPSVX

g and, hence, in FPY . This implies that the tally set lies in PY .
Let us next prove the last claim. For the implication from left to right, start with a tally func-

tion f ∈ MaxPX . We claim that tc(f) ∈ PNPX

: On input 1n with bin′(n) = 〈bin(m),bin(k), b〉 a

PNPX

-machine can compute f(1m) by doing a prefix search, each time querying its NPX oracle
whether f(1m) starts with the prefix computed so far. Once f(1m) has been computed, we can
check whether the kth bit is b. By assumption, we now know tc(f) ∈ PY and, hence, f ∈ FPY .

For the other direction, start with a tally set in L ∈ PNPX

. As shown by Krentel [23, Theorem

7

4], L can be written as L = {x ∈ {1}∗ | 〈x, f(x)〉 ∈ R} for some R ∈ P and some (tally) function
f ∈ MaxPX . Then, by assumption, f ∈ FPY , from which can conclude L ∈ PY as claimed.

Let us now prove the second claim. For the direction from left to right, let a function
f ∈ NPFewVX be given. This time, the tally coding alone will not suffice. Let L be the following
set: It contains all words 1n such that bin′(n) is of one of the two forms 〈0,bin(m),bin(s)〉 or
〈1,bin(m),bin(s),bin(k), b〉, with m, s, k ≥ 0 and b ∈ {0, 1}, and such that the following holds:
If bin′(n) is of the first form, then |set-f(1m)| ≤ s. If bin′(n) is of the second form, then there
must exist a subset S ⊆ set-f(1m) such that (a) |S| = s, (b) the length of the coding 〈S〉 is
at most k, and (c) the kth bit of 〈S〉 is b. We claim that L ∈ NPX holds. On input 1n an
NPX-machine can easily determine the form of bin′(n). If it is of the first form, it guesses s
different outputs, verifies them, and accepts. If it is of the second form, it also guesses k different
outputs, verifies them, and checks whether the appropriate bit of the coding is, indeed, b. By
assumption, we have L ∈ PY . To show f ∈ FPY , on input 1m a PY -machine can first find the
maximum s such that 〈0,bin(m),bin(s)〉 ∈ L. Once this number has been found, we can do a
prefix search using queries of the second kind to compute f(1n). For the second proof direction,
the function f for which set-f(1n) = {1} if there is an accepting computation and for which
set-f(1n) = ∅ otherwise lies in NPSVX and, hence, in FPY .

3.2 Upward and Downward Collapses for Standard Left Cuts

The Hartmanis–Immerman–Sewelson result states that NE = E ⇐⇒ NP ∩ SPARSE ⊆ P.
We now explore what happens when we replace SPARSE by the class STANDARD-LEFT-CUTS.
One might expect that a similar result holds or that standard left cuts might cause a weaker
collapse since, in some sense, there is “less information stored” in each level of a standard left
cut compared to a sparse set. A bit surprisingly, a stronger collapse happens: ENP = E ⇐⇒
NP ∩ STANDARD-LEFT-CUTS ⊆ P.

Theorem 3.5. Let X and Y be oracles. Then

ENPX

⊆ EY ⇐⇒ NPX ∩ STANDARD-LEFT-CUTS ⊆ PY .

Proof. By Theorem 3.1 it suffices to show that all tally functions in MaxPX lie in FPY iff all
standard left cuts in NPX lie in PY .

For the first direction, let a standard left cut L ∈ NPX be given and assume that all tally
functions in MaxPX lie in FPY . Consider the tally function f that maps 1n to the lexicograph-
ically maximal x ∈ {0, 1}n with x ∈ L (such an x must exist since 0n ∈ L holds for all n). We
claim f ∈ MaxPX . This holds since a machine MX can on input 1n guess a word x ∈ {0, 1}n,
then guess a certificate for x ∈ L, and – if this certificate turns out to be correct – output x.
The maximum output of this nondeterministic machine will be f(x). This shows that f is a
tally function in MaxPX and hence, by assumption, f ∈ FPY . However, this implies L ∈ PY

since on input x ∈ {0, 1}n a PY -machine can compute f(1|x|) and then accept the input x iff
x ≤lex f(1|x|).

For the second direction, let a tally function f ∈ MaxPX be given and assume that every
standard left cut in NPX lies in PY . Our aim is to show that f ∈ FPY holds. To this end, we
will construct a special standard left cut L ∈ NPX such that this standard left cut contains “all
the information” about f . Let f ∈ MaxPX via the machine M ().

The basic idea (which will have to be modified to actually work) is the following: Suppose
that |f(1n)| = n were to hold for all n and suppose that we were supposed to find a “lengthwise
left cut,” that is, suppose we could decide on a new cut number for each word length n. Then,
we could setup the language L in the following way: It contains exactly the words y ∈ Σn with

8

y ≤lex f(1n). The L ∈ NPX since on input y we can guess an accepting computation path of
MX and accept if the output is lexicographically at least y. Furthermore, this language will be
such a “lengthwise left cut.” Then, by assumption, we will have L ∈ PY . We claim that this
implies f ∈ FPY : On input 1n a PY -machine can do a prefix search on the words of length n to
find the lexicographically largest word in the language of this length – and this word is exactly
f(1n).

To make the basic idea work, we must make some technical modifications. First, f(1n)
might have a varying length. Let p be a strictly increasing polynomial such that |f(x)| ≤ p(|x|)
holds for all x ∈ Σ∗. Let f ′(x) be defined by f ′(x) = 〈f(x), 0p(|x|)−|f(x)|〉. Recall that we defined
the pairing function 〈., .〉 such that each bit of the first word is prefixed by a 0-bit and each bit of
the second word is prefixed by a 1-bit. This implies that if f(x) ≤lex f(y) then f ′(x) ≤lex f ′(y).
Also note that |f ′(x)| = 2p(|x|).

Second, we must solve the problem that we need a single standard left cut, not a collection
of lengthwise cuts. We define the real number r that induces the standard left cut L as follows:
Let r =

∑∞
i=1 bi · 2

−i where bi is the ith bit of the infinite bitstring f ′(0)f ′(1)f ′(2) · · · .
We claim L ∈ NPX . Let q(n) =

∑n
i=0 2p(n). For a word x of length q(n), let x0 consist of

the first 2p(0) bits of x, let x1 consists of the following 2p(1) bits of x, let x2 consists of the
following 2p(2) bits, and so on. Then x = x0 . . . xn and |xi| = 2p(i). For a word x that is not of
length q(n) for any n, we pad x at the end with zeros until x has such a length and then define
x1, . . . , xn as above for this word x0j.

Now, let x be an input for which an NPX-machine N should decide whether x ∈ L holds.
Let x0j = x0 . . . xn as described above. For each i ∈ {0, . . . , n}, the machine N guesses a
computation path of MX for the input 1i. Then it checks that all of these computation paths
are accepting. Let oi be the output produced by MX for the input 1i on the guessed computation
path and let ōi = 〈oi, 0p(i)−|f(1i)|〉. Then N accepts the input x iff x = x0 . . . xn ≤lex ō0 . . . ōn.
To see that N does, indeed, accept the standard left cut L just note that the lexicographically
maximal sequence ō0 . . . ōn that is nondeterministically produced by N on any computation
path is exactly f ′(0) . . . f ′(n).

