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Abstract

We study the complexity of locally list-decoding binary error correcting codes with
good parameters (that are polynomially related to information theoretic bounds). We
show that computing majority over Θ(1/ε) bits is essentially equivalent to locally list-
decoding binary codes from relative distance 1/2 − ε with list size poly(1/ε). That is,
a local-decoder for such a code can be used to construct a circuit of roughly the same
size and depth that computes majority on Θ(1/ε) bits. On the other hand, there is an
explicit locally list-decodable code with these parameters that has a very efficient (in
terms of circuit size and depth) local-decoder that uses majority gates of fan-in Θ(1/ε).

Using known lower bounds for computing majority by constant depth circuits, our
results imply that every constant-depth decoder for such a code must have size almost
exponential in 1/ε. This shows that the list-decoding radius of the constant-depth
local-list-decoders of Goldwasser et al. [STOC07] is essentially optimal.

Using the tight connection between locally-list-decodable codes and hardness am-
plification, we obtain similar limitations on the complexity of uniform (and even some-
what non-uniform) fully-black-box worst-case to average-case reductions. Very recently,
Shaltiel and Viola [SV07] obtained similar limitations for completely non-uniform fully-
black-box worst-case to average-case reductions, but only for the special case that the
reduction is non-adaptive.

1 Introduction

Error correcting codes are highly useful combinatorial objects that have found numerous
applications both in practical settings as well as in many areas of theoretical computer
science and mathematics. In the most common setting of error-correcting codes we have
a message space that contains strings over some finite alphabet Σ (and for simplicity we
assume that all strings in the message space are of the same length). The goal is to design
a function, which we call the encoding function, that encodes every message in the message
space into a codeword such that even if a fairly large fraction of symbols in the codeword
are corrupted it is still possible to recover from it the original message. The procedure that
recovers the message from a possibly corrupted codeword is called decoding.

It is well known that beyond a certain fraction of errors, it is impossible to recover the
original message, simply because the relatively few symbols that are not corrupted do not
carry enough information to specify (uniquely) the original message. Still, one may hope
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that the number of messages for which their codewords have relatively small agreement with
the received corrupted codeword is small. The procedure that recovers a list of candidate
messages one of which is the original one is called list-decoding.

Typically, the goal of the decoder is to recover the entire message (or a list of candidate
messages) by reading the entire (possibly corrupted) codeword. There are settings, however,
in which the codeword is too long to be read as a whole. Still, one may hope to recover every
individual symbol of the message (in a given location), by reading only a small number of
symbols from the corrupted codeword. This setting is called local-decoding, and both the
unique and list decoding variants (as discussed above) can be considered

Locally decodable codes, both in the unique and list decoding settings, have found
several applications in theoretical computer science, most notably in private information
retrieval [CKGS98, KT00], and worst-case to average-case hardness reductions [STV99] (we
elaborate on this application below). Furthermore, they have the potential of being used for
practical applications, such as reliably storing a large static data file, only small portions
of which need to be read at a time.

1.1 This Work

In this work we study the complexity of locally list decoding binary codes (i.e. where
the alphabet is {0, 1}). In particular, we characterize the computational complexity of
such decoders, for codes that have “good” parameters. Here by “good” parameters we
mean parameters that are polynomially related to the information theoretic bounds (we
elaborate on this choice below).

We proceed more formally. Let C : {0, 1}M → {0, 1}N be the encoding function of an
error-correcting code.1 A local list-decoder D for a code C is a probabilistic oracle circuit
that takes as input an index i ∈ [M ] as well as an “advice” string a ∈ [`]. D is said to be a
(ε, `)-local-list-decoder, if for every y ∈ {0, 1}N and m ∈ {0, 1}M , such that the fractional
Hamming distance between C(m) and y is at most 1/2 − ε, the following holds:

∃a ∈ [`] s.t. ∀i ∈ [M ] Pr
D’s coins

[Dy(a, i) = m[i]] > 9/10

where m[i] is the i-th bit in the message string m. In this case we say that the decoder
list-decodes from radius 1/2 − ε. Note that here 1/2 − ε refers to the “noise rate” from
which the decoder recovers, and ` is the “list size”: the number of possible advice strings,
one of which makes the decoder decode every index correctly (with high probability). Note
that by giving the decoder oracle access to the received word, and requiring it to decode
individual symbols, we can hope for decoders whose size is much smaller than N .

It is well known that for every (ε, `)-local-list-decodable code, it must hold that ` =
Ω(1/ε2) [Bli86, GV05] (in fact this bound holds even for standard, non-local, list decoding).
Thus, aiming to stay within polynomial factors of the best possible parameters, our primary
goal is to understand the complexity of decoding (ε,poly(1/ε))-local-list-decodable codes
that have polynomial rate (i.e. where N(M) = poly(M)).

Our main result characterizes the complexity of local-list-decoders for such codes. We
show that computing majority on Θ(1/ε) bits is essentially equivalent to (ε,poly(1/ε))-
local-list-decoding: every circuit for a local-decoder of such a code can be used to construct
a circuit of roughly the same size and depth that computes majority on Θ(1/ε) bits. In

1Formally, we consider a family of codes one for each message length M . The parameters listed above
and below, e.g. N, ε, `, should all be thought of as functions of M .
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the other direction, there is an explicit (ε,poly(1/ε))-locally-list-decodable code with a very
efficient (in terms of size and depth) local-decoder that uses majority gates of fan-in Θ(1/ε).
This is stated (informally) in the following theorem.

Theorem 1 (Informal). If there exists a binary code with a (ε, poly(1/ε))-local-list-decoder
D of size s and depth d, then there exists a circuit of size poly(s) and depth O(d) that
computes majority on Θ(1/ε) bits.

In the other direction, there exist (for ε ≥ 1/2
√

log(M)) explicit binary codes of polynomial
rate, with a (ε, poly(1/ε))-local-list-decoder. The decoder is a constant depth circuit of size
poly(log M, 1/ε) with majority gates of fan-in Θ(1/ε).

The upper bound follows by replacing one of the ingredients in the construction of
Goldwasser et. al. [GGH+07], with the recent de-randomized direct-product construction
of Impagliazzo at. al. [IJKW07], thus improving the code’s rate. Our main technical
contribution is in the lower bound, where we show a reduction from computing majority
over inputs of size Ω(1/ε) to local-list-decoding binary codes with good parameters. In fact,
our lower bound holds for any (ε,poly(1/ε))-list-decodable binary code, regardless of its
rate. By known lower bounds on the size of constant-depth circuits that compute majority
[Raz87, Smo87], we obtain the following corollary.

Corollary 1 (Informal). Any constant-depth (ε, poly(1/ε))-local-list-decoder for a binary
code, must have size almost exponential in 1/ε. This holds even if the decoder is allowed
mod q gates, where q is an arbitrary prime number.

We note that in fact we prove a stronger result in terms of the list size. We show
that (ε, `)-local-list-decoding with a decoder of size s and depth d, implies a circuit of size
poly(s, `) and depth d that computes majority on O(1/ε) bits. Intuitively, this means that
even if the list size is sub-exponential in 1/ε, the size of the decoder still must be nearly
exponential in 1/ε (even if the decoder is allowed mod q gates).

