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Abstract

An aperiodic tile set was first constructed by R. Berger while proving the undecidability of
the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from
logic (the Entscheidungsproblem) to physics (quasicrystals)

We present a new construction of an aperiodic tile set. The flexibility of this construction
simplifies proofs of some known results and allows us to construct a “robust” aperiodic tile set
that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough)
tiling errors.

Our construction of an aperiodic self-similar tile set is based on Kleene’s fixed-point con-
struction instead of geometric arguments. This construction is similar to J. von Neumann self-
reproducing automata; similar ideas were also used by P. Gécs in the context of error-correcting
computations.
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1 Introduction

In this paper, tiles are unit squares with colored sides. Tiles are considered as prototypes: we may
place translated copies of the same tile into different cells of a cell paper (rotations are not allowed).
Tiles in the neighbor cells should match (common side should have the same color in both).

Formally speaking, we consider a finite set C' of colors. A tile is a quadruple of colors (left, right,
top and bottom ones), i.e., an element of C*. A tile set is a subset 7 C C*. A tiling of the plane
with tiles from 7 (7-tiling) is a mapping U: Z? — 7 that respects the color matching condition. A
tiling U is periodic if it has a period, i.e., a non-zero vector T' € Z2 such that U(x + T) = U(z) for
all z € Z2. Otherwise the tiling is aperiodic. The following classical result was proved by Berger in
a paper [2] where he used this construction as a main tool to prove Berger’s theorem: the domino
problem (to find out whether a given tile set has tilings or not) is undecidable.

Theorem 1 There exists a tile set T such that T-tilings ezist and all of them are aperiodic. [2]

The first tile set of Berger was rather complicated. Later many other constructions were sug-
gested. Some of them are simplified versions of the Berger’s construction ([15], see also the expo-
sitions in [1, 5, 12]). Some others are based on polygonal tilings (including famous Penrose and
Ammann tilings, see [10]). An ingenious construction suggested in [11] is based on the multipli-
cation in a kind of positional number system and gives a small aperiodic set of 14 tiles (in [3] an
improved version with 13 tiles is presented).

In this paper we present yet another construction of aperiodic tile set. It does not provide a
small tile set; however, we find it interesting because:

e The existence of an aperiodic tile set becomes a simple application of a classical construction
used in Kleene’s fixed point (recursion) theorem, in von Neumann'’s self-reproducing automata [14]
and, more recently, in Gacs’ reliable cellular automata [7, 8]; we do not use any geometric tricks.

e The construction is rather general, so it is flexible enough to achieve some additional properties
of the tile set. Our main result is Theorem 6: there exists a “robust” aperiodic tile set that does
not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors.

e The construction of an aperiodic tile set is not only an interesting result but an important
tool (recall that it was invented to prove that domino problem is undecidable); our construction
makes this tool easier to use (see Theorem 3 and Section 10 as examples).

The paper is organized as follows. In Section 2 we define the notion of a self-similar tile set (a tile
set that simulates itself). In Section 3 we explain how a tile set can be simulated by a computation
implemented by another tile set. Section 4 shows how to achieve a fixed point (a tile set that
simulates itself). Then we provide several applications of this construction: we use it to implement
substitution rules (Section 5) and to obtain tile sets that are aperiodic in a strong sense (Section 6)
and robust to tiling errors (Sections 7 and 8). Section 9 provides probability estimates that show
that tiling errors are correctable with probability 1 (with respect to the Bernoulli distribution).
Finally, we show some other applications of the fixed point construction that simplify the proof of
the undecidability of the domino problem and related results.

2 Macro-tiles

Fix a tile set 7 and an integer N > 1. A macro-tile is an N x N square tiled by matching 7-tiles.
Every side of a macro-tile carries a sequence of N colors called a macro-color.

