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Abstract

A basic goal in Property Testing is to identify a minimal setemtures that make a property testable.
For the case when the property to be tested is membershipiiragytinear error-correcting code, Alon
et al. [2] had conjectured that the presence simglelow weight code in the dual, and “2-transitivity”
of the code (i.e., the code is invariant under a 2-transgiceip of permutations on the coordinates of
the code) suffice to get local testability. We refute thisjeoture by giving a family of error correcting
codes where the coordinates of the codewords form a largk dfetharacteristic two, and the code
is invariant under affine transformations of the domain. sTt¢lass of properties was introduced by
Kaufman and Sudan [13] as a setting where many results ibgeproperty testing generalize. Our
result shows a complementary virtue: this family also camseful in producing counterexamples to
natural conjectures.

1 Introduction

Property testing is interested in the task of testing, iy Vitte time, if a “massive” functionf satisfies some
property P. Specifically, if the functionf maps a finite sebD to a finite rangeR and is given as an oracle,
and if the propertyP is specified by a family of functiong which satisfy the property, then the field tries to
produce probabilistic tests that accepits F while rejectingf that is far fromF with constant probability.
The goal is typically to design tests that make constant rurabqueries (independent @|) into f.

The first modern-day property test was given by Blum, LubyRnbinfeld [8]. (One can count the classical
polls as folklore tests for the “majority is in favor” propge) Property testing also played a central role in
results on multiprover interactive proofs [6, 5, 10] and BQE 3] etc. Property testing was formalized in
Rubinfeld and Sudan [16]. Most early properties were algielin nature and led to tests for membership in
“error-correcting codes”. A systematic study of prope#sting was started by Goldreich, Goldwasser, and
Ron [11] who expanded its scope to combinatorial and grhpbretic properties. Today a vast collection
of properties are known to be locally testable very effidienh particular, for graph theoretic properties the
class of properties that can be tested with constant nunilegresies is now almost fully understood [1, 9].
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In terms of testing membership in error-correcting codesdwer, the knowledge is not very complete.
Some attempts to remedy this were proposed by Alon et al. [ig] suggested that properties that satisfy
sufficiently rich “invariance” conditions (along with sono¢her obviously necessary conditions) may be
testable. In particular Alon et al. made a formal conjec{wkich we call the AKKLR-conjecture) that the
property of membership in a “binary error-correcting cdadat is 2-transitive and has a small weight vector
in its dual” may be testable wittv(1) locality. (We formalize their statement below). In their led2]
they supported this conjecture by showing that it holds ler particular case of families of small degree
polynomials over finite fields.

In this work, we refute their conjecture. We show a family ofoe-correcting codes which satisfy nice
invariance properties and yet do not have very local teSese Conjecture 4 and Theorem 6 below.)

Our counterexample comes from the family of “affine-invatigproperties, whose study was introduced by
Kaufman and Sudan [13]. Affine-invariant families form rraflgeneralizations of the class of low-degree
multivariate polynomials over finite fields. [13] show thiaistclass of families were locally testable for some
choices of the parameters giving some weak confirmationefKKLR-conjecture. In this work we use
other settings of parameters to give a counterexample t&k_R conjecture also, thus complementing
the results of [13]. Together these works highlight the poefeaffine-invariant families in illustrating the
power and limitations of property testing in an algebraiding-theoretic context.

2 Preliminaries and Results

We will uselF, to denote the finite field of cardinality. For a finite set:«<— D will denote a random variable
distributed uniformly overD. We will mostly be interested in Boolean functions over We will uselF,
(the finite field or2 elements) to denote the range. We {i5e— [, } to denote the set of all functions from
the setD to .

2.1 Distance, Local Testability, Constraints, and Charactrizations

For a finite setD and functionsf, g : D — Fy, we define the (normalized Hamming) distance betwgen
andg, denoted(f, g), to bePr,.p[f(z) # g(x)]. For a functionf : D — T, we let the weight off,
denotedwt(f), be the number of € D such thatf(x) # 0. For a family of functionsF C {D — Fy},
defined(f, F) to beminge £{4(f, g)}. We sayf is §-far from F if 6(f, F) > ¢ anddi-close otherwise.