Hardness amplification. Hardness amplification is the task of obtaining from a Boolean
function f that is somewhat hard on the average, a Boolean function f ′ that is very hard
on the average. By a beautiful sequence of works [STV99, TV02, Tre03, Vio03], it is well
known that there is a tight connection between binary locally (list) decodable codes and
hardness amplification. Using this connection, we obtain limits (in the spirit of Corollary 1)
on (black-box) hardness amplification procedures. We defer the statement of these results
and a discussion to Section 5.

1.2 Related Work

Goldreich and Levin [GL89] were the first to (implicitly) consider locally-list-decodable
codes. They showed that the Hadamard code has such a decoder. The first locally-list-
decodable code with “good” parameters was obtained by Sudan, Trevisan and Vadhan
[STV99].2 They showed that the Reed-Muller code concatenated with the Hadamard code
has such a decoder. Their decoder is in the class NC2. That is, the bound on the circuit’s
size is poly(log M, 1/ε), while the bound on the depth is O(log2(log M)) (i.e. the square of
the logarithm of the input size). Goldwasser et. al. [GGH+07] construct binary codes that
are (ε,poly(1/ε))-locally-list decodable by constant depth circuits of size poly(log M, 1/ε),

2The Hadamard code does not have good parameters since its codewords are of length 2M .
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using majority gates of fan-in O(1/ε). The rate of these codes is exponential in 1/ε. In
particular, for ε ≥ 1/ log log M their codes have constant depth decoders of size poly log M
that do not use any majority gates. This is simply because for such large enough ε the fan-
in of the majority gates is so small relative to the circuit size that majority computations
can be done in constant depth (this only increases the decoder size by a polynomial factor).
One of the main problems that was left open in [GGH+07], and the main motivation for our
work, is whether the parameters of their codes, especially the list-decoding radius, can be
improved, while maintaining the size and depth of the decoder.3 In this work we show that
while the rate of these codes can be improved, the list-decoding radius cannot (for small
constant depth circuits without majority gates). The lower bound on the list-decoding
radius follows from Corollary 1.

The question of lower bounding the complexity of local-list-decoders was raised by Viola
[Vio06]. He conjectured that locally (ε, `)-list-decodable codes require computing majority
over O(1/ε) bits,4 even when the list size ` is exponential in 1/ε. Note that while exponential
lists are not commonly considered in the coding setting (the focus instead is on polynomial or
even optimal list sizes), they do remain interesting for applications to (non-uniform) worst-
case to average-case hardness reductions. In particular, lower bounds for local-list-decoding
with exponential lists, imply impossibility results for non-uniform black-box worst-case to
average-case hardness reductions (see Section 5). In this paper we prove the conjecture for
the case of polynomial (and even sub-exponential) size lists. While a proof of the full-blown
conjecture remains elusive, there are results for other (incomparable) special cases:

Viola [Vio06] gave a proof (which he attributed to Madhu Sudan) of the conjecture
for the special case of the standard non-local list-decoding setting. It is shown that a list-
decoder from distance 1/2 − ε can be used to compute majority on Θ(1/ε) bits, with only
a small blow-up in the size and depth of the decoder. This result rules out, for example,
constant-depth list-decoders whose size is poly(1/ε). Note, however, that in the non-local
list decoding setting the size of the decoder is at least N (the codeword length) because it
takes as input the entire (corrupted) codeword. This means that the bound on the size of
constant-depth decoders does not have consequences for fairly large values of ε. For example,
when ε ≥ 1/ log N , the only implication that we get from [Vio06], is that there is a constant-
depth circuit of size at least N = 21/ε that computes majority on instances of size 1/ε. But
this is trivially true, and thus we do not get any contradiction. In the local-decoding setting
the decoders’ circuits are much smaller and thus we can obtain limitations for much larger
ε’s. In this paper we rule out AC0 decoders for (ε,poly(1/ε))-local-list-decoders for any ε
smaller than 1/poly log log N . In particular this shows that the list-decoding radius of the
AC0 local-list-decoders of [GGH+07] is essentially optimal (recall that this was one of our
main motivations). And thus we get a clean separation: up to radius 1/2− 1/poly log log N
locally-list-decodable codes with AC0 decoders and good parameters exist, and beyond this
radius they do not.

Viola [Vio06] also proved that there are no constant-depth decoders (with polynomial-
size lists) for specific codes, such as the Hadamard and Reed-Muller codes. We, on the
other hand, show that there are no such decoders for any code (regardless of its rate). Very
recently, Shaltiel and Viola [SV07] proved the conjecture for the local-decoding setting with
` exponential in 1/ε, but for the special case that the decoder is restricted to have non-

3Significant improvements in the list-decoding radius would have important implications to the construc-
tion of pseudorandom generators (see Section 5).

4By “require” we mean that the decoding circuit can be used to construct a circuit of comparable size
and depth that computes the majority function on O(1/ε) bits.
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adaptive access to the received word. Our result is incomparable to [SV07]: we prove Viola’s
conjecture only for the case that ` is sub-exponential in 1/ε, but do so for any decoder, even
an adaptive one. It is important to point out that the constant depth decoder of [GGH+07],
as well as its improvement in this work, are adaptive.

1.3 On the Choice of Parameters

In this work codes with polynomial-rate are considered to have “good” parameters. Usually
in the standard coding-theory literature, “good” codes are required to have constant rate.5.
We note that, as far as we know, there are no known locally-decodable codes (both in
the unique and list decoding settings) with constant rate (let alone codes that have both
constant rate and have decoders that are in the low-level complexity classes that we consider
here). The best binary locally decodable codes known have polynomial rate [STV99]. It is
an interesting open question to find explicit codes with constant or even polylogarithmic
rate.

Finally, we note that in this work we do not (explicitly) consider the query complexity
of the decoder. The only bound on the number of queries the decoder makes to the received
word comes from the bound on the size of the decoding circuit. The reason is that known
codes with much smaller query complexity than the decoder size (in particular constant
query complexity) have a very poor rate (see e.g. [Yek07]). Furthermore, there are negative
results that suggest that local-decoding with small query complexity may require large rate
[KT00, KdW04, GKST06].

2 Preliminaries

For a string m ∈ {0, 1}∗ we denote by m[i] the i’th bit of m. [n] denotes the set {1, . . . , n}.
For a finite set S we denote by x ∈R S that x is a sample uniformly chosen from S. For
k ∈ N, we denote by ∆k the relative (or fractional) Hamming distance between strings of
k-bit symbols. That is, let x, y ∈ ({0, 1}k)n then ∆k(x, y) = Pri∈R[n][x[i] 6= y[i]], where

x[i], y[i] ∈ {0, 1}k . If we do not specify k then its default value is 1.

2.1 Circuit Complexity Classes

For a positive integer i ≥ 0, AC i circuits are Boolean circuits (with AND, OR and NOT
gates) of size poly(n), depth O(logi n), and unbounded fan-in AND and OR gates (where n
is the length of the input). ACi[q] (for a prime q) are similar to AC i circuits, but augmented
with mod q gates. For example, AC0[2] circuits are constant depth polynomial-size circuits
with unbounded fan-in AND, OR and XOR gates. Note that these circuits may output more
than one bit.

