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Abstract. In aseminal paper from 1985, Sistla and Clarke showed that the model-checking problem
for Linear Temporal Logic (LTL) is either NP-complete or PSPACE-complete, depending on the set
of temporal operators used. If, in contrast, the set of propositional operators is restricted, the
complexity may decrease. This paper systematically studies the model-checking problem for LTL
formulae over restricted sets of propositional and temporal operators. For almost all combinations
of temporal and propositional operators, we determine whether the model-checking problem is
tractable (in P) or intractable (NP-hard). We then focus on the tractable cases, showing that they
all are NL-complete or even logspace solvable. This leads to a surprising gap in complexity between
tractable and intractable cases. It is worth noting that our analysis covers an infinite set of problems,
since there are infinitely many sets of propositional operators.

1 Introduction

Linear Temporal Logic (LTL) has been proposed by Pnueli [Pnu77] as a formalism to specify properties
of parallel programs and concurrent systems, as well as to reason about their behaviour. Since then, it
has been widely used for these purposes. Recent developments require reasoning tasks  such as deciding
satisfiability, validity, or model checking to be performed automatically. Therefore, decidability and
computational complexity of the corresponding decision problems are of great interest.

The earliest and fundamental source of complexity results for the satisfiability problem (SAT) and
the model-checking problem (MC) of LTL is certainly Sistla and Clarke’s paper [SC85]. They have
established PSPACE-completeness of SAT and MC for LTL with the temporal operators F (eventually),
G (invariantly), X (next-time), U (until), and S (since). They have also shown that these problems
are NP-complete for certain restrictions of the set of temporal operators. This work was continued by
Markey [Mar04]. The results of Sistla, Clarke, and Markey imply that SAT and MC for LTL and a
multitude of its fragments are intractable. In fact, they do not exhibit any tractable fragment.

The fragments they consider are obtained by restricting the set of temporal operators and the use
of negations. What they do not consider are arbitrary fragments of temporal and Boolean operators.
For propositional logic, a complete analysis has been achieved by Lewis [Lew79]. He divides all infinitely
many sets of Boolean operators into those with tractable (polynomial-time solvable) and intractable
(NP-complete) SAT problems. A similar systematic classification has been obtained by Bauland et al. in
[BSST07] for LTL. They divide fragments of LTL — determined by arbitrary combinations of temporal
and Boolean operators —into those with polynomial-time solvable, NP-complete, and PSPACE-complete
SAT problems.

This paper continues the work on the MC problem for LTL. Similarly as in [BSS*07], the considered
fragments are arbitrary combinations of temporal and Boolean operators. We will separate the MC
problem for almost all LTL fragments into tractable (i.e., polynomial-time solvable) and intractable (i.e.,
NP-hard) cases. This extends the work of Sistla and Clarke, and Markey [SC85, Mar04], but in contrast
to their results, we will exhibit many tractable fragments and exactly determine their computational
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complexity. Surprisingly, we will see that tractable cases for model checking are even very easy —that
is, NL-complete or even L-solvable. There is only one set of Boolean operators, consisting of the binary
xor-operator, that we will have to leave open. This constellation has already proved difficult to handle
in [BSST07, BHSS06], the latter being a paper where SAT for basic modal logics has been classified in a
similar way.

While the borderline between tractable and intractable fragments in [Lew79] and [BSS*07] is quite
easily recognisable (SAT for fragments containing the Boolean function f(z,y) = x A7 is intractable,
almost all others are tractable), our results for MC will exhibit a rather diffuse borderline. This will become
visible in the following overview and is addressed in the Conclusion. Our most surprising intractability
result is the NP-hardness of the fragment that only allows the temporal operator U and no propositional
operator at all. Our most surprising tractability result is the NL-completeness of MC for the fragment
that only allows the temporal operators F, G, and the binary or-operator. Taking into account that MC
for the fragment with only F plus and is already NP-hard (which is a consequence from [SC85]), we would
have expected the same lower bound for the “dual” fragment with only G plus or, but in fact we show
that even the fragment with F and G and or is tractable. In the presence of the X-operator, the expected
duality occurs: The fragment with F, X plus and and the one with G, X plus or are both NP-hard.

Table 1 gives an overview of our results. The top row refers to the sets of Boolean operators given
in Definition 2.3. These seven sets of Boolean operators are all relevant cases, which is due to Post’s
fundamental paper [Pos41] and Lemma 2.2. Entries in bold-face type denote completeness for the given
complexity class under logspace reductions. (All reductions in this paper are logspace reductions <198.)
The entry L stands for logspace solvability. All other entries denote hardness results. Superscripts refer
to the source of the corresponding result as explained in the legend.

prop. operators | I N E A% M L BF Legend.
temp. operators (PS stands for PSPACE.)
X NL'' NL' NL'* NL'?2 NP2 NL' NP* 1 Theorem 3.2 (1)
G NL'* NL'' NL'* NL'“ NP2 NP*S 2 Theorem 3.2 (2)
F NL!' NL!! NP® NL!Z NP2 NPS 3 Theorem 3.2 (3)
FG NL'' NL!'' NP¢ NL14 NPe¢ NPS 4 Theorem 3.2 (4)
5 Corollary 3.3
FX 11 11 c 12 c
NL NL NP NL e 6 Theorem 3.4
GX NL' NL' NL™ 'NP° 7 Theorem 3.5
FGX NL'' NL!' 'NP® NP° 8 Theorem 3.6
S L16 L16 L16 L6 16 L6 16 9 Theorem 3.7
10 Theorem 3.8
SX NP NP!® NP!® NPO NP0 NP0 NPIO
11 Theorem 4.2
SG NP® NP® NP® NPS NP® 12 Theorem 4.3 (1)
SF NL!7 'NP® NP  NL'7 NP? 13 Theorem 4.3 (2)
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17 Theorem 4.7
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T Theorem 2.1 (2)
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Table 1. An overview of complexity results for the model-checking problem

This paper is organised as follows. Section 2 contains all necessary definitions and notation. In Section
3, we show NP-hardness of all intractable cases, followed by Section 4 with the NL-completeness of almost
all remaining cases. We conclude in Section 5.

2 Preliminaries

A Boolean function or Boolean operator is a function f : {0,1}" — {0,1}. We can identify an n-ary
propositional connector ¢ with the n-ary Boolean operator f defined by: f(ay,...,a,) =1 if and only if the



formula ¢(x1, ..., x,) becomes true when assigning a; to z; for all 1 < i < n. Additionally to propositional
connectors we use the unary temporal operators X (next-time), F (eventually), G (invariantly) and the
binary temporal operators U (until), and S (since).

Let B be a finite set of Boolean functions and T be a set of temporal operators. A temporal B-formula
over T is a formula ¢ that is built from variables, propositional connectors from B, and temporal operators
from T. More formally, a temporal B-formula over T is either a propositional variable or of the form
flo1,..y0n) or g(p1,...,0m), where p; are temporal B-formulae over T', f is an m-ary propositional
operator from B and g is an m-ary temporal operator from 7. In [SC85], complexity results for formulae
using the temporal operators F, G, X (unary), and U, S (binary) were presented. We extend these results
to temporal B-formulae over subsets of those temporal operators. The set of variables appearing in ¢
is denoted by VAR(p). If T = {X,F,G,U,S} we call ¢ a temporal B-formula, and if T = () we call ¢ a
propositional B-formula or simply a B-formula. The set of all temporal B-formulae over T is denoted
with L(T, B).

A Kripke structure is a triple K = (W, R,n), where W is a finite set of states, R C W x W is a total
binary relation (meaning that, for each a € W there is some b € W such that aRb)®, and 1 : W — 2VAR
for a set VAR of variables.

A model in linear temporal logic is a linear structure of states, which intuitively can be seen as different
points of time, with propositional assignments. Formally, a path p in K is an infinite sequence denoted
as (po,p1,--. ), where, for all i > 0, p; € W and p; Rp; 1.

For a temporal {A, =}-formula over {F, G, X, U, S} with variables from VAR, a Kripke structure K =
(W, R,n), and a path p in K, we define what it means that p* satisfies o in p; (p,i F ¢): let o1 and
2 be temporal {A, =}-formulae over {F, G, X, U, S} and let € VAR be a variable.

pKyiE1l and pX,iHO0

PEiE iff € n(p:),

P . K . K ;

PriiE eI Aps iff pRiE @ and pRliE g,
pK,i':—KrQ]_ lﬁ pK7i#(pl7

pK i E Fpy iff - there is a j > i such that p*,j & 1,
PEUEGer i forall j > pN ke,

K i E X iff pM i+ 1F e,

pK,iE oUpy iff there is an £ > i such that p®, £ E ¢y, and for every i < j < £, pX,jE o1,
pX,iE ©1Spy iff there is an £ < i such that p, £ E ¢q, and for every £ < j < i, pX,jE ¢;.

Since every Boolean operator can be composed from A and —, the above definition generalises to
temporal B-formulae for arbitrary sets B of Boolean operators.