The central goal of this paper is to analyze the local teltaloif the property of membership in a given
ensemble of familieF = {F,},, with 7, C {D,, — Fs}, where|D,,| — oo asn — oo.

Definition 1 (k-local test) For integerk and realse; > ¢; > 0 andd > 0, a (k, €1, €2, d)-local test for
a property F is a probabilistic algorithm that, given oracle access touadtion f € F, queriesf on k
locations (probabilistically, possibly adaptively), aadceptsf € F with probability at leastl — ¢;, while
acceptingunctionsf that ared-far from F with probability at most — es.

Given an ensemble of families = {F,,},, we sayF is k-locally testable if there exidt < ¢; < € and
d > 0 such that for for every,, F,, is (k,e1 4+ o(1), e2 — o(1), 0)-locally testable (where the(1) term goes
to zero asn — o0).



While eventually our main theorem gives a property (famihgt is not even testable according to the defi-
nition above, our proof first rules out a more restrictivesslaf local tests, called “non-adaptive”, “perfect”
tests. We define these notions next. A testeroig-adaptivef the sequence of queries it makes is indepen-
dent of the functionf that is being tested (and depends only on the randomnese tddter). A tester for a

propertyF C {D — 5} is perfectif it accepts every functiorf € F with probability 1.

For a special class of properties called “linear” propsrtthe existence offalocal test implies the existence
of a non-adaptive, perfeétlocal test as shown by Ben-Sasson et al. [7]. We describadkult next.

A property F = {F,, C {D,, — Fy}} islinear if for every pair f,g € F, itis the case that + g € F,
(where(f + g)(z) = f(z) + g(z)( mod 2)).

Theorem 2 ([7, Theorem 3.3])Let F = {F, },, be a linear property that i&-locally testable. ThetF is
k-locally testable by a non-adaptive, perfect, tester. 8jpedly, if 7, is (k, €1, €2, §)-locally testable, then
Fnis (k,0,e2 — €1, d)-locally testable by a non-adaptive tester.

Theorem 2 will be very useful in presenting our countereXampthe AKKLR conjecture.

2.2 Linear Codes, Duals, 2-Transitivity and the Conjecture

We now move towards describing the conjecture by Alon et2jlop the testability of certain class of
properties. The properties considered in [2] are for mestbgiin linear codes and so we define these next.

A property given by a family of functiond C {D — Fs} is linear if for every f,g € F itis the case
that f + g € F. For linear properties, a natural way to test them is thrdimgh-weight” functions in their
“dual”. To define this notion, welet-g = >, f(z)-g(x) denote thénner productof f andg. (Here and
later the summation and product are done over the eljlFor a linear propertyF, its dual, denotedF,

is the family of functions{g : D — Fy | g- f = 0,Vf € F}. One way (and by the results of Ben-Sasson
et al. [7], essentially the only way) to test a linear propéstto pick a functiory € F of weight at most:
and verify thatf - ¢ = 0. It is thus natural to examine the structure of the dialto study the testability of
F.

Definition 3 (2-Transitivity) Theautomorphism groupf a family 7 C {D — Fs}, denotedAut(F), is
the set
{m:D — D | risapermutationanfl € F = for € F}.

(It is easy to verify that this set is a group under compositid functions.)

A groupG of permutations mappin@ to D is is 2-transitiveif for everyz, 2’,y,y' € D such thatr # y
andx’ # ¢/, there existsr € G such thatr(z) = 2/ and7(y) = v/'.

Abusing notation slightly, we say th&tis 2-transitive ifAut(F) is 2-transitive.

We are now ready to state the AKKLR-conjecture

Conjecture 4 ([2]) For everyd € N, there existsk = k(d) < oo such that the following holds: Let
F = {F.}» be an ensemble of properties such that for every



1. ]—"ni has a non-zero function of weight at mdstand

2. F, is 2-transitive.
ThenF is k-locally testable.

We refute this conjecture here.

Theorem 5 For everyk < oo, there is an ensemble of domaifi®,,},, and an ensemble of properties
F = {F,}» such that the following hold:

1. For everyn, F;- has a non-zero function of weight at mést
2. For everyn, F, is 2-transitive.
3. Fis notk-locally testable.
As pointed out earlier, we plan to prove this theorem by gulinit a restrictive class of tests that are non-

adaptive and perfect and then using Theorem 2. However tthesetheorem we need to ensure that our
property is linear. The following theorem gives the morétecal result that we show.