The complexity class AC i (or ACi[q]) is the class of languages or functions computable
by AC i (respectively ACi[q]) circuits. See [Vol99] for a more detailed treatment. Finally, we
extensively use oracle circuits: circuits that have (unit cost) access to an oracle computing
some function. The probabilistic analogues of these circuits and complexity classes are
allowed constant two-sided error.

5We do remark that for applications such as worst-case to average-case reductions, polynomial or even
quasi-polynomial rates suffice
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2.2 Locally list-decodable codes

Definition 1 (Locally list-decodable codes). An ensemble of functions {CM : {0, 1}M →
{0, 1}N(M)}M∈N is a (ε(M), `(M))-locally-list-decodable code if there is a probabilistic oracle
Turing machine D that takes as input an index i ∈ [M ] as well as an “advice” string
a ∈ [`(M)] and the following holds: for every y ∈ {0, 1}N(M) and x ∈ {0, 1}M such that
∆(CM (x), y) ≤ 1/2− ε,

∃a ∈ [`] s.t. ∀i ∈ [M ] Pr[Dy(a, i) = m[i]] > 9/10 (1)

where the probability is over the randomness of D.
If ` = 1 we say that the code is uniquely decodable. We say that the code is explicit if

CM can be computed in time poly(N(M)).

2.3 Majority and related functions

We use the promise problem Π, defined in [Vio06] as follows:
ΠY es = {x : x ∈ {0, 1}2k for some k ∈ N and weight(x) = k − 1}
ΠNo = {x : x ∈ {0, 1}2k for some k ∈ N and weight(x) = k}

We will extensively use the fact, proven in [Vio06], that computing the promise problem
Π on 2k bit inputs is (informally) “as hard” (in terms of circuit depth) as computing
majority of 2k bits. This is stated formally in the claim below:

Claim 1 ([Vio06]). Let {C}M∈N be a circuit family of size S(2M) and depth d(2M) for
solving the promise problem Π on inputs of size 2M .

Then, for every M ∈ N, there exists a circuit BM of size poly(S(M)) and depth O(d(M))
that computes majority on 2M bits. The types of gates used by the BM circuit are identical
to those used by CM . E.g., if CM is an AC0[q] circuit, then so is BM .

3 Local-List-Decoding Requires Computing Majority

Theorem 2. Let {CM : {0, 1}M → {0, 1}N(M)}M∈N be a (ε(M), `(M))-locally-list-decodable
code, such that `(M) ≤ 2κ·M , and 1/N δ1 ≤ ε ≤ δ2 for universal constants κ, δ1, δ2. Let D
be the local decoding machine, of size S(M) and depth d(M).

Then, for every M ∈ N, there exist a circuit AM of size poly(S(M), `(M)) and depth
O(d(M)), that computes majority on Θ(1/ε(M)) bits. The types of gates used by the AM

circuit are identical to those used by D. E.g., if D is an AC0[q] circuit, then so is AM .

Proof Intuition for Theorem 2. Fix a message length M , take ε = ε(M). We will
describe a circuit B with the stated parameters that decides the promise problem Π on
inputs of length 1/ε. By Claim 1 this will also give a circuit for computing majority.

We start with a simple case: assume that the (local) decoder D makes only non-adaptive
queries to the received word. In this case the theorem is easier to prove, and we proceed
using ideas from the proof of Theorem 6.4 in [Vio06] (which is attributed to Madhu Sudan).
Take m to be a message that cannot be even approximately decoded6 from random noise
with error rate 1/2. Such a word exists by a counting argument. Let C(m) be the encoding

6By this we mean that no decoder can decode (w.h.p.) a string that is, say, 1/3-close to m.
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of m. Let x ∈ ΠY es∪ΠNo be a Π-instance of size 1/2ε. B uses x to generate a noisy version
of C(m), by XORing each one of its bits with a random bit of x. It then uses D to decode
this noisy version of C(m). If x ∈ ΠNo, this adds random noise (error rate 1/2), and the
decoding algorithm cannot recover most of m’s bits. If x ∈ ΠY es, then each bit is noisy with
probability less than 1/2 − 2ε, and the decoding algorithm successfully recovers every bit
of m w.h.p. By comparing the answers of the decoding algorithm (or more precisely, every
decoding algorithm in the list, by trying every possible advice) and the real bits of m in a
small number of random locations, the algorithm B distinguishes w.h.p. whether x ∈ ΠY es

or x ∈ ΠNo.
Note, however, that B as described above is not a standard algorithm for Π. This is

because we gave B access to the message m as well as its encoding. Both of these are strings
that are much larger than we want B itself to be. So our next goal is to remove (or at least
minimize) B’s access to m and C(m), making B a standard circuit for Π. Observe that B
as described above distinguishes whether x is in ΠY es or in ΠNo with high probability over
the choices of D’s random coins, the random locations in which we compare D’s answers
against m, and the random noise generated by sampling bits from x. In particular, there
exists a fixing of D’s random string as well as the (small number of) testing locations of m
that maintains the advantage in distinguishing whether x comes from ΠY es or ΠNo, where
now the probability is only over the randomness used to sample bits from x. So now we can
hardwire the bits of m used to test whether D decodes the noisy version of C(m) correctly
(i.e. we got rid of the need to store the whole string m). Furthermore, after we fix D’s
randomness, by the fact that it is non-adaptive, we get that the positions in which B queries
the noisy C(m) are now also fixed, and independent of x. So we also hardwire the values
of C(m) in these positions (and only these positions) into B. For any x, we now have all
the information to run B and conclude whether x is in ΠY es or ΠNo.

Next we want to deal with adaptive decoders. If we proceed with the ideas described
above, we run into the following problem: suppose the circuit has two (or more) levels
of adaptivity. The queries in the second level do not only depend on the randomness of
the decoder, but also on the values read from the received word at the first level, and in
particular they also depend on the noise. The noise in our implementation depends on the
specific Π-instance x. This means that we cannot hardwire the values of C(m) that are
queried at the second level because they depend on x!

To solve this problem, we analyze the behavior of the decoder when its error rate changes
in the middle of its execution (using a hybrid argument). Specifically, for every level k in
the decoding circuit D, we consider the behavior of the decoder when up to level k we give
it access to the encoded message corrupted with error-rate 1/2 − 2ε, and above the k’th
level we give it access to the encoded message corrupted with error-rate 1/2. By a hybrid
argument, there exists some level k, in which the decoder has a significant advantage in
decoding correctly when up to the k’th level it sees error rate 1/2 − 2ε (and error-rate 1/2
above it), over the case that up to the (k − 1)’th level the error-rate is 1/2 − 2ε (and 1/2
from k and up). We now fix and hardwire randomness for the decoder, as well as noise for
the first k − 1 levels (chosen according to error-rate 1/2 − 2ε), such that this advantage is
preserved. Note that this hard-wired noise does not depend on the instance x. It is fixed
once and for all and it is the same for every x. Once the randomness of D and the noise
for the first k − 1 levels are fixed, the queries at the k-th level (but not their answers)
are also fixed. For this k-th level we can proceed as in the non-adaptive case (i.e. choose
noise according to x and hardwire the fixed positions in C(m)). We still have to deal with
queries above the k’th level, and as argued above, these may now depend on the input
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x and therefore the query locations as well as the restriction of C(m) to these locations
cannot be hard-wired. However, notice that in these “top” layers, the error rate is 1/2, and
thus the query answers are completely random, they have nothing to do with m or C(m)!
Thus, B can continue to run the decoder, answering its queries (in the levels above the
k’th) with random values. Thus we obtain a circuit that decides membership in Π correctly
with a small advantage. Since the number of adaptivity levels is only d (the circuit depth
of the decoder), the distinguishing advantage of the k-th hybrid is at least O(1/d), and in
particular this advantage can now be amplified by using only additional depth of O(log(d)).