Let p be a set of 7-macro-tiles. We say that 7 simulates p if (a) 7-tilings exist, and (b) for every
7-tiling there exists a unique grid of vertical and horizontal lines that cuts this tiling into N x N
macro-tiles from p.



(i,j+1) Example 1. Assume that we have only one (‘white’) color and 7 consists
of a single tile with 4 white sides. Fix some N. There exists a single macro-tile
(i, 7) (i+1,7) of size N x N. Let p be a singleton that contains this macro-tile. Then every
(,7) T-tiling can be cut into macro-tiles from p. However, 7 does not simulate p,
since the placement of cutting lines is not unique.
Example 2. In this example a set p that consists of exactly one macro-
tile (that has the same macro-colors on all four sides) is simulated by some
tile set 7. The tile set 7 consists of N? tiles indexed by pairs (i,5) of integers modulo N. A tile

Figure 1:

from 7 has colors on its sides as shown on Fig. 1. A macro-tile in p has colors (0,0),...,(0,N —1)
and (0,0),...,(N —1,0) on its borders (Fig. 2).

If a tile set 7 simulates some set p of 7-macro-tiles with zoom .
factor N > 1 and p is isomorphic to 7, the set 7 is called self-similar. ©Y Ww-10
Here an isomorphism between 7 and p is a bijection that respects o~y N 1)

the relations “one tile can be placed on the right of another one” and
“one tile can be placed on the top of another one”. (An isomorphism
induces two bijections between horizontal/vertical colors of 7 and
horizontal /vertical macro-colors of p.)

The idea of self-similarity is used (more or less explicitly) in most 00 00
constructions of aperiodic tile sets ([11, 3] are exceptions); we find
the following explicit formulation useful.

(0,0) (N-1,0)

Theorem 2 A self-similar tile set 7 has only aperiodic tilings. Figure 2:

Proof. Every 7-tiling U can be uniquely cut into N x N-macro-tiles from p. So every period T
of U is a multiple of N (since the T-shift of a cut is also a cut). Then T'/N is a period of p-tiling,
which is isomorphic to a 7-tiling, so T'/N is again a multiple of N. Iterating this argument, we
conclude that T is divisible by N* for every k, so T = 0.

So to prove the existence of aperiodic tile sets it is enough to construct a self-similar tile set,
and our next goal is to construct it using the fixed-point idea. To achieve this, we first explain how
to simulate a given tile set by embedding computations.

3 Simulating a tile set

For brevity we say that a tile set 7 simulates a tile set p when 7 simulates some set of macro tiles
p that is isomorphic to p (example: a self-similar tile set simulates itself).

Let us start with some informal discussion. Assume that we have a tile set p where colors
are k-bit strings (C = B*) and the set of tiles p C C* is presented as a predicate R(cy, ¢z, c3,¢4).
Assume that we have some Turing machine R that computes R. Let us show how to simulate p
using some other tile set 7.

This construction extends Example 2, but simulates a tile set p that contains not a single tile but
many tiles. We keep the coordinate system modulo N embedded into tiles of 7; these coordinates
guarantee that all 7-tilings can be uniquely cut into blocks of size N x N and every tile “knows”
its position in the block (as in Example 2). In addition to the coordinate system, now each tile in
T carries supplementary colors (from a finite set specified below) on its sides. On the border of a
macro-tile (i.e., when one of the coordinates is zero) only two supplementary colors (say, 0 and 1)
are allowed. So the macro-color encodes a string of N bits (where N is the size of macro-tiles). We
assume that N > k and let & bits in the middle of macro-tile sides represent colors from C. All



other bits on the sides are zeros (this is a restriction on tiles: each tile knows its coordinates so it
also knows whether non-zero supplementary colors are allowed).

Now we need additional restrictions on tiles in 7 that guarantee that the macro-colors on sides
of each macro-tile satisfy the relation R. To achieve this, we ensure that bits from the macro-tile
sides are transferred to the central part of the tile where the checking computation of R is simulated
(Fig. 3).

