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Abstract

We observe that many important computational problems ih 8t@re a simple self-reducibility
property. We then show that, for any probletrhaving this self-reducibility propertyd has poly-
nomial size T€ circuits if and only if it has T€ circuits of sizen' ™ for everye > 0 (counting
the number of wires in a circuit as the size of the circuit). alsexample of what this observa-
tion yields, consider the Boolean Formula Evaluation peob(BFE), which is complete for NC
It follows from a lower bound of Impagliazzo, Paturi, and Sathat BFE requires depthTC°
circuits of sizen' ¢, If one were able to improve this lower bound to show thatdtisrsome
constante > 0 such that every T€circuit family recognizing BFE has size'™<, then it would
follow that TC® % NC!.

We also show that problems with small uniform constantfdejtcuits have algorithms that
simultaneously have small space and time bounds. We thea nsakof known time-space tradeoff
lower bounds to show that SAT requires uniform deiC® and AC[6] circuits of sizen' ™ for
some constant depending oni.

1 Introduction

There is a great deal of pessimism in the research commueggyding the likelihood of proving
superpolynomial lower bounds on the circuit size requigadsarious computational problems. One
goal of this paper is to suggest that there might be somemgadie more optimistic about prospects
for circuit size lower bounds; we show that superpolynorn@linds would follow as a consequence
of some very modest-sounding lower bound results (suchasex bound of size!°°°1). Of course,

a confirmed pessimist would say that this is merely evidehatdven these modest-sounding lower
bounds are likely to remain beyond our reach. In Section 6 iseuds some possible interpretations
of our results; in particular, we discuss the extent to whiamight be possible to hope that the
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observations we present here point to a path around theodssta proving circuit lower bounds that
were presented by Razborov and Rudich in their work on NBRrgofs [15].

1.1 Circuit complexity classes

This paper focuses on NGind its subclasses. Let us remind the reader of the main titwfisyi and
present some notation.

e NC! is the class of languages recognized by circuits of fan-im Awp and Or gates, and
unary NoT gates, having dept(log n). Two standard complete problems for N&re (1) the
word problem for the permutation growfy on five elements [2], and (2) the Boolean Formula
Evaluation problem [5]. In order to make the statement ofs@hour results slightly more
crisp, we will be somewhat particular about the encodindhefBoolean Formula Evaluation
problem. Define BFE to be the set of dhlancedBoolean formulae (with constants 0 and
1, and no variables) that evaluate to 1, where the set of abmes is{AND, OR,®}. This
encoding of BFE remains complete for NC(See, for example, the proof of Lemma 7.2 in
(3].)

We also make use of an N@omplete variant ok-t-connectivity. We say that a (possibly
directed) graphs of width k if it is a layered graph where each layer is of size at miost
and every edge goes between vertices either from the samedajrom consecutive layers.
W5-STCONN is the problem of deciding whether the first verdéxhe first layer is con-
nected by a path to the last vertex in the last layer of a widghaph. It follows from [2] that
W5-STCONN is complete for NC

e TC? is the class of languages recognized by polynomial-sizeteo-depth circuits of (un-
bounded fan-in) MJ gates and unary &It gates. (A MAJ gate is a gate that evaluates to one
iff the majority of its inputs is set to one.)

e ACC? is the union of all the classes A(g] (for ¢ > 1); see below.
e CC’is the union of all the classes €[g] (for ¢ > 1); see below.

e ACY[¢] is the class of languages recognized by polynomial-sizeteatrdepth circuits of un-
bounded fan-in AD and Cr gates and unary 8T gates, along with unbounded fan-indg-q
gates. (A MoD-¢ gate evaluates to one iff the number of ones that feed insddit/isible byg).

e CC[q] is the class of languages recognized by polynomial-sizetaeot-depth circuits having
only MoD-q gates.

e ACC is the class of languages recognized by polynomial-sizetesirdepth circuits of un-
bounded fan-in AD and Qr gates and unary T gates.

As presented, these classes apauniform(i.e., it is not required that there be an easy way to con-
struct the circuits for inputs of length). We shall also need to consider logspace-uniform and
Dlogtime-uniform versions of these classes [3].

Lower bounds are known for Aq] whenq is prime [18], but it remains unknown even whether
NP = Dlogtime-uniform C®[6].

1.2 What arethe main contributions?

In Section 3 we show that many problems (such as BFE, W5-ST\C@e word problem oves§s,

MAJ, AND, and iterated matrix product) have strong self-redudibiroperties. Then, in Section 4,
we show that, for any set possessing such self-reducibpiliaperties, any proof of a lower bound of
sizen® implies a superpolynomial size lower bound. (The constahti&pends on the details of the



self-reduction. For the word problem ovés or any of the problems BEEV5-STCONN MAJ or
AND, any constant > 1 suffices.}

This seems to be a new observation. There are several exaofptenlinear lower bounds for
various models of computation. For example Hastad presemtearly-cubic lower bound on the
formula size for a certain function [9], lower bounds on lafasing program size have been presented
[1, 4], and the time-space tradeoff results that are sudidyevan Melkebeek [20] give run-time
lower bounds of the form° for small-space computations. None of these lower bounddduato
separations of complexity classes. More to the point, thasnever been any expectation that a
lower bound of the forrn© couldpossiblylead to a separation of complexity classes. In this paper,
we show that there are several settings whereddmsoccur.