Theorem 6 For everyk < oo, there is an ensemble of domaifi®,,},, and an ensemble of properties
F = {F,}» such that the following hold:

1. Fislinear.

2. For everyn, F;- has a non-zero function of weight at mést
3. For everyn, F, is 2-transitive.

4. Fis notk-locally testable by a non-adaptive, perfect tester.

Note that Theorem 5 follows immediately by combining Theoi@ and Theorem 2. So, in the rest of the
paper, we focus on Theorem 6.

2.3 The Counterexample
Our counterexample family comes from a broad class of ptigseintroduced by Kaufman and Sudan [13].
These are the class of “affine-invariant” families definelbwe

Let F be some finite field and & be a finite extension (field) d&f. For integem, let F be a property of
functions fromK” to F. ThenF is said to beaffine invariantif for every affine map4 : K* — K" and
everyf € F,itisthe casethaf o A € F.

Proposition 7 For every fieldK and integem, the set of affine permutations frdf# — K" is 2-transitive.



Proof: It suffices to prove that for eveny,, x2, y1, yo € K™ with 1 # z2 andy; # y», there exists an affine
permutation4 : K® — K" such thatA(z;) = y; and A(z3) = y2. Let A be given byA(z) = Mz + b
whereM € K™"*™ andb € K". The condition that it be a permutation implié$ should be non-singular;
and satisfyM (1 — x2) = y1 — y2, Whileb = y; — M=x;. Itis easy to see that a non-singullr satisfying
M(Z’l — wg) =YL — Y2 exists. I

It follows that every affine-invariant family i8-transitive. This gives a rich family of families to examine
and to seek sufficient conditions for testability. Of partér interest to us are functions formed by applying
the Trace map fronkK to IF, defined below.

Definition 8 LetF = [, and K = Fys be finite fields. Then the Trace functidh = Trxr : K — Fis
given byTr(z) = o + a9 + 20 4. 29"

A fairly rich class of affine-invariant families can be cangted by starting with a carefully chosen set of
monomials ovem variables with coefficients froriK, and then taking their Trace and then closure under
addition and affine transformations.

We get our family similarly. We start with simple fiel#ls= F, andK = [Fos. We fixn to 1 (there are good
reasons to do so). We then consider monomials of the figrm! and take a moderate sized subset of these
and take their traces and affine closures. The resultingyasnilescribed below.

For positive integerg < s, let
Frw={ 1 :Fo = F2[36.00..... 0k € Far St f(2) = Te(B + fox + Ty fre® ) |-

In the following section we confirm that for every s, the family 7 . is affine-invariant (and hence 2-
transitive) — see Lemma 10. We also show the basic propeaty/th, C 7}, , .. We also show that this
containment is strict ik < |s/2]. Both properties are straightforward to show.

We then define a class of functions that we c@M(2) = RM,(2)". These functions are essentially
what are known as Reed-Muller functions of order 2 (for ins&a in [2]). (Note that our definition may be
somewhat different from theirs. We won't relate our defonitio theirs, but work in a self-contained manner
with our definition.) We show thakM;(2) containsF; , for everyk. By our definition the duals of these
RM(2) families always contain functions of weight 8. As a resultged that the familiesr; | satisfy the
low-dual-weight condition of the AKKLR conjecture. We alsote that these functions have large pairwise
distance, i.e., for every # g € RM(2), §(f,g) > 1/7.

This leads us to the central question: Do these families lumas testers? We show that this is not the case.
This part of our analysis is novel. We show that any functiothe dual of7; _ of weight at mosk is also
a word in the dual oRM(2). We then use this to conclude th&f . has nok-local tests (Lemma 16).

Putting these results together we immediately get a prodhebrem 6 (see Section 3.4).

3 Proof of Main Theorem

3.1 Basic properties ofF;

We start with the simple claim tha; _ is linear.



Lemma 9 For everyk, s, 7} . is linear.

Proof: Follows from the definition ofF; . and the fact that the Trace function is linear, iB:(x + y) =
Tr(x) + Tr(y). |

Next we show the affine invariance &f; ..
Lemma 10 For everyk, s, 7} _ is affine-invariant.