For that we need to fix which tiles in a macro-tile form “wires” (this can be

L done in any reasonable way; let us assume that wires do not cross each other) and
then require that each of these tiles carries equal bits on two sides; again it is easy

uring since each tile knows its coordinates.
Then we check R by a local rule that guarantees that the central part of
g_ a macro-tile represents a time-space diagram of R’s computation (the tape is

horizontal, time goes up). This is done in a standard way. We require that
computation terminates in an accepting state: if not, the tiling cannot be formed.

To make this construction work, the size of macro-tile (V) should be large
enough: we need enough space for k bits to propagate and enough time and space (=height and
width of the diagram) for all accepting computations of R to terminate.

In this construction the number of supplementary colors depends on the machine R (the more
states it has, the more colors are needed in the computation zone). To avoid this dependency,
we replace R by a fixed universal Turing machine ¢/ that runs a program simulating R. Let us
agree that the tape has an additional read-only layer. Each cell carries a bit that is not changed
during the computation; these bits are used as a program for the universal machine (Fig. 4).

So in the computation zone the columns carry unchanged bits,

and the tile set restrictions guarantee that these bits form the
I— program for U, and the central zone represents the protocol of an
accepting computation for that program. In this way we get a
tile set 7 that simulates p with zoom factor N using O(N?) tiles.
Universal (Again we need N to be large enough.)

Figure 3:

Turing

machine

4 Simulating itself

We know how to simulate a given tile set p (represented as a pro-
gram for the universal TM) by another tile set 7 with a large
enough zoom factor N. Now we want 7 to be isomorphic to p
(then Theorem 2 guarantees aperiodicity). For this we use a con-
struction that follows Kleene’s recursion (fixed-point) theorem.!

Note that most rules of 7 do not depend at all on the program
for R. (These rules guarantee information transfer along the wires, the vertical propagation of
unchanged program bits, and the space-time diagram for the universal machine in the computation
zone). Considering these rules as part of p’s definition (we let & = 21log N +O(1) and encode O(N?)
colors by 2log N + O(1) bits), we get a program that checks that macro-tiles behave like 7-tiles in
this respect.

Figure 4:

' A reminder: Kleene’s theorem says that for every transformation 7 of programs one can find a program p such
that p and 7(p) produce the same output. Proof sketch: since the statement is language-independent (use translations
in both directions before and after 7), we may assume that the programming language has a function GetText () that
returns the text of the program and a function Exec(string s) that replaces the current process by execution of
program s. (Think about an interpreter: surely it has access to program text; it can also recursively call itself with
another program.) Then the fixed point is Exec (7w (GetText())).



The only remaining part of the rules for 7 is the hardwired program. We need to ensure that
macro-tiles carry the same program as 7-tiles do. For that our program (for the universal Turing
machine) needs to access the bits of its own text. (This self-referential action is in fact quite legal:
since the program is written on the tape, the universal machine can be instructed to access it.) The
program checks that if macro-tile belongs to the first line of the computation zone, this macro-tile
carries the correct bit of the program.

How should we choose N (that is hardwired in the program)? We need it to be large enough so
the computation described (which deals with O(log N) bits) can fit in the computation zone. The
computations are rather simple (polynomial in the input size, i.e., O(log N)), so for large N they
easily fit in Q(N) available time.

This finishes the construction of a self-similar aperiodic tile set.

5 Substitution system and tilings

The construction of self-similar tiling is rather flexible and can be augmented to get a self-similar
tiling with additional properties. Our first illustration is the simulation of substitution rules.

Let A be some finite alphabet and m > 1 be an integer. A substitution rule is a mapping
s: A — A™™_ By A-configuration we mean an integer lattice filled with letters from A, i.e., a
mapping Z2 — A considered modulo translations.

A substitution rule s applied to a configuration X produces another configuration s(X) where
each letter a € A is replaced by an m x m matrix s(a).