This paper examines the model-checking problem MC(T, B) for a finite set B of Boolean functions
and a set T of temporal operators.

Problem: MC(T, B)

Input: (p, K,a), where ¢ € L(T, B) is a formula, K = (W, R, n) is a Kripke structure, and
a € W is a state

Question: Ts there a path p in K such that py = a and p*,0 E ?

Sistla and Clarke [SC85] have established the computational complexity of the model-checking problem
for temporal {A, V, = }-formulae over some sets of temporal operators.

Theorem 2.1 ([SC85]).

(1) MC({F},{A,V,—}) is NP-complete.
(2) MC({F,X},{A,V,=}), MC({U},{A,V,=}), and MC({U, S, X}, {A, Vv, =}) are PSPACE-complete.

Since there are infinitely many finite sets of Boolean functions, we introduce some algebraic tools
to classify the complexity of the infinitely many arising satisfiability problems. We denote with idj, the
n-ary projection to the k-th variable, where 1 < k < n, i.e., id}(z1,...,z,) = xp, and with ¢ the n-ary
constant function defined by ¢?(z1,...,7,) = a. For ¢i(x) and c}(x) we simply write 1 and 0. A set
C of Boolean functions is called a clone if it is closed under superposition, which means C' contains all
projections and C' is closed under arbitrary composition [Pip97]. For a set B of Boolean functions we
denote with [B] the smallest clone containing B and call B a base for [B]. In [Pos41] Post classified the
lattice of all clones and found a finite base for each clone.

5 In the strict sense, Kripke structures can have arbitrary binary relations. However, when referring to Kripke
structures, we always assume their relations to be total.



The definitions of all clones as well as the full inclusion graph can be found, for example, in [BCRV03].
The following lemma implies that only clones with both constants 0, 1 are relevant for the model-checking
problem; hence we will only define those clones. Note, however, that our results will carry over to all clones.

Lemma 2.2. Let B be a finite set of propositional functions and T be a set of temporal operators. Then
MC(T, BU{0,1}) =& MC(T, B).

Proof. MC(T, B) <!°¢ MC(T, B U {0,1}) is trivial. For MC(T, B U {0, 1}) <!°¢ MC(T, B) let (p, K, a)
be an instance of MC(T, B U {0,1}) for a Kripke structure K = (W, R,n) and let L and T be two fresh
variables. We define a new Kripke structure K’ = (W, R,n’) where n/(a) = n(a) U {T} and we define
¢’ to be a copy of ¢ where every appearance of 0 is replaced by L and every appearance of 1 by T. It
holds that (¢, K’,a) is an instance of MC(T, B) and that (p, K,a) € MC(T, B U {0,1}) if and only if
(¢, K',a) € MC(T, B). |

Because of Lemma 2.2 it is sufficient to look only at the clones with constants. Their definition and
bases are given in the following definition, their inclusion structure in Figure 1.

Definition 2.3. Let @ denote the binary exclusive or. Let f be an n-ary Boolean function.

(1) BF is the set of all Boolean functions.

(2) M is the set of all monotone functions, that is, the set of all functions f where a1 < by, ..., ap < by
implies f(ay,...,an) < f(b1,...,by).

(3) L is the set of all linear functions, that is, the set of all functions f that satisfy f(xy,...,2,) =
co®(c1 ANx1) -+ D (cn A y), for constants c;.

(4) V is the set of all functions f where f(xz1,...,x,) =coV (c1 Ax1) V-V (cn Axy), for constants c;.

(5) E is the set of all functions f where f(x1,...,2,) =co A (c1 V1) A---A(cy V), for constants c;.

(6) N is the set of all functions that depend on at most one variable.

(7) 1 is the set of all projections and constants.

These five clones have the following bases.

clone‘ BF M L \% E N I
base \ {n, =} {Vv,A0,1} {&®,1} {V,1,0} {A, 1,0} {-,1,0} {0,1}

There is a strong connection between propositional for-
mulae and Post’s lattice. If we interpret propositional for- @
mulae as Boolean functions, it is obvious that [B] includes
exactly those functions that can be represented by B-
formulae. This connection has been used various times to
classify the complexity of problems related to propositional @
formulae. For example, Lewis presented a dichotomy for
the satisfiability problem for propositional B-formulae: it
is NP-complete if z Ay € [B], and solvable in P otherwise o @
[Lew79]. Furthermore, Post’s lattice has been applied to the
equivalence problem [Rei01], to counting [RW05] and find-
ing minimal [RV03] solutions, and to learnability [Dal00]
for Boolean formulae. The technique has been used in non- o
classical logic as well: Bauland et al. achieved a trichotomy
in the context of modal logic, which says that the satisfia-
bility problem for modal formulae is, depending on the al-
lowed propositional connectives, PSPACE-complete, coNP-
complete, or solvable in P [BHSS06]. For the inference problem for propositional circumscription, Nordh
presented another trichotomy theorem [Nor05].

An important tool in restricting the length of the resulting formula in many of our reductions is the
following lemma.

Fig. 1. Clones with constants

Lemma 2.4. Let C be a finite set of Boolean functions such that B C {A,V,~} and B C [C]. Then
MC(T, B) <!°8 MC(T, C) for every set T of temporal operators.

Proof. Let D = C U{0,1}. From Lemmas 1.4.4 and 1.4.5 in [Sch07] we directly conclude: Let f be
one of the functions or, and, and not such that f € [D]. Let k be the arity of f. Then there is a D-

formula ¢(z1, . .., z) representing f, such that every variable occurs only once in ¢. Hence MC(T, B) <&
MC(T,C U {0, 1}). From Lemma 2.2 follows MC(T, C' U {0,1}) <l°& MC(T, O). a



It is essential for this Lemma that B C {A,V, —}. For, e.g., B = {@&}, it is open whether MC(T, B) <!&
MC(T, BF). This is a reason why we cannot immediately transform upper bounds proven by Sistla and
Clarke [SC85]—for example, MC({F, X}, {A, V,—}) € PSPACE—to upper bounds for all finite sets of
Boolean operators—i.e., it is open whether for all finite sets B of Boolean operators, MC({F, X}, B) €
PSPACE.

3 The bad fragments: intractability results

Sistla and Clarke [SC85] and Markey [Mar04] have considered the complexity of model-checking for
temporal {A,V, =}-formulae restricted to atomic negation and propositional negation, respectively. We
define a temporal B-formula with propositional negation to be a temporal B-formula where additional
negations are allowed, but only in such a way that no temporal operator appears in the scope of a
negation sign. In the case that negation is an element of B, a temporal B-formula with propositional
negation is simply a temporal B-formula. In [SC85], atomic negation is considered, which restricts the
use of negation even further negation is only allowed directly for variables. We will now show that
propositional negation does not make any difference for the complexity of the model checking problem.
Since this obviously implies that atomic negation inherits the same complexity behaviour, we will only
speak about propositional negation in the following. The proof of the following lemma is nearly identical
to that of Lemma 2.2, and can be found in the Appendix.

Lemma 3.1. Let T be a set of temporal operators, and B a finite set of Boolean functions. We use
MC™(T, B) to denote the model-checking problem MC(T, B) extended to B-formulae with propositional
negation. Then MC™ (T, B) =!8 MC(T, B).

Using Lemma 2.4, we can generalise hardness results from [SC85, Mar04] to obtain the following
intractability results for model-checking.

Theorem 3.2. Let B be a finite set of Boolean functions such that M C [B]. Then

(1) MC({F,G,X}, B) is PSPACE-hard.

(2) MC({F}, B), MC({G}, B), and MC({X}, B) are NP-hard.
(8) MC({U}, B) and MC({G, X}, B) are PSPACE-hard.

(4) MC({S, G}, B) and MC({S,F}, B) are PSPACE-hard.

In Theorem 3.5 in [SC85] it is shown that MC({F}, {A, V,—}) is NP-hard. In fact, Sistla and Clarke
give a reduction from 3SAT to MC({F}, {A}). The result for arbitrary bases B generating a clone above
E follows from Lemma 2.4.

Corollary 3.3. Let B be a finite set of Boolean functions such that E C [B]. Then MC({F}, B) is
NP-hard.

The model-checking problem for temporal {A,V}-formulae over {G, X} is PSPACE-complete (Theo-
rem 3.2(3) due to [Mar04]). The Boolean operators {A, V} are a basis of M, the class of monotone Boolean
formulae. What happens for fragments of M? In Theorem 4.3 we will show that MC({G, X}, E) is NL-
complete, i.e., the model-checking problem for temporal {A}-formulae over {G, X} is very simple. We will
now show that switching from A to V makes the problem intractable. As notation, we use LIT(p) to
denote the literals obtained from variables that appear in ¢.

Theorem 3.4. Let B be a finite set of Boolean functions such that V. C [B]. Then MC({G, X}, B) is
NP-hard.

