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Abstract. This paper explores the impact of geometry on computability
and complexity in Winfree’s model of nanoscale self-assembly. We work
in the two-dimensional tile assembly model, i.e., in the discrete Euclidean
plane Z×Z. Our first main theorem says that there is a roughly quadratic
function f such that a set A ⊆ Z

+ is computably enumerable if and only
if the set XA = {(f(n), 0)|n ∈ A} – a simple representation of A as a set
of points on the x-axis – self-assembles in Winfree’s sense. In contrast,
our second main theorem says that there are decidable sets D ⊆ Z × Z

that do not self-assemble in Winfree’s sense.
Our first main theorem is established by an explicit translation of an
arbitrary Turing machine M to a modular tile assembly system TM ,
together with a proof that TM carries out concurrent simulations of M

on all positive integer inputs.
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1 Introduction

A major objective of nanotechnology is to engineer systems that, like many
systems in nature, autonomously assemble themselves from molecular compo-
nents. One promising approach to this objective, pioneered by Seeman in the
1980s [10], is DNA tile self-assembly. This approach exploits the information-
processing and structural properties of DNA to construct nanoscale components
(DNA tiles) that, with moderate control of physical conditions (temperature,
concentration in solution, etc.), spontaneously assemble themselves into larger
structures. These structures, which may be complex and aperiodic, are pro-
grammed, in the sense that they are determined by a designer’s selection of the
short, single-strand nucleotide sequences (“sticky ends”) that appear on each
side of each type of DNA tile to be used.

In the late 1990s, Winfree [14] introduced a mathematical model of DNA tile
assembly called the Tile Assembly Mode. This model, which was soon refined by
Rothemund and Winfree [9, 8], is an extension of Wang tiling [12, 13]. (see also
[1, 7, 11].) The Tile Assembly Model, which is described in section 2 below, uses
square tiles with various types and strengths of “glue” on their edges as abstrac-
tions of DNA tiles adsorbing to a growing structure on a very flat surface such
as mica. Winfree [14] proved that the Tile Assembly Model is computationally
universal, i.e., that any Turing machine can be encoded into a finite set of tile
types whose self-assembly simulates that Turing machine.

The computational universality of the Tile Assembly Model implies that
self-assembly can be algorithmically directed, and hence that a very rich set
of structures can be formed by self-assembly. However, as we shall see, this
computational universality does not seem to imply a simple characterization of
the class of structures that can be formed by self-assembly. The difficulty is that
self-assembly (like sensor networks, smart materials, and other topics of current
research [2, 3]) is a phenomenon in which the spatial aspect of computing plays
a crucial role. Two processes, namely self-assembly and the computation that
directs it, must take place in the same space and time.

In this paper, we focus on the self-assembly that takes place in the discrete
Euclidean plane Z

2 = Z × Z, where Z is the set of integers. Roughly, a tile as-
sembly system T (defined precisely in section 2) is a finite set T of tile types,
together with a finite seed assembly σ consisting of one or more tiles of these
types. Self-assembly is then the process in which tiles of the types in T succes-
sively adsorb to σ (more precisely, to the assembly which is thereby dynamically
growing from σ) in any manner consistent with the rules governing the glue
types on the edges of the given tile types. Note that self-assembly is, in general,
a nondeterministic, asynchronous process.

We say that a set X ⊆ Z
2 self-assembles in a tile assembly system T if every

possible “run” of self-assembly in T results in the placement of black tiles on
the set X and only on the set X . (Some of the tile types in T are designated to
be black. Non-black tiles may appear on some or all points in the complement
Z

2 − X .) This is the sense in which Winfree [14] has demonstrated the self-
assembly of the standard discrete Sierpinski triangle. (In [6] this is called weak



self-assembly to contrast it with a stricter notion in which, essentially, all tiles
are required to be black.)

This paper presents two main theorems on the interplay between geometry
and computation in tile self-assembly. To explain our first main theorem, define
the function f : Z

+ → Z
+ by

f(n) =

(

n + 1

2

)

+ (n + 1)blog nc + 6n − 21+blog(n)c + 2.

Note that f is a reasonably simple, strictly increasing, roughly quadratic function
of n. For each set A ⊆ Z

+, the set

XA = {(f(n), 0)|n ∈ A}

is thus a straightforward representation of A as a set of points on the positive
x-axis.

Our first main theorem says that every computably enumerable set A of
positive integers (decidable or otherwise) self-assembles in the sense that there
is a tile assembly system TA in which the representation XA self-assembles.
Conversely, the existence of such a tile assembly system implies the computable
enumerability of A.

In contrast, our second main theorem says that there are decidable sets D ⊆
Z

2 that do not self-assemble in any tile assembly system. In fact, we exhibit such
a set D for which the condition (m, n) ∈ D is decidable in time polynomial in
|m| + |n|.

Taken together, our two main theorems indicate that the interaction between
geometry and computation in self-assembly is not at all simple. Further inves-
tigation of this interaction will improve our understanding of tile self-assembly
and, more generally, spatial computation.

The proof of our first main theorem has two features that may be useful
in future investigations. First, we give an explicit transformation (essentially
a compiler, implemented in C++) of an arbitrary Turing machine M to a tile
assembly system TM whose self-assembly carries out concurrent simulations of M

on (the binary representation of) all positive integer inputs. Second, we prove
two lemmas – a pseudoseed lemma and a multiseed lemma – that enable us
to reason about tile assembly systems in a modular fashion. This modularity,
together with the local determinism method of Soloveichik and Winfree [11],
enables us to prove the correctness of TM .

2 Preliminaries

We work in the 2-dimensional discrete Euclidean space Z
2. We write U2 for the

set of all unit vectors, i.e., vectors of length 1, in Z
2. We regard the 4 elements

of U2 as (names of the cardinal) directions in Z
2.

We now give a brief and intuitive sketch of the Tile Assembly Model that
is adequate for reading this paper. More formal details and discussion may be
found in [14, 9, 8].



Intuitively, a tile type t is a unit square that can be translated, but not
rotated, so it has a well-defined “side u” for each u ∈ U2. Each side u is covered
with a “glue” of “color” colt(u) and “strength” strt(u) specified by its type t.
If two tiles are placed with their centers at adjacent points m, m + u ∈ Z

2,
where u ∈ U2, and if their abutting sides have glues that match in both color
and strength, then they form a bond with this common strength. If the glues
do not so match, then no bond is formed between these tiles. In this paper, all
glues have strength 0, 1, or 2. When drawing a tile as a square, each side’s glue
strength is indicated by whether the side is a dotted line (0), a solid line (1), or
a double line (2). Each side’s “color” is indicated by an alphanumeric label.

Given a set T of tile types and a “temperature” τ ∈ N, a τ-T-assembly
is a partial function α : Z

2 99K T - intuitively, a placement of tiles at some
locations in Z

2 - that is stable in the sense that it cannot be “broken” into
smaller assemblies without breaking bonds of total strength at least τ . If α

and α′ are assemblies, then α is a subassembly of α′, and we write α v α′, if
dom α ⊆ dom α′ and α(m) = α′(m) for all m ∈ dom α.