We have constructed a standard left cut L ∈ NPX . By assumption this implies L ∈ PY .
It remains to show how we can use L to show f ∈ FPY . A deterministic polynomial-time
algorithm for computing f(1n) works as follows: On input 1n, we start a prefix search on L
to compute f ′(0) . . . f ′(n). This is done by, starting with the prefix p = ε, repeatedly testing
whether p10q(n)−|p|−1 ∈ L holds and, if so, continuing with p1 and otherwise with p0. Once
f ′(0) . . . f ′(n) has been computed, we can extract f(n) from the last 2p(n) bits.

3.3 Downward Collapses for P-sel and P/poly

In the present section we prove downward collapses where instead of sparse sets or standard left
cuts we use P-selective sets or sets in P/poly. We do not prove new upward collapses, but note
that STANDARD-LEFT-CUTS (P-sel (P/poly implies that the upward collapse for standard
left cuts also holds for P-selective sets and for P/poly.

Theorem 3.6. Let X and Y be oracles. If ENPNPX

⊆ EY , then (NPX ∪ coNPX) ∩ P-sel ⊆ PY .

Proof. Assume ENPNPX

⊆ EY . By Theorem 3.1, this implies that all tally functions in MaxPNPX

lie in FPY . Let a set L ∈ NPX ∩ P-sel be given. We will argue that L ∈ PY holds. Since P-sel is
closed under complement, this suffices to prove the claim.

Let M () witness L ∈ NPX and let f : Σ∗ × Σ∗ → Σ∗ be the selector function that witness
L ∈ P-sel. Let Msel compute f .

9

Our aim is to construct a function g ∈ MaxPNPX

with the following property: Let a word
length n be given and let T be the subtournament of T n

f (recall that this is the tournament
induced by the selector f on words of length n) whose vertex set is the set of words in L and
whose edges are inherited from T n

f . Then g(1n) should be the code of a dominating set T ; and
if T is empty, then g(1n) should encode the empty set.

Before we proceed, let us have a look at how g may help us. Suppose such a tally function
g ∈ MaxPNPX

exists. As pointed out above, this implies g ∈ FPY . But, then, L ∈ PY holds:
On input of a word x, we can compute g(1|x|) in polynomial time and, then, it suffices to check
whether x is dominated by one of the vertices encoded by g(1|x|). If this is the case, then x ∈ L
holds; otherwise x /∈ L holds.

It remains to argue that we can construct the function g with the desired properties. For this,
consider the following nondeterministic Turing machine M : On input 1n it nondeterministically
guesses a subset S of Σn of size at most log2(n + 1). This subset can also have size less than
logs(n + 1) and can even be empty. Next, for each element s ∈ S the machine M guesses a
certificate and then verifies that s ∈ L holds. Provided that S passes all these verifications, the
machine M poses an oracle query, described below, and if the oracle query is positive, then 〈S〉
is output and M accepts.

The verifications done up to know ensure that S ⊆ L holds. The oracle query is used to
verify that S is a dominating set of the vertices in L ∩ Σn. For this we must verify that for all
words w ∈ Σn one of the following two alternatives is the case: (a) there is an edge from one
of the elements of S to w in T n

f , which implies that w is dominated by S, or (b) that w /∈ L
holds. The second test amounts to checking that there is no witness for w ∈ L, that is, that for
all possible candidate witnesses it turns out that they are not witnesses, after all. To sum up,
we can compile a single oracle query to a coNP-oracle by asking whether for all words w ∈ Σn

and for all candidate witnesses it is the cases that (a) there is an edge from one of the elements
of S to w or (b) the candidate is not a witness for w ∈ L.

We claim that all outputs of M on input 1n are dominating sets of L ∩ Σn. Clearly, we
have setup the checks in such a way that M will output only dominating sets. Furthermore,
M always does output such a set since every tournament has a dominating set of logarithmic
size.

Corollary 3.7.

1. If ∆e
i+2 = E, then Σp

i ∩ P-sel = P.
2. If Σp

i ∩ P-sel = P, then ∆e
i+1 = E.

Theorem 3.8. Let X and Y be oracles. If ENPNPX

⊆ EY , then NPX ∩ coNPX ∩ P/poly ⊆ PY .

Proof. Assume ENPNPX

⊆ EY . By Theorem 3.1, this implies that all tally functions in MaxPNPX

lie in FPY . Let a set L ∈ NPX ∩ coNPX ∩ P/poly be given. We will argue that L ∈ PY holds.

Let M
()
NP witness L ∈ NPX and let M

()
coNP witness L ∈ coNPX . Let f : N → Σ∗ and Madv

be the advice function and the deterministic polynomially time-bounded machine that witness
L ∈ P/poly, that is, x ∈ L iff Madv accepts the input 〈x, f(|x|)〉. Let p be a polynomial such
that |f(n)| ≤ p(n) holds for all n.

Our aim is to construct a function f ′ ∈ MaxPNPX

that outputs advice strings. These advice
strings need not be the original advice strings output by f , they only need to “behave” in the
same way. The functions f will only be needed to ensure that such an advice string always
exists.

10

For a word length n ≥ 0, let us call a bitstring b of length at most p(n) good advice if it has
the following property:

∀x ∈ {0, 1}n : x ∈ L ⇐⇒ Madv

(

〈x, b〉
)

accepts (∗)

We claim that there is a tally function in MaxPNPX

that maps every 1n to a good advice. To
see this, consider the following nondeterministic Turing machine: On input 1n it nondeter-
ministically guesses a candidate for a good advice string. Then, it checks whether this string
satisfies (∗) – we will see in a moment how this is done. If this test is passed, the bitstring is
output. This means that all outputs of the machine will be good advices and, hence, so is the
lexicographically largest one.

It remains to describe how we can decide, by querying an NPX-oracle Z, whether (∗) holds
for a given bitstring b. A machine accepting the complement of Z works as following: On input b
it checks whether the following predicate holds:

∀x ∈ {0, 1}n :
(

(

Madv

(

〈x, b〉
)

accepts =⇒ MX
coNP(x) accepts

)

∧

(

Madv

(

〈x, b〉
)

rejects =⇒ MX
NP(x) rejects

)

)

We claim that this predicate can, indeed, be checked by a coNPX-machine: It branches univer-
sally nondeterministically over all x ∈ {0, 1}n and then branches universally over either (a) all
computation paths of MX

coNP(x) and checks that they are all accepting or (b) over all compu-
tation paths of MX

NP(x) and checks that they are all rejecting. The desired NPX-oracle Z can
now be defined as the complement of the words accepted by the coNPX-machine just described.

We now know that there is a tally function in MaxPNPX

that always outputs good advice.
This implies that this function lies in FPY . We can then decide L in polynomial time with
access to the oracle Y using the following algorithm: On input x we compute good advice and
then accept if Madv accepts relative to this advice.

Corollary 3.9.

1. If ∆e
i+2 = E, then Σp

i ∩ Πp
i ∩ P/poly = P.

2. If Σp
i ∩ P/poly = P, then ∆e

i+1 = E.

Note that this result suggests that the following strong generalization of the Hartmanis–
Immerman–Sewelson theorem presumably does not hold: NE = E ⇐⇒ NP ∩ P/poly = P.
Rather, NP ∩ P/poly = P is linked to the exponential hierarchy, but to other levels.