Proof of Theorem 2. Fix M ∈ N, C = CM : {0, 1}M → {0, 1}N(M), ε = ε(M), ` = `(M),
S = S(M) and d = d(M) as in the statement of the theorem. We show how to use the
decoder D to construct a circuit for computing Π on instances of size 1/ε (and thus also for
computing majority, by Claim 1) as promised in the theorem statement.

Let us start with some notation. For an advice string a ∈ [`], an index i ∈ [M ], and
a received word y ∈ {0, 1}N , we denote by Dy(a, i, r) an execution of the decoder D with
advice a, randomness r, and (oracle) access to y ∈ {0, 1}N to retrieve the i-th message bit.
For m ∈ {0, 1}M and 0 ≤ α ≤ 1, we use Γα(a, y,m) to denote the fraction of indices i in m
that Dy(a, i, r) recovers with probability at least α (the probability is over D’s randomness
r). Formally:

Γα(a, y,m)
def
=

1

M
|{i ∈ [M ] : Pr

r
[Dy(a, i, r) = m[i]] ≥ α}|

Let E0 be the uniform distribution on {0, 1}N , and E1 be the distribution over {0, 1}N in
which every bit is chosen (independently) to be 1 with probability 1/2−2ε and 0 otherwise.

First we show that there exists a message m ∈ {0, 1}M , such that if C(m) is corrupted
with completely random noise, then with probability 9/10 over the noise, for every advice
string a, the decoder D cannot recover more than 2/3 of m’s indices with probability greater
than 2/3 (over its random coins).

Claim 2. There exists a message m ∈ {0, 1}M such that,

Pr
e←E0

[∃a ∈ [`] s.t. Γ3/5(a,C(m)⊕ e,m) > 3/5] ≤ 1/10

Where the ⊕ operation between bit strings means bit-wise XOR.

Proof. The intuition is that if e is drawn from E0 (error rate 1/2), then C(m) ⊕ e is
independent of C(m), and thus for most m’s, all of the ` possible outputs of the decoder
are far from m. Formally:

Prm∈{0,1}M ,e←E0
[∃a ∈ [`] s.t. Γ3/5(a,C(m)⊕ e,m) > 3/5] =

Prm∈{0,1}M ,e←E0
[∃a ∈ [`] s.t. Γ3/5(a, e,m) > 3/5] =

Prm∈{0,1}M ,e←E0
[∃a ∈ [`] s.t.

1

M
|{i ∈ [M ] : Pr

r
[De(a, i, r) = m[i]] ≥ 3/5}| ≥ 3/5]

Examining this last quantity, for any fixed error vector e and advice a, let me
a be the

(single) message obtained by taking me
a[i] to be the more probable answer (over r) of

De(a, i, r). Now, fixing e, and taking a random m, the probability that

∃a ∈ [`] s.t.
1

M
|{i ∈ [M ] : Pr

r
[De(a, i, r) = m[i]] ≥ 3/5}| ≥ 3/5
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is at most the probability that for the random m, for some a ∈ [`], the fractional distance
between me

a and m is at most 2/5. Denote by V ol2/5(M) the volume of the M -dimensional
sphere of radius 2M/5 (in the M -dimensional Hamming cube). Taking H to be the entropy
function, the probability that there exists a ∈ ` such that m is 2/5-close to me

a is (by a
union bound) at most:

` · V ol2/5(M)

2M
≤ ` · 2(H(2/5)+o(1))·M

2M
≤ 1

2Ω(M)
≤ 1/10

Where in the last inequality we assume ` ≤ 2κ·M for a universal constant κ. We conclude
that indeed:

Pr
m∈{0,1}M ,e←E0

[∃a ∈ [`] s.t. Γ3/5(a,C(m)⊕ e,m) > 3/5] ≤ 1/10

and thus certainly there exists an m ∈ {0, 1}M for which

Pr
e←E0

[∃a ∈ [`] s.t. Γ3/5(a,C(m)⊕ e,m) > 3/5] ≤ 1/10

In contrast to the above claim, the decoding algorithm has the guarantee that for every
message m ∈ {0, 1}M , with high probability over noise e of rate 1/2−2ε or less, there exists
an advice string a ∈ [`] such that when D is given this advice string and oracle access to
the codeword C(m) corrupted by e, it recovers every bit of m with probability 9/10.

Claim 3. For every message m ∈ {0, 1}M :

Pr
e←E1

[∃a ∈ [`] s.t. Γ9/10(a,C(m)⊕ e,m) = 1] > 9/10

Proof. Recall that the decoder D has the guarantee that if a codeword is corrupted in less
than a 1/2 − ε-fraction of its coordinates, then for some a ∈ [`], when D uses advice a it
can recover each of the original message’s coordinates with probability at least 9/10 (over
its coins). It remain only to show that the probability that e drawn from E1 corrupts
more than a 1/2 − ε-fraction of C(m)’s coordinates is at most 1/10. This follows by a
Chernoff bound, since e that is drawn from E1 corrupts independently every coordinate of
C(m) with probability 1/2 − 1/2ε. Then the probability that the fraction of coordinates
corrupted is more than 1/2 − 1/ε is exponentially small in 1/ε (here we use that fact that
1/ε is significantly smaller than N , because ε ≥ 1/N δ1 for some universal constant δ1 > 0).
In particular, for ε smaller than some universal constant δ2 > 0, this probability is indeed
smaller than 1/10 as required.

Fix m as in Claim 2. We define a probabilistic circuit A1 that for b ∈ {0, 1} gets oracle
access to a string y = C(m)⊕ e where e is sampled from the distribution Eb. The goal of
the circuit is to guess the value of b. For starters, we will construct such a circuit that also
gets oracle access to the string m. The algorithm is described in Figure 1.

The algorithm A1 (as described in Figure 1) can be implemented by a probabilistic
oracle circuit of size poly(S, `) and depth O(d), where the circuit has oracle access to the
message m and noisy codeword C(m)⊕ e. Denote by r̄ the randomness used by A1.

Claim 4.

Pr
e←E1,r̄

[A
m,C(m)⊕e
1 (r̄) = 1]− Pr

e←E0,r̄
[A

m,C(m)⊕e
1 (r̄) = 1] ≥ 1/2
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Oracle access to: m and y = C(m)⊕ e where e← Eb.
Output: b.
The algorithm:

Let q = Θ(log(`)). For every a ∈ [`] do the following in parallel:

1. Choose random indices ia1 , . . . , i
a
q ∈ [M ].

2. Choose random strings ra
1
, . . . , ra

q for D.

3. For every j ∈ [q] run Dy(a, iaj , ra
j ) to obtain a prediction for the bit m[iaj ]. If for at least 43

50

of the j’s, the prediction is equal to m[iaj ], output 1 and halt.