Itis necessary to be precise about the meaning of the ward™'sThere are two popular measures
of circuit size—the number of gates and the number of wirdhe(e are always at least as many
wires as there are gates. See e.g. [13] for treatment of fleeatices. For the results that have been
mentioned in the paper thus far, the correct interpretaiidisize” is “number of wires”.) We will
have occasion to refer to each of these two size measureB) #rabe cases where it is important to
know which size measure is meant, we will be specific.

As mentioned above, in order to show that’T& NC!, it suffices to show that BFE requires TC
circuits of sizen!*< for some constant > 0. In fact, some non-linear lower bounds for BeEe
known; Impagliazzo, Paturi, and Saks showed that any dé@@° circuit for PARITY must have
n1+2(1/(2:5% wires [11]. Since there is a trivial reduction from PARITYB&E, the same size lower
bound holds for BFE. Clearly, no proof of PG4 NC! can follow from a PARITY lower bound, and
equally clearly, this argument does not yield a lower boumthe size of AC[6] circuits computing
BFE. In fact, there seem to be no known lower bounds for BFE 6% 4 circuits for any composite
q.

Fortnow showed that SAT does not have logspace-uniforrh®iCuits of sizen!+°() [7]. Since
modest lower bounds for BFE yield superpolynomial lowerrts; it is natural to wonder if the same
situation holds for SAT. That is, if one could build on the thraw lower bound, and show that SAT
requires AC[6] circuits of sizen'-%!, would it follow that NP # AC°[6]? We know of no such
implication — and the approach that works for BFE cannotdiemdirectly to SAT. In Section 5 we
show that any set possessing the self-reducibility prageethat we utilize in Section 4 must lie in
(uniform) NC. Thus, in order to demonstrate that SAT has thedf self-reducibility properties that
would enable us to amplify modest lower bounds to superpmohial lower bounds, one would have
to first prove that P=NP. (It is still conceivable that oneldquroceed by arguing that if NB AC[6],
then SAT has the desired type of self-reduction, but we hatebren able to construct such an
argument.) It is interesting to note that Srinivasan hasvehid 9] that anQ(n'*<) lower bound on
the running time of algorithms that compute weak approxiomatto CLIQUE would imply P£ NP.
Using his techniques, one can also compute a constsunth that if there are no Ags] circuits of
sizen® that compute certain weak approximations to CLIQUE thenAIRC®[6].

Even though we do not know how to separate NP fron? 8Cby presenting a lower bound of
the formn© for the size of AC[6] circuits for SAT, we would nonetheless like to be able to pres
such a lower bound (as an illustration that current teche#sqzan provide the sort of modest lower
bounds that would separate N@om AC°[6] if such bounds could be proved for BFE). Although
we can not provide such a lower bound, we can provide a lowgndanalogous to the Impagliazzo,
Paturi, and Saks bound mentioned above, showing that tharednstant, such that deptd AC° 6]
circuits for SAT require size'*°. In Section 7 we show that SAT requires Dlogtime-uniformttiep
d circuits of sizen!*¢ for some constant, for any of the constant-depth families of circuits that we
consider (such as ACGand TQ®).

1A special case of this general observation (relating onlyetiular sets) also appears in a survey article by the second
author [12]; the present article expands significantly @nrtdated results of [12].



2 Préiminaries

We have presented definitions for several circuit compjeslaisses in Section 1.1. For any of these
classe<, we can also definé-reducibility. We say that1<% B if there is a constant-depth family
of circuits of polynomial size recognizing, where the circuits haveracle gatedor the languageé3

in addition to the collection of gates that is provided in tfedinition of the circuit class§.

A C self-reduction forA is a family of oracle circuits witnessing that<%. A, where on inputr,
the oracle circuit does not feed inputnto any of its oracle gates.

A pure self-reduction fod is a self-reduction forl, where theonly gates are oracle gates, as well
as bounded fan-in Ab and QR gates and unary & gates’

Self-reductions can be either uniform or non-uniform. Téxder can verify that all of the exam-
ples of self-reductions that we present in this paper argtidte-uniform.

In addition to languages over the binary alphabet, we alssider languages over an arbitrary
alphabet. In such cases we assume that there is some fixed encodingbbts/fromy into fixed-
length binary strings; circuits for languagesiin operate on these Boolean encodings. Similarly, a
circuit for a function with non-Boolean output produces adsy encoding of the output symbol.

3 Downward self-reducibility

Let f: {0,1}* — {0,1}* be a function. Let(n), m(n) : N' — N be functions such that for afl,
m(n) < nandletd > 1 be an integer. We say th#{ is downward self-reducible tg,, ,,) by a pure
reduction of depthl and sizes(n) if for every n there exists a dept pure self-reduction witi(n)
gates computing,, using oracle gates only fgf,, ).

