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Abstract

Winfree (1998) showed that discrete Sierpinski triangles can self-assemble in the Tile Assembly Model.
A striking molecular realization of this self-assembly, using DNA tiles a few nanometers long and verifying
the results by atomic-force microscopy, was achieved by Rothemund, Papadakis, and Winfree (2004).

Precisely speaking, the above self-assemblies tile completely filled-in, two-dimensional regions of the
plane, with labeled subsets of these tiles representing discrete Sierpinski triangles. This paper addresses
the more challenging problem of the strict self-assembly of discrete Sierpinski triangles, i.e., the task of
tiling a discrete Sierpinski triangle and nothing else.

We first prove that the standard discrete Sierpinski triangle cannot strictly self-assemble in the Tile
Assembly Model. We then define the fibered Sierpinski triangle, a discrete Sierpinski triangle with the
same fractal dimension as the standard one but with thin fibers that can carry data, and show that
the fibered Sierpinski triangle strictly self-assembles in the Tile Assembly Model. In contrast with the
simple XOR algorithm of the earlier, non-strict self-assemblies, our strict self-assembly algorithm makes
extensive, recursive use of optimal counters, coupled with measured delay and corner-turning operations.
We verify our strict self-assembly using the local determinism method of Soloveichik and Winfree (2007).

1 Introduction

Structures that self-assemble in naturally occurring biological systems are often fractals of low dimension,
by which we mean that they are usefully modeled as fractals and that their fractal dimensions are less
than the dimension of the space or surface that they occupy. The advantages of such fractal geometries for
materials transport, heat exchange, information processing, and robustness imply that structures engineered
by nanoscale self-assembly in the near future will also often be fractals of low dimension.

The simplest mathematical model of nanoscale self-assembly is the Tile Assembly Model (TAM), an
extension of Wang tiling [17, 18] that was introduced by Winfree [20] and refined by Rothemund and Winfree
[13, 12]. (See also [1, 11, 16].) This elegant model, which is described in section 2, uses tiles with various
types and strengths of “glue” on their edges as abstractions of molecules adsorbing to a growing structure.
(The tiles are squares in the two-dimensional TAM, which is most widely used, cubes in the three-dimensional
TAM, etc.) Despite the model’s deliberate oversimplification of molecular geometry and binding, Winfree
[20] proved that the TAM is computationally universal in two or more dimensions. Self-assembly in the TAM
can thus be directed algorithmically.

This paper concerns the self-assembly of fractal structures in the Tile Assembly Model. The typical
test bed for a new research topic involving fractals is the Sierpinski triangle, and this is certainly the case
for fractal self-assembly. Specifically, Winfree [20] showed that the standard discrete Sierpinski triangle S,
which is illustrated in Figure 1, self-assembles from a set of seven tile types in the Tile Assembly Model.
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Formally, S is a set of points in the discrete Euclidean plane Z2. The obvious and well-known resemblance
between S and the Sierpinski triangle in R2 that is studied in fractal geometry [8] is a special case of a
general correspondence between “discrete fractals” and “continuous fractals” [19]. Continuous fractals are
typically bounded (in fact, compact) and have intricate structure at arbitrarily small scales, while discrete
fractals like S are unbounded and have intricate structure at arbitrarily large scales.

A striking molecular realization of Winfree’s self-assembly of S was reported in 2004. Using DNA double-
crossover molecules (which were first synthesized in pioneering work of Seeman and his co-workers [15]) to
construct tiles only a few nanometers long, Rothemund, Papadakis and Winfree [14] implemented the molecu-
lar self-assembly of S with low enough error rates to achieve correct placement of 100 to 200 tiles, confirmed
by atomic force microscopy (AFM). This gives strong evidence that self-assembly can be algorithmically
directed at the nanoscale.

The abstract and laboratory self-assemblies of S described above are impressive, but they are not (nor were
they intended or claimed to be) true fractal self-assemblies. Winfree’s abstract self-assembly of S actually tiles
an entire quadrant of the plane in such a way that five of the seven tile types occupy positions corresponding
to points in S. Similarly, the laboratory self-assemblies tile completely filled-in, two-dimensional regions,
with DNA tiles at positions corresponding to points of S marked by inserting hairpin sequences for AFM
contrast. To put the matter figuratively, what self-assembles in these assemblies is not the fractal S but
rather a two-dimensional canvas on which S has been painted.

In order to achieve the advantages of fractal geometries mentioned in the first paragraph of this paper, we
need self-assemblies that construct fractal shapes and nothing more. Accordingly, we say that a set F ⊆ Z2

strictly self-assembles in the Tile Assembly Model if there is a (finite) tile system that eventually places a
tile on each point of F and never places a tile on any point of the complement, Z2 − F . (This condition is
defined precisely in section 2.)

The specific topic of this paper is the strict self-assembly of discrete Sierpinski triangles in the Tile
Assembly Model. We present two main results on this topic, one negative and one positive.

Our negative result is that the standard discrete Sierpinski triangle S cannot strictly self-assemble in the
Tile Assembly Model. That is, there is no tile assembly system that places tiles on all the points of S and
on none of the points of Z2 − S. This theorem appears in section 3. The key to its proof is an extension
of the theorem of Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund [2] on the
number of tile types required for a finite tree to self-assemble from a single seed tile at its root.