Proof: Fix an affine transformatiom : Fos — Fos given by A(z) = ax + b for a,b € Fos. Fix also

f e Fi, givenbyf(x) = Tr(c+ bz + S2F_, b;a® 1) for someb;, ¢ € Fps, 0 < i < k. We need to show
thatf o A € F.,.

Note that(f o A)(z) = f(az + b) = Tr(c + bo(az + b) + 3%, bi(azx + b)?'+1). By the linearity of the
Trace function, we havef o A)(z) = Tr(c) 4+ Tr(bo(az + b)) + S5, Tr(bi(az + b)* +1). By the linearity

of 7} , (Lemma 9), it suffices to prove that each individual summarid ¥, ..

This is verified easily foflr(c) as well asIt(by(ax + b)) = Tr(bgax) + Tr(bob). We thus turn to the term
Tr(b;(az + b)?+1). We have
Tr(b; (az + b)* )

= Tr(b;(az + b)? (az + b))

= Tr(b(a® 2% +b¥)(az + b))

= Tr(bi(a® T12¥ ' + o b2 + ab¥ z + b7 1))

= Tr(biaQinQiH) + Tr(biaQibei)

+Tr(biab® z) + Tr(bb* 1))

The first, third, and fourth terms in the final expression @&bafe again syntactically in the clasg .. For
the second term, note that it is of the foffn(4z%) = Tr(F%22") = --- = Tr(8* '2?") = Tr(6* 'z
and thusTr(z*") € F; , also. Using the linearity of;: , we thus conclude thélr (b;(ax + b)**1) € F
and this suffices to conclude thab A € 7 .. I

Lemma 11 Foreveryk <s—1,F;  C Fp., Ik <[s/2] thenF}  C Fp, ..
Proof: The proof of the first containment follows from the definitiofhe second part can be derived from,
for instance, [15, Chapter 9, Theorem 7]. For the sake of ¢etepess we include a proof here.

We claim that for distinctl < i,j < s/2, the functionsTr(z2'*1) and Tr(22'*+!) have disjoint support,
when viewed as polynomials of degree at m®st- 1. This suffices, since it implies that the function
Tr(z2+1) ¢ F*k — 1, s. We prove the claim below.

Note that the functioflr(22+1) has support on the monomial€ for d = 2/+¢ 4 2¢( mod 2° — 1) and
similarly Tr(x?'*1) is supported by the monomials’ for d = 2™ + 2™( mod 2° — 1) (here we use
the phrase mod non-conventionally to refer to the unique integefaf — 1] from the equivalence class).



Suppose for contradiction thatt* + 2¢ = 2/+™ 4 2™( mod 2° — 1). Then, by mutliplying both sides
by 25—¢ and reducing modul@® — 1, we see that we hav# + 1 = 2/+™" 4 2™ ( mod 25 — 1) (where
m’ =m + s — ¢). Now we consider two cases: i’ < s/2, then the unique integer betwegmand2® — 1
equal to2/+™ + 27'( mod 2° — 1) is 2/t + 2™, But then2/+™ 4 2™ =£ 27 + 1 unlessm’ = 0 and

i = j (violating distinctness of andj). In the other case, if2’ > s/2, then the unique integer i2* — 1]
equal to2™ + 20tm" > 95/2 5 9i 1 1. So again the modular equivalence can not hold. This prdwes t
claim, and thus the lemmal

3.2 Reed-Muller of Order 2 Family

We now define a family of codes that contain all the familfgs, that we are investigating and help under-
stand its limitations. These are the family of Reed-Mulledes of order 2. For our purpose we define this
family as follows. First, for pointsg, z1, ...,z € Fs, defineA(xg; z1, ..., z¢) to be the affine subspace
generated by, ..., x, throughzg. l.e., A(zo; 21, ..., 2¢) = {20 + Zle a;x;lay,...,ap € Fo}. Now we
defineRM;(2) to be

RM,(2) = { /3 Fa = FalVoo,o1,02,25 € B, Ycmrmnan) S(2) =0 }

We first note the obvious fact th&M,(2) has weight 8 functions in its dual.
Proposition 12 For s > 3, RMS(Z)L contains weight 8 functions.