Self-assembly begins with a seed assembly σ and proceeds asynchronously and
nondeterministically, with tiles adsorbing one at a time to the existing assembly
in any manner that preserves stability at all times. A tile assembly system (TAS)
is an ordered triple T = (T, σ, τ), where T is a finite set of tile types, σ is a seed
assembly with finite domain, and τ ∈ N. In this paper we always have τ = 2.
A generalized tile assembly system (GTAS) is defined similarly, but without the
finiteness requirements. We write A [T ] for the set of all assemblies that can arise
(in finitely many steps or in the limit) from T . An assembly α is terminal, and
we write α ∈ A� [T ], if no tile can be stably added to it. A GTAS T is directed,
or produces a unique assembly, if it has exactly one terminal assembly.

A set X ⊆ Z
2 (weakly) self-assembles if there exist a TAS T = (T, σ, τ) and

a set B ⊆ T such that α−1(B) = X holds for every terminal assembly α.

An assembly sequence in a TAS T = (T, σ, τ) is an infinite sequence α =
(α0, α1, α2, . . .) of assemblies in which α0 = σ and each αi+1 is obtained from
αi by the addition of a single tile. In general, even a directed TAS may have a
very large (perhaps uncountably infinite) number of different assembly sequences
leading to its terminal assembly. This seems to make it very difficult to prove
that a TAS is directed. Fortunately, Soloveichik and Winfree [11] have recently
defined a property, local determinism, of assembly sequences and proven the
remarkable fact that, if a TAS T has any assembly sequence that is locally
deterministic, then T is directed.

3 Pseudoseeds and Multiseeds

This section introduces two conceptual tools that enable us to reason about tile
assembly systems in a modular fashion.

The idea of our first tool is intuitive. Suppose that our objective is to design
a tile assembly system T in which a given set X ⊆ Z

2 self-assembles. The set X



might have a subset X∗ for which it is natural to decompose the design into the
following two stages.

(i) Design a TAS T0 = (T0, σ, τ) in which an assembly σ∗ with domain X∗

self-assembles.
(ii) Extend T0 to a tile set T such that X self-assembles in the TAS T ∗ =

(T, σ∗, τ)

We would then like to conclude that X self-assembles in the TAS T = (T, σ, τ).
This will not hold in general, but it does hold if (i) continues to hold with T in
place of T0 and σ∗ is a pseudoseed in the following sense.

Definition 1. Let T = (T, σ, τ) be a GTAS. A pseudoseed of T is an assembly
σ∗ ∈ A[T ] with the property that, if we let T ∗ = (T, σ∗, τ), then, for every
assembly α ∈ A[T ], there exists an assembly α′ ∈ A[T ∗] such that α v α′.

The following lemma says that the above definition has the desired effect.

Lemma 1 (pseudoseed lemma). If σ∗ is a pseudoseed of a GTAS T =
(T, σ, τ) and T ∗ = (T, σ∗, τ), then A� [T ] = A� [T ∗].

Note that the pseudoseed lemma entitles us to reason as though the self-
assembly proceeds in stages, even though this may not actually occur. (E.g., the
pseudoseed σ∗ may itself be infinite, in which case the self-assembly of σ∗ and
the self-assembly from σ∗ must occur concurrently.)

Our second tool for modular reasoning is a bit more involved. Suppose that
we have a tile set T and list σ0, σ1, σ2, . . . of seeds that, for each i, the TAS Ti =
(T, σi, τ) has a desired assembly αi as its result. If the assemblies α0, α1, α2, . . .

have disjoint domains, then it might be possible for all these assemblies to grow
from a “multiseed” σ∗ that has σ0, σ1, σ2, . . . embedded in it. We now define a
sufficient condition for this.

Definition 2. Let T and T ′ be sets of tile types with T ⊆ T ′, and let σ =
(σi | 0 ≤ i < k) be a sequence of τ-T -assemblies, where k ∈ Z

+ ∪ {∞}. A
σ-T -T ′-multiseed is a τ-T ′ assembly σ∗ with the property that, if we write

T ∗ = (T ′, σ∗, τ)

and
Ti = (T, σi, τ)

for each 0 ≤ i < k, then the following four conditions hold.

1. For each i, σi v σ∗.
2. For each i 6= j, α ∈ A [Ti], α′ ∈ A [Tj ], m ∈ dom α, and m

′ ∈ dom α′,
m − m

′ ∈ U2 ∪ {0} ⇒ m, m′ ∈ dom σ∗. (Recall that U2 is the set of unit
vectors in Z2.)

3. For each i, and each α ∈ A [Ti], there exists α∗ ∈ A [T ∗] such that α v α∗.
4. For each α∗ ∈ A [T ∗], there exists, for each 0 ≤ i < k, αi ∈ A [Ti] such that

α∗ v σ∗ +
∑

0≤i<k αi.



5. For each α ∈ A [T ∗], α−1 (T ′ − T ) ⊆ dom σ∗.

Note: In condition 4 we are using the operation + defined as follows. If α, α′ :
Z

2 99K T are consistent, in the sense that they agree on dom α ∩ dom α′, then
α + α′ : Z

2 99K T is the unique partial function satisfying dom (α + α′) =
dom α ∪ dom α′, α v α + α′, and α′ v α + α′. This is extended to summations
∑

0≤i<k αi in the obvious way. The assemblies being summed in condition 4 are
consistent by conditions 1 and 2.

Intuitively, the four conditions in the above definition can be stated as follows.

1. The seeds σi are embedded in σ∗.

2. Assemblies in A [Ti] and assemblies in A [Tj ] do not interfere with each other.

3. σ∗ does not interfere with assemblies in A [Ti].

4. σ∗ does not produce anything other than what its embedded seeds σi pro-
duce.

5. Tile types in T ′ − T cannot occur outside σ∗.

The following lemma says that the multiseed definition has the desired effect.

Lemma 2 (multiseed lemma). Let T ⊆ T ′ be sets of tile types, and let σ =
(σi | 0 ≤ i < k) be a sequence of τ-T -assemblies, where k ∈ Z

+ ∪ {∞}. If σ∗

is a σ-T -T ′-multiseed of T ∗ and Ti (0 ≤ i < k) are defined as in the multiseed
definition, then

A� [T ∗] =







σ∗ +
∑

0≤i<k

αi

∣

∣

∣

∣

∣

∣

each αi ∈ A� [Ti]







.

4 Self-Assembly of Computably Enumerable Sets

In [14], Winfree proved that the Tile Assembly Model is Turing universal in two
dimensions. In this section, we prove a stronger result: for every TM M , there
exists a directed TAS that simulates M on (the binary representation of) every
input x ∈ N in the two dimensional discrete Euclidean plane. We state our result
precisely in the following theorem.