A configuration X is compatible with a substitution rule s if there exists an infinite sequence

DX S XS XS X

where X; are some configurations.

Example 3. Let A = {0,1}, s(0) = 01 0

1 . i
=11 o) s(1) = (1 0) . It is easy to see that there is
only one configuration compatible with this substitution rule: the chess-board coloring.

Example 4. Let A = {0,1}, s(0) = (? é), s(l) = (é ?) One can check that all

configurations that are compatible with this substitution rule (called Thue — Morse configurations
in the sequel) are aperiodic.

The following theorem goes back to [13]. It says that every substitution rule can be enforced
by a tile set.

Theorem 3 (Mozes) Let A be an alphabet and let s be a substitution rule over A. Then there
exists a tile set T and a mapping e: T — A such that

(a) any T-tiling becomes A-configuration compatible with s after applying e to all tiles;

(b) every A-configuration compatible with s can be obtained in this way.

Proof. Let us modify the construction of a self-similar tile set 7 (with zoom factor N) taking
into account the substitution rule s. Let us first consider the case when the substitution rule maps
each A-letter into an N x N-matrix (i.e., m = N).

In this case the statement of the theorem can be obtained as follows. Assume that each tile
keeps two letters (elements of A): its own label and the label of the N x N-tile it belongs to. This
means that:

(a) the second letter is the same for neighbor tiles (unless they are separated by the border of
N x N macro-tiles);



(b) the first letter in a tile is determined by the second letter and the coordinates of the tile
inside the macro-tile, in accordance with the substitution rule.

Both requirements are easy to integrate in the fixed-point construction. This will ensure that
configuration is an s-image of some other configuration. Also (due the self-similarity) at the level
of macro-tiles we have the same. But this is not enough: we need to guarantee that first letter on
the level of macro-tiles is identical to the second letter on the level of tiles. This is also achievable:
the first letter of the macro-tile is encoded by bits on the border of the macro-tile, and we can
require that these bits match the second letter of the tiles at that place (recall that second letter
is the same across the macro-tile). It is easy to see that 7 has the required properties (each tiling
projects into a configuration compatible with 7 and vice versa).

However, this construction assumes that N (the zoom factor) is equal to the matrix size in the
substitution rule, which is not the case (m is given, and N we have to choose, and it needs to be
large enough). The solution is to let N be some power of m, i.e., N = mF for some k, and use the
substitution rule s*, i.e., the k-th iteration of s; a configuration is compatible with s* if and only
if it is compatible with s. It remains to note that s* is easy to compute so its computation fits in
the time limits for the checking program.

6 Strong version of aperiodicity

Let a > 0 be a real number. A configuration U: Z2 — A is a-aperiodic if for every nonzero vector
T € Z? there exists N such that in every square whose side is at least N the fraction of points
such that U(z) # U(z + T) exceeds a.

Remark 1. If U is a-aperiodic, then Besicovitch distance between U and any periodic pattern
is at least /2. (The Besicovitch distance is defined as limsupy dy where dy is the density of
points where two patterns differ in the N x N centered square.)

Theorem 4 There exists a tile set T such that T-tilings exist and every 7-tiling is a-aperiodic for
every a < 1/4.

Proof. This is obtained by applying Theorem 3 to Thue-Morse substitution rule 7' (Example
4). Let C be a configuration compatible with 7. We have to show that C is a-aperiodic for every
a<l1/4.

The configuration C' is a xor-sum of two one-dimensional Thue-Morse sequences obtained using
the substitution rules 0 — 01 and 1 — 10. More formally, let ayp = 0, by = 1, apn+1 = apby,
bui1 = buay. (For example, a3 = asby = a1biba; = 01101001.) Evidently, |a;| = |b;| = 2¢ and b; is
bitwise negation of a;. It is easy to check that the required bound follows from the (one-dimensional)
aperiodicity of a, and b, in the following sense:

Lemma [folklore]. For any integer u > 0 and for any n such that u < |ay|/4 the shift by u steps
to the right changes at least |a,|/4 positions in a, and leaves unchanged at least |a,|/4 positions.
(Formally, in the range 1...(3/4)2" there is at least (1/4)2™ positions 7 such that ith and (i +u)th
bits in a, coincide and at least (1/4)2™ positions where these bits differ.)

