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Abstract

A basic goal in Property Testing is to identify a minimal set of features that make a property testable.
For the case when the property to be tested is membership in a binary linear error-correcting code, Alon
et al. [2] had conjectured that the presence of asinglelow weight code in the dual, and “2-transitivity”
of the code (i.e., the code is invariant under a 2-transitivegroup of permutations on the coordinates of
the code) suffice to get local testability. We refute this conjecture by giving a family of error correcting
codes where the coordinates of the codewords form a large field of characteristic two, and the code
is invariant under affine transformations of the domain. This class of properties was introduced by
Kaufman and Sudan [13] as a setting where many results in algebraic property testing generalize. Our
result shows a complementary virtue: this family also can beuseful in producing counterexamples to
natural conjectures.

1 Introduction

Property testing is interested in the task of testing, in very little time, if a “massive” functionf satisfies some
propertyP . Specifically, if the functionf maps a finite setD to a finite rangeR and is given as an oracle,
and if the propertyP is specified by a family of functionsF which satisfy the property, then the field tries to
produce probabilistic tests that acceptsf ∈ F while rejectingf that is far fromF with constant probability.
The goal is typically to design tests that make constant number of queries (independent of|D|) into f .

The first modern-day property test was given by Blum, Luby andRubinfeld [8]. (One can count the classical
polls as folklore tests for the “majority is in favor” property.) Property testing also played a central role in
results on multiprover interactive proofs [6, 5, 10] and PCPs [4, 3] etc. Property testing was formalized in
Rubinfeld and Sudan [16]. Most early properties were algebraic in nature and led to tests for membership in
“error-correcting codes”. A systematic study of property testing was started by Goldreich, Goldwasser, and
Ron [11] who expanded its scope to combinatorial and graph-theoretic properties. Today a vast collection
of properties are known to be locally testable very efficiently. In particular, for graph theoretic properties the
class of properties that can be tested with constant number of queries is now almost fully understood [1, 9].
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In terms of testing membership in error-correcting codes however, the knowledge is not very complete.
Some attempts to remedy this were proposed by Alon et al. [2] who suggested that properties that satisfy
sufficiently rich “invariance” conditions (along with someother obviously necessary conditions) may be
testable. In particular Alon et al. made a formal conjecture(which we call the AKKLR-conjecture) that the
property of membership in a “binary error-correcting code that is 2-transitive and has a small weight vector
in its dual” may be testable withO(1) locality. (We formalize their statement below). In their work [2]
they supported this conjecture by showing that it holds for the particular case of families of small degree
polynomials over finite fields.

In this work, we refute their conjecture. We show a family of error-correcting codes which satisfy nice
invariance properties and yet do not have very local tests. (See Conjecture 4 and Theorem 6 below.)

Our counterexample comes from the family of “affine-invariant” properties, whose study was introduced by
Kaufman and Sudan [13]. Affine-invariant families form natural generalizations of the class of low-degree
multivariate polynomials over finite fields. [13] show that this class of families were locally testable for some
choices of the parameters giving some weak confirmation of the AKKLR-conjecture. In this work we use
other settings of parameters to give a counterexample to theAKKLR conjecture also, thus complementing
the results of [13]. Together these works highlight the power of affine-invariant families in illustrating the
power and limitations of property testing in an algebraic/coding-theoretic context.

2 Preliminaries and Results

We will useFq to denote the finite field of cardinalityq. For a finite setx←D will denote a random variable
distributed uniformly overD. We will mostly be interested in Boolean functions overD. We will useF2

(the finite field on2 elements) to denote the range. We use{D → F2} to denote the set of all functions from
the setD to F2.

2.1 Distance, Local Testability, Constraints, and Characterizations

For a finite setD and functionsf, g : D → F2, we define the (normalized Hamming) distance betweenf
andg, denotedδ(f, g), to bePrx←D[f(x) 6= g(x)]. For a functionf : D → F2 we let the weight off ,
denotedwt(f), be the number ofx ∈ D such thatf(x) 6= 0. For a family of functionsF ⊆ {D → F2},
defineδ(f,F) to beming∈F{δ(f, g)}. We sayf is δ-far fromF if δ(f,F) > δ andδ-close otherwise.

The central goal of this paper is to analyze the local testability of the property of membership in a given
ensemble of familiesF = {Fn}n with Fn ⊆ {Dn → F2}, where|Dn| → ∞ asn→∞.

Definition 1 (k-local test) For integerk and realsε2 > ε1 ≥ 0 and δ > 0, a (k, ε1, ε2, δ)-local test for
a propertyF is a probabilistic algorithm that, given oracle access to a functionf ∈ F , queriesf on k
locations (probabilistically, possibly adaptively), andacceptsf ∈ F with probability at least1 − ε1, while
acceptingfunctionsf that areδ-far fromF with probability at most1− ε2.