Similarly, we can write off,, being downward self-reducible t,,,,) by aC reduction of depth
d and sizes(n) for various circuit classe8. This notion of downward self-reducibility is essentially
identical to what Goldwasset al. call “strong downward self-reducibility” [8]. For our puoges, it
is important to pay close attention to the size and depthefe¢duction.

The following example may seem trivial, but it is nonethsleseful.

Proposition 1 For any0 < € < 1, AND,, is downward self-reducible tAND,,- by a pure reduction
of depthO(1/¢) and sizeO(n'~¢€). Similarly for OR,,.

Proof. Form a tree of deptih/c from gates computing RD,,. and assign each input bit to one of the
leaves. Clearly, the circuit will computeM®,, and it consists o) (n!~€) gates. ]

The case of AD and Qr can be further generalized as follows. Let be a finite monoid (a
finite set with an associative binary operation and idergigment.) We denote the operation/af
multiplicatively. The word problem ovel/ is the functioniWy, : {0,1}* — {0,1}/M! that takes
binary encodings of several elements frafmand outputs the binary encoding of their product. (The
particular way of encoding elements frok into binary representation is of no interest to us. We
may assume that it is the unary encodintp!*!~? denoting the-th element ofA1.)

Proposition 2 For any monoidM and any0 < ¢ < 1, (W), is downward self-reducible to
(War)ne by a pure reduction of deptf(1/¢) and sizeD(n! ).

The proof is essentially the same as fox#\and Qr. If for an integerg > 1 we consider the
monoid({0,1,...,¢ — 1}, +(mod ¢q)) then we obtain the next corollary.

Corollary 3 Forany0 < ¢ < 1, (Mob—q),, is downward self-reducible ttMoD—q),,- by a pure
reduction of deptlD(1/¢) and sizeO(n'~¢).

20ne could perhaps call pure self-reductions “N&2lf-reductions”, but since the oracle gates have unbalfatein, this
seems to be quite different than R€omputation.



A similar proof also yields:

Proposition 4 For any0 < ¢ < 1, W5-STCONN, is downward self-reducible t&/5-STCONN,-
by a pure reduction of dept(1/¢) and sizeD(n'~¢).

We can prove a similar claim also for M. This time the proof is a little bit more involved and
uses the following lemma.

Lemma5 For anym,¢ > 1 there is a constant depth circuit with(m logm) oracle gates for
MAJs,, in addition to bounded fan-ilND and OR gates and unarfNOT gates, taking as its input
m X £ bits representingn ¢-bit integers, and producing as output a sequencé 6t log m-bit
integers that have the same sum as the input integers.

Proof. First notice, using a gate for M, and constant® and1 we can compute AD,,, and
OR,,. Usingm gates for MrJ,,,, (together with some AD,,, and Cr,,, gates that can be computed
with MAJa,,, ), we can compute the unary representation of the sum bits (i.e.,1°0™~% wherei of
the input bits are 1). This unary representation can be duttdansformed into binary representation
by a constant depth circuit usin@(m logm) AND,,, OR,, and NOT gates. Thus we can sum the
input bits at each of thébinary positions in then input numbers, to obtai6¢ + log m-bit integers
representing the sum of the input. (Note each of thesgegers will have’ of its bits always set to
zero.) i

Proposition 6 For any0 < e < 1, MAJ,, is downward self-reducible tMAJ,,- by a pure reduction
of depthO(1/¢) and sizeO(n logn).

Proof. We prove the claim foe = 1/2. For othere the proof follows using the same technique
of building a tree as in the previous propositions. We caatttee input as: 1-bit integers. To
determine the output of M,, we will compute the binary representation of the sum of thetsgers.
We proceed in summing them as follows. We split the input ihgé: blocks of\/n/2 input bits,
each representingn /2 1-bitintegers. By the preceding lemma we can obtain the sueaci block
usingO(y/nlogn) MAJ - gates, i.e.0(nlogn) MAJ ; gates in total.

Hence we have reduced the problem of summing the input biteetproblem of summing./n
O(log n)-bit integers. Splitting the integers into four equal sizeups and applying the lemma on
each of the groups give3(log n) O(log n)-bit integers whose sum is equal to the input sum.

We divide each of these integers into blockd@flog n consecutive bits and we sum the corre-
sponding blocks from th@(log n) integers using the lemma. For each block this yi€ldkg log n)
integers, each havin@(log log n) bits, which sum to the sum of the block. Furthermore, by a DNF
formula of size20(loglogn)* < ,0(1) pyilt from AND O ((log log n)2) @Nd CR,,.1y gates we can obtain
for each block it$) (log log n)-bit sum. From thes®(log n/ loglog n) O(log log n)-bit sums we can
form O(1) O(logn)-bit integers that represent the sum of the input bits. Surgi®i(1) O(log n)-bit
integers can be done usi[i@{log3 n) ANDO (10 n) @Nd QRo (10 1) gates; this concludes the prodfl

We have seen thatMp, OR, MoD-¢q, MAJ are all downward self-reducible, as well as the word
problem over finite monoids. This yields a self-reductiontfee word problem ovets (one of the
standard complete problems for NGind W5-STCONN. We thank Mario Szegedy for pointing out
that BFE (another standard complete problem for N€ also downward self-reducible:

Proposition 7 For any0 < € < 1, BFE, is downward self-reducible tBFE,. by a pure reduction
of depthO(1/¢) and sizeO(n).