Proof of the Lemma: a, can be represented as abbabaab where a = a,,_3 and b = b,_3. One
may assume without loss of generality that u > |a| (otherwise we apply Lemma separately to the
two halves of a,,). Note that ba appears in the sequence twice and once it is preceded by a and
once by b. Since a and b are opposite, the shifted bits match in one of the cases. The same is true
for ab that appears preceded both by a and b.



7 Filling holes

The second application of our flexible fixed-point construction is an aperiodic
tile set where isolated defects can be healed.

Let ¢1 < co be positive integers. We say that a tile set 7 is (c1,c2)-

L robust if the following holds: For every n and for every 7-tiling U of the
= - con-neighborhood of a square n x n excluding the square itself there exists a
tiling V' of the entire con-neighborhood of the square (including the square
itself) that coincides with U outside of the cjn-neighborhood of the square
(see Fig. 5).

Figure 5: Theorem 5 There exists a self-similar tile set that is (c1,co)-robust for some

c1 and cs.

Proof. For every tile set y one can easily construct a “robustified” version u' of u, i.e., a tile
set p' and the mapping §: ' — p such that: (a) d-images of u'-tilings are exactly u-tilings; (b) '
is “5-robust”: every u/-tiling of a 5 X 5 square minus 3 x 3 hole can be uniquely extended to the
tiling of the entire 5 x 5 square. (One can replace 5 by 4 using more precise bounds.)

Indeed, it is enough to keep in one p'-tile the information about, say, 5 x 5
square in p-tiling and use the colors on the borders to ensure that this infor-
mation is consistent in neighbor tiles.

This robustification can be easily combined with the fixed-point construc-
tion; in this way we get a b-robust self-similar tile set 7 with some zoom factor
N. This set is also (c1, c2)-robust for some ¢; and co. Indeed, consider a 7-tiling
of the con-neighborhood of an n xn hole. In this tiling an N x N block structure
is correct except for the N-neighborhood of the central n x n hole. For similar
reasons N2 x N2-structure is correct except for the N 4+ N?-neighborhood, etc.
So for large enough k we get the k-level structure that is correct except for (at most) 9 = 3 x 3
squares of level k, and such a hole can be filled due to 5-robust property with N¥ x N* squares
that can be then detalized back. For this we need only con neighborhood of n x n hole for some
¢z (since N¥ = O(n) for the minimal level k£ used to correct the hole) and change the tiling only in
cin neighborhood (both constants ¢; and ¢z depend on N, but N is fixed).

Figure 6:

8 Tilings with errors

Now we combine our tools to prove that there exists a tile set 7 that is aperiodic in rather strong
sense: this set does not have periodic tilings or tilings that are close to periodic. Moreover, this
remains true if we allow the tiling to have some “sparse enough” set of errors. Tiling with errors is
no more a tiling (as defined above): now we allow that in some places the neighbor colors do not
match. Technically it would be more convenient to consider tilings with “holes” (where some cells
are not tiled) instead of errors but this does not matter: we can convert a tiling error into a hole
just by deleting one of two non-matching tiles.

Let 7 be a tile set and let H C Z? be some set (H for “holes”). We consider (7, H)-tilings, i.e.,
mappings U: Z2\ H — 7 such that every two neighbor tiles from Z?\ H match (i.e., have the same
color on the common side).

We claim that there exists a tile set 7 such that (1) 7-tilings of the entire plane exist and (2) for
every “sparse enough” set H every (7, H)-tiling is far from every periodic mapping Z? — 7.