Our positive result is that a slight modification of S, the fibered Sierpinski triangle T illustrated in
Figure 2, strictly self-assembles in the Tile Assembly Model. Intuitively, the fibered Sierpinski triangle T

(defined precisely in section 4) is constructed by following the recursive construction of S but also adding
a thin fiber to the left and bottom edges of each stage in the construction. These fibers, which carry data
in an algorithmically directed self-assembly of T, have thicknesses that are logarithmic in the sizes of the
corresponding stages of T. This means that T is visually indistinguishable from S at sufficiently large scales.
Mathematically, it implies that T has the same fractal dimension as S.

Since our strict self-assembly must tile the set T “from within,” the algorithm that directs it is perforce
more involved than the simple XOR algorithm that directs Winfree’s seven-tile-type, non-strict self-assembly
of S. Our algorithm, which is described in section 5, makes extensive, recursive use of optimal counters [5],
coupled with measured delay and corner-turning operations. It uses 51 tile types, but these are naturally
partitioned into small functional groups, so that we can use Soloveichik and Winfree’s local determinism
method [16] to prove that T strictly self-assembles.

2 Preliminaries

2.1 Notation and Terminology

We work in the discrete Euclidean plane Z2 = Z×Z. We write U2 for the set of all unit vectors, i.e., vectors
of length 1, in Z2. We regard the four elements of U2 as (names of the cardinal) directions in Z2.
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We write [X ]2 for the set of all 2-element subsets of a set X . All graphs here are undirected graphs, i.e.,
ordered pairs G = (V, E), where V is the set of vertices and E ⊆ [V ]2 is the set of edges. A cut of a graph
G = (V, E) is a partition C = (C0, C1) of V into two nonempty, disjoint subsets C0 and C1.

A binding function on a graph G = (V, E) is a function β : E → N. (Intuitively, if {u, v} ∈ E, then
β ({u, v}) is the strength with which u is bound to v by {u, v} according to β. If β is a binding function on
a graph G = (V, E) and C = (C0, C1) is a cut of G, then the binding strength of β on C is

βC = {β(e) |e ∈ E, e ∩ C0 6= ∅, and e ∩ C1 6= ∅} .

The binding strength of β on the graph G is then

β(G) = min {βC |C is a cut of G} .

A binding graph is an ordered triple G = (V, E, β), where (V, E) is a graph and β is a binding function
on (V, E). If τ ∈ N, then a binding graph G = (V, E, β) is τ -stable if β(V, E) ≥ τ .

A grid graph is a graph G = (V, E) in which V ⊆ Z2 and every edge {~m,~n} ∈ E has the property that

~m − ~n ∈ U2. The full grid graph on a set V ⊆ Z2 is the graph G
#
V = (V, E) in which E contains every

{~m,~n} ∈ [V ]2 such that ~m − ~n ∈ U2.
We say that f is a partial function from a set X to a set Y , and we write f : X 99K Y , if f : D → Y for

some set D ⊆ X . In this case, D is the domain of f , and we write D = dom f .
All logarithms here are base-2.

2.2 The Tile Assembly Model

We review the basic ideas of the Tile Assembly Model. Our development largely follows that of [13, 12], but
some of our terminology and notation are specifically tailored to our objectives. In particular, our version
of the model only uses nonnegative “glue strengths”, and it bestows equal status on finite and infinite
assemblies. We emphasize that the results in this section have been known for years, e.g., they appear, with
proofs, in [12].

Definition. A tile type over an alphabet Σ is a function t : U2 → Σ∗ × N. We write t = (colt, strt), where
colt : U2 → Σ∗, and strt : U2 → N are defined by t(~u) = (colt(~u), strt(~u)) for all ~u ∈ U2.

Intuitively, a tile of type t is a unit square. It can be translated but not rotated, so it has a well-defined
“side ~u ” for each ~u ∈ U2. Each side ~u of the tile is covered with a “glue” of color colt(~u) and strength

strt(~u). If tiles of types t and t′ are placed with their centers at ~m and ~m + ~u, respectively, where ~m ∈ Z2

and ~u ∈ U2, then they will bind with strength strt(~u) · [[t(~u) = t′(−~u)]] where [[φ]] is the Boolean value of the
statement φ. Note that this binding strength is 0 unless the adjoining sides have glues of both the same
color and the same strength.

For the remainder of this section, unless otherwise specified, T is an arbitrary set of tile types, and τ ∈ N
is the “temperature.”

Definition. A T-configuration is a partial function α : Z2 99K T .

Intuitively, a configuration is an assignment α in which a tile of type α(~m) has been placed (with its
center) at each point ~m ∈ dom α. The following data structure characterizes how these tiles are bound to
one another.

Definition. The binding graph of a T -configuration α : Z2 99K T is the binding graph Gα = (V, E, β), where
(V, E) is the grid graph given by

V = dom α,

E =
{
{~m,~n} ∈ [V ]

2
∣∣∣ ~m − ~n ∈ Un, colα(~m) (~n − ~m) = colα(~n) (~m − ~n) , and strα(~m) (~n − ~m) > 0

}
,
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and the binding function β : E → Z+ is given by

β ({~m,~n}) = strα(~m) (~n − ~m)

for all {~m,~n} ∈ E.

Definition.

1. A T -configuration α is τ -stable if its binding graph Gα is τ -stable.

2. A τ -T -assembly is a T -configuration that is τ -stable. We write Aτ
T for the set of all τ -T -assemblies.

Definition. Let α and α′ be T -configurations.