Corollary 3.10. EH = E ⇐⇒ PH ∩ P/poly = P.

Corollary 3.11. If ∆e
3 = E, then BPP = P. If ∆e

2 = E, then ZPP = P.

Proof. It is well known, see for instance [29], that BPP ⊆ Πp
2 ∩ Σp

2 ∩ P/poly and ZPP ⊆ NP ∩
coNP ∩ P/poly.

4 The Complexity of Infinite Subsets of P-Selective Sets

4.1 The Complexity of Top-Toda Languages

In the present section we explore the complexity of top-Toda languages. The study of these
languages, which began in [12], is motivated by the following observation: Consider a P-selective
language A and a vertex v of a tournament T n

f such that all vertices of the tournament are

11

reachable from v. Then, by Lemma 2.1, if any word of length n is in A, so is v. This makes
such words interesting if, as in the present paper, one is “looking for words in A.”

As proposed in [12], let us call two vertices u and v of T n
f Toda-equivalent if there is a path

from u to v in T n
f and also a path from v to u. The Toda equivalence classes of T n

f are its
strongly connected components. Since T n

f is a tournament, there exists a top Toda equivalence
class. Its elements have the property that all vertices of the tournament are reachable from all
of these elements. The language top-todaf , called a top-Toda language in the following, is

defined by: top-todaf = {u ∈ Σ∗ | all vertices of T
|u|
f are reachable from u}.

By the intuition given above, the languages in TOP-TODA = {top-todaf | f is a selector}
are good candidates for infinite subsets of P-selective sets. (Note that all top-Toda languages
are populated, which implies that they are all infinite.) We will explore this relationship in
more detail in Section 4.3; in the present section we will just try understand the complexity
of these sets. We begin with some comparatively simple observations that prepare the central
result of this section, Theorem 4.2, which links the complexity of top-Toda languages to the
exponential hierarchy.

As was already noted in [12], TOP-TODA ⊆ PSPACE since we can decide in polynomial

space whether all words in the tournament T
|u|
f can be reached from u. This was improved in

the technical report [10], where it was shown that TOP-TODA ⊆ Πp
2 . The main observation in

this report was that one can apply a result of Nickelsen and Tantau [27] to the tournament T
|u|
f ,

namely that the reachability problem for succinctly represented tournaments is Πp
2-complete.

The next observation, which was also presented in the technical report [10], shows that top-
Toda languages are presumably quite “simple”: For all selectors f the language top-todaf is
lengthwise P-selective. The reason is that if all words of a tournament can be reached from u and
there is an edge from v to u, then all words in the tournament can also be reached from v. Note
that it is not clear whether all top-Toda languages are also P-selective (without the “lengthwise”
restriction). Although all tally sets are lengthwise P-selective and, hence, there are lengthwise
P-selective sets that are not P-selective as a simple diagonalization argument shows, proving the
existence of top-Toda languages that are not P-selective would imply P 6= NP: All languages in
P are trivially P-selective and all top-Toda languages lie in Πp

2 .
The fact that all top-Toda languages are lengthwise P-selective has different consequences

for their complexity. For P-selective sets (without the “lengthwise” modifier) it is well known
that they lie in P/n2, see [21], and also in NP/n + 1, but not necessarily in NP/n, see [14]. All
of these bounds also apply to lengthwise P-selective sets: For the lower bound this is trivial
since all P-selective sets are also lengthwise P-selective. For the upper bounds, one has to revisit
the proofs in [21] and [14] and become convinced that the proofs argue for each word length
separately (which they do). This shows that for all selectors f we have top-todaf ∈ NP/n + 1
and top-todaf ∈ P/n2. This refutes the conjecture of Hemaspaandra et al. [12] that there are
top-Toda languages that do not lie in NP/linear.

The observation TOP-TODA ⊆ P/poly is a strong indicator that top-Toda languages cannot
be NP-hard, because by the Karp–Lipton theorem NP-hard languages cannot have polyno-
mially-sized circuits unless the polynomial hierarchy collapses, see [20] and also the newer results
[5, 22, 6]. However, for P-selective sets a much stronger result is known [1, 3, 28]: If a P-selective
set is ≤p

o(n)-tt-hard for NP, then P = NP.
This result does not seem to carry over to lengthwise P-selective sets since the reduction

can query words of different word lengths and it is unclear what should be done in such a
case. However, in the technical report [10] it is shown that one can at least prove that if some
lengthwise P-selective set is ≤p

m-hard for NP, then P = NP. This result can be improved further
as the following theorem shows:

12

Theorem 4.1. If some lengthwise P-selective set is ≤p
1-tt-hard for NP, then P = NP.

Proof. Our argument uses a standard self-reduction tree pruning technique. Assume that
sat ≤p

1-tt A holds for some lengthwise P-selective set A. Let f be a selector for A and let
p be a polynomial time bound on the running time of f . We present a polynomial-time algo-
rithm for deciding sat.

On input of the code of an n-variable formula φ, the algorithm creates a list that contains only
φ initially. This list will change in the phases of the algorithm, but the following invariant will
always be true: φ is satisfiable if, and only if, at least one formula in the list is satisfiable. The
algorithm consists of two alternating phases: During the expansion phase, a still unprocessed
variable in φ is chosen. Then all formulas in the list are replaced by two formulas, one with
the variable set to true and one with the variable set to false. Clearly, this expansion step will
not violate the invariant and it will at most double the length of the list. During the pruning
phase, to be described later, the list is shortened, so that after the pruning the list length is at
most 2p(|φ|). After at most |φ| alternations of the expansion and pruning phases, the list will
contain only formulas without any variables. We then test, in polynomial time, whether any
formula is satisfiable and accept if this is the case; otherwise we reject.

The pruning phase works as follows: If the length of the list is less than 2p(|φ|), nothing
needs to be done. Otherwise, for each formula φi in the list, we compute the word xi to which
φi is mapped by the reduction. Note that |xi| ≤ p(|φ|). This implies that, since there are more
than 2p(|φ|) members in the list, that there exist three different indices i, j, and k such that
|xi| = |xj| = |xk|, that is, three different formulas φi, φj , and φk must be mapped to the same
word length l. Applying the selector f to all pairings of these words, we can sort them, so let us
assume that χA(xi) ≤ χA(xj) ≤ χA(xk). This implies that χA(xi, xj , xk) ∈ {000, 001, 011, 111}.
From this we can conclude that χSAT(φi, φj , φk) ∈ {000 ⊕ a, 001 ⊕ a, 011 ⊕ a, 111 ⊕ a} where
a ∈ {0, 1}3 models the bitflips performed by the reduction. By checking all eight possibilities
for a one can easily verify that {000 ⊕ a, 001 ⊕ a, 011 ⊕ a, 111 ⊕ a} 6⊇ {001, 010, 100}. This
implies that for one of the three bitstrings b = 001, b = 010, or b = 100 we know that
χSAT(φi, φj , φk) 6= b. But, then, we know one variable which, if it is satisfiable, it is not the
only one. This means that we can remove this variable from the list without violating the
invariant. The pruning phase repeats this process until the length of the list has dropped to at
most 2p(|φ|).