Theorem 1 (first main theorem). If f : Z
+ → Z

+ is defined as in section
1, then, for all A ⊆ Z

+, A is computably enumerable if and only if the set
XA = {(f(n), 0)|n ∈ A} self-assembles.

The “⇐” direction is easy (see Appendix C for a complete proof). To prove
the “⇒” direction, we exhibit, for any TM M , a directed TAS TM = (T, σ, τ)
that correctly simulates M on all inputs x ∈ Z

+ in the two dimensional discrete
Euclidean plane. We describe our construction, and give the complete specifica-
tion for T in the remainder of this section and Appendix B, respectively.



4.1 Overview of Construction

Intuitively, TM self-assembles a “gradually thickening bar”, immediately below
the positive x-axis with upward growths emanating from well-defined intervals
of points. For each x ∈ Z

+, there is an upward growth that simulates M on
x. If M halts on x, then (a portion of) the upward growth associated with the
simulation of M(x) eventually stops, and sends a signal down along the right
side of the upward growth via a one-tile-wide-path of tiles to the point (f(x), 0),
where a black tile is placed. See Figure 1 for a finite, yet intuitive snapshot of
this infinite process.

Fig. 1. Simulation of M on every input x ∈ N. Notice that M(2) halts - indicated by
the black tile along the x-axis.

Our tile assembly system TM is divided into three modules: the ray, the
planter, and the TM module, which control the spacing between successive sim-
ulations, the initiation of upward growth, and the actual simulations of M on
each positive integer, respectively.



4.2 The Ray Module

The first module in our construction is the ray module (middle shade of gray
squares in Figure 1). For any 3 ≤ w ∈ Z

+, a ray of width w is a fixed-width,
periodic, binary counter that repeatedly counts from 0 to 2w − 1, such that each
integer is counted once, and then immediately copied once before the value of
the binary counter is incremented. Essentially, a ray of width w is a discrete
line of constant thickness w, having a kind of “slope” that depends on w in the
following way. In every other row (except for two special cases), the first tile to
attach does so on top of the second-to-left most tile in the previous row. Thus, a
ray of width w will have a slope of 2w

2w−1−1 = 2 + 2
2w−1−1 . This implies that the

set of points occupied by properly spaced, consecutive rays of strictly increasing
width, will not only be disjoint but the width of the gap in between such rays
will increase without limit.

4.3 The Planter Module

The next module is the planter module because it “plants the seeds” from which
the ray modules will ultimately grow (the darkest gray squares in Figure 1). At
the core of the planter module is a log-width, horizontal binary counter that
counts every positive integer, starting at 1, in order. A key feature of the binary
counter embedded in the planter module is that, after each integer is counted,
a number of columns, equal to the current value of the binary counter, plus
the number of bits in the binary representation of this value, plus a few extra
“dummy” spacing columns, self-assemble. This has the effect of spacing out
successive ray modules according to the function f (given in the introduction).

4.4 The Computation Module

The final module is, for any TM M , an algorithmically generated tile set that,
in conjunction with the ray and planter modules, achieves the simulation of M

on (the binary representation of) every input x ∈ Z
+. The simulation of M on

bin(x) proceeds vertically, immediately above the planter, while following the
contour defined by the rightmost edge of the ray of width x + 2 (Note that
by our construction of the planter module, there is one, and only one ray of
such width). As with other standard Turing machine constructions (see [14, 9,
11]), each row in our simulation represents a configuration of M . However, the
frequency with which transitions occur is a novel feature of our construction, and
is controlled by “color” signals that are received from the abutting ray module.

4.5 Sketch of Correctness Proof

Let f : Z
+ → Z

+ be defined as in section 1, and stipulate that f(0) = −1. For
each n ∈ Z

+, let σn be the portion of the planter lying in the rectangle

Qn = {f(n − 1) + 2, . . . , f(n) − 1} × {−2,−1},



and let ρn be the ray of width n + 2, translated so that its base is the leftmost
2(n + 2) tiles of σn. Let σ∗

n = σn + ρn.
Let T = (T, σ, τ) be our TAS, noting that σ consists of a single tile at the

origin. For each n ∈ N, let Tn = (T, σn, τ). We use local determinism to prove
that each σ∗

n is a pseudoseed of Tn and that each T ∗
n = (T, σ∗

n, τ) has the unique
terminal assembly αn = σ∗

n + γn, where γn is the assembly that simulates M(n)
as in section 4.4. It follows by the pseudoseed lemma that each αn is the unique
terminal assembly of Tn. We then use local determinism to prove that our planter
σ∗ has the following two properties.

(i) σ∗ is a pseudoseed of T .
(ii) σ∗ is a σ-T -multiseed, where σ = (σ0, σ1, . . .).

Let T ∗ = (T, σ∗, τ). By (ii) and the multiseed lemma, we now have that

α = σ∗ +
∞
∑

n=0

αn

is the unique terminal assembly of T ∗. It follows by (i) and the pseudoseed
lemma that α is the unique terminal assembly of T . More details may be found
in Appendix C.

5 A Decidable Set That Does Not Self-Assemble

We now show that there are decidable sets D ⊆ Z
2 that do not self-assemble in

the Tile Assembly Model.
For each r ∈ N, let

Dr = { (m, n) ∈ Z
2
∣

∣ |m| + |n| = r}.

This set is a “diamond” in Z
2 with radius r and center at the origin. For each

A ⊆ N, let

DA =
⋃

r∈A

Dr.

This set is the “system of concentric diamonds” centered at the origin with radii
in A.

Lemma 3. If A ⊆ N and DA self-assembles, then A ∈ DTIME
(

24n
)

.

The proof of this lemma, which appears in Appendix D, exploits the fact that
a tile assembly system in which DA self-assembles must, for sufficiently large r,
decide the condition r ∈ A from inside the diamond Dr.

We now have the following result.

Theorem 2 (second main theorem). There is a decidable set D ⊆ Z
2 that

does not self-assemble.

Proof. By the time hierarchy theorem [5], there is a set A ⊆ N such that

A ∈ DTIME
(

25n
)

− DTIME
(

24n
)

.

Let D = DA. Then D is decidable and, by Lemma 3, D does not self-assemble.



6 Conclusion

Our first main theorem says that, for every computably enumerable set A ⊆ Z
+,

the representation XA = {(f(n), 0)|n ∈ A} self-assembles. This representation
of A is somewhat sparse along the x-axis, because our f grows quadratically. A
linear function f would give a more compact representation of A. We conjecture
that our first main theorem does not hold for any linear function, but we do not
know how to prove this.

Let D be the set presented in the proof of our second main theorem. It is easy
to see that the condition (m, n) ∈ D is decidable in time polynomial in |m|+ |n|,
but |m|+ |n| is exponential in the length of the binary representation of (m, n),
so this only tells us that D ∈ E = DTIME

(

2linear
)

. Is there a set D ⊆ Z
2 such

that D ∈ P, and D does not self-assemble?
More generally, we hope that our results lead to further research illuminating

the interplay between geometry and computation in self-assembly.