1. α is a subconfiguration of α′, and we write α v α′, if dom α ⊆ dom α′ and, for all ~m ∈ dom α,
α(~m) = α′(~m).

2. α′ is a single-tile extension of α if α v α′ and dom α′ − dom α is a singleton set. In this case, we write
α′ = α + (~m 7→ t), where {~m} = dom α′ − dom α and t = α′(~m).

Note that the expression α + (~m 7→ t) is only defined when ~m ∈ Z2 − dom α.
We next define the “τ -t-frontier” of a τ -T -assembly α to be the set of all positions at which a tile of type

t can be “τ -stably added” to the assembly α.

Definition. Let α ∈ Aτ
T .

1. For each t ∈ T , the τ -t-frontier of α is the set

∂τ
t α =




~m ∈ Z2 − dom α

∣∣∣∣∣∣

∑

~u∈U2

strt(~u) · [[α(~m + ~u)(−~u) = t(~u)]] ≥ τ




 .

2. The τ -frontier of α is the set

∂τα =
⋃

t∈T

∂τ
t α.

The following lemma shows that the definition of ∂τ
t α achieves the desired effect.

Lemma 2.1. Let α ∈ Aτ
T , ~m ∈ Z2 − dom α, and t ∈ T . Then α + (~m 7→ t) ∈ Aτ

T if and only if ~m ∈ ∂τ
t α.

Notation. We write α
1−−→

τ,T
α′ (or, when τ and T are clear from context, α

1−→ α′) to indicate that

α, α′ ∈ Aτ
T and α′ is a single-tile extension of α.

In general, self-assembly occurs with tiles adsorbing nondeterministically and asynchronously to a growing
assembly. We now define assembly sequences, which are particular “execution traces” of how this might occur.

Definition. A τ -T -assembly sequence is a sequence ~α = (αi | 0 ≤ i < k) in Aτ
T , where k ∈ Z+ ∪ {∞} and,

for each i with 1 ≤ i + 1 < k, αi
1−−→

τ,T
αi+1.

Note that assembly sequences may be finite or infinite in length. Note also that, in any τ -T -assembly
sequence ~α = (αi | 0 ≤ i < k), we have αi v αj for all 0 ≤ i ≤ j < k.

Definition. The result of a τ -T -assembly sequence ~α = (αi | 0 ≤ i < k) is the unique T -configuration
α = res(~α) satisfying dom α =

⋃
0≤i<k dom αi and αi v α for each 0 ≤ i < k.

It is clear that res(~α) ∈ Aτ
T for every τ -T -assembly sequence ~α.
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Definition. Let α, α′ ∈ Aτ
T .

1. A τ -T -assembly sequence from α to α′ is a τ -T -assembly sequence ~α = (αi | 0 ≤ i < k) such that
α0 = α and res(~α) = α′.

2. We write α −−→
τ,T

α′ (or, when τ and T are clear from context, α −→ α′) to indicate that there exists a

τ -T -assembly sequence from α to α′.

A routine dovetailing argument extends the following observation of [12] to assembly sequences that may
have infinite length.

Theorem 2.2. The binary relation −−→
τ,T

is a partial ordering of Aτ
T .

Definition. An assembly α ∈ Aτ
T is terminal if it is a −−→

τ,T
-maximal element of Aτ

T .

It is clear that an assembly α is terminal if and only if ∂τα = ∅.
We now note that every assembly is −−→

τ,T
-bounded by (i.e., can lead to) a terminal assembly.

Lemma 2.3. For each α ∈ Aτ
T , there exists α′ ∈ Aτ

T such that α −−→
τ,T

α′ and α′ is terminal.

We now define tile assembly systems.

Definition.

1. A generalized tile assembly system (GTAS) is an ordered triple

T = (T, σ, τ),

where T is a set of tile types, σ ∈ Aτ
T is the seed assembly, and τ ∈ N is the temperature.

2. A tile assembly system (TAS) is a GTAS T = (T, σ, τ) in which the sets T and dom σ are finite.

Intuitively, a “run” of a GTAS T = (T, σ, τ) is any τ -T -assembly sequence ~α = (αi | 0 ≤ i < k) that
begins with α0 = σ. Accordingly, we define the following sets.

Definition. Let T = (T, σ, τ) be a GTAS.

1. The set of assemblies produced by T is

A [T ] =

{
α ∈ Aτ

T

∣∣∣∣σ −−→
τ,T

α

}
.

2. The set of terminal assemblies produced by T is

A� [T ] = {α ∈ A[T ]|α is terminal} .

Definition. A GTAS T = (T, σ, τ) is directed if the partial ordering −−→
τ,T

directs the set A [T ], i.e., if for

each α, α′ ∈ A [T ] there exists α̂ ∈ A [T ] such that α −−→
τ,T

α̂ and α′ −−→
τ,T

α̂.

We are using the terminology of the mathematical theory of relations here. The reader is cautioned that
the term ”directed” has also been used for a different, more specialized notion in self-assembly [3].

Directed tile assembly systems are interesting because they are precisely those tile assembly systems that
produce unique terminal assemblies.

Theorem 2.4. A GTAS T is directed if and only if |A� [T ]| = 1.
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In the present paper, we are primarily interested in the self-assembly of sets.

Definition. Let T = (T, σ, τ) be a GTAS, and let X ⊆ Z2.