The results that we have established up to know already tell us a lot about the complexity
of top-Toda languages: They “live in Πp

2 , but more or less at the bottom and they cannot even
be NP-hard.” This begs the question of whether we can further improve the upper bound on
the complexity of top-Toda languages. For instance, are all top-Toda languages already in P?
The following main result of the present section states upward and downward collapses linking
top-Toda languages to the exponential hierarchy.

Theorem 4.2.

1. TOP-TODA ⊆ P implies EΣp
2 = E.

2. UEΣp
2 = E implies TOP-TODA ⊆ P.

For both claims we will use the characterization of Theorem 3.1. For one direction we use
a special construction that draws on the ideas of Nickelsen and Tantau’s [27] proof that the
succinct tournament reachability problem is Πp

2-complete. For the other direction we introduce
the new concept of splitting pairs.

For the upward collapse in Theorem 4.2, by Theorem 3.1 it suffices to prove the following
implication:

TOP-TODA ⊆ P =⇒ all tally functions in MaxPNP lie in FP.

13

A first step towards proving this implication is to get a better “grip” on the class MaxPNP.
For this, we derive a Stockmeyer-like quantifier characterization [32] for this class. The proof
uses standard arguments.

Lemma 4.3. Let f ∈ MaxPNP and let ∀x ∈ Σ∗ : |f(x)| = p(|x|) for some polynomial p. Then
there exists a ternary relation R ∈ P and a polynomial q such that for all words x ∈ Σ∗ the
following holds: Let y ∈ Σq(|x|) be lexicographically maximal such that ∀z ∈ Σq(|x|) : 〈x, y, z〉 ∈ R.
Then the first p(|x|) bits of y are f(x).

Proof. Let f ∈ MaxPX with X ∈ NP via some nondeterministic oracle Turing machine M (). Let
r be a polynomial bounding the running time of M () and let s be a polynomial bounding the
running time of the machine witnessing X ∈ NP. The language R contains all words 〈x, y, z〉 for
which the following is true: The first p(|x|) bits of y are the output of MX on the computation
path where the nondeterministic choices are taken according to the next r(|x|) bits of y and the
oracle queries are answered according to the next r(|x|) bits of y, called the oracle query bits
in the following, and this computation path is accepting. The next bits of y are r(|x|) many
blocks, each of length s(r(|x|)). If the ith oracle query bit is 1, then the ith block must contain
a certificate that the ith oracle query of M () on the above computation path is an element of X.
Finally, z must consist of r(|x|) many blocks, each of which is also of length s(r(|x|)), plus some
zeros so that |z| = |y|. If the ith oracle query bit is 0, then the ith block in z may not be a
certificate that the ith query made by M () on the above computation path is an element of X.

The construction shows that, clearly, R ∈ P. Furthermore, if there an accepting computation
path of MX on which it outputs f(x), then there exists a y starting with this output, continuing
with the correct nondeterministic choices, the correct oracle answers, and the correct certificates
for these answers, such that for all z we have 〈x, y, z〉 ∈ R. The other way round, if a y has
the property that for all z we have 〈x, y, z〉 ∈ R, then the oracle queries bits are all correct (as
shown be the certificates) and, thus, there is an accepting computation path of MX on which
the first p(|x|) bits of y are output.

For a ternary relation R ∈ P and a polynomial q as above, let max-yR(x) be the lexico-
graphically largest y ∈ Σq(n) such that for all z ∈ Σq(n) we have 〈x, y, z〉 ∈ R. In the following
definition, for a word x ∈ Σ∗ we construct a tournament whose top-Toda equivalence class tells
us a lot about max-yR(x).

Definition 4.4. Let R be a ternary relation and q a polynomial. Let x ∈ Σ∗ be a word. We
construct a tournament TR(x) as follows: Its vertex set V = {s, s′} ∪

(

Σq(|x|) × Σq(|x|)
)

consists
of the special seed vertices s and s′ (the first of which will always be part of the top-Toda
equivalence class) and a set of pairs (y, z) ∈ Σq(|x|) × Σq(|x|). We imagine these pair vertices
to be arranged in a grid so that pairs with the same y-component lie on the same row and
pairs with the same z-component lie in the same column. For two vertices (y, z) and (y′, z′) we
say that the first pair is above the second pair if y is lexicographically larger than y′. We also
say that the seed vertices are above all other vertices. The edges of the tournament are setup
according to the following rules:

1. There is an edge from s to s′.
2. For vertices on the same row, that is, for two vertices (y, z) and (y, z′), the edges are setup

in such a way that all vertices on the row are in the same Toda equivalence class. This
can be accomplished, for instance, by having the edge point from (y, z) to (y, z′) whenever
z is lexicographically larger than z′, except for the minimal and maximal z and z′, where
the edge points in the other direction.

14

3. If the vertex v is above the vertex u, then there is an edge from v to u; except in the
following case: For a pair (y, z) with 〈x, y, z〉 /∈ R, there is an edge from (y, z) to the
vertex directly above it in the grid or to s if the vertex is on the top row. More precisely,
if 〈x, y, z〉 /∈ R, the edge between (y, z) and (y′, z), where y′ is the lexicographic successor
of y, points from (y, z) to (y′, z); and if y is lexicographically maximal, then there is an
edge form (y, z) to s.

The intuition behind the tournament TR(x) is the following: The seeds are in the top-Toda
equivalence class. Starting from the seed s, we join the lexicographically largest row to the
top-Toda equivalence class if there is some z that refutes that for the lexicographically maximal
y all z have the property 〈x, y, z〉 ∈ R. Then we join the second largest row also to the top-Toda
equivalence class if there is also a counterexample z for this second largest y. Then we join the
third row, and so on. In particular, the first row that is not part of the top-Toda equivalence
class has the following property: It is the lexicographically largest y such that for all z we
have 〈x, y, z〉 ∈ R. Comparing this with the definition of max-yR(x) we see that this exactly
what we where interested in. Naturally, that means that we are actually more interested in
the complement of the top-Toda equivalence class, but this will not matter in the proof of the
upward collapse. The following lemma summarizes these observations.

Lemma 4.5. Let R be a ternary relation and q be a polynomial. Let x ∈ Σ∗ be a word. Let
y ∈ Σq(|x|) be lexicographically maximal such that (y, 0q(|x|)) is not in the top-Toda equivalence
class of TR(x). Then y = max-yR(x) (if either side of the equation is undefined, so it the other).
Furthermore, for all y≤ ≤lex y the word (y≤, 0q(|x|)) is also not in the top Top equation class;
and for all y> >lex y the word (y>, 0q(|x|)) is in the top-Toda equivalence class.

Proof. The only edge leading to s′ is the edge from s to s′. This means that any vertex v can
be in the top-Toda equivalence class only if there is a path from v to s. On the other hand, if
this is the case, then v is automatically part of the top-Toda equivalence class since all vertices
other than s are then reachable from s′ in one additional step. By the construction, the only
way to get from a vertex (y, 0q(|x|)) to s is to “brave all rows”: There are no edges leading from
any row to a row more than one level above. This means that we can get from (y, 0q(|x|)) to s
if, and only if, for all y′ ≥lex y there exists a z such that 〈x, y′, z〉 ∈ R does not hold. The other
way round, this implies that for the lexicographically largest y such that there is no path from
(y, 0q(|x|)) to s, for all z ∈ Σq(|x|) we have 〈x, y, z〉 ∈ R. By definition, this y is max-yR(x).