Otherwise (no a ∈ [`] resulted in output 1), output 0 and halt.

Figure 1: Algorithm A1

Proof. By Claim 3, when e is drawn from E1, with probability 9/10, there exists a ∈ [`] for
which D (with advice a) successfully recovers each of m’s indices with probability 9/10 (over
its random coins). In this case, when A1 tries this a, with probability at least 1−1/poly(`),
in at least 43

50 of its q experiments it will successfully retrieve the proper bit of m (by a
Chernoff bound). Taking a Union bound, we conclude that, when e is drawn from E1, the
probability that A1 outputs 1 is at least 8/10.

By Claim 2, when e is drawn from E0, with probability 9/10, for every a ∈ [`], there
exist a 2/5 fraction of m’s indices, such that D (with advice a) fails to recover each one of
them with probability at least 2/5 (over its coins). In this case, for any a in the execution
of A1, the probability of successfully recovering bits of m in a 43

50 fraction of the experiments
is at most 1/poly(`) (because at best, the decoder can recover with high probability 3/5 of
the bits of m, and is expected, over its randomness to recover each of the remaining 2/5
bits with probability less than 3/5). Taking a Union bound, when e is drawn from E0, the
probability that A1 outputs 1 is at most 2/10.

In conclusion:

Pr
e←E1,r̄

[A
m,C(m)⊕e
1 (r̄) = 1]− Pr

e←E0,r̄
[A

m,C(m)⊕e
1 (r̄) = 1] ≥ 8/10 − 2/10 = 6/10 > 1/2

We now remove the need for oracle access to the message m. This can be done by fixing
(for each a ∈ [`]) all of the ia1, . . . , i

a
q in the description of A1, such that the difference in the

probabilities of A1 outputting 1 in Claim 4 is preserved (by averaging such a fixing exists).
The values m[ia1], . . . ,m[iaq ] (for every a ∈ [`]) can then be hard-wired into the circuit A1

(there are only poly(`) of them). Let us call the new circuit A2 which now has only oracle
access to C(m). We have,

Pr
e←E1,r̄

[A
C(m)⊕e
2 (r̄) = 1]− Pr

e←E0,r̄
[A

C(m)⊕e
2 (r̄) = 1] > 1/2 (2)

The next step is to remove the oracle access to C(m)⊕eb (these oracle queries are made
by D). This is not straightforward since (as noted in the proof intuition) the queries of an
adaptive decoder to the noisy codeword may depend on the noise, and through it (in our
construction) on the input x itself. Since we do not know the query locations, we cannot
hardwire the proper values of C(m) into the circuit. We use a hybrid argument to overcome
this difficulty. This involves further notation.

10



Assume that the decoder D asks its queries in d levels of adaptivity (d is a bound on
its depth, so it is certainly a bound on the number of adaptive levels). For d distributions,

G1, . . . , Gd on {0, 1}N , we denote by A
C(m)⊕G1,...,Gd

2 (r̄) the output of A2, with randomness
r̄, where queries to the noisy codeword are answered as follows: for every adaptivity level
k ∈ [d] of the decoder D, sample ek ← Gk. If in its k-th level, D queries the codeword in
position j ∈ [N ], then the answer is C(m)[j]⊕ ek[j].

Note that if we use an oracle as described above (that generates a different noise vector
for each adaptivity level), then if the same query is asked in different levels, the answers
may be inconsistent. We want all answers to be consistent between the adaptivity levels
and across all of A2’s executions of D (note that consistency across executions is important
because the list-decoding guarantee is against a single fixed noise vector). To guarantee
consistency, we modify A2 so that the answers to queries across different executions (and
within each execution) are always consistent; if k is the first execution in the minimal level
in which query j is made (across the parallel executions), then the answer to query j is
always C(m)[j] ⊕ ek[j]. We note that this consistency guarantee can be realized with an
AC0 circuit, by always answering a query with the answer given to that query as made in
the lexicographically first level and execution number.

Now, for every 0 ≤ k ≤ d, we define

Ok def
= C(m)⊕

k
︷ ︸︸ ︷

E1, . . . , E1

d−k
︷ ︸︸ ︷

E0, . . . , E0

Consider running A2 with oracle Ok. That is, for the first k levels we give A2 access to
C(m) corrupted with error rate 1/2 − 2ε and for the last d − k levels we give it access to
C(m) corrupted with error rate 1/2. By (2):

Pr
r̄,E1,...,E1

[AOd

2 (r̄) = 1]− Pr
r̄,E0,...,E0

[AO0

2 (r̄) = 1] ≥ 1

2

This inequality holds because for the oracles O0 and Od, all the error vectors (in the different
levels) have the same error rate. In this case, A2 with the above ”consistency modification”,
behaves identically to A1 (with the hard-wired bits of m) with that same error rate. It
follows, by triangle inequality, that there exist 1 ≤ k ≤ d, such that,

Pr
r̄,E0,...,E0,E1,...,E1

[AOk

2 (r̄) = 1]− Pr
r̄,E0,...,E0,E1,...,E1

[AOk−1

2 (r̄) = 1] ≥ 1

2d
(3)

Fix such a k. Consider the circuit A obtained from A2 as follows: Fix r̄, as well as the noise
for the answers of the oracle on the first k− 1 levels, such that the advantage in Inequality
(3) is preserved. After doing this, all the queries as well as their answers for the first k − 1
levels are fixed. Hardwire all of them into the circuit (these are poly(S, `) bits). Also, the
queries (but not their answers) in the k’th level are fixed. Hardwire these queries into the
circuit, as well as the values of C(m) in these positions.

We now use A to answer a new guessing game. It is given access to a sample e ← Eb

(b ∈ {0, 1}) and it has to guess the value of b. It does so by simulating A2 with the fixed
randomness r̄, answering oracle queries as follows: for the first k− 1 levels it uses the fixed
queries and their answers. For level k, if A2 queries the received word in position j (which
is now fixed), A returns as an oracle answer the value C(m)[j] ⊕ e[j] (recall that C(m)[j]
is hardwired). For the levels above k, A returns random bits (uniformly and independently
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distributed) as oracle answers. Note that throughout A, just like A2, guarantees consistency
of answers to D’s oracle queries across the parallel executions and adaptivity levels.

Since A2 is an oracle circuit of size poly(S, `) and depth O(d), then so is A. Also, it

is clear that A simulates AOk

2 when b = 1 and AOk−1

2 when b = 0 (with fixed values that
maximize the gap in (3)). Let r̄′ be the randomness of A. We have,

Pr
e←E1,r̄′

[Ae(r̄′) = 1]− Pr
e←E0,r̄′

[Ae(r̄′) = 1] ≥ 1

2d
(4)

Let
γ

def
= Pr

e←E1,r̄′
[Ae(r̄′) = 1] = Pr[AOk

2 = 1]

We are finally ready to describe a circuit B that computes Π correctly on instances of
length 1/2ε with a small advantage (that will later be amplified). We assume w.l.o.g. that
1/2ε is an even integer. On input x ∈ Πyes∪ΠNo of length 1/2ε, B runs A while simulating
the noise e ← Eb as follows: whenever A queries e in position j, B chooses uniformly
i ∈ [1/2ε] and returns the bit x[i] At the end of the execution, B returns the same answer
as A does.