Acknowledgment The authors wish to thank Dave Doty and Aaron Sterling
for useful discussions.
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Appendix A (Section 3 Proofs)

Proof (of Lemma 1, pseudoseed lemma).
(“⊆” direction) Let α ∈ A� [T ]. This means that σ → α. The definition of

pseudoseed tells us that there exists α′ ∈ A [T ∗] such that α v α′. But since α is
terminal, we must have α = α′, whence σ v σ∗ v α. It follows, by Rothemund’s
lemma (Lemma 2 on p. 57 of [8]), that σ∗ → α.

(“⊇” direction) Let α ∈ A� [T ∗]. Then we have σ∗ → α. Moreover, σ → σ∗

because σ∗ ∈ A [T ]. Thus, σ → σ∗ → α, and it follows, by the transitivity of →,
that α ∈ A� [T ].

Proof (of Lemma 2, multiseed lemma).
(“⊆” direction) Let α∗ ∈ A [T ∗]. It follows by part (4) of definition 2 that

α∗ = σ∗ +
∑

0≤i<k αi, where αi ∈ A [Ti], Since α∗ is terminal, for each i, αi ∈

A� [Ti], whence α∗ ∈
{

σ∗ +
∑

0≤i<k αi

∣

∣

∣
each αi ∈ A� [Ti]

}

.

(“⊇” direction) For each 0 ≤ i < k, let αi ∈ A� [Ti] and let α = σ∗ +
∑

0≤i<k αi . It suffices to shaw that α ∈ A� [T ∗].
Condition 3 of the multiseed definition tells us that, for each 0 ≤ i < k, there

is an assembly α∗
i ∈ A [T ∗] such that αi v α∗

i . Since σ∗ v α∗
i , it follows that

σ∗ + αi v α∗
i . (1)

By condition 4 of the multiseed definition, there is, for each 0 ≤ i < k and
0 ≤ j < k, an assembly αij ∈ A [Ti] such that, for all 0 ≤ i < k,

α∗
i v σ∗ +

∑

0≤j<k

αij . (2)

For each 0 ≤ i < k, let

Di = dom α∗
i ∩ (dom σ∗ ∪ dom αii),

and let
α̂∗

i = α∗
i � Di.

By (1), (2), and condition 2 of the multiseed definition, we have

σ∗ + αi v α̂∗
i

for all 0 ≤ i < k. Now the assemblies α̂∗
i are all consistent with one another, and

each αi is terminal in A [Ti], so, by condition 5 of the multiseed definition, we
must have

α =
∑

0≤i<k

α̂∗
i . (3)

For each 0 ≤ i < k, let α
∗i be an assembly sequence from σ∗ to α∗

i , and let α̂
∗i be

the sequence obtained from α
∗i by deleting all additions of tiles not in σ∗+αii. By

condition 2 of the multiseed definition, each α̂
∗i is a τ -T’-assembly sequence from

σ∗ to α̂∗
i . By (3), then, if we dovetail the assembly sequences α̂

∗i(0 ≤ i < k), we
get an assembly sequence α̂

∗ from σ∗ to α, whence α ∈ A [T ∗]. Since the αi are
terminal, conditions 4 and 5 of the multiseed definition tell us that α ∈ A� [T ∗].



Appendix B (Details of Construction)

It is to be understood that, although not explicit in our discussion, tile types in
each module are colored with a “module indicator” symbol to prevent erroneous
binding between the tile types of different modules.

Ray construction

The ray module is a tile set of 68 tile types. Although in our construction the
ray is not a self-contained tile assembly system, it can be made to be one with
a trivial change. For any 3 ≤ w ∈ N, a ray of width w is a fixed-width, periodic,
binary counter that repeatedly counts from 0 to 2w −1, such that each integer is
counted once, and then immediately copied once before the value of the binary
counter is incremented. Our ray is based on the binary counter from [9], and
thus increments right-to-left, and then copies the previous value left-to-right.
However, since we construct the ray to operate on the reverse of each integer
(i.e., the LSB of each integer is its left most bit), increments proceed left-to-right
and copies right-to-left. The most important feature of the ray is that the first,
and hence left most, tile to attach in any increment row does so on top of the
second-to-left most tile in the previous copy row, unless the bit pattern of the
previous increment row is of the form 1w−1(0 + 1). A detailed example of the
former case is shown in Figure 2.
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Fig. 2. The first row of tiles is the initial row in a ray of width 4. The second row of
tiles represents the value 1, and is the first increment row. The third row of tiles simply
copies the value of the previous increment row.



In the latter case, the ray simply proceeds without “shifting” to the right by
one unit. Copy rows are able to search for the two special bit patterns by using
‘a’ and ‘s’ signals, respectively. For instance, when a copy row begins to self-
assemble, and the current value of the counter is less than 2w−1, an ‘a’ signal is
propagated left through the copy row until a 0 bit is encountered in the previous
increment row, thus breaking the signal. If no such bit exists, the signal will
reach the left most tile of the copy row, and cause the next increment row to
attach without being shifted one unit to the right. This situation is shown with
detail in Figure 3.
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Fig. 3. If the current value of the binary counter is a power of 2 (the fourth row of
tiles), then the increment row that represents this value does not shift to the right by
one unit. This situation is detected in the third (copy) row by the ‘a’ signal, which
travels unimpeded right-to-left. The complementary ‘b’ signal is then sent left-to-right
in the subsequent increment row to initiate a green signal.

Otherwise, the next increment row attaches on top of the second-to-left most
tile in the current copy row. The ‘s’ signal searches for the bit pattern 1w in a
similar fashion, shown with detail in Figure 4.

Finally, each row in the ray exhibits a particular “color” on the right side
of its right most tile so as to allow a third (soon to be discussed) module to
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Fig. 4. If the current value of the binary counter rolls over to all zeros (the fourth row
of tiles), then the increment row that represents this value does not shift to the right
by one unit. Similar to how the ‘a’ signal detects powers of 2, the ’s’ signal (the third
row of tiles) detects when the counter is about to roll over. The ‘t’ signal initiates an
indigo signal.

“know what to do and when to do it.” Each increment row signals orange unless
it contains the bit pattern 0w−1(0 + 1), in which case it signals green for 0w−11,
and indigo otherwise. Each copy row signals yellow. However, if it is the copy
row after an increment row with the bit pattern 0w−11, then it signals blue. The
initial row signals red.

In our construction, the upward growth of every ray is initiated by the
planter. This can be seen with detail in Figure 5, where the top row of tiles
(excluding the leftmost tile) will initiate the self-assembly of a ray having a
width of 6. It is clear that our construction has the following properties.