With the above lemma and definition we have established a link between max-yR(x) and the
top-Toda equivalence class of a single tournament. The words x we are interested in, namely
for which we would like to compute the leading bits of max-yR(x), are the words x ∈ {1}∗. To
turn all the tournaments into a top-Toda language, we just have to place these tournaments on
different word length levels. The number of words available on this level must be large enough
to store the whole tournament TR,f (x) and we must also take care of the extra words that are
available for the word length. Definition 4.6 shows how all of this is done.

Definition 4.6. Let R be a ternary relation and let q be a monotone polynomial. For each word
length l ≥ 0 we define a tournament T l

R on Σl as follows: We distinguish two cases, depending
on whether there exists an n ≥ 1 such that l = n + q(n)2 + 1.

1. If there exists no such n, the tournament T l
R is arbitrary. So, say, let there be an edge

from u to v in T l
R if u is lexicographically larger than v.

2. If there exists such an n, let x = 1n. We embed the tournament TR(x) = (V,E) into
the tournament T l

R = (Σl, E′) using an injective (one-to-one) mapping ι : V → Σl. Let
ι((y, z)) = 0yz0n, let ι(s) = 110l−2 and ι(s′) = 1110l−3.

15

The edges in T l
R are setup as follows: (a) for u, v ∈ V we have (ι(u), ι(v)) ∈ E′ iff

(u, v) ∈ E, (b) for u ∈ V and b ∈ Σl − {ι(v) | v ∈ V } let there be an edge from u to
b and (c) for b, c ∈ Σl − {ι(v) | v ∈ V } let there be an edge from b to c exactly if b is
lexicographically smaller than c.

The following lemma states that the embedding of the above definition faithfully captures
the structure of the top-Toda equivalence classes. It follows directly from the definitions.

Lemma 4.7. Let R be a ternary relation and q a monotone polynomial. Let x = 1n. Then
(y, z) ∈ Σq(n) × Σq(n) is in the top-Toda equivalence class of TR(x) if, and only if, 0yz0n is in
the top-Toda equivalence class of T n+q(n)2+1.

The last step is to prove the implication stated at the beginning of this section:

Lemma 4.8. If TOP-TODA ⊆ P, then all tally functions in MaxPNP lie in FP.

Proof. Let h : {1}∗ → Σ∗ in MaxPNP be given. We must show h ∈ FP. Let R and q be the
relation and polynomial constructed in Lemma 4.3 for h. Consider the tournaments T l

R from
Definition 4.6. We claim that there exists a selector f such that T l

f = T l
R holds for all word

lengths l.
The selector f gets two words u and v as input. If they have different lengths it is not

really important what the selector does (let f choose the shorter one), so assume |u| = |v|. By
Definition 4.6 the selector should first check whether there exists an n such that the length of
both words is exactly n+ q(n)2 +1. If no such n exists, then Definition 4.6 states that f should
select the lexicographically larger word. Otherwise f finds out which of the three cases (a), (b),
or (c) from Definition 4.6 applies to u and v. Again, due to the simplicity of the function ι,
this check is easy to perform in polynomial time. For the cases (b) and (c) it is immediately
clear which of the two words u and v should be picked by f , so assume that case (a) occurs.
In this case, u = 0yz0n and v = 0y′z′0n for appropriate y, y′, z, z′ ∈ Σq(n) or either of u and v
or even both are seed vertices. The selector f must then find out how the edge between the
corresponding vertices of TR(x) are directed according to Definition 4.4. Clearly, the first two
cases of the definition are easily handled. For the third case, if it turns out that z = z′ and y′ is
the lexicographic successor of y, then the selector f must check whether 〈x, y, z〉 /∈ R holds. The
same is true if y is lexicographically maximal and the other vertex is the seed vertex s. Since
R ∈ P and since |y| and |z| are bounded by |u|, this check can also be performed in polynomial
time.

Consider the top-Toda language induced by the selector f . By assumption, top-todaf ∈ P

via some machine M . We now show how h can be computed in polynomial time. We know
that h(1n) is equal to the first p(n) bits of max-yR(1n), so it suffices to compute this. By
Lemma 4.5 we must compute the lexicographically maximal y ∈ Σq(n) such that (y, 0q(n)) is not
in the top-Toda equivalence class of TR(1n). By Lemma 4.7, this is the same as computing the
lexicographically maximal y ∈ Σq(n) such that 0y0q(n)0n is in the top-Toda equivalence class
of T l

R for l = n + q(n)2 + 1. Finally, by the construction of the selector f , this is the same as
computing the lexicographically maximal y ∈ Σq(n) such that 0y0q(n)0n /∈ top-todaf . In the
following, let us write γ(y) for 0y0q(n)0n.

The computation of y is based on a prefix search. We start with the empty prefix p = ε and
now wish to extend p by one bit. For this, we test whether γ(p10q(n)−1−|p|) lies in top-todaf .
If we find out that this is the case, we know that y cannot start with the prefix p1 and we
continue with p0. If we find out the opposite, then y starts with p1. After at most q(n) steps
we will have determined the complete y and we are done.

16

For the downward collapse in Theorem 4.2, by Theorem 3.1 it suffices to prove the following
implication:

All tally functions in NPSV
Σp

2
g lie in FP =⇒ TOP-TODA ⊆ P.

The idea for proving the implication is the following: In order to show TOP-TODA ⊆ P, for a
given selector f we construct a function h : {1}∗ → Σ∗ that will provide us with some “advice.”
For a word x, once we know the advice h(|x|), it will be easy to decide x. However, unlike in
Ko’s [21] proof that TOP-TODA ⊆ P/poly, the advice will not “appear by magic.” Rather, it

will be computable using a function in NPSV
Σp

2
g . Then, by our assumption that this class lies in

FP, we can conclude that the advice can actually be computed in polynomial time. The next
definition will be useful for defining the advice for top-Toda languages.

Definition 4.9. Let T = (V,E) be a tournament. A splitting pair is a pair (A,D) consisting
of two vertex sets A,D ⊆ V such that

1. |A|, |D| ≤ log2(n + 1).
2. anti-dom(A) and dom(D) form a partition of V , that is, every vertex of V is an element

of exactly one of these two sets.
3. For every a ∈ anti-dom(A) and every d ∈ dom(D) we have (a, d) ∈ E, that is, edges point

from the anti-dominated set to the dominated set.

The intuition behind this definition is the following: Imagine the tournament T to be drawn
on a page such that vertices in the same Toda equivalence class are on the same height; and for
vertices u, v ∈ V in different Toda equivalence classes, if (u, v) ∈ E, then u is above v on the
page. Then the top-Toda equivalence class is at the top of the page. The splitting pair splits
the vertex set into two disjoint subsets anti-dom(A) and dom(D). On the page, all vertices in
the first set will be above the vertices in the second set. If nonempty, the set A contains at least
one vertex “at the bottom” of anti-dom(A) and D contains at least one vertex “at the top” of
dom(D). The following lemmas make these ideas precise.

Lemma 4.10. Let (A,D) be a splitting pair of T . Then both anti-dom(A) and dom(D) can be
expressed as unions of Toda equivalence classes of T .

Proof. The set dom(D) is closed under reachability since any edge “leaving” this set would have
to end in anti-dom(A), which is forbidden by the properties of a splitting pair. This implies
that dom(D) is also closed under Toda equivalence and, hence, it is the union of all the Toda
equivalence classes of its elements. The same argument applies to anti-dom(A) if we reverse all
edges.