Proof. By Lemma 2.4, it suffices to give a reduction from 3SAT to MC({G, X}, {V}). A formula ¢
in 3CNF is mapped to an instance (o', K(v),q1) of MC({G, X}, {V}) as follows: Let v = C; A ... A Cypy,
consist of m clauses, and n = | VAR(¢))| variables. The Kripke structure K () has states Q = {q1,...,qm}
containing one state for every clause, a sequence of states P = {l’ | [ € LIT(¢),0 < j < m — 1} for
every literal, and a final sink state s. That is, the set of states is Q U P U {s}. The variables of K (v) are
b1,...,bm,c. Variable b, is assigned true in a state l? iff literal I; is contained in clause C,. In all other
states, every b; is false. Variable c is assigned true in all states in P U {s}.

The relation between the states is Fy U FEs U E3U E4U Es as follows. It starts with the path q1, ..., ¢mn:
By ={(¢i,¢i+1) | i =1,2,...,m —1}. g, has an edge to 29 and an edge to Z3: Ey = {(gm, 2?), (¢, 7)) }-
Each 19 is the starting point of a path 19,1}, ..., 1™ By = {(1,") | ; € LIT(4),j = 0,1,...,m —2}.

177 1%



Fig. 2. The Kripke structure K (1) for o = (21 V 722 V 7xa) A (mz1 V 23 V 72a) A (022 V 24).

Each endpoint of these paths has both the literals with the next index resp. the final sink state as
neighbours: By = {(I""',10,,) | i=1,2,...,n—1,1; € LIT(¥)} U {(z*1,s), (@2, 5)}. The final sink
state s has an edge to s itself, E5 = {(s,s)}.

Figure 2 shows an example for a formula 1y and the Kripke structure K (1/). Notice that every path
in such a Kripke structure K (¢) corresponds to an assignment to the variables in ). A path corresponds
to a satisfying assignment iff for every b; the path contains a state that b; is assigned to. We are now
going to construct a formula 1)’ to express this property. If we were allowed to use the A in ¢, this would

be easy. But, the formula ¢’ consists only of operators G, X, V, and of variables by, ..., by, c. In order to
define ¢’, we use formulae ¢; and v} defined as follows. For i = 1,2,...,m define
0 = \/ Xk:-mf(ifl)bi )
k=1,2,...,n

Intuitively, ¢; says that b; is satisfied in a state in distance d, where d = m—(i—1) (mod m). The state g; is
the only state in @ where ¢; can hold. Every path p in K (¢) has the form p = (g1, ¢2,- - -, @m, 13, ..., I,
s,8,...). Every state except for s appears at most once in p. For the sake of simplicity, we therefore
can use pKXW) g, E a instead of pKW) i —1 F a (for i = 1,2,...,m), and pK(w),lzJ- F « instead of
pE@) m 4+ (i —1)-m+ 5 E a. We use for a path p = (g1, ¢2,...) in K(¢)) and 1 < i < m the notation
pKW) g E a instead of pK¥) i —1E a.

Claim 1. For every path p in K(¢) and 1 < 4,5 < m holds: If pX(¥) ¢; £ ©;, then i = j.

The formulae 9, are defined inductively for i =m + 1,...,2,1 as follows (as before, we can use V in
our construction):

Yy =c and =G (p; VGYL, ) (form>i>1).

Finally, ¢ = 1.
Tt is clear that the reduction function ¢ — (¢, K(),q1) can be computed in logarithmic space. Tt
remains to prove the correctness of the reduction. Using Claim 1, we make the following observation.

Claim 2. For every path p = (¢1,¢2,...) in K(¢) and i = 1,2,...,m holds:
pE@) ¢ E i if and only if for j =4,i+1,...,m holds pK(w),qj F ;.

For a path p in K(¢), let A, be the corresponding assignment for . It is clear that pK@) ¢ E o

if and only if A, satisfies clause C; of 1. Using Claim 2, it follows that pE@) gy E 4 if and only if A,
satisfies all clauses of 9, i.e., A, satisfies . Using the one-to-one correspondence between paths in K (v)
and assignments to the variables of ¢ we get ¢ € 3SAT if and only if (¢, K(¢), 1) € MC({G, X}, {V}).
0

From [SC85] it follows that MC({G, X}, V) is in PSPACE. It remains open whether MC({G, X}, V) or
MC({G, X}, M) have an upper bound below PSPACE.

Next, we consider formulae with the until-operator or the since-operator. We first show that using the
until-operator makes model-checking intractable.

Theorem 3.5. Let B be a finite set of Boolean functions. Then MC({U}, B) is NP-hard.

Proof. We give a reduction from 3SAT to MC({U}, ). This means, that we do not need any Boolean
operators in the temporal formula over {U} to which a 3SAT instance is mapped. Let ¢ = C1AC2A. . .ACy,
be a 3CNF formula consisting of m clauses and n variables. The structure K (v) has states {q1,...,¢n}U



LIT(¢) U {s}, with initial state g;. The assignment for state ¢; is {a1,...,a;} (for i =1,2,...,m), and
for state I; it is {a1,...,a;} U {b; | Literal [; € LIT(¢)) appears in clause C;}. In state s, no variable is
assigned true. The relation between the states is as follows. Each ¢; (¢ = 1,2,...,m — 1) has an edge to
di+1, ¢m has edges to x1 and to Ty, each [; (i = 1,2,...,n—1) has edges to ;11 and to Z; 11, and z,, and
T, have an edge to s. s has an edge to s only. Figure 3 gives an example. The following facts are easy to

Fig. 3. Structure K (¢) for ¢ = (21 V =2 V —24) A (m21 V 23 V —24) A (522 V 24)

verify for any path p in K(v). For the sake of simplicity, we use for a path p = (¢1,¢2,...) in K(¢) and
1 < i < m the notation pX¥), ¢; £ « instead of pK®) i —1F a.

Fact 1 For 1 < j < i <m holds: pK(d’),qu‘ a;Ub; .
Fact 2 For 1 <i <m holds: 3t : p&XW) t E q;Ub; iff pXW) ¢, E a;Ub; .

The formulae g, ¢1, ... are defined inductively as follows.
o = 1 and vit1 = (piU(aip1Ubiy1)).
The reduction from 3SAT to MC({U}, 0) is performed by the mapping ¥ +— (om, K(¢), q1), where 1)
is a 3CNF-formula with m clauses. This reduction can evidently be performed in logarithmic space. To
prove its correctness, we use the following claim.

Claim 3. Let K (1) be constructed from a formula ¢ with m clauses, and let p be a path in K(v). For
7=1,2,...,m it holds that pE@) g E p; if and only if pE@) g E pj—1 and pEW), q; F a;Ub; .

We have a one-to-one correspondence between paths in K (1) and assignments to variables of 1. For
a path p we will denote the corresponding assignment by A4,. Using Claim 3, it is easy to see that the
following properties are equivalent.

1. A, is a satisfying assignment for 1.
2. Path p in K (%) contains for every i = 1,2,...,m a state with assignment b;.
3. pEW) ¢, E aq;Ub; for i =1,2,...,m.

This concludes the proof that 1) € 3SAT if and only if (¢, K(¥),q1) € MC({U}, 0). a

Although the until-operator and the since-operator appear to be similar, model-checking for formulae
that use the since-operator as only operator is as simple as for formulae without temporal operators see
Theorem 4.6. The reason is that the since-operator has no use at the beginning of a path of states, where
no past exists. It needs other temporal operators that are able to enforce to visit a state on a path that
has a past.

Theorem 3.6. Let B be a finite set of Boolean functions. Then MC({G,S}, B) is NP-hard.

Proof. We give a reduction from 3SAT to MC({G, S}, () that is similar to that in the proof of Theo-
rem 3.5 for MC({U}, #)). Let 1 be an instance of 3SAT, and let K (1)) be the structure as in the proof of
Theorem 3.5. From K (1) = (W, R,n) we obtain the structure H(p) = (W', R’,n’) as follows. First, we
add a new state t, i.e., W’ = W U {t}. Second, replace R by its inverse R~! = {(v,u) | (u,v) € R} from
which the loop at state s is removed. The state s has in-degree 0 and will be seen as initial state of H(y).
The new state ¢ will be used as sink state. Therefore, we add the arcs (q1,t) and (¢,t). This results in
R = (R —{(s,5)})U{(q1,1), (t,t)}. Finally, we add a new variable e that is true only in state ¢, and a
variable d that is true in states LIT(¢)) U {s}. For all other variables, " is the same as 7. (Figure 4 shows
an example.)
The formulae ©T*, 3, ..., o, are defined inductively as follows.



Fig. 4. Structure H () for 1) = (x1 V =2 V —24) A (=21 V 23 V —24) A (-2 V 24)

omi1 = d and o = ((a;Sh;) S¢imy) fori=1,2,...,m.