Given an ensemble of familiesF = {Fn}n, we sayF is k-locally testable if there exist0 ≤ ε1 < ε2 and
δ > 0 such that for for everyn, Fn is (k, ε1 + o(1), ε2 − o(1), δ)-locally testable (where theo(1) term goes
to zero asn→∞).



While eventually our main theorem gives a property (family)that is not even testable according to the defi-
nition above, our proof first rules out a more restrictive class of local tests, called “non-adaptive”, “perfect”
tests. We define these notions next. A tester isnon-adaptiveif the sequence of queries it makes is indepen-
dent of the functionf that is being tested (and depends only on the randomness of the tester). A tester for a
propertyF ⊂ {D → F2} is perfectif it accepts every functionf ∈ F with probability1.

For a special class of properties called “linear” properties, the existence of ak-local test implies the existence
of a non-adaptive, perfectk-local test as shown by Ben-Sasson et al. [7]. We describe this result next.

A propertyF = {Fn ⊂ {Dn → F2}} is linear if for every pairf, g ∈ Fn it is the case thatf + g ∈ Fn

(where(f + g)(x) = f(x) + g(x)( mod 2)).

Theorem 2 ([7, Theorem 3.3])LetF = {Fn}n be a linear property that isk-locally testable. ThenF is
k-locally testable by a non-adaptive, perfect, tester. Specifically, if Fn is (k, ε1, ε2, δ)-locally testable, then
Fn is (k, 0, ε2 − ε1, δ)-locally testable by a non-adaptive tester.

Theorem 2 will be very useful in presenting our counterexample to the AKKLR conjecture.

2.2 Linear Codes, Duals, 2-Transitivity and the Conjecture

We now move towards describing the conjecture by Alon et al. [2] on the testability of certain class of
properties. The properties considered in [2] are for membership in linear codes and so we define these next.

A property given by a family of functionsF ⊆ {D → F2} is linear if for every f, g ∈ F it is the case
thatf + g ∈ F . For linear properties, a natural way to test them is through“low-weight” functions in their
“dual”. To define this notion, we letf ·g =

∑

x∈D f(x)·g(x) denote theinner productof f andg. (Here and
later the summation and product are done over the fieldF2.) For a linear propertyF , its dual, denotedF⊥,
is the family of functions{g : D → F2 | g · f = 0,∀f ∈ F}. One way (and by the results of Ben-Sasson
et al. [7], essentially the only way) to test a linear property is to pick a functiong ∈ F⊥ of weight at mostk
and verify thatf · g = 0. It is thus natural to examine the structure of the dualF⊥ to study the testability of
F .

Definition 3 (2-Transitivity) Theautomorphism groupof a familyF ⊆ {D → F2}, denotedAut(F), is
the set

{π : D → D | π is a permutation andf ∈ F ⇒ f ◦ π ∈ F}.

(It is easy to verify that this set is a group under composition of functions.)

A groupG of permutations mappingD to D is is 2-transitiveif for everyx, x′, y, y′ ∈ D such thatx 6= y
andx′ 6= y′, there existsπ ∈ G such thatπ(x) = x′ andπ(y) = y′.

Abusing notation slightly, we say thatF is 2-transitive ifAut(F) is 2-transitive.

We are now ready to state the AKKLR-conjecture

Conjecture 4 ([2]) For everyd ∈ N, there existsk = k(d) < ∞ such that the following holds: Let
F = {Fn}n be an ensemble of properties such that for everyn,



1. F⊥n has a non-zero function of weight at mostd, and

2. Fn is 2-transitive.

ThenF is k-locally testable.

We refute this conjecture here.

Theorem 5 For everyk ≤ ∞, there is an ensemble of domains{Dn}n and an ensemble of properties
F = {Fn}n such that the following hold:

1. For everyn, F⊥n has a non-zero function of weight at most8.

2. For everyn, Fn is 2-transitive.

3. F is notk-locally testable.

As pointed out earlier, we plan to prove this theorem by ruling out a restrictive class of tests that are non-
adaptive and perfect and then using Theorem 2. However to usetheir theorem we need to ensure that our
property is linear. The following theorem gives the more technical result that we show.

Theorem 6 For everyk ≤ ∞, there is an ensemble of domains{Dn}n and an ensemble of properties
F = {Fn}n such that the following hold:

1. F is linear.

2. For everyn, F⊥n has a non-zero function of weight at most8.

3. For everyn, Fn is 2-transitive.

4. F is notk-locally testable by a non-adaptive, perfect tester.

Note that Theorem 5 follows immediately by combining Theorem 6 and Theorem 2. So, in the rest of the
paper, we focus on Theorem 6.