To make this claim true, we need a proper definition of a “sparse” set. The following trivial
counterexample shows that a requirement of small density is not enough for such a definition: if H
is a grid made of vertical and horizontal lines at large distance N, the density of H is small but for
any 7 such that 7-tilings of the plane exist (and possibly all of them are aperiodic) there exist also
(7, H)-tilings with periods that are multiples of N.

The definition of sparsity we use (see below) is rather technical; however, it guarantees that
for small enough € a random set where every point appears with probability ¢ independently of
other points, is sparse with probability 1. More precisely, for every ¢ € (0,1) consider a Bernoulli
probability distribution B, on subsets of Z? where each point is included in the random subset with
probability € and different points are independent.

Theorem 6 There ezists a tile set T with the following properties: (1) T-tilings of Z2 exist; (2) for
all sufficiently small e for almost every (with respect to B.) subset H C 72 every (r, H)-tiling is at
least 1/10 Besicovitch-apart from every periodic mapping Z? — .

Remark 2. Since the tiling contains holes, we need to specify how we treat the holes when
defining Besicovitch distance. We do not count points in H as points where two mappings differ;
this makes our statement stronger.

Remark 3. The constant 1/10 is not optimal and can be improved by a more accurate esti-
mates.

Proof. Consider a tile set 7 such that (a) all 7-tilings are a-aperiodic for every a < 1/4; (b) 7
is (c1, c9)-robust for some ¢; and co. Such a tile set can be easily constructed by combining the
arguments used for Theorem 5 and Theorem 4.

Then we show (this is the most technical part postponed until Section 9) that for small € a B,-
random set H with probability 1 has the following “error-correction” property: every (7, H)-tiling
is Besicovitch-close to some 7-tiling of the entire plane. The latter one is a-aperiodic, therefore
(if Besicovitch distance is small compared to «) the initial (7, H)-tiling is far from any periodic
mapping.

For simple tile sets that allow only periodic tilings this error-correction property can be derived
from basic results in percolation theory (the complement of H has large connected component etc.)
However, for aperiodic tile sets this argument does not work and we need more complicated notion
of “sparse” set based on “islands of errors”. We employ the technique suggested in [7] (see also
applications of “islands of errors” in [9], [6]).

9 Islands of errors

Let E C Z? be a set of points; points in E are called dirty; other points are clean. Let o, be
positive integers such that o < 8. A set X C E is an (o, 8)-island in E if:

(1) the diameter of E does not exceed a;

(2) in the S-neighborhood of X there is no other points from E.

(Diameter of a set is a maximal distance between its elements; the distance d is defined as the
maximum of distances along both coordinates; S-neighborhood of X is a set of all points y such
that d(y,z) < B for some z € X.)

It is easy to see that two (different) islands are disjoint (and the distance between their points
is greater than ).

Let (a1,p1), (a2,B2),...be a sequence of pairs of integers and a; < f3; for all i. Consider the
iterative “cleaning” procedure. At the first step we find all (a1, 1)-islands (rank 1 islands) and
remove all their elements from F (thus getting a smaller set E1). Then we find all (ag, 82)-islands



in Ey (rank 2 islands); removing them, we get Eo C E, etc. Cleaning process is successful if every
dirty point is removed at some stage.

At the ith step we also keep track of the §;-neighborhoods of islands deleted during this step.
A point z € Z? is affected during a step i if z belongs to one of these neighborhoods.

The set F is called sparse (for given sequence «;, 3;) if the cleaning process is successful, and,
moreover, every point z € Z? is affected at finitely many steps only (i.e., z is far from islands of
large ranks).

The values of «; and B; should be chosen in such a way that:

(1) for sufficiently small ¢ > 0 a B.-random set is sparse with probability 1 (Lemma 1 below);

(2) if a tile set 7 is (c1, c2)-robust and H is sparse, then any (7, H)-tiling is Besicovitch close to
some 7-tiling of the entire plane (Lemmas 2 and 3).