The lemma implies, in particular, that for any two splitting pairs (A,D) and (A′,D′) only
one of the following three situations can arise:

1. dom(D) (dom(D′) and anti-dom(A)) anti-dom(A′).
2. dom(D) = dom(D′) and anti-dom(A) = anti-dom(A′).
3. dom(D)) dom(D′) and anti-dom(A) (anti-dom(A′).

This allows us to define a linear ordering on splitting pairs as follows.

Definition 4.11. Given a tournament T = (Σn, E) and two splitting pairs (A,D) and (A′,D′),
we write (A,D) < (A′,D′) exactly in the following cases:

1. anti-dom(A) (anti-dom(A′)

17

2. anti-dom(A) = anti-dom(A′) and

〈a1, . . . , a|A|, d1, . . . , d|D|〉 <lex 〈a′1, . . . , a
′
|A′|, d

′
1, . . . , d

′
|D′|〉.

Here, ai, di, a′i, and d′i are the elements of A, D, A′, and D′, respectively.

Lemma 4.12. Let T = (V,E) be a tournament and let U ⊆ V be its top Toda equivalence class.
Then there exists a splitting pair (A,D) of T with anti-dom(A) = U .

Proof. The top-Toda equivalence class has an anti-dominating set A of size at most log2(n+1).
Likewise, the complement of the top-Toda equivalence class has a dominating set D also of size
log2(n + 1). These two sets form the claimed splitting pair.

Lemma 4.13. For every top-Toda language B there exists a tally function h ∈ NPSV
Σp

2
g such

that x ∈ B can be decided in polynomial time if h(|x|) is given.

Proof. Let B = top-todaf for some selector f . For a given word length n, consider the
tournament T n

f induced by f . This tournament has different splitting pairs (for instance, the
pair (A, ∅) where A is an anti-dominating set of Σn of logarithmic size is such a pair). Let us
call the largest (with respect to the linear ordering from Definition 4.11) splitting pair (A,D)
with A 6= ∅ the top splitting pair. This top splitting pair (or, rather, its code) will be the advice
h(1n).

We use the top splitting pair to decide B on length n as follows: For an input x, let
(A,D) be the top splitting pair that the advice function has provided. We claim x ∈ B iff
x ∈ anti-dom(A), that is, anti-dom(A) is exactly the top-Toda equivalence class of T n

f . This
follows from Lemma 4.12 and the fact that (A,D) is maximal. So, in order to decide B, all we
need to do is to check whether x ∈ anti-dom(A) holds, that is, whether x ∈ A or whether there
exists some a ∈ A such that (x, a) is an edge of T n

f . Because the size of A is O(log 2n) = O(n),
this test can be done in polynomial time.

It remains to specify an oracle machine M () and an oracle L ∈ Σp
2 such that the only output

of this machine on input 1n is g(1n), that is, the top splitting pair. Furthermore, we must be
able to check in polynomial time, but using the oracle L, that a given input is this top splitting
pair g(1n).

Let L1 contain all codes of splitting pairs of all T n
f . We claim L1 ∈ coNP. To see this,

consider a pair (A,D) that is given as input. We must then check whether the three properties
from Definition 4.9 are satisfied. The first property is trivial to check. For the second property
we do a universal quantification over all vertices v of T n

f and check, for each v, whether exactly
one of the following two cases occurs: (a) v ∈ A or ∃a ∈ A : (v, a) ∈ E or (b) v ∈ D or
∃d ∈ D : (d, v) ∈ E. Here, E is the edge set of T n

f . Again, because A and D both have
logarithmic size, the “∃a ∈ A” and “∃d ∈ D” checks can be done in polynomial time. For the
third property, we also quantify universally, but this time over two vertices u and v, and do a
similar check.

Next, define a language L2: It contains all splitting pairs (A,D) with A 6= ∅ such that there
exists a splitting pair (A′,D′) with A′ 6= ∅ and (A,D) < (A′,D′). We claim L2 ∈ Σp

2 . On input
(A,D) we first check that (A,D) is a splitting pair using the coNP-oracle L1, then guess a pair
(A′,D′), and then verify, using L1 once more, that this pair is a splitting pair. Then, we verify
that (A,D) < (A′,D′) holds (we do not need the oracle for this).

The last step is the definition of the oracle machine M (), which uses the join of L1 and L2 as
its oracle. On input 1n the machine M nondeterministically guesses a pair (A,D) with A 6= ∅.
It verifies that this pair is a splitting pair using L1 and then that it does not lie in L2 (which is
only the case for the top splitting pair). If both tests pass, the code of (A,D) is output. Note
that the same procedure can be used to verify that a given pair is the top splitting pair.

18

4.2 Infinite Subsets of King Languages

In the present section we study the immunity of king languages. A king of a tournament is a
vertex such that all vertices of the tournament are reachable in at most two steps. This means,
in particular, that a king is always an element of the top-Toda equivalence class of a tournament.
It is well known that every tournament has a king [24]; for instance, every vertex of maximal
outdegree is a king. These observations show that the following king language kingf is always
a populated (and hence infinite) subset of top-todaf :

kingsf = {u ∈ Σ∗ | all vertices of T
|u|
f are reachable from u is at most two steps}.

Intuitively, king languages should be “easier” than top-Toda languages. After all, to decide
whether a vertex u is an element of a top-Toda equivalence class we have to check whether all
vertices of the tournament are reachable in any number of steps – for kings we only have to check
whether they are reachable in at most two steps. This intuition seemed to be supported by the
results in [12], where it was shown that TOP-TODA ⊆ PSPACE and KINGS ⊆ Πp

2 . However, the
results of [10, 11] and the present paper show that the intuition seems to be wrong: the top-
Toda languages are “pretty low” inside the class Πp

2 , while every language in Πp
2 is first-order

equivalent to a king language. In particular, there exist Πp
2-complete king languages.

Even though there are Πp
2-complete king languages, we may nevertheless ask how difficult

infinite subsets of king languages can become. Clearly, every infinite king language has an
infinite subset in Πp

2 (namely itself), but it is already unclear whether it will also have an infinite
subset in, say, Σp

2 . It is known that, in general, we cannot always expect this to happen. For
instance, Vereshchagin [33] has shown that there exists an oracle such that some NP-complete
does not have an infinite subset in coNP.

Our first result of the present section is that every king language has a populated subset in
Σp

2 . This implies, also, that every top Toda language has an infinite subset in Σp
2 . In the next

section we shall see how this can be used to show that the P-selective sets are not Σp
2/1-immune.

For the proof of the result we need a definition and a lemma.

Definition 4.14. Let T = (V,E) be a tournament. A vertex k ∈ V is a superking if there
exists a set U ⊆ V such that

1. |U | ≤ log2(|V | + 1),
2. {k} dominates U ,
3. U dominates V .

Lemma 4.15. Every nonempty tournament has a superking.