2.3 The Counterexample

Our counterexample family comes from a broad class of properties introduced by Kaufman and Sudan [13].
These are the class of “affine-invariant” families defined below.

Let F be some finite field and letK be a finite extension (field) ofF. For integern, letF be a property of
functions fromKn to F. ThenF is said to beaffine invariantif for every affine mapA : Kn → Kn and
everyf ∈ F , it is the case thatf ◦ A ∈ F .

Proposition 7 For every fieldK and integern, the set of affine permutations fromKn → Kn is 2-transitive.



Proof: It suffices to prove that for everyx1, x2, y1, y2 ∈ Kn with x1 6= x2 andy1 6= y2, there exists an affine
permutationA : Kn → Kn such thatA(x1) = y1 andA(x2) = y2. Let A be given byA(x) = Mx + b
whereM ∈ Kn×n andb ∈ Kn. The condition that it be a permutation impliesM should be non-singular;
and satisfyM(x1 − x2) = y1 − y2, while b = y1 −Mx1. It is easy to see that a non-singularM satisfying
M(x1 − x2) = y1 − y2 exists.

It follows that every affine-invariant family is2-transitive. This gives a rich family of families to examine
and to seek sufficient conditions for testability. Of particular interest to us are functions formed by applying
the Trace map fromK to F, defined below.

Definition 8 Let F = Fq and K = Fqs be finite fields. Then the Trace functionTr = TrK,F : K → F is
given byTr(x) = x + xq + xq2

+ · · · xqs−1

.

A fairly rich class of affine-invariant families can be constructed by starting with a carefully chosen set of
monomials overn variables with coefficients fromK, and then taking their Trace and then closure under
addition and affine transformations.

We get our family similarly. We start with simple fieldsF = F2 andK = F2s . We fix n to 1 (there are good
reasons to do so). We then consider monomials of the formx2i+1 and take a moderate sized subset of these
and take their traces and affine closures. The resulting family is described below.

For positive integersk < s, let

F∗k,s =
{

f : F2s → F2 | ∃β, β0, . . . , βk ∈ F2n s.t.f(x) = Tr(β + β0x +
∑k

i=1 βix
2i+1)

}

.

In the following section we confirm that for everyk, s, the familyF∗k,s is affine-invariant (and hence 2-
transitive) — see Lemma 10. We also show the basic property thatF∗k,s ⊆ F

∗
k+1,s. We also show that this

containment is strict ifk < bs/2c. Both properties are straightforward to show.

We then define a class of functions that we call “RM(2) = RMs(2)”. These functions are essentially
what are known as Reed-Muller functions of order 2 (for instance, in [2]). (Note that our definition may be
somewhat different from theirs. We won’t relate our definition to theirs, but work in a self-contained manner
with our definition.) We show thatRMs(2) containsF∗k,s for everyk. By our definition the duals of these
RM(2) families always contain functions of weight 8. As a result weget that the familiesF∗k,s satisfy the
low-dual-weight condition of the AKKLR conjecture. We alsonote that these functions have large pairwise
distance, i.e., for everyf 6= g ∈ RM(2), δ(f, g) ≥ 1/7.

This leads us to the central question: Do these families havelocal testers? We show that this is not the case.
This part of our analysis is novel. We show that any function in the dual ofF∗k,s of weight at mostk is also
a word in the dual ofRM(2). We then use this to conclude thatF∗k,s has nok-local tests (Lemma 16).

Putting these results together we immediately get a proof ofTheorem 6 (see Section 3.4).

3 Proof of Main Theorem

3.1 Basic properties ofF∗k,s

We start with the simple claim thatF∗k,s is linear.



Lemma 9 For everyk, s, F∗k,s is linear.

Proof: Follows from the definition ofF∗k,s and the fact that the Trace function is linear, i.e.,Tr(x + y) =

Tr(x) + Tr(y).

Next we show the affine invariance ofF∗k,s.

Lemma 10 For everyk, s, F∗k,s is affine-invariant.

Proof: Fix an affine transformationA : F2s → F2s given byA(x) = ax + b for a, b ∈ F2s . Fix also
f ∈ F∗k,s given byf(x) = Tr(c + b0x +

∑k
i=1 bix

2i+1) for somebi, c ∈ F2s , 0 ≤ i ≤ k. We need to show
thatf ◦A ∈ F∗k,s.

Note that(f ◦ A)(x) = f(ax + b) = Tr(c + b0(ax + b) +
∑k

i=1 bi(ax + b)2
i+1). By the linearity of the

Trace function, we have(f ◦A)(x) = Tr(c)+ Tr(b0(ax+ b))+
∑k

i=1 Tr(bi(ax+ b)2
i+1). By the linearity

of F∗k,s (Lemma 9), it suffices to prove that each individual summand is inF∗k,s.