Proof. Since the input is a balanced formula of stzethe depth of the formula ibgn. We can
cut this formula intol /¢ layers, each of depthlogn. We will evaluate the formula, starting with the
subformulae whose roots are on the top of the bottom layengeimputs are the leaves of the original



formula). Each of these formulae has siZe We feed the values for each of those subformulae into
the formulae that form the next layer, and so on. O

Indeed, we point out that any problem complete for a compteddass that has a downward
self-reducible complete problem must be downward seléicdile. See Proposition 17 in the next
section.

Another problem for which we can prove downward self-retility is Iterated Matrix Multipli-
cation Let IMM,, 4 : {0,1}"4*¢ — {0,1}4"n(!+legd) e the problem of computing the product of
n d x d matrices, with each entry being a non-negatit integer. Define thenodularversion of
the Iterated Matrix Product to be the function mIMM,, : {0, 1}"d2 loga _, 10, 1}‘12 log computing
the Iterated Matrix Product modulo some integer 2. Finally, we will also need to consider the
Booleanlterated Matrix Product problem BIMM, : {0, 1}74* — {0,1}%* which is the Iterated
Matrix Problem over the ring{0, 1}, OR, AND).

The following proposition is immediate:

Proposition 8 For any0 < ¢ < 1 and anyn,d,q > 1, mIMM,, 4, is downward self-reducible to
mIMM . 4., by a pure reduction of depif(1/¢) and sizeO(n'~¢). BIMM ,, 4 is similarly reducible
to BIMM ,,« 4 with the same parameters.

The following more interesting lemma will be useful in thexhsection.

Lemma9 There is a universal constangrg such that for any) < € < 1 and anyd < n (where
d = d(n) may be a function of), IMM ,, 4 ,, is downward self-reducible tMM ¢ 4., by a TC’-
reduction of deptiD(1/¢), with O(d? - n3+2¢crr) wires andO(n3~¢) oracle gates.

Here,ccrr is a specific constant that can be determined from a paperssfet al. [10].
Proof. Hesse et al. [10] give uniform TCircuits with O (n°crr) wires that do the following tasks:

e take as input twan-bit integersa andb, and output: mod b.

e take as input am-bit integera, and output it<Chinese Remainder Representatioa., a se-
quence ofO(n) pairs (a;, b;) of O(logn)-bit numbers where,; = amodb; and allb; are
distinct primes.

e take as input: pairs(a;, b;) of O(logn)-bit numbers and output afi(n log n)-bit numbera
satisfyinga; = amod b; and0 < a < [[, b;, if the b; are distinct primes.

Using these circuits we can reduce IMM,, to the problem of computing(n?) instances of
mIMM,, 4 .. in parallel forO(n?) distinct primeO(log n)-bit numbersg;. Namely to compute the
iterated product, we first compute the representation di égaut matrix mod each of the primes
(thereby converting the input from binary representatm@hinese Remainder Representation); this
gives usO(n?) instances of mIMM 4 ,, to solve. Next, we compute the iterated product mod each
of the ¢; (thereby obtaining the output in Chinese Remainder Reptasen). Finally, we convert
the answer to binary representation.

By the previous proposition, for eaclive can downward reduce the computation of miivIM,,
to mIMM,, 4 ,,. However, since our goal is to produce a self-reduction¥tivil we must show how
to simulate each call to mIMM using an oracle for IMM. But tiésasy: if inputs to mIMM are fed
instead into a IMM gate, then by taking the output from the INj&te and taking each entry mogd
we obtain the output that would have been given by the mIMM ga@hat is, we use TCcircuitry to
prepare the inputs that would (ideally) be presented to tidMh,- 4 ,, oracle gates, and instead we
use IMM,,c 4.« gates (which provide the correct answer gl We then again use TQircuitry to
take each matrix entry mag, thereby simulating one oracle gate in a mIMM self-reductio

The size of the resulting circuit is going to be



e d’n-O(n?crr) to convert the input into Chinese Remainder Representegiative toO (n?)
moduli and then convert back from Chinese Remainder Reptatsen into binary, plus

e O(n? - n'=¢.d? . n2ccrr) for taking remainders to process the output of e - n'—¢)
oracle gates.

Hence we get a TCcircuit reducing IMM, 4., t0 IMM ,c 4., Of SizeO(d? - n3t+2ccrr), O

4  Amplifying lower bounds

In the previous section we have established several dovehsedi-reducibility results. In this section
we show that any problem that is downward self-reducibl@igway has circuits of polynomial size
if and only if it has very small circuits. Thus, if a small aiiit size lower bound can be proved for
any such problem, it can be “amplified” into a superpolyndmsiize lower bound.