The reduction from 3SAT to MC({G, S}, ) is performed by the mapping 1 — (G(eS¢t*), H(%),s),
where 1) is a 3CNF-formula with m clauses. This reduction can evidently be performed in logarithmic
space. To prove its correctness, we use the following claim. Every path p = (s,{,, ..., 11, ¢my- - -, q1, 6, L, . )
in H(1) that begins in state s corresponds to an assignment A, = {l1,...,1,} to the variables in 1, that
sets all literals to true that appear on p. For the sake of simplicity, we use the notation p?(¥), ¢, F «
instead of p"¥) n+m —i+1E a.

Claim 4. Let H (%) be constructed from a formula ¢ = C; A ... A C,, with m clauses, and let p =
(85011, @my -+ -y q1,t,t,...) be a path in H(¢). For j =1,2,...,m it holds that

pH W), qj F ¢" if and only if the assignment A,, satisfies clauses Cj, ..., Cy,.

Finally, let ¥ be a 3CNF formula, and consider a path p = (s,1,,...,l1,qm,--,q1,t,t,...) in H().
On the first n + 1 states of p, the variable d holds. Therefore, 7" and henceforth eSp" is satisfied in
all these states. On the m following states g, ...,q1, neither d nor e holds. Notice that p(¥), ¢; o
iff pHW) ¢, E @iy (for i = 2,3,...,m). By Claim 4, ¢7* and henceforth eS¢} is satisfied in all these
states iff A, satisfies 1. On the remaining states, only the variable e holds. Hence, eS¢!" is satisfied in
all the latter states iff A, satisfies 1. Concluding, it follows that p(¥) 0 F G(eS¢]) iff A, satisfies v).
Since for every assignment to 1 the structure H (1)) contains a corresponding path, the correctness of the
reduction is proven. d

The future-operator F alone is not powerful enough to make the since-operator S NP-hard: We will
show in Theorem 4.7 that MC({F,S}, B) for [B] C V is NL-complete. But with the help of — or A, the
model-checking problem for F and S becomes intractable.

Theorem 3.7. Let B be a finite set of Boolean functions such that N C [B]. Then MC({F,S}, B) is
NP-hard.

Proof. By Lemma 2.4 it suffices to give a reduction from 3SAT to MC({F,S}, {—}). For a 3CNF formula
P, let (G(eSet"), H(1), s) be the instance of MC({G, S}, 0) as described in the proof of Theorem 3.6.
Using Ga = —F—q, it follows that G(eSpT*) = =F(—=(eS¢"")), where the latter is a N-formula over {F,S}.
The correctness of the reduction the same line as the proof of Theorem 3.6. a

Theorem 3.8. Let B be a finite set of Boolean functions. Then MC({X,S}, B) is NP-hard.

Proof. To prove NP-hardness, we give a reduction from 3SAT to MC({X,S},#). For a 3CNF formula
1, let H(1) be the structure as described in the proof of Theorem 3.6. The reduction function maps
to (X"t ¥y, H (1), s). The XL “moves” to state q; on any path in H(1). The correctness proof
follows the same line as the proof of Theorem 3.6. a

An upper bound better than PSPACE for the intractable cases with the until-operator or the since-
operator remains open. We will now show that one canonical way to prove an NP upper bound fails, in
showing that these problems do not have the “short path property”, which claims that a path in the
structure that fulfills the formula has length polynomial in the length of the structure and the formula.
A counterexample can be found in Appendix C. Hence, it will most likely be nontrivial to obtain a better
upper bound.



4 The good fragments: tractability results

This subsection is concerned with fragments of LTL that have a tractable model-checking problem. We
will provide a complete analysis for these fragments by proving that model checking for all of them is
NL-complete or even solvable in logarithmic space. This exhibits a surprisingly large gap in complexity
between easy and hard fragments.

The following lemma establishes NL-hardness for all tractable fragments.

Lemma 4.1. Let B be a finite set of Boolean functions. Then MC({F}, B), MC({G}, B), and MC({X}, B)
are NL-hard.

Proof. First consider MC({F}, B). We reduce the accessibility problem for digraphs, GAP, to MC({F}, 0).
The reduction is via the following logspace computable function. Given an instance (G,a,b) of GAP,
where G = (V, E) is a digraph and a,b € V, map it to the instance (Fy, K(G),a) of MC({F},#) with
K(G) = (V,E",n), where ET denotes the reflexive closure of E, and 7 is given by n(b) = {y} and
n(v) =0, for all v € V — {b}. It is immediately clear that there is a path from a to b in G if and only if
there is a path p in K(G) starting from a such that p¥(%) 0k Fy.

For MC({X}, B), we use an analogous reduction from GAP to MC({X}, (). Given an instance (G, a, b) of
GAP, where G = (V, E), transform it into the instance (X'Vly, K(G),a) of MC({X}, 0)) with the Kripke
structure K (G) from above. Now it is clear that there is a path from a to b in G if and only if there is
a path of length |V| from a to b in the reflexive structure K(G), if and only if there is a path p in K(G)
starting from a such that p(&) 0 E XIVly.

Now consider MC({G}, B). We reduce the following problem to MC({G}, (). Given a directed graph
G = (V,E) and a vertex a € V, is there an infinite path in G starting at a? It is folklore that this is an
NL-hard problem (see Lemma D.1 in the Appendix). Given an instance (G, a) of this problem, transform
it into the instance (Gy, K'(GQ),a) of MC({G}, (), where K'(G) = (V',E’,n). Here V' = VU{0 | v €
V, v has no successor in V}, E' = EU{(v,?), (0,0) |v € V'}, n(v) =y for all v € V, and n(?) = 0, for
all o € V’. It is immediately clear that there is an infinite path in G starting at « if and only if there is
a path p in K'(G) starting from a such that pE'(D 0 E Gy. a

It now remains to establish upper complexity bounds. Let C be one of the clones N, E, V, and L,
and let B be a finite set of Boolean functions such that [B] C C. Whenever we want to establish NL-
membership for some problem MC(-, B), it will suffice to assume that formulae are given over one of the
bases {—,0,1}, {A,0,1}, {V,0,1}, or {e,0, 1}, respectively. This follows since these clones only contain
constants, projections, and multi-ary versions of not, and, or, and @, respectively.

Theorem 4.2. Let B be a finite set of Boolean functions such that [B] C N. Then MC({F, G, X}, B) is
NL-complete.

Proof. The lower bound follows from Lemma 4.1. For the upper bound, first note that for an LTL formula
1) the following equivalences hold: FFy = Fvy, GGy = Gy, FGFy = GFvy, GFGyY = FGy, Gy = —=F—), and
Fy = =G—). Furthermore, it is possible to interchange X and adjacent G-, F-, or —-operators without
affecting satisfiability. Under these considerations, each formula ¢ € L({F, G, X}, B) can be transformed
without changing satisfiability into a normal form ¢’ = X™ P~y, where P is a prefix ranging over the
values “empty string”, F, G, FG, and GF; m is the number of occurrences of X in ¢; ~ is either the empty
string or —; and y is a variable or a constant.

This normal form has two important proper-
ties. First, it can be represented in logarithmic
space using two binary counters a and b. The
counter a stores m, and b takes on values 0,...,9
to represent each possible combination of P and
~. Note that a takes on values less than |¢|, and b
has a constant range. Hence both counters require
at most logarithmic space. It is not necessary to
store any information about y, because it can be
taken from the representation of .

Second, ¢’ can be computed from ¢ in logarith-
mic space. The value of a is obtained by counting Fig. 5. An automaton that computes P~
the occurrences of X in ¢, and b is obtained by
linearly parsing ¢ with the automaton that is given in Figure 5, and which ignores all occurrences of X.




The state of this automaton at the end of the passage through ¢ determines the values of P and ~
in ¢. Now let ¢ be an L({F,G, X}, B)-formula, K = (W, R,n) a Kripke structure and a € W. If y is
constant, the problem is trivial, therefore it remains to consider the case where y is a variable. According
to the possible values of P and ~ in ¢, there are ten cases to consider. We only present the argumentation
for those five in which ~ is empty. (For the dual cases, kindly replace each occurrence of “€ n(b)” by
“Z n(b)”.) In the following list, we assume that m = 0. As per explanation below, this is not a significant
restriction.

P is empty. Then (¢, K,a) € MC({F, G, X}, B) if and only if there is a state b in K accessible from a
via R such that y € n(b).

P = F. In this case we have to check whether there is a state b € W that can be reached from a via R,
and y € n(b).

P =G. We define W ={be W |y e nb}ad R = RNW x W. It holds that {p, K,a) €
MC({F, G, X}, B) if and only if there is some b € W' such that b is accessible from a via R’ and b
belongs to a cycle in R'.

P = FG. This case can be reduced to the previous one: (¢, K,a) € MC({F, G, X}, B) if and only if there
is some b € W’ that can be reached from a via R, and (Gy, K, b) € MC({F, G, X}, B).

P = GF. We have to check whether there exists some b € W that can be reached from a via R such that
y € n(b) and b belongs to a cycle.