Proof: Follows immediately from the definition. Let;, zo, x3 be Fo-independent elements &f-. Then
A(0,x1,x9,x3) consists of exactlp elements offys. Letg(z) = 1if z € A(0,x1,22,23) andg(z) = 0
otherwise. Thery is a weight8 codeword and for every € RM;(2) we have thayf - g = 0.

We now show thaRM,(2) containsF;; , for everyk.
Proposition 13 For everyk < s, 7 . C RM,(2).

Proof: Using the linearity of the Trace functioM¥(z + y) = Tr(z) + Tr(y)) we note that it suffices to
show that everyf € {Tr(8), Tr(Boz), Tr(B122 +1, ..., Tr(B,a? 1)} satisfies the RM(2)” constraint:
ZzeA(zo;zl,zQ,zs) f(z) = 0for everyzg, x1,x2, x3 € Fas.

For f = Tr(B) and f = Tr(fpz) this is straightforward, sincg¢(xz + y) = f(z) + f(y) and so the

D s A(wosanmams) 4 (2) = 8f (z0) +4f(21) +4f (x2) +4f(x3) = 0 (since we are performing the arithmetic
modulo 2).

Now consideffr(ﬁxzi+1). We will show that) . c 4 sy, . ) 22141. = 0. Itthen follows thafy ", Tr(322 1) =
Tr(B(>, 2% 1)) = Tr(0) = 0. Note further thafz + y)2'*! = 22 +1 4+ y2' 1 4 22y + y*'z. Using this



expansion we have:

i
§ : Z2+1

z€A(zo;x1,..,23)

= Y T ()t

weA(xo;21,72)

2! 2! 2041
= E (wry +w” z3+a5 )

weA(zop;x1,22)

= x?,f Z w+ x3 Z w? 40

weA(zo;x1,22) weA(zo;x1,22)
= 22 (4wo + 221 + 220) + 23(42d + 222 4 223)
= 0

Propositions 12 and 13 give us the following.
Corollary 14 For everys > 3 andk < s, J—“,ji contains weigh8 codewords.
Finally we show that members of the Reed Muller family aredpart from each other. While a careful

examination would probably yield a better bound on thisatlise, here we get a weaker bound, with a
simpler argument.

Proposition 15 For everyf # g € RM,(2), 6(f,g) > 1/7.

Proof: Consider any functiorf € RM(2) and leth be such thaé(f, h) < 1/14. We claim thath uniquely
specifiesf: In particular the algorithm: Picle,, x5, x3 at random and output_ . ¢ (1.0, 45 24)— {2} (%)
outputsf (x) with probability at least — 76(f, k) > 1/2 and thus defineg uniquely.

We thus conclude that there can not eXisy € RM(2) such that(f,g) < 1/7. I

3.3 KeylLemma

Finally we move to the main lemma of the paper. The goal ofghidion is to prove the following lemma.
Lemma 16 (Main Lemma) Supposg € (F; ,)* has weight < k. Theng € RM(2)".

To prove this lemma we first state three useful sub-lemmaishwlield the main lemma easily. We prove
the sub-lemmas later.

The sub-lemmas refer to a positive integeand the seV = {(7,)|0 <i < j <mori= j = 0}. Note
that|U| = 1+ (). We also use, to denote the zero @fa:.



Lemma 17 Letaq,...,a; € Fos be such thag?;:l f(a;) = 0foreveryf € Fr s Further, suppose there
existsg € RM(2) such thaty":_, g(a;) # 0. Then there exists: < t, Fo-linearly independent elements
b,...,bm € Fas, and a non-zero vectai\;;) ; j)ev € IF|2U‘ such thafy " ; ;e Aiji f (bi +b;) = 0, for every
fer,.

Lemma 18 Supposéy, ..., b, € Fas are Fo-linearly independent elements, agll;); jyev € F'zU‘ is a
non-zero vector such that ; ., Aij f(b; + b;) = 0 for every f € F .. Then there exists a non-empty set

E C{(i,j)|1 <i<j<m} suchthatforevery € [k] itis the case thap_, ;. (b?dbj + b?dbi> = 0.
Finally we show that the conclusion of the previous lemmadliesghatm > & + 1.