1. A ray having a width of w will have a “slope” of 2w

2w−1−1 = 2+ 2
2w−1−1 , which

clearly tends to 2 as w → ∞;
2. for every 3 ≤ w ∈ Z

+, there is one and only one ray having a width of w;
3. thinner rays appear before thicker rays;
4. the set of points occupied by any ray is disjoint from the set of points occu-

pied by any other ray and



5. the width between successive rays grows without limit.

The following is a list of tile types that make up the ray module.

1. Initial row - add the following tile types:

Leftmost Second leftmost Interior Rightmost

*r

rS

r

*0

r S

r

0

S

r*

00*

RS

2. Tile types that perform general case increments (left to right).

(a) Leftmost tile - add the following tile types:

No carry Carry

*0

**1

*1n

*1

**0

*0c

(b) Second leftmost tile type.

i. If there is no carry bit to propagate ,then ∀x, y ∈ {0, 1}, add the
following tile types:

No carry in
No carry out

y

*x

*xn yny

ii. If there is a carry bit coming in from the left, add the following tile
types:

Carry in, Carry in,
No carry out Carry out

0

*0

*0c 1n1

1

*0

*0c 0c0

(c) Interior tile type.

i. If there is no carry bit to propagate, then ∀x, y ∈ {0, 1}, add the
following tile types:

No carry in
No carry out

y

x

xn yny

ii. If there is a carry bit coming in from the left, add the following tile
types:



Carry in, Carry in,
No carry out Carry out

0

0

0c 1n1

1

0

0c 0c0

(d) Second rightmost tile type.
i. If there is no carry bit to propagate, then ∀x, y, z ∈ {0, 1}, add the

following tile types:
No carry in
No carry out

yz*

x

xn yzny

ii. If the carry bit being propagated stops at the second most significant
bit, then ∀x ∈ {0, 1}, add the following tile types:

Carry in
No carry out

0x*

0

0c 1 nx1

(e) Rightmost tile type - ∀x, y ∈ {0, 1}, add the following tile type:
No carry in

xy*

xyn Oy

(f) Second right and second leftmost tile type (when w = 3.)
i. If there is no carry bit to propagate, then ∀x, y ∈ {0, 1}, add the

following tile types:
No carry in,
No carry out

xy*

*1

*1n xynx

ii. If the carry bit stops at this location, then ∀x ∈ {0, 1}, add the
following tile types:

Carry in,
No carry out

0 *x

*0

*0c 1 nx1

3. Tile types that perform special case increments.



(a) When the current row represents a power of 2 - add the following tile
types:

Leftmost Second leftmost Interior Rightmost

*a

**0

*b0

1

*0

*b b0

1

0

b b0

10*

01*b

b G1

(b) When the current row represents 0 - add the following tile types:

Leftmost Second leftmost Interior Rightmost

*s

**0

*t0

1

*0

*t t0

1

0

t t0

11*

00*

t I0

4. Tile types that copy the current value of the counter (right to left).

(a) Rightmost tile type of copy row.
i. Rightmost tile types that initiate a generic copy row - ∀y ∈ {0, 1},

add the following tile types:
Search for bit Copy row above

pattern: (0 + 1)+0(0 + 1) bit pattern: 00+1

0 *y

0 *y

Yy

0 b*y

0 *y

By

ii. Rightmost tile types that search for a particular bit pattern - add
the following tile types:

Search for bit Search for bit
pattern: 11+0 pattern: 11+

10*

10*

a Y0

11*

11*

s Y1

(b) Copy row interior tile types - ∀x ∈ {0, 1}, add the following tile types:

Leftmost Second leftmost Interior

**x

x
*x

*x

x

x

x

x

(c) Copy row tile types that perform bit pattern search - ∀z ∈ {a, s} add
the following tile types:

Leftmost Second leftmost Interior

**1

*z

z1

*1

1

z z1

1

1

z z1

(d) Tile types that terminate bit pattern search - ∀z ∈ {a, s} add the follow-
ing tile types:



Second leftmost Interior

*0

*0

z0

0

0

z0

Planter construction

We call the second module “the planter” because it “plants the seeds” from
which the ray module grow. The tile set for the planter consists of 94 tile types.
We partition the tile types into four logical subgroups.

The first of the four subgroups is a standard binary counter that counts from
1 to infinity with the LSB of each integer having a y-coordinate of -1. The binary
counter is based on an infinite fixed-width version of the binary counter in [9].

Suppose that x ∈ Z
+ be the current value of the binary counter. The second

subgroup receives x as input, and then in each subsequent row, subtracts one
from the value of the number in the previous row until reaching 0, at which time
a final “dummy” row consisting of all zeros self-assembles. This results in the self-
assembly of exactly x+1 rows following the binary counter row that represents x.
The tile types that perform subtraction are based on the optimal binary counter
(see [4]). Note that while subtraction is taking place, the current value of the
binary counter is “remembered” via the rightmost bits in the east/west edge
labels so that the value can be input to the third subgroup. Figure 5 shows a
detailed example of the subtraction process for n = 4.
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r r
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Fig. 5. Subtraction in the planter. The first column of tiles represents the current value
of the binary counter (4). The five rightmost columns of tiles perform subtraction.

Next, the third subgroup of tile types self-assembles into a square of size
blg xc + 1 such that its north most edge labels are colored with the bits of x.
The tile representing the LSB of x is the one that is placed in the upper right
corner of the square. Notice that this has the affect of rotating and reflecting x

up immediately below the x-axis. This is shown with detail in Figure 6. Notice
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Fig. 6. Rotation in the planter. The first three columns of tiles rotates and reflects the
input (4) up immediately below the x-axis. The three subsequent columns of tiles are
“dummy” spacing columns, and the final column of tiles represents the next value of
the binary counter.

that the rightmost tiles in Figure 5 bind with the leftmost tiles in Figure 6.
Finally, the fourth subgroup self-assembles three inert “dummy” spacing rows

while allowing the current value of the binary counter to pass through. After
these spacing rows attach, the next row of the binary counter self-assembles in
which 1 is added to x. This process is repeated for all x ∈ Z

+.
The following is the set of tile types that make up the planter module.