Since the questions whether there is a path from any vertex to another and whether any vertex belongs
to a cycle in a directed graph can be answered in NL, all previously given procedures are NL-algorithms.
The restriction m = 0 is removed by the observation that (X™P~y, K,a) € MC({F, G, X}, B) if and
only if there exists some state b in K that is accessible from a in m R-steps such that (P~y, K,b) €
MC({F, G, X}, B). This reduces the case m > 0 to m = 0.

Hence we have found an NL-algorithm deciding MC({F, G, X}, B): Given (¢, K, a), compute ¢, guess
a state b accessible from a in m R-steps, apply the procedure of one of the above five cases to (¢’, K, a),
and accept if the last step was successful. a

Theorem 4.3. (1) Let B be a finite set of Boolean functions such that [B] C V. Then MC({F, X}, B) is
NL-complete.
(2) Let B be a finite set of Boolean functions such that [B] C E. Then MC({G, X}, B) is NL-complete.

Proof. The lower bounds follow from Lemma 4.1.

First consider the case [B] C V. It holds that F(yy V -+ V4),) = Fipy V-V Fib,, as well as XFp = FXp
and X(p V1) = Xp V Xip. Therefore, every formula ¢ € L({F, X}, B) can be rewritten as

(,9, _ [:)(7?1y1 VeV FXi"yn V Xi"+1yn+1 VeV Xim?]ma

where y1, ...,y are variables or constants (note that this representation of ¢ can be constructed in L).
Now let (¢, K, a) be an instance of MC({F, X}, B), where K = (W, R,n), and let ¢ be of the above form.
Thus, (p, K,a) € MC({F, X}, B) if and only if for some j € {n +1,...,m}, there is a state b € W such
that y; € n(b) and b is accessible from a in exactly i; R-steps or if, for some j € {1,...,n}, there is a
state b € W such that y; € n(b) and b is accessible from a in at least i; R-steps. This can be tested in
NL.

As for the case [B] C E, we take advantage of the duality of F and G, and A and V, respectively. Analogous
considerations as above lead to the logspace computable normal form

@ = GXyp Ao AGX gy, A Xty A A Xy
Let I = max{iy,...,im}. For each j = 1,...,m, we define W/ = {b € W | y; € n(b)} and R/ =
RNWJ x WJ. Furthermore, let W’ be the union of W7 for j = 1,...,n (!), and let R = RNW' x W'.
Now (¢, K, a) € MC({G, X}, B) if and only if there is some state b € W' satisfying the following conditions.

— There is an R-path p of length at least I from a to b, where the first I 4+ 1 states on p are ¢y = a, c1,

ey CT.
— The state V' lies on a cycle in W',
— For each j =1,...,n, each state of p from ¢;; to ¢ is from Wi,
— For each j =n +1,...,m, the state ¢;; is from Wi,
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These conditions can be tested in NL as follows. Successively guess ¢q, . . ., ¢y and verify their membership
in the appropriate sets W7. Then guess b, verify whether b € W', whether b lies on some R’-cycle, and
whether there is an R’-path from c; to b. d

In the proof of Theorem 4.3, we have exploited the duality of F and G, and V and A, respectively.
Furthermore, the proof relied on the fact that F and vV (and G and A) are interchangeable. This is not
the case for F and A, or G and V, respectively. Hence it is not surprising that MC({F}, {A}) is NP-
hard (Corollary 3.3). However, the NL-membership of MC({F, G}, {V}) is surprising. Before we formulate
this result, we try to provide an intuition for the tractability of this problem. The main reason is that
an inductive view on L({F, G}, {V})-formulae allows us to subsequently guess parts of a satisfying path
without keeping the previously guessed parts in memory. This is possible because each L({F, G}, {V})-
formula ¢ can be rewritten as

o=y V- Vypy VFz1 V---VFz, VG V---V Gty VFGt)py1 V- -V FGyy, (1)

where the y;, z; are variables (or constants), and each ; is an L({F, G}, {V})-formula of the same form
with a strictly smaller nesting depth of G-operators. Now, ¢ is true at the begin of some path p iff one
of its disjuncts is true there. In case none of the y; or Fz; is true, we must guess one of the Gy; (or
FGy;) and check whether ¢; (or v;) is true on the entire path p (or on p minus some finite number
of initial states). Now 1); is again of the above form. So we must either find an infinite path on which
Y1V VynVFzi V- VFz, is true everywhere (a cycle containing at least | V| states satisfying some y;
or z; suffices, where N is the set of states of the Kripke structure), or we must find a finite path satisfying
the same conditions and followed by an infinite path satisfying one of the Gi; (or FGy);) at its initial
point. Hence we can recursively solve a problem of the same kind with reduced problem size.

Note that it is neither necessary to explicitly compute the normal form for ¢ or one of the v;, nor
need previously visited states be stored in memory.

Theorem 4.4. Let B be a finite set of Boolean functions such that [B] C V. Then MC({G}, B) and
MC({F, G}, B) are NL-complete.

Proof. The lower bound follows from Lemma 4.1. Tt remains to show NL-membership of MC({F, G}, B).
For this purpose, we devise the recursive algorithm MC(f g} v as given in Figure 6. Note that we have
deliberately left out constants. This is no restriction, since we have observed in Lemma 2.2 that each
constant can be regarded as a variable that is set to true or false throughout the whole Kripke structure.

The parameter mode indicates the current “mode” of the computation. The idea is as follows. In
order to determine whether ¢ is satisfiable at the initial point of some structure starting at a in K, the
algorithm has to be in mode now. This, hence, is the default setting for the first call of MC(f g} v- As soon
as the algorithm chooses to process a G-subformula Ga of ¢, it has to determine whether « is satisfiable
at every point in some structure starting at the currently visited state in K. It therefore changes into
always mode and calls itself recursively with the first parameter set to «, see Line 17.

Hence, given an instance (p, K, a) of MC({F, G}, B), we have to invoke MC(f g} v (¢, K, a,now) in order
to determine whether there is a satisfying path for ¢ in K starting at a. It is easy to see that this call
always terminates: First, whenever the algorithm calls itself recursively, the first argument of the new call
is a strict subformula of the original first argument. Therefore there can be at most |¢| recursive calls.
Second, within each call, each passage through the while loop (Lines 2-32) either decreases v or increases
c. Hence, there can be at most || - (JW|+ 1) passages through the while loop until the algorithm accepts
or rejects.

MC(F Gy,v is an NL algorithm: The values of all parameters and programme variables are either subfor-
mulae of the original formula ¢, states of the given Kripke structure K, counters of range 0, ..., |W|+1,
or booleans. They can all be represented using [log |¢|], [log(|W]| + 1)], or constantly many bits. Fur-
thermore, since the algorithm uses no return command, the recursive calls may re-use the space provided
for all parameters and programme variables, and no return addresses need be stored.

It remains to show the correctness of MC(f gy,v, which we will do in two steps. in always mode,
which will be shown by induction on the nesting depth of the G-operator in ¢. We denote this value by
16 (). Claim 6 will then ensure the correct behaviour in now mode. Its proof is similar to, but technically
different from, the proof of Claim 5.

Claim 5. For each ¢ € L({F,G},V), each K = (W, R,n), and each a € W:

(Gp,K,a) € MC({F,G},B) <« there exists an accepting run of MC(r ¢y v(¢, K, a, always)
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Algorithm MCif,6},v

Input ¢ € L({F,G}, B)

Kripke structure K = (W, R, n)

aeW

additional parameter mode € {now, always}
Output accept or reject

1: ¢+ 0; Y+«—¢; b a; Ffound+« false

2: while ¢ < |W| do

3: ifY=aoVar (forsome ap,a1) then

4: guess i € {0,1}

5: P —

6: elseif ¥ =Fa (for some @) then

7 Ffound < true

8: Y —

9: else /* 1 is some G or a variable %/
10: if Ffound then /* process encountered F x/
11: guess n with 0 < n < |W|
12: fori=1,2,...,ndo /* if n = 0, ignore this loop */
13: b < guess some R-successor of b
14: end for
15: end if
16: if v = Ga (for some ) then
17: call MCyf 6},v (e, K, b, always)

18: else /* ¢ is a variable */
19: if ¢ ¢ n(b) then

20: reject

21: end if

22: if mode = always then

23: c—c+1

24: b « guess some R-successor of b
25: Ffound < false

26: P —

27: else

28: accept

29: end if

30: end if

31:  endif

32: end while

33: accept

Fig. 6. The algorithm MCr ¢} v

Proof of Claim 5. For the base case of the induction, let pg(¢) = 0. Because of the equivalences
F(y1 V1pa) = Fipy V Fipy and FFy = Fyb, we may assume w.l.o.g. that any occurrence of the F-operator is
in front of some variable in ¢. If we think of ¢ as a tree, this means that F-operators can only occur in
direct predecessors of leaves. Note that the algorithm computes this normal form implicitly: Whenever
it guesses a path from the root (¢) to some leaf (a variable) in the tree and encounters an F-operator in
Line 6, the flag Ffound is set. Only after processing all V-operators on the remaining part of the path,
the F-operator is processed in Lines 10 15. Now let VAR () be all variables that occur in the scope of
an F-operator in ¢, and let VAR () be all other variables in (.