Lemma 19 Supposé;, ..., b,, € Fys areF—2-linearly independent elements and suppfse {(z, 7)1 <
i < j < m}is anon-empty set such that for everg [£], Z(i,j)eE <b§dbj + b?dbi) =0. Thenm > k+1.

We first show that Lemma 16 follows from the three sublemmas.

Proof: (of Lemma 16) Leth € (F )" and supposé ¢ RM(2)*. We wish to show > k. (We actually

showt > k + 1, but we state the weaker bound for notational simplicity.)

Let ay,...,a; € FFys be the points such that(a;) = 1. By definition of (J’E;js)L we have thal) =

> zerys f(@)h(T) = S, f(a;). Sinceh ¢ RM(2)*, there must exist a functiop € RM(2) such that

Zle g(a;) # 0. Using Lemma 17 we get that there exist< ¢, linearly independent points, ..., b,, €
m—+1

Fas, and a non-zero vectah;;) ; jjev € Fg 2 )+ suchthad_; e Aij f(bi+b;) = Oforeveryf € F

whereby = 0. Applying Lemma 18 we get that there exists a non-emptyEset {(i,5)|1 <i < j < m}

such that for everyl € [k] we havez(m)eE (b?dbj + b?dbi> = 0. Applying Lemma 19 we then get that

m > k and thug > m > k as desired. |

We now turn to proving the three sub-lemmas. Again the ctuegult here is Lemma 19 and the other two
are just to pin the problem down.

Proof: (of Lemma 17)Letby, ..., b, be the largest linearly independent subset of points ameng. , a;
and letg € RM(2) be the function satisfyind"'_, g(a;) # 0.

We first claim that for every functiof € 7,  at least one of the following must hold: (¥)0) # ¢(0), or
(2) there exists € [m] such thatf (b;) # g(b;), or (3) there existi, j) € [m] x [m] such thatf (b; + b;) #
g(b; +b;). To see this claim, assume otherwise, for sgine F; .. Note that we can prove, by induction on
the size of the sef, that for every ses C [m] we havef (>, ¢ 6i) = 9(>_;cq bi)- Indeed, this is obviously
true for|S| < 2. Now consider asef = T U {i, j} wherei, j  T. Letb = >, b,. Now note that

f(b—f—bi—f—bj)

= [(0)+ f(b) + f(bi) + f(bj) + f(b+bi)
+ f(b+0;) + f(bi + b))

9(0) + g(b) + g(bi) + g(b;) + g(b + b;)
+ g(b +bj) 4 g(bs + bj)

= g(b+b; +bj),



where the first and third inequalities follow from the facatiothf, ¢ € RM(2) while the middle equality
is by induction. But then, we have thAtandg agree on the entire subspace, which contradicts the fact tha
S fa) # 32, g(a;). Hence our claim must be true.

(m+1)+1

Consider the se¥ = {(f(b; + b)) jevlf € Fi s} V is alinear subspace d@f; sinceFy, , is

m+1
a linear subspace; b # Fg 2 )+ (since in particular(g(b; + b;)) ¢ jyev € V. Thus there must be a
non-trivial constraint{A;); j e such that every vectar € V' satisfiesy; ., Aijzi; = 0. This yields
the lemma. |

Proof: (of Lemma 18) We use the basis functions to establish this lemma.bg.€t;, ..., b, and (X;;); ;
be as given.

This proof also relies on the linearity of the the Trace fiowgtand the additional fact thatr(az) = 0 for
everyz € Fys if and only if a = 0. (This is easily seen sinc&r(ax) is a non-zero polynomial of degree
25~Linx,if a #0.)

First consider the constant functian= Tr(3) for someg € Fo-. SinceTr(3) € F  we haved,; ; \ij =
Zz‘,j )\ijTr(ﬂ) =0, and thus\yg = Z(i,j)EU—(0,0) )\z‘j-