The general form of our claims is:

If a function f is computable by polynomial size circuits of tygehen for any > 0, f
is computable by circuits of typ@ usingO(n'*<) gates and wires.

The circuit types we will consider are ACACC®, CC?, TC? and NC circuits. The functiong’ we
will consider will typically (but not always) be completerfeome complexity class. For example
MAJ is complete for T€ (underg‘}CO reductions), and the word problem f8g is complete for
NC!, and so on. The consequence of our claim is that establishioger bound of2(n!+<) for
somee > 0 on the number of wires or gates necessary to computeuld separate some of the
circuit classes. The following proposition summarizeswnaelationships between these circuit
classes.

Proposition 10
AC’ C ACC? C TC" C NC!

CC’ € ACC?, CC° ¢ AC?

Except for the proper inclusion ACC ACC® which also implies C€ ¢ AC° the precise re-
lationship among ACE, CC°, TC® and NC is not known, and any separation or collapse would
constitute major progress in theoretical computer scieBeparation of, say, TCrom NC' would
typically entail showing that no polynomial size T€ircuit can compute some chosen function from
NC'. We show that a weaker lower bound than super-polynomiahtraady yield the same conclu-
sion.

Theorem 11 If, for everye > 0, f, is downward self-reducible t@,- by a pure reduction of depth
O(1/€) and sizes(n), and f € C, then for every’ > 0, f has circuits of type with O(s(n)n*")
wires.

Proof. Assume thaff,, has circuits of typ&€ with n* wires. The reduction of,, to f,.- has at most
s(n) oracle gates, each of fan-itf, and at mosk(n) other gates of bounded fan-in. Thus the total
number of wires in the reduction @(s(n)n¢). If we replace each oracle gate ffyf. by the circuit

of type C of sizen*, we obtain a circuit of typ€ for f,, with O(s(n)n°n*) = O(s(n)n*++1))
wires. The claim follows, becaugeis fixed and the hypothesis holds for every 0. O

In the previous theorem, note thatifis a class obounded deptkircuits, thenf has circuits of
typeC having depthO(1/¢’) andO(s(n)n ) wires. For most of our argumentgn) = O(nlogn).
This yields the following corollary.



Corollary12 1. If for somee > 0, W5-STCONNrequiresCC circuits with at least2(n'*c)
wires, thenCC® # NC'. The same is true fohCC® and TC? in place ofCC°, and forBFE
andWs. in place ofW5-STCONN

2. If for somee > 0, MAJ requiresCCP circuits with at least(n!*€) wires (gates) thel€C" #
TCO. The same is true foACC? in place ofCCP.

3. If for somee > 0, AND requiresCC’ circuits with at least2(n!*<) wires (gates) the@C’ #
ACC?,

Contrast this with the situation for SAT; if SAT is in PCwe have no way to bound the number
k such that T€ sizen” is sufficient to compute SAT. (Although, as we mentioned iot®a 1.2,
Srinivasan has shown that if 2 NP then there are algorithms running in tim&"< that compute
weak approximations to CLIQUE [19].)

Although stated as a sequence of implications, the pregexbrollary is really a sequence of
equivalencessince W5-STCONN is complete for NCMAJ is complete for T€, and AND is
complete for ACC underg%CO reductions. Thus, for example, W5-STCONN is in AC@f
NC! = ACC.

We remark that, since our self-reductions are Dlogtimdeuni, one can compute a constdiit
such that, for example, if BFE is in Dlogtime-uniform TQhen it has T€ circuits with O(n'*)
wires where the uniformity machine runs in tink&logn. (We have not computed the value &f,
but we anticipate thak’ = 4 is sufficient; the self-reductions havevary regular structure, and the
O(log n) running time of the “original” T€ circuit family ends up being simulated only to determine
the structure of circuits for inputs of size for small values ot.)

Sometimes concrete lower bounds are easier to prove foiadlgemonstructed sets, rather than
for the standard complete sets for a complexity class. Thaifing corollary shows that we can also
“amplify” lower bounds for such specially-constructedssetince if one can show that a specially-
constructed set lies in NCthen typically one can determine some upper bound on thiéa dép) of
the NC' circuits computingf.

Corollary 13 Let f be computable bMC! circuits of depthi(n). If f does not hav&C circuits of
sizeO(3%™)) thenTC? # NC'. Similarly for ACC® andCC" in place of TC°.

Proof. If f has NC circuits of depthd(n), then it has a balanced formula of si2&€™, and thus
there is a reduction of to instances of BFE of siz2*(™), If TC? = NC! then evaluating Boolean
formulae of lengttY can be done by TCcircuits of sizeO(¢*¢) for any choser > 0. The claim
follows. O

The technique is applicable also to other circuit classe#,ge pick a functionf from e.g. TC
and we know that it is computable by T€ircuits of sizeO(n*), then if TC’ = ACC® then for every
e > 0, f is computable by ACEcircuits usingO(n*(1*+<)) wires (gates). So proving &n(n*(1+)
lower bound on the size of ACircuits for f separates ACCfrom TC.