For the “=” direction, suppose (Gp, K, a) € MC({F, G}, B). Then there exists a path p in K such that
po = a, and for all i > 0, pX,i F . This means that, for each 4, either there exists some x; € VAR (p)
such that p,i F z;, or there is some x; € VAR (¢) such that p®,i F Fz;. Now it can be seen that there
is a non-rejecting sequence of runs through the while loop in Lines 2-32 after which ¢ has value |W|+ 1,
which then leads to the accept in Line 33:

Consider the begin of an arbitrary single run through the while loop in Line 2. Let p; be the current
value of b. If z; € VARy(p), then the algorithm can “guess its way through the tree of ¢” in Lines 3-5
and finally reaches Line 19 with ¢ = z;. It does not reject in Line 20, increases c¢ in Line 23, guesses
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pi+1 in Line 24, and resets Ffound and 1 appropriately in Lines 25, 26. Otherwise, if z; € VAR (p),
then there is some n > 0 such that p;,, satisfies z;. It is safe to assume that n < |W| because otherwise
the path from p; to p;+, would describe a cycle within K which could be replaced by a shorter, more
direct, path without affecting satisfiability of the relevant subformulae in the states po,...,p;. Now the
algorithm can proceed as in the previous case, but, in addition, it has to guess the correct value of n and
the sequence p;t1,...,Ppitn in Lines 10-15.
For the “«" direction, suppose there exists an accepting run of MC(r ¢y v(¢, K, a,always). Since the
algorithm is in always mode, and ¢ is G-free, the acceptance can only take place in Line 33, without a
recursive call in Line 17. Hence the counter ¢ reaches value |W| + 1 in the while loop in Lines 2-32.
Let p = po, p1, - - -, Pm be the sequence of states guessed in this run in Lines 13 and 24, where py = a.
Furthermore, let o, ..., %w|+1 be an index sequence that determines a subsequence of p such that
—0=1ip <iy < <fw41 =m, and
— for each j > 0, p;; is the value assigned to b in Line 24 after having set ¢ to value j in Line 23.
Now it is clear that for all j = 0,...,|W]|, there is a variable z; such that z; € n(p;,,, 1) If 7; €
VAR(p), then p;, ., = p;; + 1, and each structure p’ extending p beyond p,, satisfies x; (and hence
@) at p;,. Otherwise z; € VAR1(p), and the accepting run of the algorithm has guessed the states
Dij»---sPi; 1 —1 in Line 13. In this case, each structure p’ extending p beyond p,,, satisfies Fz; (and hence
@) at pi;, ..., pi;,,—1. From these two cases, it follows that each such p’ satisfies ¢ in all states po, ..., ppm-
We now restrict attention to the states p;, _1,...,pi,, ,,—1. Among these |[W]| + 1 states, some of the
|W| states of K has to occur twice. Assume p;; 1 and p;, 1 represent the same state from K, where
j < k. Then we can create an (infinite) structure p”’ from p that consists of states po, ..., pi,—1, followed

by an infinite repetition of the sequence p;,, ...,p;, 1. It is now obvious that p” satisfies ¢ in every state,
hence p”,0 F ¢, that is, (Gg, K, a) € MC({F, G}, B).

For the induction step, let ug(¢) > 0. For the same reasons as above, we can assume that any F-operator
only occurs in front of variables or in front of some G-operator in ¢. This “normal form” is taken care
of by setting Ffound to true when F is found (Line 7) and processing this occurrence of F only when a
variable or some G-operator is found (Lines 10 15).

For the “=” direction, suppose (Gp, K, a) € MC({F, G}, B). Then there exists a path p in K such that
po = a, and for all i > 0, p® F . We describe an accepting run of MC(¢ gy v (¢, K, a,alvays). Consider
a single passage through the while loop with the following configuration. The programme counter has
value 2, ¢ has value at most [WW|, b has value p;, and 1 has value . Since pX F ¢, there are four possible
cases. The argumentation for the first two of them is the same as in the base case.

Case 1. p’,i F x, for some = € VARg(p).

Case 2. p’ i F Fx, for some 2 € VAR ().

Case 3. p¥.,i E Ga, for some maximal G-subformula Ga of ¢ that is not in the scope of some F-operator.
This means that « is true everywhere on the path p;, p;4-1, Pit2, - . . . Hence, due to the induction
hypothesis, MC(r 6} v(c, K, b;, always) has an accepting run. By appropriate guesses in Line 4,
the current call of the algorithm can reach that accepting recursive call in Line 17.

Case 4. p¥,i E Ga, for some maximal G-subformula Ga of ¢ that 4s in the scope of some F-operator.
By combining the arguments of Cases 3 and 2, we can find an accepting run for this case.

If only Cases 1 or 2 occur more than |W| times in a sequence, then ¢ will finally take on value |W| + 1,
and this call will accept in Line 31. Otherwise, whenever one of Cases 3 and 4 occurs, than the acceptance
of the new call—and hence of the current call —is due to the induction hypothesis.

For the “<=” direction, suppose there exists an accepting run of MCf ¢},v(¢, K, a,always). Since the
algorithm is in always mode, the acceptance can only take place in Line 33 or in the recursive call in
Line 17. If the run accepts in Line 33, the same arguments as in the base case apply. If the acceptance
is via the recursive call, then let p = pg,...,p,n be the sequence of states guessed such that pg = «a,
and p,, is the value of b when the recursive call with Ga takes place. Due to the induction hypothesis,
(Ga, K, by,) € MC({F, G}, B) and, hence, there is an infinite structure p’ extending p beyond p,, such
that (p')X,m E Gy. Furthermore, we can use the same argumentation as in the base case to show that,
for each i < m, (p')X,iE ¢. Therefore, (p'),0 F Gy, which proves (Gp, K,a) € MC({F,G},B). =

Claim 6. For each ¢ € L({F, G}, B), each K = (W, R, n), and each a € W:
(p,K,a) € MC({F,G}, B) <« there exists an accepting run of MC(r ¢y v (¢, K, a,now)

Claim 6 is proven in the Appendix. a
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Unfortunately, the above argumentation fails for MC({G, X}, V') because of the following considera-
tions. The NL-algorithm in the previous proof relies on the fact that a satisfying path for G, where v
is of the form (1), can be divided into a “short” initial part satisfying the disjunction of the atoms, and
the remaining end path satisfying one of the Gi; at its initial state. When guessing the initial part, it
suffices to separately guess each state and consult 7.

If X were in our language, the disjuncts would be of the form X*iy; and X% Ga;. Not only would this
make the guessing of the initial part more intricate. It would also require memory for processing each of
the previously satisfied disjuncts X*:g;. An adequate modification of MC¢F c},v would require more than
logarithmic space. We have shown NP-hardness for MC({G, X}, V') in Theorem 3.4.

Theorem 4.5. Let B be a finite set of Boolean functions such that [B] C L. Then MC({X}, B) is NL-
complete.

Proof. The lower bound follows from Lemma 4.1.
For the upper bound, let ¢ € L({X}, B) be a for-

mula, K = (W, R,n) a Kripke structure, and @« € W Algorithm MC¢x; 1,

a state. Let m denote the maximal nesting depth of

/ — Xi1 e ie
X-operators in . Since for any k-ary Boolean oper- Tnput Iﬁri k):, sfitfture%{x—p(zw R,
ator f from B, the formula Xf(v1,...,¢) is equiv- u EpW AR

alent to f(Xt)y,... X)), ¢ is equivalent to a formula .
¢ € L({X}, B) of the form ¢’ = Xitp; - - - B X¢p,, Output accept or reject
where 0 <i; < m for each j =1,...,{. It is not nec-

1: parity «— 0; b—a; k<0

essary to compute ¢’ all at once, because it will be 2: while k < m do
sufficient to calculate i; each time the variable p; is 3 forj=1,...,0 do
encountered in the algorithm MCyx; 1, given in Figure 4. 4: if i; = k and p; € n(b) then

It is easy to see that MCixy 1, returns 1 if and only 5. parity — 1 — parity
if ¢ is satisfiable. From the used variables, it is clear 6: end if
that MCyx; 1, runs in nondeterministic logspace. a 7. end for

In the fragment with S as the only temporal op- 8 k—k+1
erator, S is without effect, since we can never leave 9: b < guess some R-successor of b
the initial state. Hence, any formula aSf3 is satisfied ~ 10: end while
at the initial state of any structure K if and only if ~ 11: return parity

0 is. This leads to a straightforward logspace reduc- . .

tion from MC({S}, BF) to MC(0, BF): Given a formula Fig. 7. The algorithm MCyyx; 1

¢ € L({S}, BF), successively replace every subformula

aSB by 8 until all occurrences of S are eliminated. The resulting formula ¢’ is initially satisfied in any
structure K iff ¢ is. Now MC(f), BF) is the Formula Value Problem, which has been shown to be solvable
in logarithmic space in [Lyn77]. Thus we obtain the following result.