1. The set X weakly self-assembles in T if there is a set B ⊆ T such that, for all α ∈ A� [T ], α−1(B) = X .

2. The set X strictly self-assembles in T if, for all α ∈ A� [T ], dom α = X .

Intuitively, a set X weakly self-assembles in T if there is a designated set B of “black” tile types such
that every terminal assembly of T “paints the set X - and only the set X - black”. In contrast, a set X

strictly self-assembles in T if every terminal assembly of T has tiles on the set X and only on the set X .
Clearly, every set that strictly self-assembles in a GTAS T also weakly self-assembles in T .

We now have the machinery to say what it means for a set in the discrete Euclidean plane to self-assemble
in either the weak or the strict sense.

Definition. Let X ⊆ Z2.

1. The set X weakly self-assembles if there is a TAS T such that X weakly self-assembles in T .

2. The set X strictly self-assembles if there is a TAS T such that X strictly self-assembles in T .

Note that T is required to be a TAS, i.e., finite, in both parts of the above definition.

2.3 Local Determinism

The proof of our second main theorem uses the local determinism method of Soloveichik and Winfree [16],
which we now review.

Notation. For each T -configuration α, each ~m ∈ Z2, and each ~u ∈ U2,

strα(~m, ~u) = strα(~m)(~u) · [[α(~m)(~u) = α(~m + ~u)(−~u)]].

(The Boolean value on the right is 0 if {~m, ~m + ~u} * dom α.)

Notation. If ~α = (αi|0 ≤ i < k) is a τ -T -assembly sequence and ~m ∈ Z2, then the ~α-index of ~m is

i~α(~m) = min{i ∈ N |~m ∈ dom αi }.

Observation 2.5. ~m ∈ dom res(~α) ⇔ i~α(~m) < ∞.

Notation. If ~α = (αi|0 ≤ i < k) is a τ -T -assembly sequence, then, for ~m, ~m′ ∈ Z2,

~m ≺~α ~m′ ⇔ i~α(~m) < i~α(~m′).

Definition. (Soloveichik and Winfree [16]) Let ~α = (αi|0 ≤ i < k) be a τ -T -assembly sequence, and let
α = res(~α). For each location ~m ∈ dom α, define the following sets of directions.

1. IN~α(~m) =
{
~u ∈ U2

∣∣∣~m + ~u ≺~α ~m and strαi
~α

(~m)
(~m, ~u) > 0

}
.

2. OUT~α(~m) =
{
~u ∈ U2

∣∣∣−~u ∈ IN~α(~m + ~u )
}

.

Intuitively, IN~α(~m) is the set of sides on which the tile at ~m initially binds in the assembly sequence ~α,
and OUT~α(~m) is the set of sides on which this tile propagates information to future tiles.

Note that IN~α(~m) = ∅ for all ~m ∈ α0.

Notation. If ~α = (αi|0 ≤ i < k) is a τ -T -assembly sequence, α = res(~α), and ~m ∈ dom α − dom α0, then

~α \ ~m = α �
(
dom α − {~m} −

(
~m + OUT~α(~m)

))
.
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(Note that ~α \ ~m is a T -configuration that may or may not be a τ -T -assembly.

Definition. (Soloveichik and Winfree [16]). A τ -T -assembly sequence ~α = (αi|0 ≤ i < k) with result α is
locally deterministic if it has the following three properties.

1. For all ~m ∈ dom α − dom α0, ∑

~u∈IN~α(~m)

strαi
~α

(~m)
(~m, ~u) = τ.

2. For all ~m ∈ dom α − dom α0 and all t ∈ T − {α(~m)}, ~m 6∈ ∂τ
t (~α \ ~m).

3. ∂τα = ∅.

That is, ~α is locally deterministic if (1) each tile added in ~α “just barely” binds to the assembly; (2) if a
tile of type t0 at a location ~m and its immediate “OUT-neighbors” are deleted from the result of ~α, then no
tile of type t 6= t0 can attach itself to the thus-obtained configuration at location ~m; and (3) the result of ~α

is terminal.

Definition. A GTAS T = (T, σ, τ) is locally deterministic if there exists a locally determinstic τ -T -assembly
sequence ~α = (αi|0 ≤ i < k) with α0 = σ.

Theorem 2.6. (Soloveichik and Winfree [16]) Every locally deterministic GTAS is directed.

2.4 Zeta-Dimension

The most commonly used dimension for discrete fractals is zeta-dimension, which we use in this paper.
The discrete-continuous correspondence mentioned in the introduction preserves dimension somewhat gen-
erally. Thus, for example, the zeta-dimension of the discrete Sierpinski triangle is the same as the Hausdorff
dimension of the continuous Sierpinski triangle.

Zeta-dimension has been re-discovered several times by researchers in various fields over the past few
decades, but its origins actually lie in Euler’s (real-valued predecessor of the Riemann) zeta-function [7]
and Dirichlet series. For each set A ⊆ Z2, define the A-zeta-function ζA : [0,∞) → [0,∞] by ζA(s) =∑

(0,0) 6=(m,n)∈A(|m| + |n|)−s for all s ∈ [0,∞). Then the zeta-dimension of A is

Dimζ(A) = inf{s|ζA(s) < ∞}.