This is verified easily forTr(c) as well asTr(b0(ax + b)) = Tr(b0ax) + Tr(b0b). We thus turn to the term
Tr(bi(ax + b)2

i+1). We have

Tr(bi(ax + b)2
i+1)

= Tr(bi(ax + b)2
i

(ax + b))

= Tr(bi(a
2i

x2i

+ b2i

)(ax + b))

= Tr(bi(a
2i+1x2i+1 + a2i

bx2i

+ ab2i

x + b2i+1))

= Tr(bia
2i+1x2i+1) + Tr(bia

2i

bx2i

)

+Tr(biab2i

x) + Tr(bib
2i+1))

The first, third, and fourth terms in the final expression above are again syntactically in the classF∗k,s. For

the second term, note that it is of the formTr(βx2i

) = Tr(β2x2i+1

) = · · · = Tr(β2s−i

x2s

) = Tr(β2s−i

x)
and thusTr(βx2i

) ∈ F∗k,s also. Using the linearity ofF∗k,s we thus conclude thatTr(bi(ax+ b)2
i+1) ∈ F∗k,s

and this suffices to conclude thatf ◦ A ∈ F∗k,s.

Lemma 11 For everyk < s− 1, F∗k,s ⊆ F
∗
k+1,s. If k < bs/2c thenF∗k,s ( F∗k+1,s.

Proof: The proof of the first containment follows from the definition. The second part can be derived from,
for instance, [15, Chapter 9, Theorem 7]. For the sake of completeness we include a proof here.

We claim that for distinct1 ≤ i, j < s/2, the functionsTr(x2i+1) andTr(x2j+1) have disjoint support,
when viewed as polynomials of degree at most2s − 1. This suffices, since it implies that the function
Tr(x2k+1) 6∈ F∗k − 1, s. We prove the claim below.

Note that the functionTr(x2i+1) has support on the monomialsxd for d = 2i+` + 2`( mod 2s − 1) and
similarly Tr(x2j+1) is supported by the monomialsxd for d = 2j+m + 2m( mod 2s − 1) (here we use
the phrase mod non-conventionally to refer to the unique integer in[2s − 1] from the equivalence class).



Suppose for contradiction that2i+` + 2` = 2j+m + 2m( mod 2s − 1). Then, by mutliplying both sides
by 2s−` and reducing modulo2s − 1, we see that we have2i + 1 = 2j+m′

+ 2m′
( mod 2s − 1) (where

m′ = m + s− `). Now we consider two cases: Ifm′ ≤ s/2, then the unique integer between1 and2s − 1
equal to2j+m′

+ 2m′
( mod 2s − 1) is 2j+m′

+ 2m′
. But then2j+m′

+ 2m′
6= 2i + 1 unlessm′ = 0 and

i = j (violating distinctness ofi andj). In the other case, ifm′ > s/2, then the unique integer in[2s − 1]
equal to2m′

+ 2j+m′
> 2s/2 > 2i + 1. So again the modular equivalence can not hold. This proves the

claim, and thus the lemma.

3.2 Reed-Muller of Order 2 Family

We now define a family of codes that contain all the familiesF∗k,s that we are investigating and help under-
stand its limitations. These are the family of Reed-Muller codes of order 2. For our purpose we define this
family as follows. First, for pointsx0, x1, . . . , x` ∈ F2s , defineA(x0;x1, . . . , x`) to be the affine subspace
generated byx1, . . . , x` throughx0. I.e.,A(x0;x1, . . . , x`) = {x0 +

∑`
i=1 aixi|a1, . . . , a` ∈ F2}. Now we

defineRMs(2) to be

RMs(2) =
{

f : F2s → F2|∀x0, x1, x2, x3 ∈ F2s

,
∑

z∈A(x0;x1,x2,x3)
f(z) = 0

}

.

We first note the obvious fact thatRMs(2) has weight 8 functions in its dual.

Proposition 12 For s ≥ 3, RMs(2)
⊥ contains weight 8 functions.

Proof: Follows immediately from the definition. Letx1, x2, x3 beF2-independent elements ofF2s . Then
A(0, x1, x2, x3) consists of exactly8 elements ofF2s . Let g(z) = 1 if z ∈ A(0, x1, x2, x3) andg(z) = 0

otherwise. Theng is a weight8 codeword and for everyf ∈ RMs(2) we have thatf · g = 0.

We now show thatRMs(2) containsF∗k,s for everyk.

Proposition 13 For everyk < s, F∗k,s ⊆ RMs(2).

Proof: Using the linearity of the Trace function (Tr(x + y) = Tr(x) + Tr(y)) we note that it suffices to
show that everyf ∈ {Tr(β),Tr(β0x),Tr(β1x

21+1, . . . ,Tr(βkx
2k+1)} satisfies the “RM(2)” constraint:

∑

z∈A(x0;x1,x2,x3)
f(z) = 0 for everyx0, x1, x2, x3 ∈ F2s .