Nextwe consider the functiorif(Syz) € F; ;. We have0 = 3, - A;; Tr(B(bi+b;)) = Tr <ﬁo i Nij(bi + bj)).
Using the aforementioned property of the Trace functionhaee that the above identity holds for every
Bo € Fas only if 37, A j(b; +b;) = 0. Letr; =37 Aji +>_,-; Aij. (For simplicity of notation below,
we will assume);; = Aj;.) Then we haved = 3=, - Aii(bi + bj) = Y212, mibi = 1%, 7;b; (where the last
equality follows fromby = 0). Butby, ..., by, are linearly independent ov&p andr;, \;; € Fa, so the only
way > ", 7;b; = 0isif 7, = 0 for everyi. Thus we gef\; = Z#O \j; for everyi € [m]

Finally we considerTr (322" 1) € Fp g ford e [k]. We haved = 7, - Ai;Tr (ﬁd(bi + bj)2d+1) =

Tr (ﬁd > i Nij (bi + bj)2d+1). Again, we have that the above identity holds for ev8rye Fos only if
> X (bi + b;)2'+1 = 0. Expanding(z + y)2"+! asz?" 1 + 2"t 4 22"y + 242, we get

0 = >y (B 02 0y 4 0
2

= Somb T 3T A by + bk

i=1 1<i<j<m
= Z (bgdb] + blb?d),
(i,J)€EE

whereE = {(i,7)|1 <i < j < ms.t.\;; # 0} as required for the lemma statement. The only remaining
issue is to show tha # ().

We claim that ifE = () we have);; = 0 for everyi, j. Fori,j > 1 this follows from the definition oft.
Fori £ 0 andj = 0 this follows from the identity above tha,; = 2#0 Aji = 0. Fori = j =0, we also
haveAoo = >~ ; jyev—(0,0) Aij = 0. But this contradicts the hypothesis th{at;) # 0, and so we conclude

E+0. 1



Proof. (of Lemma 19) This is the crux of our analysis and uses a mix of linear angrmohial algebra
arguments. Assume for contradiction that< k + 1.

Recall we are given that for evedye (k] Z(iyj)eE(b?dbj + b;b;24) = 0. Note further that we also trivially
have this condition fod = 0, since}_; ;) EE(bZ?dbj + b;b;2%) = > yer(biby +bibj) =32 Hep 0.

Fori € [m], letpi = 3.4 or i)ery 0j- Then we can rewritg(ivj)eE(bfdbj + bb;24) asS ™ pib2’
and so we have, for everye {0,1,... k} asy.™, pib?" = 0.

Consider then x m matrix A = (a;;) with a;; = be. Then the previous paragraph implies that

p = 0 for the column vectop = (p1,...,pm). (In particular, we have that thi¢h entry of A - p equals
S lbf p; Which is0 for everyi € {1,...,k+ 1} D {1,...,m}.)

Next we note thap 7 0. This is true since for at least oriec [m] the summatiord . ; - o (J ek b
sums over a non-empty set of indicgésince E # (). But now the linear independenceigt . . . , b, over
5 implies that the summation, and hengeis non-zero.

We conclude that the matrixd is singular. We now use this fact to infer thathas a non-zero vector in its
left kernel, i.e., there exists a non-zero row vecot (A1,. .., \,) such thanA = 0. But now consider
the polynomialA(z) = S-™, A;z2" . Using this notation, we havkA = (A(by),. .., A(b,)). Thus the
condition\A = 0 implies thatA(b;) = 0 for everyj € {1,...,m}.

But now, we have thai\(x) is a non-zero polynomial (sinck is a non-zero vector), of degree at most
2m=1_ Furthermore\ is a linearized polynomial and satisfid$z + y) = A(x) + A(y). This implies that
A(bs) = 0 for everyS C [m], wherebs = >, ¢ b;. The linear independence bf, ..., b,, furthermore
implies that thebg’s are all distinct and thus we get thatis a non-zero polynomial of degree at mpgt!
with 2™ distinct roots, yielding the desired contradictiod.

3.4 Putting it together

We now use the main lemma of the previous subsection to cteatmtembership igFy;  is not testable with
a strongk-local test (i.e. non-adaptive, one sided error). This gamore or less standard and follows, for
instance, from the methods in [7]. We include the full det&ilr completeness.

We first summarize our arguments from the previous secti@nsiightly more convenient form.

Lemma 20 FiX ai,...,a; € Fos. For f : Fos — Foletn(f) = mq,,. 0, (f) = (f(a1),..., f(at)) be the
projection of f t0 ay,...,a;. LetV C F be the set’ = {n(f)|f € F;,}, and letW = {7 (f)|f €
RM;(2)}. Ift < k, thenV = W.