1. Seed tile types.

Top of Bottom of
The seed first column first column

S

*r

*111 0*00

2. Binary counter tile types. The following tile types implement a fixed-width
binary counter that counts every positive integer. Self-assembly proceeds
naturally from LSB to MSB, which in our construction is top-to-bottom.
(a) The first (topmost) tile type to attach (depending on whether the current

row represents an even or odd integer) - add the following tile types:
Even integer Odd integer

c

*r

*1 *000

n

*r

*0 *111

(b) Interior tile types that perform increments; The ‘c’ and ‘n’ characters
symbolize situations in which there is either a carry bit coming in from
the top or there is no carry bit.
i. If there is a carry bit coming in, add the following tile types:



No carry Carry bit
bit out out Bottom

n

c

0 111

c

c

1 000

c

0* 1*11

ii. If there is no carry bit coming in, then ∀x ∈ {0, 1}, add the following
tile types:

No carry
bit out Bottom

n

n

x xxx

n

x* x  x*x

(c) Tile types that increase the number of bits in the binary counter - add
the following tile types:

Propagate carry Increase width
bit past border by 1 unit

c

c

1* 000

c

1*11

3. Subtraction tile types (a modification of the optimal binary counter given in
[?]).
(a) Tile types that search for the least significant 1 bit in the current column

- ∀x ∈ {0, 1}, add the following tile types:
Top Interior Bottom

s

r

*1x *0x0

s

s

0x 0x0

s

s

0*x 0*ax0

(b) Tile types that find the least significant 1 bit in the current column -
∀x ∈ {0, 1}, add the following tile types:

Interior Bottom

c

s

1x 1x1

c

s

1*x 1*x1

(c) Tile types that copy the least significant bits to the right (bottom) of
the least significant 1 bit in the current column - ∀x, y ∈ {0, 1}, add the
following tile types:

Interior Bottom

c

c

xy xyx

c

c

x  y* x  y*x



(d) The first tile type to attach in a row that represents an odd integer. Note
that all tile types that attach above this tile type in a given column will
represent the bit 1 (this is the purpose of the ‘t’ signal) - ∀x ∈ {0, 1},
add the following tile types:

Interior Bottom

c

t

1x 0x0

c

t

1*x 0*x0

(e) Tile types that convert all the least significant bits to the right(top) of
the least significant 1 (in the previous column) to 1 - ∀x ∈ {0, 1}, add
the following tile types:

Top Interior

t

r

*0x *1x1

t

t

0x 1x1

(f) After subtraction reaches 0, one final column is added - ∀x ∈ {0, 1}, add
the following tile types:

Top Interior Bottom

r*

*0x *0xx 0x 0xx 0*ax 0*bxx

4. Rotation tile types.

(a) Tile types of the initial column.

i. The first tile type - ∀x ∈ {0, 1}, add the following tile types:
Bottom

# ix

0*bx x*x

ii. Interior tile types - ∀x, y ∈ {0, 1}, add the following tile types:
Second

to attach In general

# iy

yi

0x #xx

yi

yi

0x xx

iii. Top most tile types - ∀x, y ∈ {0, 1}, add the following tile types:
Special case In general

# iy

y+

*0x #*xx
yi

y+

*0x *xx



(b) Tile types that shift ‘#’ up and to the right (not the initial or final
column) while simultaneously copying the current value of the binary
counter (the fourth subgroup) left-to-right, and bottom-to-top.
i. Shift right and then up - ∀x ∈ {0, 1}, add the following tile types:

The first tile type
in a column

#x

#x xx

ii. Shift up and then right - ∀x, y ∈ {0, 1}, add the following tile types:
Topmost In general

#y

y

*x #*xx
#y

y

x #xx

iii. Tile types that do not participate in shifting the ‘#’ token but are
above the main diagonal - ∀x, y ∈ {0, 1}, add the following tile types:

Topmost In general

y

y

*x *xx

y

y

x xx

(c) The first tile type to attach in the final column - ∀x ∈ {0, 1}, add the
following tile types:

The first tile type
in a column

x

#*x * axx

(d) Tile types that do not participate in shifting the ‘#’ token but are below
the main diagonal - ∀x ∈ {0, 1}, add the following tile types:

Bottom In general

x* x*x x xx

(e) Tile types that are responsible for the self-assembly of three inert spacing
rows immediately after rotation - ∀x ∈ {0, 1}, add the following tile
types:

First Second Third

*

* ax * bx * bx * cx * cx *x



TM construction

The third module is a tile set that simulates M on every input x ∈ Z
+ in the

“corner” that is formed above the planter, and to the right of the ray of width
x+2. In our simulation, as is the case with other standard simulations of Turing
machines in the Tile Assembly Model (see [14, 9, 11]), each row of tiles represents
a configuration of M .

Our simulation of M on x proceeds vertically while following the contour
defined by the rightmost edge of the ray of width x + 2. The right edge label of
the rightmost tile type in every row of this ray sends a “color” signal that has
the potential to initiate the self-assembly of a simulation row (if M halts on x,
then eventually there will be no simulation rows to influence). The color signal
defines the type of simulation row that subsequently self-assembles, whence self-
assembly of every simulation row (except “blue” rows) proceeds left-to-right.
In fact, all non-blue simulation rows, more or less, simply copy the previous
configuration of M up one unit while, in some cases, also performing a shift-to-
the-right by one unit.

Simulation begins with a row of tiles that represent the initial configuration
of M with input x, which is represented by a row of blg xc+2 red tile types (see
below). The initial simulation row is adjacent to the rightmost tile of the initial
row of the ray of width x+2, and immediately above the x-axis. All subsequent
simulation rows either copy the configuration of M up to the next row (yellow
and indigo rows) or do so while also shifting the contents to the right by one unit
(orange rows). However, if a green color signal is received, then the simulation
row increases the size of the working tape by a single tile (to the right), and then
performs a single computation step in the next (blue) row. Note that when the
size of the tape increases, the ray of width x + 2 does not shift to the right, but
the ray of width x+3 does. This relationship between successive rays maintains
the constant width gap of 2 tiles between the simulation of M on x and the left
border of the ray of width x + 3.

If M(x) ↓, upward growth of the simulation halts, and a special signal is sent
along a one-tile-wide path of tiles left-to-right along the top of the most recent
simulation row. When the rightmost tile is encountered, the path continues down
along the contour of the rightmost edge of the simulation until reaching the x-
axis, at which point a black tile type is placed at the location (f(x), 0). Since
there is a constant gap (of width 2) between the right border of the simulation of
M on x and the left border of the ray of width x+3, the halting signal proceeds
unimpeded.

The following is the set of tiles that make up the simulation module.
Let M = (Q, Σ, Γ, -, δ, q0, qh) be a Turing machine where

– Q is a finite set of states;
– Σ = {0, 1} is the input alphabet;
– Γ is the tape alphabet;
– - ∈ Γ − Σ is the blank symbol;
– δ : Q × Γ → Q × Γ × {L, R}, is the transition function;
– q0 ∈ Q is the start state, and



– qh ∈ Q is the halting state.

We make the assumption that M is initially in q0 reading the leftmost symbol of
its input n ∈ N, which is in the leftmost cell on a one-way infinite tape. Further,
we stipulate that M never moves left when reading the leftmost symbol on its
tape.