For f = Tr(β) and f = Tr(β0x) this is straightforward, sincef(x + y) = f(x) + f(y) and so the
∑

z∈A(x0;x1,x2,x3)
f(z) = 8f(x0)+4f(x1)+4f(x2)+4f(x3) = 0 (since we are performing the arithmetic

modulo 2).

Now considerTr(βx2i+1). We will show that
∑

z∈A(x0;x1,...,x3)
z2i+1 = 0. It then follows that

∑

z Tr(βz2i+1) =

Tr(β(
∑

z z2i+1)) = Tr(0) = 0. Note further that(x + y)2
i+1 = x2i+1 + y2i+1 + x2i

y + y2i

x. Using this



expansion we have:

∑

z∈A(x0;x1,...,x3)

z2i+1

=
∑

w∈A(x0;x1,x2)

w2i+1 + (w + x3)
2i+1

=
∑

w∈A(x0;x1,x2)

(wx2i

3 + w2i

x3 + x2i+1
3 )

= x2i

3

∑

w∈A(x0;x1,x2)

w + x3

∑

w∈A(x0;x1,x2)

w2i

+ 0

= x2i

3 (4x0 + 2x1 + 2x2) + x3(4x
2i

0 + 2x2i

1 + 2x2i

2 )

= 0

Propositions 12 and 13 give us the following.

Corollary 14 For everys > 3 andk < s, F∗⊥k,s contains weight8 codewords.

Finally we show that members of the Reed Muller family are farapart from each other. While a careful
examination would probably yield a better bound on this distance, here we get a weaker bound, with a
simpler argument.

Proposition 15 For everyf 6= g ∈ RMs(2), δ(f, g) ≥ 1/7.

Proof: Consider any functionf ∈ RMs(2) and leth be such thatδ(f, h) < 1/14. We claim thath uniquely
specifiesf : In particular the algorithm: Pickx1, x2, x3 at random and output

∑

z∈A(x;x1,x2,x3)−{x}
h(z),

outputsf(x) with probability at least1− 7δ(f, h) > 1/2 and thus definesf uniquely.

We thus conclude that there can not existf, g ∈ RM(2) such thatδ(f, g) < 1/7.

3.3 Key Lemma

Finally we move to the main lemma of the paper. The goal of thissection is to prove the following lemma.

Lemma 16 (Main Lemma) Supposeg ∈ (F∗k,s)
⊥ has weightt ≤ k. Theng ∈ RM(2)⊥.

To prove this lemma we first state three useful sub-lemmas, which yield the main lemma easily. We prove
the sub-lemmas later.

The sub-lemmas refer to a positive integerm and the setU = {(i, j)|0 ≤ i < j ≤ m or i = j = 0}. Note
that |U | = 1 +

(m+1
2

)

. We also useb0 to denote the zero ofF2s .



Lemma 17 Let a1, . . . , at ∈ F2s be such that
∑t

i=1 f(ai) = 0 for everyf ∈ F∗k,s. Further, suppose there

existsg ∈ RM(2) such that
∑t

i=1 g(ai) 6= 0. Then there existsm ≤ t, F2-linearly independent elements

b1, . . . , bm ∈ F2s , and a non-zero vector〈λij〉(i,j)∈U ∈ F
|U |
2 such that

∑

(i,j)∈U λijf(bi + bj) = 0, for every
f ∈ F∗k,s.

Lemma 18 Supposeb1, . . . , bm ∈ F2s are F2-linearly independent elements, and〈λij〉(i,j)∈U ∈ F
|U |
2 is a

non-zero vector such that
∑

(i,j)∈U λijf(bi + bj) = 0 for everyf ∈ F∗k,s. Then there exists a non-empty set

E ⊆ {(i, j)|1 ≤ i < j ≤ m} such that for everyd ∈ [k] it is the case that
∑

(i,j)∈E

(

b2d

i bj + b2d

j bi

)

= 0.

Finally we show that the conclusion of the previous lemma implies thatm > k + 1.

Lemma 19 Supposeb1, . . . , bm ∈ F2s areF−2-linearly independent elements and supposeE ⊆ {(i, j)|1 ≤

i < j ≤ m} is a non-empty set such that for everyd ∈ [k],
∑

(i,j)∈E

(

b2d

i bj + b2d

j bi

)

= 0. Thenm > k+1.

We first show that Lemma 16 follows from the three sublemmas.

Proof: (of Lemma 16) Let h ∈ (F∗k,s)
⊥ and supposeh 6∈ RM(2)⊥. We wish to showt > k. (We actually

showt > k + 1, but we state the weaker bound for notational simplicity.)