This technique is applicable, to a certain extent, also assgs larger than NC First, let us
consider NL. Boolean iterated matrix product BIMM is complete for NL. We do not know how
to work directly with BIMM,, ,,, and thus we work with slightly smaller matrices instead.

Theorem 14 If NL € NC' thenBIMM ,, , s is computable bC! circuits witho(n?) wires. The
same is true fo€C%, ACC?, andTC? in place ofNC!.

(The contrapositive may be more informative; if one can shioat BIMM,, , iz requires NC
circuits of sizeQ2(n?) then one has shown that NC# NL. Unlike the earlier theorems in this
section, we obtain only an implication, and not an equiveden since BIMM, , = is not known
(or believed) to be complete for NL. Note that this resultds MIC' circuit size; it does not seem to
translate into a useful statement abfmrmulasize.)



Proof. Since BIMM,, ,, is in NL, our assumption implies that BIMM, is computable by NE
circuits of sizeO(n*) for somek > 0. Choose: = 1/k. Then BIMM,, .« is computable by NE
circuits of sizeO(n°*) = O(n) and hence BIMM. ,.mzw is computable by NEcircuits of size
O(n). By Proposition 8, BIMV, , = is downward self-reducible to BIMM , = by a pure
reduction of sizex! <. The number of wires in this reductionig —¢ - n<22viegn — p92vicen gince
BIMM .. urew has NC circuits of sizeD(n), we can replace each oracle gate by a circuit With)

wires, yielding an NC circuit with O(n22V1ee™ 4 nl=¢n) = o(n?) wires. O

We now turn to the complexity class #L (the class of functittrad count the number of accepting
paths of NL machines). This is the largest complexity claas we know how to address using these
techniques. Iterated Matrix Multiplication IMM,, ., is a problem complete for #L. IM\, ez ,,
is a subproblem not known (or expected) to be complete forb#it,also not known to lie in any
smaller complexity class.

Theorem 15 If #L C TC® thenIMM , sz ,, is computable byrC® circuits with O(n?crrt?)
wires. Similarly i#fL C NC' thenIMM ,, , rz= ,, is computable bC" circuits of sizeD (n*crnt®)
wires.

Thus to separate #L from Tt suffices to show a lower bound af(n?¢crr+4) on the size of
TCY circuits computing IMM, , 1z ,,. Similarly for NC'.
Proof. Since IMM, ,, ,, is in #L, by our assumption, IMM,, ,, iS computable by TE circuits of
sizeO(n*) for somek > 0. Chooses = 1/k. Then IMM, ¢ e e is computable by TEcircuits of
sizeO(n*) = O(n) and hence IMN]. yvrozw .« is computable by TEcircuits of sizeO(n).

By Lemma 9, IMM, , o7 ,, is downward self-reducible to IMM , oz, by TC circuits of

sizeO(20(V1ogn) . p2corrt3) — ((p2ccrrtd) There are)(n®~¢) oracle gates in this reduction,
and each gate for IMM , = ,,. can be replaced by circuits with(n) wires, yielding T circuits
of sizeO(n2ccrrt 4 pt) = O(n2ecrr+4). This yields the bound for TCcircuits in the statement
of the lemma.

For NC' it suffices to remark that each A,, gate can be replaced by N@ircuitry, at most
squaring the size. (Tighter analysis is possible.) O

Similarly, one can use the fact that IMM ,, is complete for GapNE[6], to show that GapNE
C TCY(NC!) iff IMM 3 ,, ,, has TC (or NC!, respectively) circuits of size3+2ccrr,

5 Limitson downward self-reducibility

In the previous section we have seen that downward selfeilility provides us with an interesting
tool for the study of circuit classes. We have shown that @heoto separate circuit classes such as
ACCY and NC, quadratic lower bounds for the circuit complexity of carslC' -complete problems
would suffice. What about separating ACftom, say NP? That should in principle be a much easier
task. Can we use the technique of downward self-redugitidiestablish an analog of Corollary 12
for ACC? versus NP?

The following theorem shows that there are significant aldstato overcome before such an
approach can work. Namely, in order to establish that a probs downward self-reducible in the
way that we study in Section 3, one must already have an effialgorithm for the problem.

Theorem 16 Letf : {0,1}* — {0,1}* be a function, andn(n) : N' — A be such thatn(n) < n¢
for some) < e < 1 and alln > 2.

1. If f,, is downward self-reducible td,,(,,, by TC’-reductions, thenf € NC and hasTC’
circuits of size2"’ for everys > 0.