Proof. We inductively construct the set U = {u1, . . . , um} as follows: T1 = T must have a
vertex of maximal outdegree and, since the sum of all out-degrees minus all in-degrees adds up
to zero, one vertex u1 must have an outdegree that is at least as large as its indegree. Let u1

be this vertex. Then {u1} dominates at least half of the vertices in T1. Let T2 be obtained
from T1 by removing all vertices in dom({u1}) (and all pending edges). Then the size of T2 is
at most half the size of T1. For this tournament we repeat the process of finding a vertex u2

of maximal outdegree and removing the vertices that it dominates to obtain T3. We repeat the
construction until Tm+1 is empty.

We claim that the last vertex um that was put into the set U = {u1, . . . , um} is a superking.
First, U has a size that is logarithmic in the size of V , because the size of the tournament is
halved in each step. Second, um has the property that it was not put into U in any earlier step.
In particular, when any ui with i < m was put into U , there was no edge from ui to um for,
otherwise, we would already have removed um. But, then, there must be an edge from um to

19

ui. Third, U clearly dominates V since every vertex of V can be reached in one step from some
ui (or it is one of the ui already).

The construction of the set U in the proof is a standard construction that can both be
used for showing that every tournament has a logarithmically small dominating set and that it
has a king. The new observation is that the resulting king can be characterized in terms of a
∃∀-property – normally kings are characterized in terms of a ∀∃-property.

Theorem 4.16. Every set in KINGS has a populated subset in Σp
2.

Proof. Let f be a selector and let kingsf be given. The desired populated subset is given by the
set of superkings of the tournament family specified by f . By Lemma 4.15 this set is, indeed,

populated. To decide whether a given vertex k is a superking of T
|k|
f , we first existentially guess

a set U of size at most log2

(

|Σ|k||+ 1
)

≤ |k|+ 1. Then we check that k dominates U , which can
be done in polynomial time by checking for each element u ∈ U whether the selector f selects
k on input (k, u). Finally, we use a universal quantifier to verify that U dominates V , namely
by checking that for all words v ∈ V one of the polynomially many u ∈ U has the property
f(u, v) = u.

The theorem has an interesting consequence, stated in the following corollary, which im-
proves the result of Hemaspaandra et al. [12] that every king language has a finder in FPΣp

3 .

Corollary 4.17. Every king language has a finder in MaxPNP ⊆ FPΣp
2 .

Proof. Let f be a selector and kingf be its king language. The finder will output a superking
for the word length. In detail, define the following nondeterministic oracle Turing machine M :
On input 1n it guesses a word w and a set U and verifies, using its coNP-oracle, that w is a
superking of T n

f , as witnessed by U . If the test is passed, w is output. Then all outputs of M are
superkings and, hence, so is the lexicographically maximal one. Thus, the machine witnesses
that kingsf has a finder in MaxPNP.

An immediate corollary of the above result is that every top-Toda language has a finder
in FPΣp

2 , which was already proved in [12]. A natural question is, can we improve this even
further? The following theorem states how difficult, exactly, it will be to get the complexity
down to FP.

Theorem 4.18.

1. If ∆e
3 = E, then every king language has a finder in FP.

2. If every king language has a finder in FP, then E = NE.

Proof. The first claim follows directly from Theorem 3.1 and the above corollary. For the second
claim, assume that every king language has a finder in FP and let any top-Toda language A
be given. Let f be a selector for A. By assumption, kingsf has a finder in FP. Because
kingsf ⊆ top-todaf , this is also a finder for A. Thus, every top Toda language has a finder
in FP. This implies E = NE as shown by Hemaspaandra et al. [12].

As a corollary we obtain that if TOP-TODA ⊆ P, then every set in KINGS has a finder in
FP. Hence, TOP-TODA ⊆ P implies that KINGS is not P-immune. Indeed, an even stronger
claim is possible:

Theorem 4.19. If TOP-TODA ⊆ P, then every king language contains a top-Toda language as
a subset.

20

Proof. Observe that the image of a finder is a top-Toda language: A selector can simply always
select the one element in the language on each word level. What it does on the other elements
does not matter.

Two remarks concerning the theorem are in order. First, note that every top-Toda language
contains a king language as a subset; the theorem states that the inverse is also true under
a certain assumption. Second, note that the assumption is, in some sense, that all top-Toda
languages are “easy.” One would expect that if top Toda language could also be more difficult,
then it should be even easier to find a top-Toda language as a subset of every king language.
Thus, the following conjecture seems plausible:

Conjecture 4.20. Every king language contains a top-Toda language as a subset.

4.3 Immunity of P-Selective Sets

In this section we return to the original question of this section, namely how difficult infinite
subsets of infinite P-selective sets must be. As stated in the introduction, there exist P-selective
sets that are bi-immune and, thus, there is no hope of finding an easy infinite subset in every
P-selective set. Nevertheless, in the previous sections we saw that top-Toda and king languages,
which are in some sense “nearly” infinite subsets of P-selective sets, are not too hard to decide.
All we need to know is whether there exists at least one word on a word length – once we know
that this is the case, both the top-Toda equivalence class and the kings set contain examples of
such words.

In the following we first present two lemmas that show how infinite subsets of top-Toda
or king languages and how finders for top-Toda and king languages help us in finding infinite
subsets of P-selective sets. We then apply these lemmas to the results established in the previous
sections.

Lemma 4.21. If every top-Toda language has a populated subset in C, then every infinite
lengthwise P-selective set has an infinite subset in C/1.

Proof. Let an infinite lengthwise P-selective set A be given. Let f be a selector for A. By
assumption, top-todaf has a populated subset Q ∈ C. Clearly, Q ∩ A ⊆ A. Furthermore,
Q ∩ A is infinite as it contains at least one word for each of the infinitely many word lengths
for which A contains an element. Finally, Q ∈ C/1 since for each word length n we either have
Q∩A∩Σn = Q∩Σn or Q∩A∩Σn = ∅ and one bit of advice can tell us which is the case.

Note that it is unclear how one could prove the converse of the above theorem, but at least
the following weaker statement clearly holds: If every infinite lengthwise P-selective set has an
infinite subset in C, then every top-Toda language has an infinite subset in C.

Lemma 4.22. Let FC be a function class.

1. If every set in KINGS has a finder in FC , so does every set in TOP-TODA.
2. Every set in TOP-TODA has a finder in FC if, and only if, every lengthwise P-selective

set does.

Proof. Let f be a selector. A finder for kingsf is also a finder for top-todaf because kingsf ⊆
top-todaf . It is also a finder for every lengthwise P-selective set A for which f is a selector
(recall that if there is a word in A of length n at all, then top-todaf ∩Σn ⊆ A). Finally, note
that every top-Toda language is lengthwise P-selective.

The first of these lemmas has the following corollary, which follows from Corollary 4.17.

21

Corollary 4.23. P-sel is not Σp
2/1-immune.

Combining the second of lemma with Corollary 4.17 yields the following.

Corollary 4.24. Every lengthwise P-selective set has a finder in MaxPNP ⊆ FPΣp
2 .

This corollary begs the question of whether this can be improved, that is, does every P-
selective set have a finder in FP?

Corollary 4.25.

1. If ∆e
3 = E, then every lengthwise P-selective set has a finder in FP.

2. If every lengthwise P-selective set has a finder in FP, then NE = E.

Proof. This follows from Theorem 4.18 and Lemma 4.22.

Corollary 4.26. If ∆e
3 = E, then P-sel is not P/1-immune.