Let a1, . . . , at ∈ F2s be the points such thath(ai) = 1. By definition of (F∗k,s)
⊥ we have that0 =

∑

x∈F2s
f(x)h(x) =

∑t
i=1 f(ai). Sinceh 6∈ RM(2)⊥, there must exist a functiong ∈ RM(2) such that

∑t
i=1 g(ai) 6= 0. Using Lemma 17 we get that there existm ≤ t, linearly independent pointsb1, . . . , bm ∈

F2s , and a non-zero vector〈λij〉(i,j)∈U ∈ F
(m+1

2 )+1

2 such that
∑

(i,j)∈U λijf(bi+bj) = 0 for everyf ∈ F∗k,s,
whereb0 = 0. Applying Lemma 18 we get that there exists a non-empty setE ⊆ {(i, j)|1 ≤ i < j ≤ m}

such that for everyd ∈ [k] we have
∑

(i,j)∈E

(

b2d

i bj + b2d

j bi

)

= 0. Applying Lemma 19 we then get that

m > k and thust ≥ m > k as desired.

We now turn to proving the three sub-lemmas. Again the crucial result here is Lemma 19 and the other two
are just to pin the problem down.

Proof: (of Lemma 17)Let b1, . . . , bm be the largest linearly independent subset of points amonga1, . . . , at

and letg ∈ RM(2) be the function satisfying
∑t

i=1 g(ai) 6= 0.

We first claim that for every functionf ∈ F∗k,s at least one of the following must hold: (1)f(0) 6= g(0), or
(2) there existsi ∈ [m] such thatf(bi) 6= g(bi), or (3) there exist(i, j) ∈ [m]× [m] such thatf(bi + bj) 6=
g(bi + bj). To see this claim, assume otherwise, for somef ∈ F∗k,s. Note that we can prove, by induction on
the size of the setS, that for every setS ⊆ [m] we havef(

∑

i∈S bi) = g(
∑

i∈S bi). Indeed, this is obviously
true for |S| ≤ 2. Now consider a setS = T ∪ {i, j} wherei, j 6∈ T . Let b =

∑

`∈T b`. Now note that

f(b + bi + bj)

= f(0) + f(b) + f(bi) + f(bj) + f(b + bi)

+ f(b + bj) + f(bi + bj)

= g(0) + g(b) + g(bi) + g(bj) + g(b + bi)

+ g(b + bj) + g(bi + bj)

= g(b + bi + bj),



where the first and third inequalities follow from the fact that bothf, g ∈ RM(2) while the middle equality
is by induction. But then, we have thatf andg agree on the entire subspace, which contradicts the fact that
∑t

i=1 f(ai) 6=
∑t

i=1 g(ai). Hence our claim must be true.

Consider the setV = {〈f(bi + bj)〉(i,j)∈U |f ∈ F
∗
k,s}. V is a linear subspace ofF

(m+1

2 )+1

2 sinceF∗k,s is

a linear subspace; butV 6= F
(m+1

2 )+1

2 (since in particular〈g(bi + bj)〉(i,j)∈U 6∈ V . Thus there must be a
non-trivial constraint〈λij〉(i,j)∈U such that every vectorx ∈ V satisfies

∑

(i,j)∈U λijxij = 0. This yields

the lemma.

Proof: (of Lemma 18) We use the basis functions to establish this lemma. Letb0, b1, . . . , bm and〈λij〉i,j
be as given.

This proof also relies on the linearity of the the Trace function, and the additional fact thatTr(ax) = 0 for
everyx ∈ F2s if and only if a = 0. (This is easily seen sinceTr(ax) is a non-zero polynomial of degree
2s−1 in x, if a 6= 0.)

First consider the constant function1 = Tr(β) for someβ ∈ F2s . SinceTr(β) ∈ F∗k,s we have
∑

i,j λij =
∑

i,j λijTr(β) = 0, and thusλ00 =
∑

(i,j)∈U−(0,0) λij.

Next we consider the functionsTr(β0x) ∈ F∗k,s. We have0 =
∑

i,j λijTr(β0(bi+bj)) = Tr
(

β0
∑

i,j λij(bi + bj)
)

.