2. If f,, is downward self-reducible t,, ,,) via polynomial time Turing reductions thefis in P.

Proof. 1) In order to build a circuit forf,,, start with the T€ circuit of depthd and sizen* that
reducesf, to f,,(»)- If we replace each oracle gate in this circuit with the dirthat reducey,,, )

to fi(m(n)), the depth of the new circuit i€ and the size is at most® + n* - n<*. We repeat the
process until the oracle gates are of gi¥d ), at which point we replace the oracle gates by circuitry
of sizeO(1) computingf on small inputs. The number of stage<Jflog logn); thus the depth is
dOUoglogn) — 10601 - The size of the circuit is bounded by - n<k - nk ... < pk/G=9) |t

is easy to verify that the resulting circuit is logspacefaomm if the self-reduction circuits are. This
establishes that € NC. In order to see that has TC circuits of size2"’, merely follow the same
iteration process as above, but continue for alfyl) stages instead aP(loglogn) stages. This
results in a T€ oracle circuit with oracle gates fdf,, with m < n°. Now replace each oracle gate
with a DNF expression fof,,,. (Clearly, if the self-reduction is an ACcircuit instead of a T€
circuit, thenf has AC circuits of size2”’ J)

2) Again we use the obvious recursive algorithm. We run thengureduction and whenever it
asks an oracle query about a smaller instancéwé recursively invoke the reduction on the smaller
instance. If the reduction runs in tin@(n*) then the total running time of the algorithm will be
bounded by:* - n¢k - n<’k ... < pk/(1=9) Sincee is constant, the time is polynomial. O

Speculation:These results do not exclude the following approach. Letars with the assump-
tion that NPC TC?. Based on this assumption find a downward self-reductiom\df(®r some other
specially-constructed set in NP) and conclude that underagsumption SAT has almost linear size
TCP circuits. Then prove that SAT does not have such circuits.

This is the appropriate time to observe that if NPTCP, then it certainly does have the strong
downward self-reducibility property; this follows from &yosition 17 below. However, since one
can say nothing about the size of this self-reduction (atften that it is computed by an AQircuit
of polynomial size), this does not seem to allow us to coreltéit SAT has TE€ circuits of, say,
quadratic size.

Proposition 17 If A is equivalent toBFE under uniform (non-uniform, respectivelsg)/}co reduc-
tions, then for every > 0, A,, is downward self-reducible via a uniform (non-uniform,pgestively)
AC? reduction of depttO(1) and sizen®") that asks queries of length at most Moreover, the
size of the self-reduction of,, can be determined from the sizes of reductions betweand BFE.

Proof. By hypothesisAg‘}CoBFE via a reduction that, on instances of lengthasks queries of
sizen®®) . Since queries to BFE can be padded easily to equivalenteguef longer length, we
may assume that all queries have length Similarly, we are given that BF;E‘}COA via a reduction
that, on inputs of lengtln, asks queries of size at mast®. Composing these reductions with the
self-reduction that reduces BEEto BFE,:s (for § < €/kc) yields the desired self-reduction far.

O

The next section addresses the question of whether sugamial lower bounds obtained by
“amplifying” a “natural” proof of a lower bound of size'%°! would constitute an tn-natural
proof’.

6 TheNatural Proofsbarrier

Razborov and Rudich [15] identified a significant obstacfetther progress in proving lower bounds

on circuit size, by observing that existing lower bound anguts rely on the existence of an easy-to-
recognize combinatorial property of a functigrthat (a) is shared by a large fraction of all functions,
and (b) is shared by no function that has small circuits offamtype. Razborov and Rudich showed
that any “Natural Proof” that follows this paradigm and slsaivat a function cannot be computed



by circuits of a clas§ constitutes a proof tha@t cannot compute pseudorandom function generators.
It is not clear how significant an obstacle this is, for praviower bounds against ACCsince there

is not much evidence that ACGircuit families can compute pseudorandom function genesa
However, for TC this is a serious impediment, since Naor and Reingold hagsepted a good
candidate pseudorandom function generator that is cornjeltaTC’ [14].

It is premature to argue very strongly that we have identifigzhth around this obstacle. After
all, the only new lower bound that this paper offers is to heibin Section 7, and that bound follows
from known time-space tradeoff results. (These time-spackeoffs, in turn, rely on diagonalization,
which lies outside the natural proofs framework, but oniyegilower bounds fanniformcircuit fam-
ilies. The natural proofs framework addresses the problefimding lower bounds fononuniform
circuit complexity.)

However, we contend that it is at least plausible that a ahfnoof could form the basis for a
proof that NC # TCY, even assuming that the Naor-Reingold generator is cryapbically secure.

How?

There seems to be no reason why a natural proof cannot yieldtex bound of the form* for
some fixedk. The parity lower bound of Impagliazzo, Paturi, and Sakegia lower bound of this
form for BFE on TC circuits of depthd [11]. Hastad gives a nearly cubic lower bound on formula
size [9]. These are natural proofs.

The self-reducibility property that allows a modest loweuhd to be amplified to a superpolynomial-
size lower bound, on the other hand, is a combinatorial ptgpleat is shared by only @anishingly
small fractionof all Boolean functions om variables. Thus, this part of a lower bound argument
would notfit into the Natural Proofs framework. (Strictly speakinige tdownward self-reducibility
property is not a combinatorial property in the sense of taeuhal Proofs framework, as it is a re-
lationship between function values on different input sizelowever, all downward self-reducible
functions must have truth-tables of small Kolmogorov coemjiy, and thus they constitute a tiny
fraction of all functions.)