B is also a circuit of size poly(S, `) and depth O(d) (inherited from A). If x ∈ ΠY es,
then Pri[x[i] = 1] = 1/2−2ε, and the simulated oracle is distributed identically to a sample
from E1. On the other hand, if x ∈ ΠNo, then Pri[x[i] = 1] = 1/2, and the simulated oracle
is distributed identically to a sample from E0. We conclude from Inequality (4):

Claim 5. If x ∈ ΠY es, Pr[B(x) = 1] ≥ γ. And if x ∈ ΠNo, Pr[B(x) = 1] ≤ γ − 1
2d .

Finally, we amplify the success probability of B. This can be done by hard-wiring γ in
the circuit, and running B a poly(d) number of times (in parallel) with independent random
coins. If at least γ− 4

10d of the executions return 1, then return 1, and otherwise 0. By Claim
5 and a Chernoff bound, this amplified version of B computes Π correctly on instances of
size 1/2ε with probability of error at most 1/10. Furthermore, it is a circuit of size poly(S, `)
and depth O(d) (note that counting the number of 1-answers in the poly(d) executions that
are run for the final amplification step only requires additional depth O(log(d))).

By using known lower bounds for computing the majority function by AC0[q] circuits
(for a prime q) [Raz87, Smo87], we obtain the following corollary.

Corollary 2. Let {CM : {0, 1}M → {0, 1}N(M)}M∈N be a (ε, poly(1/ε))-locally-list-decodable
code (where ε is in the range specified in Theorem 2) with a decoder that can be implemented

by a family of AC0[q] circuits of size s = s(M) and depth d = d(M). Then s = 2(1/ε)Ω(1/d)

4 Majority Suffices for Local-List-Decoding

Theorem 3. For every 2−Θ(
√

log M) ≤ ε = ε(M) < 1/2, there exists a (ε, poly(1/ε))-locally-

list-decodable code {CM : {0, 1}M → {0, 1}poly(M)}M∈N with a local-decoder that can be
implemented by a family of constant depth circuits of size poly(logM, 1/ε) using majority
gates of fan-in Θ(1/ε) (and AND gates of unbounded fan-in).
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Remark 1. Note that the above construction only applies for ε ≥ 2−Θ(
√

log M). Thus we
fall slightly short of covering the whole possible range (since one can hope to get such codes
for ε = 1/M δ for a small constant δ). We stress, however, that the range for ε which is
most interesting for us is between 1/poly log M and 1/poly log log M (see the discussion in
the introduction) which we do cover. We also mention that if one insists on codes with
ε = 1/M δ, then we can construct such codes with quasi-polynomial rate (below we state
without proof the exact parameters of these codes).

To prove Theorem 3, we combine together two codes. The first, by [GGH+07], is a
locally-decodable code that can be uniquely decoded from a constant relative distance.

Theorem 4 ([GGH+07]). There is an explicit code {CM : {0, 1}M → {0, 1}poly(M)}M∈N

that can be locally decoded (uniquely, i.e. with list size 1) from distance 1/25 by probabilistic
AC0circuits of size poly(log M).

The second code that we need is an approximate locally-list-decodable code which is
obtained by a concatenation of the de-randomized direct product code of [IJKW07] and
the Hadamard code. Let us first define the notion of approximate codes and then state the
parameters of the code.

Definition 2. [approximate locally list-decodable codes [Tre03]] We say that a code {CM :
{0, 1}M → {0, 1}N(M)}M∈N is δ-approximate (ε, `)-locally-list-decodable, if it is the same as
in Definition 1 with the following relaxation of (1):

∃a ∈ [`] s.t. Pr
i∈R[M ]

[Pr[Dy(a, i) = m[i]] > 9/10] ≥ 1− δ

Less formally, in approximate codes the requirement is to only decode a 1 − δ fraction
of the bits of the message, but not necessarily all the bits.

We can now state and prove the existence of the approximate codes that we need.

Theorem 5. For every δ = O(1) and every 2−Θ(
√

log M) ≤ ε = ε(M) < δ, there exists a

δ-approximate (ε, poly(1/ε))-locally-list-decodable code {CM : {0, 1}M → {0, 1}poly(M)}M∈N

with a local decoder that can be implemented by constant depth circuits of size poly(logM, 1/ε)
using majority gates of fan-in Θ(1/ε) (and AND gates of unbounded fan-in).

Proof. For every ε = ε(M) in the specified range, Impagliazzo et. al. [IJKW07] construct a
non-binary code C ′M that maps bit strings of length M to strings of length N = poly(M)
over symbols of k = O(log(1/ε)) bits, and the following holds: there is a locally-list-decoder
D taking advice of size log(`), where ` = poly(1/ε), such that for every y ∈ ({0, 1}k)N and
for every x ∈ {0, 1}M for which ∆k(C

′
M (x), y) ≤ 1− ε3/2,

∃a ∈ [`] s.t. Pr
i∈R[M ]

[Pr[Dy(a, i) = m[i]] > 9/10] ≥ 1− δ

Furthermore, D can be implemented by a constant depth circuit of size poly(log M, 1/ε).
Goldreich and Levin [GL89] show how to locally list-decode the Hadamard code, Had :

{0, 1}k → {0, 1}2k
, from agreement 1/2 + ε/2 and with list size `′ = 1/ε2. Their decoder

can be implemented by an AC0 circuit of size poly(k, 1/ε) that uses majority gates of fan-in
Θ(1/ε).

Our code CM is the concatenation of C ′ (as an outer code) and the Hadamard code (as
an inner) code. That is, on a given binary message of length M , we encode it using C ′ into
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a message in ({0, 1}k)N . Then each symbol of this word is replaced by its encoding using
the Hadmard code. The fact that the local-list-decoders for the two codes can be combined
to obtain a local-list-decoder for the concatenated code (with list size that is the product
of the two list sizes) is quite a standard argument. We refer the reader to [STV99] for the
formal details. Here we just sketch the argument.

The decoder for the concatenated code roughly works as follows: Each one of the de-
coders in the list of C ′(x) is multiplied O(1/ε2) times. That is, the decoder for the concate-
nated code takes advice (i, j) ∈ [`]× [`′]. On such advice, the decoder runs the decoder of
C ′ (with advice i). Whenever it needs a (k-bit) symbol from the received word, it runs the
Hadamard decoder with advice j.

To analyze the correctness we argue as follows. For a received word y and a message
x for which ∆(C(x), y) ≤ 1/2 − ε, there are at least ε/2 symbols of C ′(x) for which their
Hadamard encoding has 1/2+ ε/2 agreement with the corresponding bits in y. Each one of
these gives rise to a list of O(1/ε2) possible symbols one of which is the correct one. By an
averaging argument, there is a j ∈ [`′], for which at least ε/2 ·Ω(ε2) = Ω(ε3) fraction of the
symbols of C ′(x) are such that the j’th element in the list produced by the inner decoder
(with advice j) agrees with the corresponding symbol of C ′(x). Since the decoder for C ′

(with an appropriate advice i) can δ-approximately recover from agreement Ω(ε3), we get
that the combined decoder with advice (i, j) recovers a string that has agreement 1−δ with
x.