It is clear that 0 ≤ Dimζ(A) ≤ 2 for all A ⊆ Z2. It is also easy to see (and was proven by Cahen in 1894;
see also [4, 10]) that zeta-dimension admits the “entropy characterization”

Dimζ(A) = lim sup
n→∞

log |A≤n|
log n

, (2.1)

where A≤n = {(m, n) ∈ A | |m| + |n| ≤ n}. Various properties of zeta-dimension, along with extensive
historical citations, appear in the recent paper [6], but our technical arguments here can be followed without
reference to this material. We use the fact, verifiable by routine calculation, that (2.1) can be transformed
by changes of variable up to exponential, e.g.,

Dimζ(A) = lim sup
n→∞

log |A[0,2n]|
n

also holds.
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Figure 1: The standard discrete Sierpinski triangle S.

2.5 The Standard Discrete Sierpinski Triangle S

We briefly review the standard discrete Sierpinski triangle and the calculation of its zeta-dimension.
Let V = {(1, 0), (0, 1)}. Define the sets S0, S1, S2, · · · ⊆ Z2 by the recursion

S0 = {(0, 0)} , (2.2)

Si+1 = Si ∪
(
Si + 2iV

)
,

where A + cB = {~m + c~n|~m ∈ A and ~n ∈ B}. Then the standard discrete Sierpinski triangle is the set

S =

∞⋃

i=0

Si,

which is illustrated in Figure 1. It is well known that S is the set of all (k, l) ∈ N2 such that the binomial
coefficient

(
k+l
k

)
is odd. For this reason, the set S is also called Pascal’s triangle modulo 2. It is clear from
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the recursion (2.2) that |Si| = 3i for all i ∈ N. The zeta-dimension of S is thus

Dimζ(S) = lim sup
n→∞

log
∣∣S[0,2n]

∣∣
n

= lim sup
n→∞

log |Sn|
n

= log 3

≈ 1.585.

3 Impossibility of Strict Self-Assembly of S

This section presents our first main theorem, which says that the standard discrete Sierpinski triangle S

does not strictly self-assemble in the Tile Assembly Model. In order to prove this theorem, we first develop
a lower bound on the number of tile types required for the self-assembly of a set X in terms of the depths
of finite trees that occur in a certain way as subtrees of the full grid graph G

#
X of X .

Intuitively, given a set D of vertices of G
#
X (which is in practice the domain of the seed assembly), we

now define a D-subtree of G
#
X to be any rooted tree in G

#
X that consists of all vertices of G

#
X that lie at or

on the far side of the root from D. For simplicity, we state the definition in an arbitrary graph G.

Definition. Let G = (V, E) be a graph, and let D ⊆ V .

1. For each r ∈ V , the D-r-rooted subgraph of G is the graph GD,r = (VD,r, ED,r), where

VD,r = {v ∈ V | every path from v to (any vertex in) D in G goes through r }

and
ED,r = E ∩ [VD,r]

2
.

(Note that r ∈ VD,r in any case.)

2. A D-subtree of G is a rooted tree B with root r ∈ V such that B = GD,r.

3. A branch of a D-subtree B of G is a simple path π = (v0, v1, . . .) in B that starts at the root of B and
either ends at a leaf of B or is infinitely long.

We use the following quantity in our lower bound theorem.

Definition. Let G = (V, E) be a graph, and let D ⊆ V . The finite-tree depth of G relative to D is

ft-depthD (G) = sup {depth(B)|B is a finite D-subtree of G} .

We emphasize that the above supremum is only taken over finite D-subtrees. It is easy to construct an
example in which G has a D-subtree of infinite depth, but ft-depthD (G) < ∞.

To prove our lower bound result, we use the following theorem from [2].

Theorem 3.1. (Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund [2]) Let

X ⊆ Z2 with |X | < ∞ be such that G
#
X is a tree rooted at the origin. If X strictly self-assembles in a GTAS

T = (T, σ, 2) whose seed σ consists of a single tile at the origin, then |T | ≥ depth
(
G

#
X

)
.

Our lower bound result is the following.

Theorem 3.2. Let X ⊆ Z2. If X strictly self-assembles in a GTAS T = (T, σ, τ), then |T | ≥ ft-depthdom σ

(
G

#
X

)
.
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Proof. Assume the hypothesis, and let B be a finite dom σ-subtree of G
#
X . If suffices to prove that |T | ≥

depth(B).
Let α ∈ A� [T ], and let ~r be the root of B. Let σ′ be the assembly with dom σ′ = {~r} and ~u ∈ U2. We

define σ′(~r) as follows.

σ′(~r)(~u) =

{ (
colα(~r)(~u), strα(~r)(~u)

)
if ~r + ~u ∈ B

(colα(~r)(~u), 0) otherwise.

Then T ′ = (T, σ′, τ) is a GTAS in which B self-assembles. By Theorem 3.1, this implies that |T | ≥
depth(B).

We next show that the standard discrete Sierpinski triangle S has infinite finite-tree depth.

Lemma 3.3. For every finite set D ⊆ S, ft-depthD

(
G

#
S

)
= ∞.

Proof. Let D ⊆ S be finite, and let m be a positive integer. It suffices to show that ft-depthD

(
G

#
S

)
> m.

Choose k ∈ N large enough to satisfy the following two conditions.

(i) 2k > max{a ∈ N|(∃b ∈ N)(a, b) ∈ D}.

(ii) 2k > m.

Let ~rk = (2k+1, 2k), and let

Bk =
{
(a, b) ∈ S

∣∣a ≥ 2k+1, b ≥ 2k and a + b ≤ 2k+2 − 1
}

.

It is routine to verify that G
#
Bk

is a finite D-subtree of G
#
S

with root at ~r and depth 2k. It follows that

ft-depthD

(
G

#
S

)
≥ depth

(
G

#
Bk

)
= 2k > m.