Theorem 4.6. Let B be a finite set of Boolean functions. Then MC({S}, B) is in L.

In our classification of complexity, which is based on logspace reductions <!, a further analysis of
S-fragments is not possible. However, a more detailed picture emerges if stricter reductions are considered,

see [Sch07, Chapter 2].

Theorem 4.7. Let B be a finite set of Boolean functions such that [B] C V. Then MC({S,F}, B) is
NL-complete.

Proof. The lower bound follows from Lemma 4.1. For the upper bound, we will show that MC({S, F}, B)
can be reduced to MC({F}, B) by disposing of the S-operator as follows. Consider an arbitrary Kripke
structure K and a path p therein. Then the following equivalences hold.

pX,0EaSps  iff pX,0E( (2) pX 0EF(avp) iff pX,0EFaVFs (4)
pX,0E F(aSp) iff pX,0EF3 (3) pX, 0F FFa iff p*,0E Fa (5)

Statements (4) and (5) are standard properties and follow directly from the definition of satisfaction
for F and V. Statement (2) is simply due to the fact that there is no state in the past of pg. As for (3),
we consider both directions separately. Assume that p®, 0 F F(aS3). Then there is some i > 0 such that
pX,i E aSp. This implies that there is some j with 0 < j < i and p¥,j E (. Hence, p*,0 E Ff. For the
other direction, let p,0 E F3. Then there is some i > 0 such that p’,i E 3. This implies pX,i = aSg.
Hence, p,0 F F(aSp).

14



Now consider an arbitrary formula ¢ € L({S,F}, B). Let ¢’ be the formula obtained from ¢ by
successively replacing the outermost S-subformula aSg by [ until all occurrences of S are eliminated.
This procedure can be performed in logarithmic space, and the result ¢’ is in L({F}, B). Due to (2)—(5),
for any path p in any Kripke structure K, it holds that p,0 E ¢ if and only if pX,0 E . Hence, the
mapping ¢ +— ¢ is a logspace reduction from MC({S,F}, B) to MC({F}, B). U

5 Conclusion, and open problems: the ugly fragments

We have almost completely separated the model-checking problem for Linear Temporal Logic with respect
to arbitrary combinations of temporal and propositional operators into tractable and intractable cases.
We have shown that all tractable MC problems are at most NL-complete or even easier to solve. This
exhibits a surprisingly large gap in complexity between tractable and intractable cases. The only fragments
that we have not been able to cover by our classification are those where only the binary xor-operator
is allowed. However, it is not for the first time that this constellation has been difficult to handle, see
[BHSS06, BSS*07]. Therefore, these fragments can justifiably be called ugly.

The borderline between tractable and intractable fragments is somewhat diffuse among all sets of
temporal operators without U. On the one hand, this borderline is not determined by a single set of
propositional operators (which is the case for the satisfiability problem, see [BSST07]). On the other
hand, the columns E und V do not, as one might expect, behave dually. For instance, while MC({G}, V)
is tractable, MC({F}, E) is not —although F and G are dual, and so are V and E.

Further work should find a way to handle the open xor cases from this paper as well as from [BHSS06,
BSST07]. In addition, the precise complexity of all hard fragments not in bold-face type in Table 1 could
be determined. Furthermore, we find it a promising perspective to use our approach for obtaining a
fine-grained analysis of the model-checking problem for more expressive logics, such as CTL, CTL*, and
hybrid temporal logics.
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A Proof of Lemma 3.1

Proof. The reduction MC(T, B) <8 MC™ (T, B) is trivial. We show MC™ (T, B) <!°¢ MC(T, B). Assume
that negation is not an element of B, otherwise there is nothing to prove. Let (¢, K, a) be an instance of
MC™(T, B), where K = (W, R,n). Let 1, . ..,Z,, be the variables that appear in ¢, and for each formula
of the kind —#)(z1,...,z,) appearing in ¢, let y-, be a new variable. Note that since only propositional
negation is allowed in ¢, in these cases ¢ is purely propositional.

We obtain K’ = (W, R,7’) from K by extending 7 to the variables y, in such a way that y_, is true
in a state if and only if ¢(z1,...,z,) is false. Finally, to obtain ¢ from ¢ we replace every appearance
of —(z1,...,zy,) with y—y. Now, ¢ is a temporal B-formula. By the construction it is straightforward

to see that (¢, K,a) € MC™ (T, B) iff (¢/, K’,a) € MC(T, B). Q

B Proofs of Claims

Claim 1. For every path p in K(¢) and 1 < 4,5 < m holds: If pX(¥) ¢; E ©;, then i = j.

Proof. Assume pX®¥) ¢, @, where 1 <4, < m. By the definition of ¢;, it follows that p @), (j—
1)+ k-m— (i —1) F b; for some k with 1 < k < n. Consider any path p in K (¢). After the initial part

(Pos- - Pm-1) = (q1,-- -, qm) of p follows a sequence (Pu,, - - -, Prm.(nt1)) Of n-m states, where p; = li;}‘f;ﬂ m

ori=m,...,m-(n+1)). Therefore, p;_1)+rm—(i—1) = Grthem=iymodm _y(7=i) modm g gome 1 (that
for i 1)). Therefore, p(j_1) 4 pm—(i—1) = &5 medm — =i modm ¢ h
does not matter here). But pX(¥) [ E b; implies w = 0, by the definition of K (1), and therefore

(j —i) mod m = 0. Since 1 < i,j < m, it follows that j =i. =

Claim 2. For every path p = (¢1,¢2,...) in K(¢) and i = 1,2,...,m holds:
pKW) g, By if and only if for j =i,i+1,...,m holds pX®) ¢; F p;.

Proof. The direction from right to left is straightforward. To prove the other direction, we use induction.
As base case we consider i = m. Assume pX¥) ¢, E G(¢,, V Ge). By construction of K (¢) holds
pKW@) g, ¥ ¢, and therefore pX¥) ¢, E ©,, holds.
For the inductive step, assume pX¥) ¢; £ G(g; v Gy, ). Claim 1 proves pKW) g, ¥ p; for j # i, and
with pX ) ¢; ¥ ¢ we obtain pK¥) | ¢, ¥ Gv; ;. This implies pK@) g E o and pKW) gyl E ¥ ,,. By the
inductive hypothesis, the claim follows. =

Claim 3. Let K(v) be constructed from a formula ¢ with m clauses, and let p be a path in K(¢). For
j=1,2,...,m it holds that

pK(d’)7 q1 F ¢; if and only if pK(d’), q1 F ¢;j—1 and pK(d’), q; Fa;Ub; .

Proof. We prove the claim by induction. The base case j = 1 is straightforward: p ), ¢; E trueU(a;Ub,)
is equivalent to 3t : pX(¥) ¢ E (a;Ub;y) which by Fact 2 is equivalent to p ), ¢; I a;Ub;. The inductive
step is split into two cases. First, assume pX), ¢, E ©j+1. Since @11 = p;U(aj1Ubj 1), it follows that
3t pEW) ¢ E aj+1Ubj41. Using Fact 2, we conclude pK(w),qu F aj11Ubj41. By Fact 1, pEW) g ¥
a;+1Ub;11. By the initial assumption, this leads to p(¥) g, F ;. Second, assume pX¥) ¢, F ¢; and
pX) g1 F aj11Ubj 1. Using the induction hypothesis, we obtain pX (¥), ¢; F a;Ub; fori = 1,2,...,j+1.
By the construction of ¢, we straightforwardly get pEW) g E Pjr1. =

Claim 4. Let H(v) be constructed from a formula v» = C; A ... A Cy, with m clauses, and let p =
($ylny ey l1s@my -y qa, t,t, . ..) be a path in H(¢). For j =1,2,...,m it holds that

pHW) ¢, E @7 if and only if the assignment A, satisfies clauses Cj, ..., Cp,-

Proof. Notice that A, satisfies clause C; if and only if p contains a state w with b; € n'(w). We prove the
claim by induction. Since the variable d holds in all predecessors of ¢, in p but not in g,,, it follows that
©™ = (a;,Sby,)Sd holds in gy, iff a,,Sb,;, holds in g,,. Since b,, € 1’ (g,), it follows that a,,Sb,, holds in
¢m iff by, holds in a predecessor of ¢y, iff A, satisfies C),. This completes the base case. For the inductive
step, notice that p(®¥), q; F o it pH @), g; F a;Sb; and pH ), ¢j+1 F @;+1. By the construction of H ()
it follows that p (w),qj F a;Sb; iff A, satisfies C;, and the rest follows from the induction hypothesis.
[

16



Claim 6. For each ¢ € L({F, G}, B), each K = (W, R,n), and each a € W

(p,K,a) € MC({F,G}, B) <« there exists an accepting run of MC(r ¢y v (¢, K, a,now)

Proof. For the “=7 direction, suppose (¢, K,a) € MC({F, G}, B). Then there exists a path p in K such
that po = a and p,0 F ¢. We describe an accepting run of MC¢F,6},v (¢, K, a,now). Consider the first
passage through the while loop with the following configuration. The programme counter has value 2, ¢
has value 0 (this value does not change in now mode), b has value a, and 9 has value . Since p&,0 F ¢,
there are four possible cases. The argumentation for them is very similar to that in the proof of Claim 5.