Let us go through the parameters of the concatenated code. Each symbol in the alphabet
of C ′ is represented by k = O(log(1/ε)) bits. So the Hadamard encoding of each symbol
is 2k = poly(1/ε) bits. The length of the codeword in the outer code is N = poly(M).
So the length of a codeword in C is the product of the two which is poly(M/ε). The size
of the decoder for C ′ is poly(log M, 1/ε) and for the Hadamard code poly(1/ε). Both are
of constant depth where the latter uses majority gates of fan-in Θ(1/ε). Combining the
two we get a constant-depth (ε, 1/ε)-locally-list-decoder for the concatenated code of size
poly(log M, 1/ε) with majority gates of fan-in Θ(1/ε).

We can now prove Theorem 3.

Proof of Theorem 3. Our code C is a combination of the code in Theorem 4 (we denote
it here by C1), and the code in Theorem 5 (we denote it here by C2) with δ = 1/25.
Given a message x ∈ {0, 1}M , we first encode it using C1 to obtain a binary string x′

(of length poly(M)). We then encode x′ using C2 to obtain a binary string of length
poly(|x′|) = poly(M).

On a received word y, we run the local-decoder for C1, whenever it requires a symbol,
we run the local-decoder for C2 (with some advice string in [`]), to obtain a candidate for
that symbol. If the received word has 1/2− ε agreement with C(x) (for some x), then there
exist an advice string with which the decoder for C2 decodes correctly at least 1−δ fraction
of the symbols of C1(x), in this case the decoder for C1 encodes correctly every symbol in
x.

Clearly the list size of this code is the same as the list size of C2. Since the sizes of the
two decoders is poly(log M, 1/ε), and their depth is constant, then so are the size and depth
of the combined decoder, and it uses majority gates of fan-in Θ(1/ε) because so does the
decoder for C2.

As mentioned in Remark 1, we can obtain codes with quasi-polynomial rate that work
for ε = 1/M δ . These are obtained by replacing the code C ′M in the proof of Theorem 5,
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which is a de-randomized direct-product code by [IJKW07], with their (not de-randomized)
direct-product code. We state the parameters of these codes without a proof.

Theorem 6. For every 1/M δ ≤ ε = ε(M) < 1/2 (where δ > 0 is a constant), there exist a

(ε, poly(1/ε))-locally-list-decodable code {CM : {0, 1}M → {0, 1}MO(log(1/ε))}M∈N with a local-
decoder that can be implemented by a family of constant depth circuits of size poly(logM, 1/ε)
that use majority gates of fan-in Θ(1/ε) (and AND gates of unbounded fan-in).

5 Hardness Amplification

What is Hardness Amplification? Functions that are hard to compute on the av-
erage (by a given class of algorithms or circuits) have many applications, for example in
cryptography or for de-randomization via the construction of pseudo-random generators
(the “hardness vs. randomness” paradigm [BM84, Yao82, NW94]). Typically, for these
important applications, one needs a function that no algorithm (or circuit) in the class can
compute it on random inputs much more successfully than random guessing. Unfortunately,
however, it is often the case that one does not have or assume access to such a “hard on the
average” function, but rather only to a function that is “somewhat hard”: every algorithm
in the class fails to compute it and errs, but only on relatively few inputs (e.g. a small
constant fraction, or sometimes even just a single input from every input length). In order
to bridge this “hardness gap”, an approach that has been used (very successfully) is to
find a way to convert “somewhat hard” functions to functions that are “very hard” (on the
average). Procedures that attain this goal are called hardness amplification procedures or
reductions.

Let us be more precise. We say that a Boolean function f : {0, 1}∗ → {0, 1} is δ-hard on
the average for a circuit class C = {Cn}n∈N (where circuits in the set Cn have input length
n), if for every large enough n, for every circuit Cn ∈ Cn;

Pr
x∈RUn

[Cn(x) = f(x)] ≤ 1− δ

The task of obtaining from a function f that is δ-hard for a class C, a function f ′ that
is δ′-hard for the class C, where δ′ > δ is called hardness amplification from δ-hardness to
δ′-hardness (against the class C). Typical values for δ are small constants (close to 0), and
sometimes even 2−n, in which case the hardness amplification is from worst-case hardness.
Typical values for δ′ (e.g. for cryptographic applications) are 1/2 − n−ω(1).

Generally speaking, hardness amplification results are proven via reductions, showing
that if there is a sequence of circuits in C that computes f ′ on more than a 1− δ′ fraction
of the inputs, then there is a sequence of circuits in C that computes f on more than 1− δ
fraction of the inputs. An important family of such reductions are so-called fully-black-box
reductions which we define next.

Definition 3. A (δ, δ′)-fully-black-box hardness amplification from input length k to input
length n = n(k, δ, δ′), is defined by an oracle Turing machine Amp that computes a Boolean
function on n bits, and an oracle Turing machine Dec that takes non-uniform advice of
length a = a(k, δ, δ′). It holds that For every f : {0, 1}k → {0, 1}, for every A : {0, 1}n →
{0, 1} for which

Pr
x∈RUn

[A(x) = Ampf (x)] > 1− δ′
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there is an advice string α ∈ {0, 1}a such that

Pr
x∈RUk

[DecA(α, x) = f(x)] > 1− δ

where DecA(α, x) denotes running Dec with oracle access to A on input x and advice α.
If Dec does not take non-uniform advice (a = |α| = 0), then we say that the hardness

amplification is uniform.

The Complexity of Hardness Amplification. We now elaborate on the role that the
complexity of Dec plays in hardness amplification. Recall that hardness amplification is used
to amplify the average-case hardness of functions that are somewhat hard. In particular,
suppose we want to obtain from a function f : {0, 1}k → {0, 1} that is δ-hard against some
class (of algorithms or circuits) C, a function f ′ : {0, 1}n → {0, 1} that is δ′-hard against C,
using a hardness amplification procedure as defined in Definition 3. For this application, we
need a (δ, δ′)-fully-black-box hardness amplification from length k to length n (as above),
such that Dec itself (as a machine with non-uniform advice) is in the class C. To see this,
set f ′ = Ampf . Then by contradiction, if there is A ∈ C that computes f ′ on more than
1− δ′ fraction of the instances of length n, then DecA(α, ·) computes f on more than 1− δ
fraction of the instances of length k. Furthermore, DecA(α, ·) ∈ C (here we assume that C is
informally “closed under oracle access”), which is a contradiction to the δ-hardness of f . To
summarize, the complexity of Dec determines against which class of algorithms or circuits
the hardness amplification can be used. In particular, if one wants to use such hardness
amplification to amplify hardness against uniform classes of algorithms or circuits, then the
hardness amplification must be uniform.

We note that the question of finding functions that are average-case-hard for low com-
plexity classes, such as AC0[q], is of central importance for de-randomizing these classes
[NW94]. This motivates the study of worst-case to average-case hardness amplification
against such classes, especially since these are the only classes for which (unconditional)
worst-case hardness results are known [Raz87, Smo87], and thus there is clear hope of un-
conditional de-randomization. We now elaborate: a function f that is very hard on the
average (at least 1/2 + 1/polyn) for a class can be used in the Nisan-Wigderson construc-
tion [NW94], to obtain efficient pseudo-random generators that fool statistical tests in the
class. This, in turn, can give a de-randomization of the class. Unfortunately, for classes
such as AC0[q], no such hardness results are known: [Raz87, Smo87] only give constant
hardness (smaller than 1/2) of the mod p function for a prime p 6= q. Consequently, we
do not know how to unconditionally de-randomize probabilistic AC0[q] circuits, even using
sub-exponential size deterministic AC0[q] circuits.