We now have the machinery to prove our first main theorem.

Theorem 3.4. S does not strictly self-assemble in the Tile Assembly Model.

Proof. Let T = (T, σ, τ) be a GTAS in which S strictly self-assembles. It suffices to show that T is not a
TAS. If dom σ is infinite, this is clear, so assume that dom σ is finite. Then Theorem 3.2 and Lemma 3.3
tell us that |T | = ∞, whence T is not a TAS.

Before moving on, we note that Theorem 3.4 implies the following lower bound on the number of tile
types needed to strictly assemble any finite stage Sn of S.

Corollary 3.5. If a stage Sn of S strictly self-assembles in a TAS T = (T, σ, τ) in which σ consists of a
single tile at the origin, then |T | ≥ 2n.

If we let N = |Sn| = 3n, then the above lower bound exceeds N0.63. As Rothemund [12] has noted,
a structure of N tiles that requires

√
N or more tile types for its self-assembly cannot be said to feasibly

self-assemble.
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Figure 2: The fibered Sierpinski triangle T.

4 The Fibered Sierpinski Triangle T

We now define the fibered Sierpinski triangle and show that it has the same zeta-dimension as the standard
discrete Sierpinski triangle.

As in Section 2, let V = {(1, 0), (0, 1)}. Our objective is to define sets T0, T1, T2, · · · ⊆ Z2, sets
F0, F1, F2, · · · ⊆ Z2, and functions l, f, t : N → N with the following intuitive meanings.

1. Ti is the ith stage of our construction of the fibered Sierpinski triangle.

2. Fi is the fiber associated with Ti, a thin strip of tiles along which data moves in the self-assembly
process of Section 5. It is the smallest set whose union with Ti has a vertical left edge and a horizontal
bottom edge, together with one additional layer added to these two now-straight edges.

3. l(i) is the length of (number of tiles in) the left (or bottom) edge of Ti ∪ Fi.

4. f(i) = |Fi|.

5. t(i) = |Ti|.

11



These five entities are defined recursively by the equations

T0 = S2 (stage 2 in the construction of S),

F0 = ({−1} × {−1, 0, 1, 2, 3}) ∪ ({−1, 0, 1, 2, 3}× {−1}) ,

l(0) = 5,

f(0) = 9,

t(0) = 9,

Ti+1 = Ti ∪ ((Ti ∪ Fi) + l(i)V ) , (4.1)

Fi+1 = Fi ∪ ({−i − 2} × {−i − 2,−i − 1, · · · , l(i + 1) − i − 3})
∪ ({−i − 2,−i − 1, · · · , l(i + 1) − i − 3} × {−i − 2}) , (4.2)

l(i + 1) = 2l(i) + 1,

f(i + 1) = f(i) + 2l(i + 1) − 1,

t(i + 1) = 3t(i) + 2f(i).

Comparing the recursions (2.1) and (4.1) shows that the sets T0, T1, T2, · · · are constructed exactly like the
sets S0, S1, S2, · · · , except that the fibers Fi are inserted into the construction of the sets Ti. A routine
induction verifies that this recursion achieves conditions 2, 3, 4, and 5 above. The fibered Sierpinski triangle

is the set

T =

∞⋃

i=0

Ti (4.3)

which is illustrated in Figure 2. The resemblance between S and T is clear from the illustrations. We now
verify that S and T have the same zeta-dimension.

Lemma 4.1. Dimζ(T) = Dimζ(S).

Proof. Solving the recurrences for l, f , and t, in that order, gives the formulas

l(i) = 3 · 2i+1 − 1,

f(i) = 3
(
2i+3 − i − 5

)
,

t(i) =
3

2

(
3i+3 − 2i+5 + 2i + 11

)
,

which can be routinely verified by induction. It follows readily that

Dimζ (T) = lim sup
n→∞

log t(n)

log l(n)
= log 3 = Dimζ (S) .

We note that the thickness i+1 of a fiber Fi is O(log l(i)), i.e., logarithmic in the side length of Ti. Hence
the difference between Si and Ti is asymptotically negligible as i → ∞. Nevertheless, we show in the next
section that T, unlike S, strictly self-assembles in the Tile Assembly Model.

5 Strict Self-Assembly of T

This section is devoted to proving our second main theorem, which is the fact that the fibered Sierpinski
triangle T strictly self-assembles in the Tile Assembly Model. Our proof is constructive, i.e., we exhibit a
specific tile assembly system in which T strictly self-assembles.

12



Our strict self-assembly of T is not based directly upon the recursive definition (4.1). A casual inspection
of Figure 2 suggests that T can also be regarded as a structure consisting of many horizontal and vertical
bars, with each large bar having many smaller bars perpendicular to it. In subsection 5.1 we give a precise
statement and proof of this “bar characterization” of T, which is the basis of our strict self-assembly. In
subsections 5.2 and 5.3 we present the main functional subsystems of our construction. This gives us a tile
assembly system TT = (TT, σT, τ), where

(i) the tile set TT consists of 51 tile types;

(ii) the seed assembly σT consists of a single ‘S’ tile at the origin; and

(iii) the temperature τ is 2.