Lemma 1. Assume that 8, . Br < an < B, for every n and ), l(’g—/’)i < 00. Then for all
sufficiently small € > 0 a B.-random set is sparse with probability 1.

Proof of Lemma 1. Let us estimate the probability of the

E, x event “z is not cleaned after n steps” for a given point z (this
‘ \ probability does not depend on z).
E, Zo 1 If z € E,, then z belongs to F,_1 and is not cleaned dur-
‘ \ ‘ \ ing the nth step (when (ay,, 8,)-islands in E,_; are removed).
E,_ Too  Zoi 210 x11 Then x € E,_; and, moreover, there exists some other point

z1 € E,_1 such that d(z,z1) is greater than «,/2 but not
greater than 3, + ay, /2 < 26,. Indeed, if there were no such z;
in F,_1, then a,,/2-neighborhood of z in E,,_; is an (&, Bn)-
Figure 7: Explanation tree; ver- jigland in E,_; and z would be removed.
tical lines connect different names Each of the points z; and z (that we denote also zy to make
for the same points. the notation uniform) belongs to E,_; because it belongs to
E,_5 together with some other point (at the distance greater
than ay,_1/2 but not exceeding fB,—1 + ap—1/2). In this way we get a tree (Figure 7) that explains
why z belongs to E,.

The distance between zy and z; in this tree is at least /2 while the diameter of the subtrees
starting at zo and z; does not exceed ), , 2f;. Therefore, the Lemma’s assumption guarantees
that these subtrees cannot intersect and, moreover, that all the leaves of the tree are different. Note
that all 2" leaves of the tree belong to £ = Ej. As every point appears in F independently from
other points, such an “explanation tree” is valid with probability €2°. It remains to estimate the
number of possible explanation trees for a given point z.

To specify z; we need to specify horizontal and vertical distance between zy and z;. Both
distances do not exceed 203, therefore we need about 2log(4/4,,) bits to specify them (including the
sign bits). Then we need to specify the distances between zgg and zg; as well as distances between
x10 and z11; this requires at most 41log(43,,—1) bits. To specify the entire tree we therefore need

2log(4Pn) + 4log(4Pn—1) + 8log(4fn—2) + ... + 2" log(451)

bits, that is (reversing the sum and taking out the factor 2™) equal to 2" (log(4/51)+1og(452)/2+...).
Since the series Y log 8,/2" converges by assumption, the total number of explanation trees for a
given point (and given n) does not exceed 20(") 50 the probability for a given point z to be in
E,, for a B.-random E does not exceed £2"29(") which tends to 0 (even super-exponentially fast)
as n — oo.

We conclude that the event “z is not cleaned” (for a given point z) has zero probability; the
countable additivity guarantees that with probability 1 all points in Z? are cleaned.



It remains to show that every point with probability 1 is affected by finitely many steps only.
Indeed, if z is affected by step m, then some point in its S,-neighborhood belongs to FE,, and
the probability of this event is at most O(82)e2" 20(2") = 92log fn+0(2")~log(1/€)2" . the convergence
conditions guarantees that log 8, = 0(2"), so the first term is negligible compared to others, the
probability series converges and the Borel-Cantelli lemma gives the desired result.

The following (almost evident) Lemma describes the error correction process.

Lemma 2. Assume that a tile set 7 is (c1, cp)-robust, 8 > 4caay, for every k and a set H C Z2
is sparse (with respect to «;, ;). Then every (7, H)-tiling can be transformed into a 7-tiling of the
entire plane by changing it in the union of 2¢; ag-neighborhoods of rank & islands (for all islands of
all ranks).

Proof of Lemma 2. Note that 8;/2-neighborhoods of rank & islands are disjoint and it is enough
to perform the error correction of rank k islands (after all islands of smaller rank are corrected)
because of (c1,co)-robustness and the inequality Sy > 4coay. This allows us to perform error
correction in parallel to the cleaning process, starting with rank 1 islands, then correcting rank 2
islands etc. o

It remains to estimate the Besicovitch size of the part of the plane changed during error cor-
rection.