Using the aforementioned property of the Trace function, wehave that the above identity holds for every
β0 ∈ F2s only if

∑

i,j λi,j(bi + bj) = 0. Let τi =
∑

j<i λji +
∑

j>i λij. (For simplicity of notation below,
we will assumeλij = λji.) Then we have0 =

∑

i,j λij(bi + bj) =
∑m

i=0 τibi =
∑m

i=1 τibi (where the last
equality follows fromb0 = 0). But b1, . . . , bm are linearly independent overF2 andτi, λij ∈ F2, so the only
way

∑m
i=1 τibi = 0 is if τi = 0 for everyi. Thus we getλ0i =

∑

j 6=0 λji for everyi ∈ [m]

Finally we considerTr(βdx
2d+1) ∈ F∗k,s for d ∈ [k]. We have0 =

∑

i,j λijTr
(

βd(bi + bj)
2d+1

)

=

Tr
(

βd
∑

i,j λij(bi + bj)
2d+1

)

. Again, we have that the above identity holds for everyβd ∈ F2s only if
∑

i,j λi,j(bi + bj)
2d+1 = 0. Expanding(x + y)2

d+1 asx2d+1 + y2d+1 + x2d

y + xy2d

, we get

0 =
∑

i,j

λij

(

b2d+1
i + b2d+1

j + b2d

i bj + bib
2d

j

)

=

m
∑

i=1

τib
2d+1
i +

∑

1≤i<j≤m

λij(b
2d

i bj + bib
2d

j )

=
∑

(i,j)∈E

(b2d

i bj + bib
2d

j ),

whereE = {(i, j)|1 ≤ i < j ≤ m s.t.λij 6= 0} as required for the lemma statement. The only remaining
issue is to show thatE 6= ∅.

We claim that ifE = ∅ we haveλij = 0 for everyi, j. For i, j ≥ 1 this follows from the definition ofE.
For i 6= 0 andj = 0 this follows from the identity above thatλ0i =

∑

j 6=0 λji = 0. For i = j = 0, we also
haveλ00 =

∑

(i,j)∈U−(0,0) λij = 0. But this contradicts the hypothesis that〈λij〉 6= 0, and so we conclude

E 6= ∅.



Proof: (of Lemma 19) This is the crux of our analysis and uses a mix of linear and polynomial algebra
arguments. Assume for contradiction thatm ≤ k + 1.

Recall we are given that for everyd ∈ [k]
∑

(i,j)∈E(b2d

i bj + bibj2
d) = 0. Note further that we also trivially

have this condition ford = 0, since
∑

(i,j)∈E(b2d

i bj + bibj2
d) =

∑

(i,j)∈E(bibj + bibj) =
∑

(i,j)∈E 0.

For i ∈ [m], let ρi =
∑

{j|(i,j) or (j,i)∈E} bj . Then we can rewrite
∑

(i,j)∈E(b2d

i bj + bibj2
d) as

∑m
i=1 ρib

2d

i

and so we have, for everyd ∈ {0, 1, . . . , k} as
∑m

i=1 ρib
2d

i = 0.

Consider them × m matrix A = (aij) with aij = b2i−1

j . Then the previous paragraph implies thatA ·
ρ = 0 for the column vectorρ = 〈ρ1, . . . , ρm〉. (In particular, we have that theith entry ofA · ρ equals
∑m

j=1 b2i−1

j ρj which is0 for everyi ∈ {1, . . . , k + 1} ⊇ {1, . . . ,m}.)

Next we note thatρ 6= 0. This is true since for at least onei ∈ [m] the summation
∑

{j|(i,j) or (j,i)∈E} bj

sums over a non-empty set of indicesj (sinceE 6= ∅). But now the linear independence ofb1, . . . , bm over
F2 implies that the summation, and henceρi, is non-zero.

We conclude that the matrixA is singular. We now use this fact to infer thatA has a non-zero vector in its
left kernel, i.e., there exists a non-zero row vectorλ = 〈λ1, . . . , λm〉 such thatλA = 0. But now consider
the polynomialΛ(x) =

∑m
i=1 λix

2i−1

. Using this notation, we haveλA = 〈Λ(b1), . . . ,Λ(bm)〉. Thus the
conditionλA = 0 implies thatΛ(bj) = 0 for everyj ∈ {1, . . . ,m}.

But now, we have thatΛ(x) is a non-zero polynomial (sinceλ is a non-zero vector), of degree at most
2m−1. FurthermoreΛ is a linearized polynomial and satisfiesΛ(x + y) = Λ(x) + Λ(y). This implies that
Λ(bS) = 0 for everyS ⊆ [m], wherebS =

∑

i∈S bi. The linear independence ofb1, . . . , bm furthermore
implies that thebS ’s are all distinct and thus we get thatΛ is a non-zero polynomial of degree at most2m−1

with 2m distinct roots, yielding the desired contradiction.

3.4 Putting it together

We now use the main lemma of the previous subsection to claim that membership inF∗k,s is not testable with
a strongk-local test (i.e. non-adaptive, one sided error). This partis more or less standard and follows, for
instance, from the methods in [7]. We include the full details for completeness.

We first summarize our arguments from the previous section ina slightly more convenient form.