Subsection 5.4 proves that the fibered Sierpinski triangle T strictly self-assembles in TT.
Throughout this section, the temperature τ is 2. Tiles are depicted as squares whose various sides are

dotted lines, solid lines, or doubled lines, indicating whether the glue strengths on these sides are 0, 1, or 2,
respectively. Thus, for example, a tile of the type shown in Figure 3 has glue of strength 0 on the left and

a

bL

Figure 3: An example tile type.

bottom, glue of color ‘a’ and strength 2 on the top, and glue of color ‘b’ and strength 1 on the right. This
tile also has a label ‘L’, which plays no formal role but may aid our understanding and discussion of the
construction.

5.1 Bar Characterization of T

We now formulate the characterization of T that guides its strict self-assembly. At the outset, in the notation
of section 4, we focus on the manner in which the sets Ti∪Fi can be constructed from horizontal and vertical
bars. Recall that

l(i) = 3 · 2i+1 − 1

is the length of (number of tiles in) the left or bottom edge of Ti ∪ Fi.

Definition. Let −1 ≤ i ∈ Z.

1. The Si-square is the set
Si = {−i − 1, . . . , 0} × {−i − 1, . . . , 0}.

2. The Xi-bar is the set
Xi = {1, . . . , l(i) − i − 2} × {−i − 1, . . . , 0}.

3. The Yi-bar is the set
Yi = {−i − 1, . . . , 0} × {1, . . . , l(i) − i − 2}.

It is clear that the set
Si ∪ Xi ∪ Yi

is the “outer framework” of Ti ∪ Fi. Our attention thus turns to the manner in which smaller and smaller
bars are recursively attached to this framework.
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We use the ruler function

ρ : Z+ → N

defined by the recurrence

ρ(2k + 1) = 0,

ρ(2k) = ρ(k) + 1

for all k ∈ N. It is easy to see that ρ(n) is the (exponent of the) largest power of 2 that divides n. Equivalently,
ρ(n) is the number of 0’s lying to the right of the rightmost 1 in the binary expansion of n [9]. An easy
induction can be used to establish the following observation.

Observation 5.1. For all n ∈ N,
2n+1−1∑

j=1

ρ(j) = 2n+1 − n − 2.

Using the ruler function, we define the function

θ : Z+ → Z+

by the recurrence

θ(1) = 2,

θ(j + 1) = θ(j) + ρ(j + 1) + 2

for all j ∈ Z+.
We now use the function θ to define the points at which smaller bars are attached to the Xi- and Yi-bars.

Definition.

1. The jth θ-point of Xi is the point
θj(Xi) = (θ(j), 1),

lying just above the Xi-bar.

2. The jth θ-point of Yi is the point
θj(Yi) = (1, θ(j)),

lying just to the right of the Yi-bar.

The following recursion attaches smaller bars to larger bars in a recursive fashion.

Definition. The θ-closures of the bars Xi and Yi are the sets θ(Xi) and θ(Yi) defined by the mutual recursion

θ (X−1) = X−1

θ (Y−1) = Y−1

θ(Xi) = Xi ∪
2i+1−1⋃

j=1

(
θj(Xi) + θ

(
Yρ(j)−1

))
,

θ(Yi) = Yi ∪
2i+1−1⋃

j=1

(
θj(Yi) + θ

(
Xρ(j)−1

))
,

for all i ∈ N.
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This definition, along with the symmetry of ρ, admit the following characterizations of θ(Xi) and θ(Yi).

Observation 5.2. Let 0 ≤ i ∈ N.

1. θ (Xi+1) = θ(Xi) ∪ ((Si ∪ θ(Xi) ∪ θ(Yi)) + (l(i), 0)) ∪ ({1, . . . l(i + 1) − i − 3} × {−i − 2}).
2. θ (Yi+1) = θ(Yi) ∪ ((Si ∪ θ(Xi) ∪ θ(Yi)) + (0, l(i))) ∪ ({−i − 2} × {1, . . . l(i + 1) − i − 3}).
We have the following characterization of the sets Ti ∪ Fi.

Lemma 5.3. For all i ∈ N,

Ti ∪ Fi = Si ∪ θ(Xi) ∪ θ(Yi).

Proof. We proceed by induction on i, and note that the case when i = 0 is trivial. Assume that, for all
i ∈ N, the lemma holds. Then we have

Ti+1 ∪ Fi+1
(4.1)
= Ti ∪ ((Ti ∪ Fi) + l(i)V ) ∪ Fi+1

(4.2)
= (Ti ∪ Fi) ∪ ((Ti ∪ Fi) + l(i)V ) ∪

({−i − 2} × {−i − 2, . . . , l(i + 1) − i − 3}) ∪
({−i − 2, . . . , l(i + 1) − i − 3} × {−i − 2})

Ind Hyp
= (Si ∪ θ(Xi) ∪ θ(Yi)) ∪ ((Si ∪ θ(Xi) ∪ θ(Yi)) + l(i)V ) ∪

({−i − 2} × {−i − 2, . . . , l(i + 1) − i − 3}) ∪
({−i − 2, . . . , l(i + 1) − i − 3} × {−i − 2})

= (Si ∪ ({−i − 2, . . . , 0} × {−i − 2}) ∪ ({−i − 2} × {−i − 2, . . . , 0})) ∪
(θ (Xi) ∪ ((Si ∪ θ (Xi) ∪ θ (Yi)) + (l(i), 0))) ∪

({1, . . . , l(i + 1) − i − 3} × {−i − 2}) ∪
(θ (Yi) ∪ ((Si ∪ θ (Xi) ∪ θ (Yi)) + (0, l(i)))) ∪

({−i − 2} × {1, . . . , l(i + 1) − i − 3})
Obs 5.1

= Si+1 ∪ θ(Xi+1) ∪ θ(Yi+1).