Our main result in this section, Theorem 7 below, shows that a function f that is
hard enough to lead to de-randomizations cannot be obtained via uniform (or even slightly
non-uniform) fully-black-box worst-case to average-case reductions.

Our Results. It is well known [STV99, TV02, Tre03, Vio03] that there is a tight connec-
tion between (2−k, δ′)-fully-black-box hardness amplification (or in other words worst-case
to average-case reductions) and binary locally (list) decodable codes. We state this fact
without proof.

Proposition 1. There is a (ε, `)-locally-list-decodable code Enc : {0, 1}K → {0, 1}N with
a decoder D, if and only if there is a (2−k, 1/2 − ε)-fully-black-box hardness amplification
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from length k = log K to length n = log N defined by Amp and Dec, that takes a = log `
bits of advice, where Amp is Enc and Dec is D.

Using this connection together with Theorem 2 we can show (informally) that worst-case
to average-case hardness amplification with small non-uniform advice requires computing
majority. This is stated formally in the theorem below:

Theorem 7. If there is a (2−k, 1/2−ε(k))-fully-black-box hardness amplification from length
k to length n(k) where Dec takes a(k) bits of advice and can be implemented by a circuit of
size s(k) and depth d(k), then for every k ∈ N there exists a circuit of size poly(s(k), 2a(k))
and depth O(d(k)), that computes majority on O(1/ε(k)) bits.

It is known [Raz87, Smo87] that low complexity classes cannot compute majority. Thus,
Theorem 7 shows limits on the amount of hardness amplification that can be achieved by
fully-black-box worst-case to average-case reductions (that do not use too many bits of
advice), in which Dec can be implemented in low-level complexity classes. I.e. classes
that cannot compute majority (e.g. AC0 and AC0[q]). The reason is that if there ex-
ists hardness amplification for which Dec is in such a class, then by Theorem 7 there
must be a circuit family in the same class for majority, contradicting known circuit lower
bounds [Raz87, Smo87]. In particular, the theorem implies that there are no uniform (or
even O(log 1/ε)-non-uniform) (2−k, 1/2 − ε)-fully-black-box worst-case to average-case re-
ductions for ε smaller than 1/poly log k, where Dec is a AC0[q] circuit (for a prime q) of size
poly(k, 1/ε). This should be contrasted with [GGH+07] who showed such a fully-black-box
reduction (with Dec in AC0) for ε ≥ 1/ logβ k, where β is a universal constant.

Finally, we note that the worst-case lower bounds (which are actually mildly average-
case lower bounds) of [Raz87, Smo87] hold against non-uniform AC0[q]. This means that it
may be possible to get the average-case hardness required for pseudo-randomness by using
a lot of non-uniformity in a fully-black-box reduction (i.e. a reduction in which Dec takes
poly(k) bits of advice). Shaltiel and Viola [SV07] rule out such non-uniform fully-black-box
reductions in the special case that Dec has only non-adaptive access to A.

Extensions. Theorem 7 can be extended in two ways: first to rule out hardness am-
plification from mildly hard functions (and not necessarily worst-case hard) to very hard
functions, and second to rule out not necessarily fully black-box hardness amplification.

Let us start with the first direction. Proposition 1 can be extended to show a similar
equivalence between δ-approximate locally (ε, `)-list-decodable codes to (δ, 1/2 − ε)-fully-
black-box hardness amplification (with the same translations between the parameters). Let
0 < α < 1/2 be an arbitrary constant. Theorem 2 can be extended to show that a 1/2−α-
approximate locally (ε, `)-list-decodable code implies circuits for majority with the same
parameters as in the statement of Theorem 7.7 Putting the two together we obtain the
following.

Theorem 8. Let 0 < α < 1/2 be an arbitrary constant. If there is a (1/2− α, 1/2− ε(k))-
fully-black-box hardness amplification from length k to length n(k), where Dec takes a(k)
bits of advice and can be implemented by a circuit of size s(k) and depth d(k), then for
every k ∈ N there exist a circuit of size poly(s(k), 2a(k)) and depth O(d(k)), that computes
majority on 1/ε(k) bits.

7The proof follows the outline of the proof of Theorem 2 using the fact that from error rate 1/2 we cannot
recover more than 1/2 + α/2 of the bits of the message m, while from error rate 1/2 − ε we can recover at
least 1/2 + α of the bits. So by sampling bits from m we can distinguish between the two cases.

17



We conclude with an informal discussion about not necessarily fully black-box hardness
amplification. Note that in definition 3, the hardness amplification is required to work for
every function f . A more relaxed notion is (not necessarily fully) black-box reductions:

Definition 4. A (δ, δ′)-black-box hardness amplification from f : {0, 1}k → {0, 1} to f ′ :
{0, 1}n → {0, 1} is defined by an oracle Turing machine Dec that takes non-uniform advice
of length a = a(k, δ, δ′) and the following holds; for every A : {0, 1}n → {0, 1} for which

Pr
x∈RUn

[A(x) = f ′(x)] > 1− δ′

there is an advice string α ∈ {0, 1}a such that

Pr
x∈RUk

[DecA(α, x) = f(x)] > 1− δ

This is relaxation of fully-black-box hardness amplification. In this case, the hardness
amplification is not required to work for any function, but only for a specific and known
function. Suppose we have a function f that we already know is worst-case hard, or even
δ-hard on the average, against a low level class such as AC0[q]. Perhaps we can use specific
properties of the function f (e.g. random self-reducability) to construct a function f ′, such
that there is a (δ, 1/2−1/poly(n))-black-box hardness amplification from f to f ′ that can be
implemented by AC0[q] circuits. This would not be a fully-black-box hardness amplification
result, but it certainly suffices for de-randomization applications (in fact, usually for de-
randomization one uses a specific and explicit hard function).

We note that the results of Theorems 7 and 8 can be extended to show that if a function
f is δ-hard on the average for a low complexity class, and furthermore, there is a uniform
(or even slightly non-uniform) (δ + 1/poly log(k), 1/2 − ε(k))-hardness amplification from
f to any other function f ′, where Dec is of size s(k) and depth d(k) , then there exists a
circuit of similar size and depth that computes majority on O(ε(k))-bit inputs.

The basic idea (very informally) is similar to the proof of Theorem 7. The decoder
cannot, given an oracle for f ′ that is only correct with probably 1/2 (over the inputs),
recover f with probability greater than 1 − δ. This is because doing so would contradict
the hardness of f : computing any f ′ with error rate 1/2 is computationally easy, so the
oracle can be simulated by an AC0 circuit, and we get a circuit for computing f . On the
other hand, the reduction does recover from error rate 1/2 − ε(k), computing f correctly
with probability 1− δ− poly log(k). This gives a distinguisher between error rates 1/2 and
1/2−ε(k), which in turn (as in the proof of Theorem 7) leads to an algorithm for computing
majority on O(ε(k)) bits. The full details are omitted from this extended abstract.
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