1. Red (seed) tile types.

(a) ∀x ∈ Γ , add the following tile types:

Leftmost Rightmost

x+

q x
0q x

0

+*

x-*

x R-

(b) ∀x, y ∈ Γ , add the following tile types:

Second leftmost Interior

y+

q xy
0

q x
0 yy

y+

xy

x yy

2. Orange (copy) tile types.

(a) If the location contains, or is next to the tape head, then ∀x, y ∈ Γ , and
∀p ∈ Q, add the following tile types:

Left of Left of rightmost
At tape head tape head (with tape head)

pxy

px

px

pxy

x

x

pxy*

px

y*px

(b) If the location is neither at or adjacent to the tape head, nor the right-
most location in the row, then ∀x, y ∈ Γ , add the following tile types:

Copy
(no tape head) Left of rightmost

xy

x

x

xy*

x

y*x

(c) Otherwise, ∀x ∈ Γ , add the following tile types:

Rightmost
x*

x* Ox

3. Yellow tile types (shift tape contents right one unit).

(a) ∀x, y ∈ Γ , and ∀p ∈ Q, add the following tile types:



Interior Right of
(with tape head) tape head

px

ypx

y pxpx
y

pxy

px yy

(b) ∀x ∈ Γ , and ∀p ∈ Q, add the following tile types:
Leftmost Rightmost and

(with tape head) adjacent to tape head

px

px

pxpx

-*

px-*

px Y-

(c) ∀x, y ∈ Γ , add the following tile types:
Interior

y

xy

x yy

(d) ∀x ∈ Γ , add the following tile types:
Leftmost

(no tape head) Rightmost

x

x

xx
-*

x-*

x Y-*

4. Green tile types (pre-transition):
(a) ∀x, y ∈ Γ , and ∀p ∈ Q, add the following tile types:

Interior Interior Left of rightmost
(left of tape head) (with tape head) (right of tape head)

pxy

pxy

y

ypx

ypx

px

*pxy

pxy

y*y

(b) ∀x ∈ Γ , and ∀p ∈ Q, add the following tile types:
Leftmost

(with tape head)

px

px

px

(c) ∀x, y ∈ Γ , add the following tile types:
Interior Left of

(no tape head) rightmost

xy

xy

y

xy*

xy

y*y



(d) ∀x ∈ Γ , add the following tile types:

Leftmost
(no tape head) Rightmost

x

x

x

x-*

x* G-

5. Blue tile types (Turing machine transition).

(a) Tile types that do not perform a transition.

i. ∀x, y ∈ Γ , and ∀p ∈ Q, add the following tile types:
Rightmost and

adjacent to tape head

xy*

pxy*

px By

ii. ∀x, y ∈ Γ , add the following tile types:
Interior Interior Rightmost and not

(left of tape head) (right of tape head) adjacent to to tape head

xy

xy

< x < yy

xy

xy

x yy

xy*

xy*

x By

iii. ∀x ∈ Γ , add the following tile types:
Leftmost

x

< xx

(b) Tile types that perform a right transition. If ∃a, b ∈ Γ such that (q, b, r) =
δ(p, a), then add the following tile types:

Interior and
right of tape head

pa

bb

i. ∀x, y ∈ Γ , add the following tile types:
Interior and

right of tape head

xy

qxy

qx yy

ii. ∀x ∈ Γ , add the following tile types:



Start of transition Right of tape
at interior head after transition

xpa

xb

< x bb

pax

bqx

b qxqx

(c) Tile types that perform a left transition. If ∃a, b ∈ Γ such that (q, b, L) =
δ(p, a), then add the following tile types:

i. ∀x, y ∈ Γ , add the following tile types:
Interior and left

of tape head

yx

yqx

< y < qxqx

ii. ∀x ∈ Γ , add the following tile types:
Start of transition Right of

at interior transition

xpa

qxb

< qx bb
pax

bx

b xx

6. Indigo (copy tape contents straight up) tile types.

(a) ∀x, y ∈ Γ , and ∀p ∈ Q, add the following tile types:

Interior (left Rightmost, and Rightmost, and not
of tape head) next to tape head next to tape head

pxy

y

y

ypx

px

px

pxy*

y*

Iy

(b) ∀x ∈ Γ , and ∀p ∈ Q, add the following tile types:

Leftmost
(with tape head)

px

px

px

(c) ∀x, y ∈ Γ , add the following tile types:

Interior without
tape head Rightmost

xy

y

y

xy*

y*

Iy

(d) ∀x ∈ Γ , add the following tile types:



Leftmost
(without tape head)

x

x

x

7. Violet (halting) tile types.
(a) ∀x, y ∈ Γ , add the following tile types:

Initial interior Right of initial Fill in remainder
halting tile type halting tile type of final row

xq yh

H

q xyh

H

xy

H

(b) ∀x ∈ Γ , add the following tile types:
Initial halting Leftmost tile type Second rightmost

tile type (leftmost) (no tape head) tile type

q xh

H

x

H

x-*

VH

8. Tile types that snake down the right most edge of a halting simulation.
(a) The first tile type to attach:

Rightmost of
halting row

V

V H

(b) Grow down:
Green Orange Indigo Yellow

V

V

G H

V

V

O H

V

V

I H

V

V

Y H

(c) Initiate left growth:
Grow left

V

V H

(d) Grow left one unit:
Bump into Bump into
yellow row blue row

V

Y VH

V

B VH



9. If M halts on input n then the following tile type (the only “black” tile type
in our construction) is placed at the point (f(n), 0):

Halting indicator

R V

Figure 7 shows a trivial example of the simulation of a particular Turing
machine M on input 01 (the binary representation of 1, with a leading 0).
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Fig. 7. A closer look at the simulation of M on input 1 (influenced by a ray of width
3). All three modules can be seen in this figure.



Appendix C (Section 4 Proofs)

Proof (of Theorem 1, first main theorem, “⇐” direction).
Let f be as defined in the introduction, and assume the hypothesis. Then

there exists a 2-TAS T = (T, σ, τ) in which the set XA self-assembles. Let B be
the set of “black” tile types given by the definition of self-assembly. Fix some
enumeration a1, a2, a3 . . . of Z

2, and let M be the TM, defined as follows.

Require: n ∈ N

α := σ

while (f(n), 0) 6∈ dom α do
choose the least j ∈ N such that aj ∈ ∂ταi

choose t ∈ T such that aj ∈ ∂τ
t αi

α := α + (aj 7→ t)
end while
if α ((f(n), 0)) ∈ B then

accept
else

reject
end if

It is clear from above that L(M) = A, whence A is computably enumerable.

Proof of Correctness

Let f : Z
+ → Z

+ be as in section 1, stipulating that f(0) = −1. For each n ∈ N,
define the rectangle

Qn = {f(n − 1) + 2, . . . , f(n) − 1} × {−2,−1},

and define the following assemblies.

(i) σn is the portion of the planter lying in Qn.
(ii) ρn is the ray of width n+2, translated so that its base is the leftmost 2(n+2)

tiles in σn.
(iii) σ∗

n = σn + ρn, where “+” is the operation defined in section 3.
(iv) γn is the assembly that simulates M(n) as in section 4.4.
(v) σ∗ is our planter.
(vi) αn = σ∗

n + γn.
(vii) α = σ∗ +

∑∞
n=0 αn.

Let
TM = (TM , σ, τ)

be our tile assembly system, noting that σ consists of a single tile at the origin.
Define the following subsets of TM .