We now shift our attention to the global structure of the set T.

Definition.

1. The x-axis of T is the set
X = {(m, n) ∈ T | m > 0, and n ≤ 0}.

2. The y-axis of T is the set
Y = {(m, n) ∈ T | m ≤ 0, and n > 0}.

Intuitively, the x-axis of T is the part of T that is a “gradually thickening bar” lying on and below the
(actual) x-axis in Z2. (see Figure 2.) For technical convenience, we have omitted the origin from this set.
Similar remarks apply to the y-axis of T.

Define the sets

X̃−1 = {(1, 0), (2, 0), (3, 0)},
Ỹ−1 = {(0, 1), (0, 2), (0, 3)}.
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For each i ∈ N, define the translations

S→
i = (l(i), 0) + Si,

S
↑
i = (0, l(i)) + Si,

X→
i = (l(i), 0) + Xi,

Y
↑
i = (0, l(i)) + Yi

of Si, Xi, and Yi. It is clear by inspection that X is the disjoint union of the sets

X̃−1, S
→
0 , X→

0 , S→
1 , X→

1 , S→
2 , X→

2 , . . . ,

which are written in their left-to-right order of position in X . More succinctly, we have the following.

Observation 5.4.

1. X = X̃−1 ∪
∞⋃

i=0

(S→
i ∪ X→

i ).

2. Y = Ỹ−1 ∪
∞⋃

i=0

(
S
↑
i ∪ Y

↑
i

)
.

Moreover, both of these are disjoint unions.

In light of Observation 5.4, it is convenient to define, for each −1 ≤ n ∈ Z, the initial segment

X̃n = X̃−1 ∪
n⋃

i=0

(S→
i ∪ X→

i )

of X and the initial segment

Ỹn = Ỹ−1 ∪
n⋃

i=0

(
S
↑
i ∪ Y

↑
i

)

of Y . (Note that this is consistent with earlier usage when n = −1.)
The following definition specifies the manner in which bars are recursively attached to the x- and y-axes

of T.

Definition. Let j ∈ Z+.

1. The jth θ-point of X is the point
θj(X) = (θ(j), 1)

lying just above X .

2. The jth θ-point of Y is the point
θj(Y ) = (1, θ(j))

lying just to the right of Y .

Definition. For all −1 ≤ n ∈ Z, the θ-closures of the initial segment of the axes X̃n and Ỹn are the sets

θ
(
X̃n

)
= X̃n ∪

2n+2−1⋃

j=1

(
θj (X) + θ

(
Yρ(j)−1

))

and

θ
(
Ỹn

)
= Ỹn ∪

2n+2−1⋃

j=1

(
θj(Y ) + θ

(
Xρ(j)−1

))
,

respectively.
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The following observation is an immediate consequence of the previous definition.

Observation 5.5. Let 0 ≤ n ∈ N.

1. θ
(
X̃n

)
= θ

(
X̃n−1

)
∪ ((Sn ∪ θ (Xn) ∪ θ (Yn)) + (l(n), 0)).

2. θ
(
Ỹn

)
= θ

(
Ỹn−1

)
∪ ((Sn ∪ θ (Xn) ∪ θ (Yn)) + (0, l(n))).

We have the following characterization of Tn.

Lemma 5.6. For all −1 ≤ n ∈ Z,

Tn+1 = {(0, 0)} ∪ θ
(
X̃n

)
∪ θ

(
Ỹn

)
.

Proof. We proceed by induction on n. When n = −1, it is easy to see that

{(0, 0)} ∪ θ
(
X̃−1

)
∪ θ

(
Ỹ−1

)
= T0.

Now assume that, for all −1 ≤ n ∈ N, the lemma holds. Then we have

Tn+2
(4.1)
= Tn+1 ∪ ((Tn+1 ∪ Fn+1) + l(n + 1)V )

Ind Hyp
=

(
{(0, 0)} ∪ θ

(
X̃n

)
∪ θ

(
Ỹn

))
∪

((Tn+1 ∪ Fn+1) + l(n + 1)V )
Lemma 5.2

=
(
{(0, 0)} ∪ θ

(
X̃n

)
∪ θ

(
Ỹn

))
∪

((Sn+1 ∪ θ (Xn+1) ∪ θ (Yn+1)) + l(n + 1)V )

= {(0, 0)} ∪
(
θ
(
X̃n

)
∪ ((Sn+1 ∪ θ (Xn+1) ∪ θ (Yn+1)) + (l(n + 1), 0))

)

(
θ

(
Ỹn

)
∪ ((Sn+1 ∪ θ (Xn+1) ∪ θ (Yn+1)) + (0, l(n + 1)))

)

Obs 5.4
= {(0, 0)} ∪ θ

(
X̃n+1

)
∪ θ

(
Ỹn+1

)
.

Definition. The θ-closures of the axes X and Y are the sets

θ(X) = X ∪
∞⋃

j=1

(
θj(X) + θ

(
Yρ(j)−1

))

and

θ(Y ) = Y ∪
∞⋃

j=1

(
θj(Y ) + θ

(
Xρ(j)−1

))
,

respectively.

Figure 3 shows the structure of the Y -axis.

Lemma 5.7. Let 1 ≤ i ∈ Z.

1. θ(X) =
∞⋃

i=−1

θ
(
X̃i

)
.
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