Lemma 3. The Besicovitch distance between the original and corrected tilings (in Lemma 2)
does not exceed O(>", (ak/Bx)?)-

(Note that the constant in O-notation depends on ¢;.)

Proof of Lemma 3. We need to estimate the fraction of changed points in large centered squares.
By assumption, the center is affected only by a finite number of islands. For every larger rank k,
the fraction of points affected at the stage k in any centered square does not exceed O((ay/Bk)?):
if the square intersects with the changed part, it includes a significant portion of the unchanged
part. For smaller ranks the same is true for all large enough squares that cover completely the
island affecting the center point). 5

It remains to chose oy and ;. We have to satisfy all the inequalities in Lemmas 1-3 at the
same time. To satisfy Lemma 2 and Lemma 3, we may let 8y = ckay for large enough c¢. To
satisfy Lemma 1, we may let a1 = 8(81 + ... + Bk) + 1. Then o), and Sy grow faster that any
geometric sequence (like factorial multiplied by a geometric sequence), but still log 3; is bounded
by a polynomial in ¢ and the series in Lemma 1 converges.

With these parameters (taking c large enough) we may guarantee that Besicovitch distance
between the original (7, H)-tiling and the corrected 7-tiling does not exceed, say 1/100. Since the
corrected tiling is 1/5-aperiodic and 1/10+2-(1/100) < 1/5, we get the desired result (Theorem 6).

10 Other applications of fixed point self-similar tilings

The fixed point construction of aperiodic tile set is flexible enough and can be used in other contexts.
For example, the “zoom factor” N can depend on the level k (number of grouping steps). For this
each macro-tile should have k encoded at its sides; this labeling should be consistent when switching
to the next level. For a tile of level k its coordinates inside a macro-tile are integers modulo Ny 1,
so in total log k + O(log Ny 1) bits are required and Ny, steps should be enough to perform addition
modulo Ngy1. This means that Nj should not increase too fast or too slow (say, Ny = logk is too
slow and Nj,1 = 2™k is too fast). Also we need to compute N when k is known, so we assume
that this can be done in polynomial time in the length of k (i.e., logk). These restrictions still
allow many possibilities, say, Ny = V&, N = k, Nj, = 22°), N}, = k! etc.



This “self-similar” structure with variable zoom factor can be useful in some cases. Though it is
not a self-similar according to our definition, one can still easily prove that any tiling is aperiodic.
Note that now the computation time for the TM simulated in the central part increases with level,
and this can be used for a simple proof of undecidability of domino problem (in the standard
proof [2, 1] one needs to organize the “computation zone” with some simple geometric tricks).
With our new construction it is enough (for a given TM M) to add in the program the parallel
computation of M on the empty tape; if it terminates, this destroys the tiling.

Here is an example of a more exotic result (that has probably no interest in itself, just an
illustration of the technique). We say that a tile set 7 is m-periodic if 7-tilings exist and for each
of them the set of periods is the set of all multiples of m (this is equivalent to the fact that both
vectors (0,m) and (m,0) are periods). Let E [resp. O] be all m-periodic tile sets for all even m
[resp. odd m].

Theorem 7 The sets E and O are inseparable enumerable sets.

Proof. It is easy to see that the property “to be an m-periodic tile set” is enumerable (both
the existence of tiling and enforcing periods (m,0) and (0, m) are enumerable properties).

It remains to reduce some standard pair of inseparable sets (say, machines that terminate with
output 0 and 1) to (E,O). It is easy to achieve using the technique explained. Assume that Ny
increase being odd integers as long as the computation of a given machine does not terminate.
When and if it terminates with output 0 [1], we require periodicity with odd [resp. even] period at
the next level.
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