Proof: We first note thal” and W are linear subspaces B%. This follows from the fact tha#;; . and
RM(2) are linear spaces. Sincg;, ¢ RM(2), it also follows thatV" C W. Supposeé/’ # W. Then
it follows, by linear algebra, that there exist vectarsw € Fg such thatu - v = 0 for everyv eV,
u-w # 0andw € W. Sincew € W there existdr € RM(2) such thatw = w(h). Let al,.. ,ay, be
the subsequence af, ..., a; corresponding to indicessuch that; # 0. Then we hav@l Lh(a)) =1
while X f(a}) =0 for everyf € F; .. By Lemma 16 we have> t' > k.



We can now prove Theorem 6.

Proof: (of Theorem 6) For everyn, the domainD,, = Fy». For notational consistency with the earlier
proofs, we switch to using = n. For everys, the family of functions we work with isF, = 7 .

First note, by Corollary 14 that for every F, has a non-zero function in its dual of weight Next, by
Lemma 10 we also have tha&i, is affine invariant and thus (by Proposition 7) 2-transitieremains to
show thatF is notk-locally testable. Assumg is t-locally testable, i.e., for all sufficiently largethere is
a one-sided error, non-adaptive, testee T that accepts every memberBf while rejecting all functions
at distance at least, saly/7 from F; with positive probability. We argue below that this can nappen if
t < kands > 2k + 1.

Suppose < k. Fix the coins ofl’ to some stringR and letaq,...,a; € Fys be the queries of the tester
T on random stringR. Letw, V andW be as in the statement of Lemma 20. Since the tester makes
one-sided error, it follows that it must accept every patterV (i.e., accepts every functiofi such that
m(f) € V). By Lemma 20 we hav®& = W and so the tester accepts every elemer@bf(2) also on
random stringR. Thus we get that every elementRM(2) is accepted with probability one by the tester
T. SinceRM(2) # 7 for k < [s/2] (Lemma 11) there exists a functidne RM(2) — 7 _ that is
accepted with probability one. Furthermore, by the distapicRM(2) (Proposition 15) and the fact that

r.s © RM(2), we have thad(h, 7y () > 1/7. We conclude that the testéraccepts functions at distance

1/7 from F; . with probability one violating the requirement abovd.

4 Conclusions

In the context of “sublinear time algorithms” it is naturaldsk: How does the locality lower bound on the
test scale with the complexity of the property being test€@fTourse, a related question is: How should
one measure the complexity of a property being tested?

A crude measure of the complexity (though certainly an ujpoeind) is the size of the domain. In our case,
the usingk = €(s) and the lower bound on the locality of the test 8} _ is €2(s) = Q(logn) (where
n = 2% is the domain size).

But a more refined measure of the complexity of a propertygé&isted is the logarithm of the number
of functions having a given property. F&i; , this number iscs. For natural and in particular, for linear,
properties, it is easy to see that this measure gives an asiimppper bound on the locality of property
testing (and indeed we would argue that this test is realtyaual).

Compared against this refined measure, our lower boundstaaig within polynomial factors of the upper
bound, which is a more accurate reflection of the tightnesk{seness) of our analysis.

Moving on to the quest for general understanding of proptesfing, our results do not shed as much
light on testability as we would hope. They actually rule euen local “characterizations” of the family
Fi o (Informally, a characterization is a definition of a famityterms of local constraints satisfied by its
members. See [13, Definition 2.1] for a formal definition.) Whhis is interesting in the coding theoretic
setting, a more interesting property testing question ised2-transitivity and the existence oflaral



characterizationcould imply property tests? We feel that examining this ¢joasin the context of affine-
invariant functions would be very illuminating.

Finally, with respect to the specific family we use as the tenaxample, it is conceivable that a simpler fam-
ily might have led to a counterexample to, namely, the farfily, = {Tr(5 + fox + Spz® T1)|8, Bo, Bk €
[Fys }. However, we were unable to give a non-trivial lower lf)ounldr(on-trivial upper bounds) on the lo-
cality of the characterizations/tests fﬁﬁys. Resolving this question could be useful in a more geneualyst
as well.
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