Lemma 20 Fix a1, . . . , at ∈ F2s . For f : F2s → F2 let π(f) = πa1,...,at(f) = 〈f(a1), . . . , f(at)〉 be the
projection off to a1, . . . , at. Let V ⊆ Ft

2 be the setV = {π(f)|f ∈ F∗k,s}, and letW = {π(f)|f ∈
RMs(2)}. If t ≤ k, thenV = W .

Proof: We first note thatV andW are linear subspaces ofFt
2. This follows from the fact thatF∗k,s and

RM(2) are linear spaces. SinceF∗k,s ( RM(2), it also follows thatV ⊆ W . SupposeV 6= W . Then
it follows, by linear algebra, that there exist vectorsu,w ∈ Ft

2 such thatu · v = 0 for every v ∈ V ,
u · w 6= 0 andw ∈ W . Sincew ∈ W there existsh ∈ RM(2) such thatw = π(h). Let a′1, . . . , a

′
t′ be

the subsequence ofa1, . . . , at corresponding to indicesi such thatui 6= 0. Then we have
∑t′

i=1 h(a′i) = 1

while
∑t′

i=1 f(a′i) = 0 for everyf ∈ F∗k,s. By Lemma 16 we havet ≥ t′ > k.



We can now prove Theorem 6.

Proof: (of Theorem 6) For everyn, the domainDn = F2n . For notational consistency with the earlier
proofs, we switch to usings = n. For everys, the family of functions we work with isFs = F∗k,s.

First note, by Corollary 14 that for everys, Fs has a non-zero function in its dual of weight8. Next, by
Lemma 10 we also have thatFs is affine invariant and thus (by Proposition 7) 2-transitive. It remains to
show thatF is notk-locally testable. AssumeF is t-locally testable, i.e., for all sufficiently larges there is
a one-sided error, non-adaptive, testerT = Ts that accepts every member ofFs while rejecting all functions
at distance at least, say,1/7 from Fs with positive probability. We argue below that this can not happen if
t ≤ k ands > 2k + 1.

Supposet ≤ k. Fix the coins ofT to some stringR and leta1, . . . , at ∈ F2s be the queries of the tester
T on random stringR. Let π, V and W be as in the statement of Lemma 20. Since the tester makes
one-sided error, it follows that it must accept every pattern in V (i.e., accepts every functionf such that
π(f) ∈ V ). By Lemma 20 we haveV = W and so the tester accepts every element ofRM(2) also on
random stringR. Thus we get that every element ofRM(2) is accepted with probability one by the tester
T . SinceRM(2) 6= F∗k,s for k < bs/2c (Lemma 11) there exists a functionh ∈ RM(2) − F∗k,s that is
accepted with probability one. Furthermore, by the distance of RM(2) (Proposition 15) and the fact that
F∗k,s ⊆ RM(2), we have thatδ(h,F∗k,s) ≥ 1/7. We conclude that the testerT accepts functions at distance

1/7 fromF∗k,s with probability one violating the requirement above.

4 Conclusions

In the context of “sublinear time algorithms” it is natural to ask: How does the locality lower bound on the
test scale with the complexity of the property being tested?Of course, a related question is: How should
one measure the complexity of a property being tested?

A crude measure of the complexity (though certainly an upperbound) is the size of the domain. In our case,
the usingk = Ω(s) and the lower bound on the locality of the test forF∗k,s is Ω(s) = Ω(log n) (where
n = 2s is the domain size).

But a more refined measure of the complexity of a property being tested is the logarithm of the number
of functions having a given property. ForF∗k,s this number isks. For natural and in particular, for linear,
properties, it is easy to see that this measure gives an asymptotic upper bound on the locality of property
testing (and indeed we would argue that this test is really not local).

Compared against this refined measure, our lower bounds are actually within polynomial factors of the upper
bound, which is a more accurate reflection of the tightness (or looseness) of our analysis.

Moving on to the quest for general understanding of propertytesting, our results do not shed as much
light on testability as we would hope. They actually rule outeven local “characterizations” of the family
F∗k,s. (Informally, a characterization is a definition of a familyin terms of local constraints satisfied by its
members. See [13, Definition 2.1] for a formal definition.) While this is interesting in the coding theoretic
setting, a more interesting property testing question is: Does 2-transitivity and the existence of alocal



characterizationcould imply property tests? We feel that examining this question in the context of affine-
invariant functions would be very illuminating.

Finally, with respect to the specific family we use as the counterexample, it is conceivable that a simpler fam-
ily might have led to a counterexample to, namely, the familyF?

k,s = {Tr(β + β0x + βkx
2k+1)|β, β0, βk ∈

F2s}. However, we were unable to give a non-trivial lower bound (or non-trivial upper bounds) on the lo-
cality of the characterizations/tests forF?

k,s. Resolving this question could be useful in a more general study
as well.
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