Proof. ∆e
3 = E implies, by Theorem 4.18, that every king language has a finder in FP and, by

Lemma 4.22, so does every top-Toda language. The image of the finder is a populated subset
of the top-Toda language in P. By Lemma 4.21 this implies the claim.

5 Conclusion

In this paper we presented generalizations of the Hartmanis–Immerman–Sewelson theorem. For
the applications studied in the second part of the paper, the characterization of collapses in the
exponential-time realm in terms of function classes turned out to be especially useful. The
results of the present paper entail a number of interesting open problems.

Can we characterize NP ∩ P-sel = P or NP ∩ P/poly = P equivalently in terms of a collapse
in the exponential-time realm? By our results on standard left cuts this collapse will be above
∆e

2, and it will be below ∆e
4, but is unclear where, exactly.

Can we improve the characterization of TOP-TODA ⊆ P? One plausible conjecture is
TOP-TODA ⊆ P ⇐⇒ ∆e

3 = E.
Can we show that (perhaps lengthwise) P-sel not being P/1-immune has a consequences like

E = NE? Such an upward collapse seems hard to prove because we start with a nonuniform
assumption. However, here is a promising approach: If lengthwise P-sel is not P/1-immune,
neither is TOP-TODA. Then every set in TOP-TODA must have a finder in FPNP since for each of
the two possible advice strings we can search for a word that is presumably in the language and
then apply the selector and output the more likely one. Finally, one would have to show (and
this is where the argument breaks down) that every set in TOP-TODA having a finder in FPNP

implies an upward collapse. For this an improvement would be needed over Hemaspaandra et
al.’s result like the following conjecture: If every top-Toda language has a finder in FP, then
NENP = E.

The notion of superkings is new and little is known about them. For instance, how many
superkings can a tournament have? A better understanding of their properties might help in
answering some of the above questions.

References

[1] Manindra Agrawal and Vikraman Arvind. Quasi-linear truth-table reductions to P-selective sets.
Theoretical Computer Science, 158(1–2):361–370, 1996.

22

[2] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations unless
EXPTIME has publishable proofs. Computational Complexity, 3(4):307–318, 1993.

[3] Richard Beigel, Martin Kummer, and Frank Stephan. Approximable sets. Information and Com-
putation, 120(2):304–314, 1995.

[4] R. Book, T. Long, and A. Selman. Quantitative relativizations of complexity classes. SIAM Journal
on Computing, 13(3):461–487, 1984.

[5] N. Bshouty, R. Cleve, S. Kannan, R. Gavaldà, and C. Tamon. Oracles and queries that are sufficient
for exact learning. Journal of Computer and System Sciences, 52(3):421–433, 1996.

[6] Jin-Yi Cai. Sp

2 ⊆ ZPPNP. Journal of Computer and System Sciences, 73(1):25–35, 2007.
[7] Judy Goldsmith, Deborah Joseph, and Paul Young. A note on bi-immunity and p-closeness of

p-cheatable sets in p/poly. Journal of Computer and System Sciences, 46(3):349–362, 1993.
[8] J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP − P: exptime versus nexptime.

Information and Control, 65:158–181, 1985.
[9] Edith Hemaspaandra, Lane A. Hemaspaandra, and Harald Hempel. What’s up with downward

collapse: using the easy-hard technique to link boolean and polynomial hierarchy collapses. SIGACT
News, 29(3):10–22, 1998.

[10] Edith Hemaspaandra, Lane A. Hemaspaandra, Till Tantau, and Osamu Watanabe. On the com-
plexity of kings. Technical Report TR905, Computer Science Department, University of Rochester,
December 2006.

[11] Edith Hemaspaandra, Lane A. Hemaspaandra, Till Tantau, and Osamu Watanabe. On the com-
plexity of kings. In E. Csuhaj-Varj and Z. Ésik, editors, Proceedings of FCT 2007, volume 4639 of
Lecture Notes in Computer Science, pages 328–340. Springer-Verlag, 2007.

[12] L. Hemaspaandra, M. Ogihara, M. Zaki, and M. Zimand. The complexity of finding top-Toda-
equivalence-class members. ACM Transactions on Computer Systems, 39(5):669–684, 2006.

[13] L. Hemaspaandra and L. Torenvliet. P-selectivity, immunity, and the power of one bit. In Proceed-
ings of the 32nd International Conference on Current Trends in Theory and Practice of Computer
Science, volume 3881 of Lecture Notes in Computer Science, pages 323–331. Springer-Verlag, Jan-
uary 2006.

[14] Lane Hemaspaandra and Leen Torenvliet. Optimal advice. Theoretical Computer Science,
154(2):367–377, 1996.

[15] Lane A. Hemaspaandra, Harald Hempel, , and Arfst Nickelsen. Algebraic properties for selector
functions. SIAM Journal on Computing, 33(6):1309–1337, 2004.

[16] Lane A. Hemaspaandra and Mitsunori Ogihara. The Complexity Theory Companion. Springer-
Verlag, 2002.

[17] Lane A. Hemaspaandra, Leen Torenvliet, and L. Torenvliet. Theory of Semi-Feasible Algorithms.
Springer-Verlag, 2002.

[18] Carl G. Jockusch. Reducibilities in Recursive Function Theory. PhD thesis, Massachusetts Institute
of Technology, 1966.

[19] Carl G. Jockusch. Semirecursive sets and positive reducibility. Transactions of the American Math-
ematical Society, 131:420–436, 1968.

[20] R. Karp and R. Lipton. Some connections between uniform and non-uniform complexity classes. In
Proc. 12th ACM Symp. on Theory of Computing, pages 302–309, 1980.

[21] Ker-I Ko. On self-reducibility and weak P-selectivity. Journal of Computer and System Sciences,
26(2):209–221, 1983.

[22] J. Köbler and O. Watanabe. New collapse consequences of np having small circuits. SIAM Journal
on Computing, 28(1):311–324, 1998.

[23] M. Krentel. The complexity of optimization problems. Journal of Computer and System Sciences,
36(3):490–509, 1988.

[24] H. Landau. On dominance relations and the structure of animal societies, III: The condition for
score structure. Bulletin of Mathematical Biophysics, 15(2):143–148, 1953.

[25] Arfst Nickelsen. Polynomial Time Partial Information Classes. Wissenschaft und Technik Verlag,
2001. Dissertation, Technische Universität Berlin, 1999.

[26] Arfst Nickelsen and Till Tantau. Partial information classes. SIGACT News, 34(1):32–46, 2003.
[27] Arfst Nickelsen and Till Tantau. The complexity of finding paths in graphs with bounded indepen-

dence number. SIAM Journal on Computing, 34(5):1176–1195, 2005.

23

[28] Mitsunori Ogihara. Polynomial-time membership comparable sets. SIAM Journal on Computing,
24(5):1068–1081, 1995.

[29] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[30] Alan L. Selman. P-selective sets, tally languages, and the behavior of polynomial time reducibilities

on NP. Mathematical Systems Theory, 13:55–65, 1979.
[31] Alan L. Selman. A taxonomy of complexity classes of functions. Journal of Computer and System

Sciences, 48(2):357–381, 1994.
[32] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22, 1976.
[33] N. Vereshchagin. Np-sets are co-NP-immune relative to a random oracle. In Third Israel Symposium

on Theory of Computing and Systems, pages 40–45., Los Alamitos, CA, USA, 1995. IEEE Computer
Society.

24

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