Case 1. p',0F z, for some 2 € VARy(¢).

As in the proof of Claim 5, the algorithm can guess the appropriate disjuncts in Lines 3-5, does
not reject in Line 20 and accepts (it is in now mode!) in Line 28.

Case 2. p® 0 F Fx, for some 2 € VAR (¢p).

As in the proof of Claim 5, there exists some n with 0 < n < |W| such that b,, satisfies ;. The
algorithm can proceed as in the previous case, but, in addition, it has to guess the correct value
of n and the sequence p1,...,p, in Lines 10-15.

Case 3. p¥,0E Ga, for some maximal G-subformula Ga of ¢ that is not in the scope of some F-operator.
This means that « is true everywhere on the path p. Hence, due to the induction hypothesis,
MC¢F,G},v(a, K, b;,now) has an accepting run. By appropriate guesses in Line 4, the current call
of the algorithm can reach that accepting recursive call in Line 17.

Case 4. p¥,0 E Ga, for some maximal G-subformula Ga of ¢ that is in the scope of some F-operator.
By combining the arguments of Cases 3 and 2, we can find an accepting run for this case.

For the “<=" direction, suppose there exists an accepting run of MC(r g} v(¢, K, a,now). Since the algo-
rithm is in now mode, the acceptance can only take place in Line 28 or in the recursive call in Line 17.
If the run accepts in Line 28, then there is some variable 2 such that either z € VARy(p) and z € n(a),
or z € VAR; () and the run guesses a path po,...,p, with po = @ and = € n(p,,). In both cases, each
structure p’ extending the sequence of states guessed so far, satisfies ¢ at a. On the other hand, if the
run accepts in the recursive call, we can argue as in the proof of Claim 5. =

C Refutation of the Small-Path Property

We will now define a family of formulae, and a family of graphs. The definition is inductive:
For i =1, Let G; be the graph presented in Figure C. For i + 1, let G;;1 be the graph presented in
Figure 9, where G is inserted into G;41 using the obvious lead-in and lead-out arrows.

AT

Fig. 8. The graph G

S

Fig. 9. The graph G;41

The truth assignments for these graphs is as follows:
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1 1 /\j:l aj
Zq|01 CCH_I Qi1
L0 . 2 i
G1 OS] Gi+1 : i1 T
rilas,c T3 | N\js1 @ G
3|%1,C1 f
x € G;|truth assignment from G, b; 11

Now the formulae are defined as follows: @1 := (a;Uby)Uecy, @i11 := ((@i1+1Up;)Ub;1)Uc;iy 1.

The idea behind the construction is as follows: To satisfy the formula ¢, in Gy, the path has to repeat
the circle once. In the inductive construction, this leads to an exponential number of repetitions. We will
now define “canonical paths” in these graphs. These are meant to be the shortest paths in the graph G;
possible that satisfy the formula ¢;. These paths are as follows:

_ 1.1 .1 .1 .1 .1

Py = L1, To, T3, L7, Lo,y T3,
_ i+l i+1 i+1 i+1 i+1 i+1
P’H»l_xl 7Piux2 s Ly T aPi7:L'2 s Ly .

We claim that the path P; is a minimal path satisfying ¢; in G; with the property that it goes back
to the out-going edge. The last condition is needed for the recursion, a minimal path satisfying ¢; in G;
can be insignificantly shorter.

We first show that (a; |)*P; E ¢;. Here (a; |)* denotes a sequence of states where a; holds, and no
other variable with index of at most ¢ holds. For i = 1, this is easy to verify. Therefore, let the claim hold
for 7. Now, it holds that

17
¥ilty

@i+1 = ((ai+1Up;) Ubit1) Ucipa.
————
Vit

For i + 1, the path P,;; and the truth assignments are as follows (here, a; | for some index j denotes
the conjunction a; A --- A aj). In the first row of the table, we list the states, in the second row we list
the truth assignments to the variables. The following two rows follow from the above and the induction
hypothesis. (We do not claim that the list of subformulae holding in the states presented here is complete,
we just highlight those which suffice to show that ;1 holds.)

ROl LT v vl el O o e
41 ! i1 ! bi-l—l A1 |Qi41 ! Ajt+1 ! bi+1 Qi1 |A41 l
Cit1 Cit1

(23 Pi ©i (%1
7 7 7 7 7

i+1 i+1 i+1 | Y41 i+1

{l {l {/ {/ {I {I 1/){1

1+1 i+1 1+1[Fi+1 i+1 i+1 i+1
Pi+1 Pi+1  |Pit+1|Pi+1|Pi+1 Pi+1

We claim that P; is the shortest path satisfying ¢; in G;. This is clear for i = 1. Now suppose that
there is a “shortcut” in Gy ;. If the shortcut does not use the back-edge (25, 2z41), at position x5
(this is only visited once, therefore this position is unique), Fb; ;1 does not hold, and thus ¢, ; does not
hold in :cé“. This is a contradiction. Therefore, we pass G; at least twice.

We show that both times that we pass G;, we need to follow the full path P;. We first look at the
first passing through G;. In the path through G, 1, the formula ¢; must hold at the first state from G;.
Since a;,b;, and ¢; all do not hold in zi™!, and no variables with a smaller index, and path fulfilling a
smaller ¢;, j < 4, is interrupted here. Hence it follows that ¢; must be satisfied by the path through Gj,
by induction hypothesis, this means that G; has to be passed using the path P;.

When we pass G, for the second time, ¢; again must hold at the first state from G; and by the
same argument as above, this means that G; again must be passed using the path P;.

We disregarded the fact that in the very last occurrence of P; for j < i 4 1 the path does not have
to pass the whole path P; but this makes the relevant part of the path only linearly shorter (2- (i + 1)
states less).

The length of P; is obviously exponential in the size of the graph plus the size of the formula.

D Known Facts from Graph Theory

Lemma D.1. The following problem is NL-hard. Given a directed graph G = (V, E) and a node a € V,
is there an infinite path in G starting at a?
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Proof. We reduce from the graph accessibility problem (GAP), which is defined as follows. Given a
directed graph G = (V| E) and two nodes a,b € V, is there a path in G from a to b? This problem is
known to be NL-complete [Sav73].

For the reduction, consider an arbitrary instance (G, a,b) of GAP, where G = (V, F) and a,b € V.
Let |V] = n. We transform G into a new graph G’ that consists of n “layers” each of which contains a
copy of the nodes from V. Whenever there is an edge from node v to node w in G, the new graph G’ will
have edges from each copy of v to the copy of w on the next layer. This destroys all cycles from G. Now
we add an edge from each copy of b to the first copy of a.

More formally, transform (G, a,b) into (G’,a'), where G’ = (V', E’) with

V' ={v'|veVand1<i<n},
B ={( v | (v,w) € Fand 1 <i<n} U {(b',a') |1 <i<n}.

It is easy to see that this transformation is a logspace reduction. Let the size of a graph be determined
by the size of its adjacency matrix. Hence G has size n?, and G' is of size n*. Apart from the representation
of G’, the only space required by the described transformation is spent for four counters that take values
between 1 and n. With their help, each bit of the new adjacency matrix is set according to the definition
of E’, where only a look-up in the old adjacency matrix is required.

It remains to prove the following claim.

Claim 7. For each directed graph G = (V, E) and each pair of nodes a,b € V, there exists a path in G
from a to b if and only if there exists an infinite path in G’ starting at a!.

Proof of Claim 7. “=". Suppose there is a path in G from a to b. Without loss of generality, we
can assume that no node occurs more than once on this path, a and b included. Hence there exist nodes
€1y yCm € V with m < n such that ¢; = a, ¢, = b, and foreach i =1,...,n—1, (¢;,¢i+1) € E. Due to
its construction, G’ has the cycle (ci, 3, ..., ¢, a') that contains a'. Hence G’ has an infinite path
starting at a®.

“<”_ Suppose there is an infinite path p in G’ starting at a'. Since G’ is finite, some node must occur
infinitely often on p. This, together with the layer-wise construction of G’, implies that there are infinitely
many nodes of layer 1 on p. Among layer-1 nodes, only a' has ingoing edges. Hence a! must occur infinitely
often on p. Now the path from some occurrence of a' to the next is a cycle, where the predecessor node
of a' must be some ™. This implies that there is a path in G’ from a' to b™. Due to the construction of
G’, this corresponds to a path in G froma tob. = a
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