(i) TR is the set of tile types used in the ray module, together with the benign
tile type, all of whose edges are given a binding strength of 1 with no color,
appearing in the rectangles σn.



(ii) TC is the set of tile types in TR, together with those occurring in the com-
putation module.

(iii) TP is the set of tile types in the planter module.

For each n ∈ Z
+, define the tile assembly systems

TR,n = (TR, σn, τ),

TC,n = (TC , σn, τ),

T ∗
C,n = (TC , σ∗

n, τ).

Lemma 4. For each n ∈ Z
+, A� [TR,n] = {σ∗

n}.

Proof. Define the infinite, τ -TR-assembly sequence, α, to be that which is im-
plicit in Figures 2, 3, and 4. It is easy to see from our construction that every tile
that binds in α does so uniquely. Furthermore, every such tile addition occurs
with exactly strength 2. It is clear that res(α) is terminal, whence α is a locally
deterministic assembly sequence.

Lemma 5. For each n ∈ Z
+, σ∗

n is a pseudoseed of TC,n.

Proof. First, note that σ∗
n ∈ A [TC,n] because σ∗

n ∈ A [TR,n] and TR ⊂ TC .
Let α ∈ A [TC,n]. Let α

′ be the τ -TC-assembly sequence such that res(α′) =
α. It is clear, since α is locally deterministic and because of the use of module
indicators in our construction, that when α

′ assigns a tile type to a location
in ρn, it does so in agreement with α from Lemma 4. Thus, we can use α

to “extend” res(α′) and thereby fill in the remainder of ρn. This gives us an
assembly α′ ∈ A

[

T ∗
C,n

]

such that α v α′.

Lemma 6. For each n ∈ Z
+, A�

[

T ∗
C,n

]

= {αn}.

Proof. Define the τ -TC,n-assembly sequence αn as that which self-assembles each
simulation row one at a time, and according to the following rule: if the current
row is not “blue,” then, by our construction, self-assembly must proceed left to
right; however, if the current row is “blue,” then αn first attaches the initial tile,
via a single τ -strength bond along its south edge, and then the remaining tiles
in order of increasing distance from the origin. It is clear from our construction
that every tile that binds in αn does so uniquely, and with exactly strength τ .
Since res(αn) is terminal, it follows that αn is locally deterministic.

Lemma 7. For each n ∈ Z
+, A� [TC,n] = {αn}.

Proof. This follows immediately from Lemma 4, Lemma 5, and the pseudoseed
lemma.

Define the tile assembly system

TP = (TP , σ, τ).

Lemma 8. A� [TP ] = {σ∗}.



Proof. Define the infinite τ -TP -assembly sequence, α, to be that which self-
assembles σ∗ one row at a time, and implicit from Figures 5 and 6. Note that α

starts from the seed tile located at the origin. It is clear from our construction
that every tile that binds via α does so uniquely. Furthermore, every such tile
addition occurs with exactly strength 2. It is clear that res(α) is terminal, whence
α is a locally deterministic assembly sequence.

Lemma 9. σ∗ is a pseudoseed of TM .

Proof. First, note that σ∗ ∈ A [TM ] because σ∗ ∈ A [TP ] and TP ⊂ TM .
Let α ∈ A [TM ]. Let α

′ be the τ -TM -assembly sequence such that res(α′) = α.
It is clear, since α is locally deterministic and because of the use of module
indicators in our construction, that when α

′ assigns a tile to a location that
is in σ∗, it does so in agreement with α from Lemma 8. Thus, we can use α

to “extend” res(α′) and thereby fill in the remainder of σ∗. This gives us an
assembly α′ ∈ A

[

T ∗
C,n

]

such that α v α′.

Lemma 10. σ∗ is a σ-TC-TM -multiseed.

Proof. Let σ = (σn |n ∈ Z
+ ). By our construction of the planter, it is clear that

part (1), of definition 2, is satisfied. To see that (2) is satisfied, we appeal to:
Lemma 7, our construction of the ray, and the fact that the planter spaces out
each σn sufficiently. Moreover, it is clear that (5) holds because of our use of
module indicator symbols in our construction. We now turn our attention to
parts (3) and (4).

Let i ∈ Z
+, and α ∈ A [Ti]. Let α

′ be an assembly sequence such that α =
res(α′). Since (1) holds, we can define the assembly sequence α = (σ∗, . . . , α),
and let α∗ = res(α). It is clear that α∗ ∈ A [T ∗

M ], and α v α∗, whence (3) holds.
Finally, let α∗ ∈ A [TM ]. By (1), (2), Lemma 7, and our construction of the

planter, it is easy to see that (4) holds.

Lemma 11. A� [TM ] = {α}.

Proof. Let T ∗
M = (TM , σ∗, τ). By Lemma 6, 7, and 9, and the multiseed lemma,

A� [T ∗
M ] = {α}. It follows by Lemma 8 and the pseudoseed lemma that A� [TM ] =

{α}.



Appendix D (Section 5 Proofs)

The following trivial observation is used in the proof of Theorem 2.

Observation 1 |D<r| =
∣

∣

{

(m, n) ∈ Z
2 | |m| + |n| < r

}∣

∣ = 2(r − 1)2 + 2r − 1.

Proof.

|D<r| =
∣

∣

{

(m, n) ∈ Z
2 | |m| + |n| < r

}∣

∣

= 2r − 1 + 2 ·
r−2
∑

i=0

(2i + 1)

= 2r − 1 + 2(r − 1)2.

Proof (of lemma 3). If |A| < ∞ then we are done, so assume otherwise (i.e., A

is infinite).
Assume the hypothesis. Then there exists a 2-TAS T = (T, σ, τ) in which

the set DA self-assembles. Fix some enumeration a1, a2, a3 . . . of Z
2, and let M

be the TM, defined as follows, that simulates the self-assembly of T .

Require: r ∈ N

α := σ

while Dr ∩ dom α = ∅ do
choose the least j ∈ N such that aj ∈ ∂ταi

choose t ∈ T such that aj ∈ ∂τ
t αi

α := α + (aj 7→ t)
end while
if α (aj) ∈ B then

accept
else

reject
end if

Observe that the while loop will terminate after at most |D<r|+ 1− |dom α|
iterations, with Dr∩dom α 6= ∅ whence M halts on all inputs. If r ∈ A, then the
weak self-assembly of DA tells us that for every α ∈ A� [T ], α (Dr) ⊆ B. Since
we have aj ∈ Dr when the while loop terminates, M accepts, and r ∈ L(M). If
r ∈ L(M), then α (aj) ∈ B, whence r ∈ A.

By Observation 1.1, the while loop performs at most 2(r − 1)2 + 2r − 1
iterations, and in each iteration, we are doing at most O(r2) amount of additional
work checking Dr ∩ dom α = ∅, and maintaining ∂ταi. Thus, M decides A in
O

(

24n
)

computation steps, where n = blog rc + 1 (i.e., the length of r).
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