To be concrete, let us exhibit an example of a prop@rthat isnatural, andusefulin the sense
of Razborov and Rudich. We will recall the definitions of Ramd and Rudich [15]:

Let F,, denote the class of all Boolean functiofis : {0,1}" — {0,1}. A property{T,, C
F, }nen is QuasiP-naturalif there is a sub-propertyT* C T, } ,en such that for some, ¢ > 0

1. |Tx| > |F,|/2¢", and

2. there is a deterministic algorithm that given a truthi¢adf a functionf,, : {0,1}" — {0,1}
decides whethef,, € T in time 2",

Furthermore, a properyT,, C F, },cn is usefulagainst a circuit class if no sequence of functions
{fn € Tn}nen is computable by circuits from.
Our propertyT is defined as follows:

T, = {fn:{0,1}" — {0,1}; f, does not have circuits of deplbg™ n and sizen?
consisting of MaJ and NoT gateg.

It is a trivial exercise to verify thal’ is natural and useful against T@ircuits of sizeO(n'-?).

Of course, we are not able to establish that BFE has profgrif it does, then by Corollary 12
NC! £ TCP. Clearly one can come up witQuasiP-natural property that will be useful against any
class of circuits of a fixed polynomial size.

However, the existence of properly does not seem to imply anything very interesting about
the nonexistence of pseudorandom function generatorsd@msbquently does not yield interesting
upper bounds on the complexity of factoring Blum integetsioly would follow if the Naor-Reingold
generator is insecure [14]).

The arguments of Razborov and Rudich transform any natowadr bound proof into a lower
bound on the complexity of computing a pseudorandom funa&nerator. However, lower bounds



for circuits of sizen” for fixed k translate into lower bounds for pseudorandom function genes
that are so weak as to be uninformative.

So are there reasons to be more optimistic about prospeadmAfer bounds? We are not sure.
The truth is that we do not understand computation. All thevkm lower bounds essentially rest
on information theoretic arguments and none of them realgd into accountomputation For
example we are unable to handézursionso our bounds typically deteriorate with depth. Hence,
the underlying message of Razborov and Rudich — namelywthaieed to go beyond combinatorial
arguments — is still a worthwhile message. We identify tvlbustresolved challenges that we believe
would advance our understanding of computation:

e Prove()(n?) lower bounds on the length of width 5 branching programs aging an explicit
function.

. Proveﬂ(nl“/‘/&) lower bounds on the size of depfltircuits computing an explicit function.

Are there perhaps fundamental barriers that remain in otlr, @& we attempt to prove circuit
lower bounds?

One way to explore this question is to follow the lead of Ramki¢17], who showed that (under
cryptographic assumptions) the bounded arithmetic prgstesnS5 cannot prove that SAT requires
circuits of superpolynomial size. (In earlier work, Raztpohad argued that most existing lower
bound arguments can be carried out in even weaker systefs [16

Perhaps techniques similar to those of [17], combined withatservations can enable one to
prove thatS? (or a similar system) cannot prove that BFE require$ Tigcuits of sizen!*.

7 Circuit lower bounds

We begin this section by showing that problems with smallstamnt-depth circuits have algorithms
that run quickly and have small space bounds.

Theorem 18 If A has Dlogtime-unifornTC’circuits of depthd with O(n'*<) wires then for every
0<6<1+eAeTISP((n'+e + nd)log®M n, nite=910g°® n) on random access machines
andA € TISP((nttetdd1ogOM) p plte=31669M) n) on Turing machines. (The same claim holds
with “TC°” replaced by “ACC°” and “ CC°”, etc.)

Proof. A naive recursive way to evaluate the circuit in sp@¢kg n) would require time) (nd(1+¢)),
Since we can use more space we will use it to remember the dethpalues of gates that have fan-
in larger thann?. The faster algorithm then will also recursively evaludte tircuit but whenever
it computes the value of a gate with fan-in larger thdrit records the value so such a gate will be
evaluated at most once. On a random access machine we wdlte®values in a binary search tree,
on a Turing machine we will store them in a simple list. Sirloeré are at mosD(n'*¢/n?) gates
with fan-in larger tham?® we will need space onlg(n!+<—? logo(l) n). Finding the value of a gate
and whether it has already been computed will téklbgo(l) n) time on a random access machine
andO(n't<910g”" n) on a Turing machine. To bound the total time needed to e\athatcircuit
notice that we will have to recursively evaluate a tree ofifaat mostn’ and depthi. To traverse the
tree we will need to make?®? visits to the nodes. Beside that we will have to evaluate #tegywith
large fan-in. Since there are at m@3tn'*€) wires leading into them these gates will additionally
cost at mosO(n'*€) node visits. This yields the claimed time bound. O

We need to make use of known time-space tradeoffs for SATfdllmving theorem is a special
case of Theorem 1.3 in the excellent survey article by varkdteek [20]:

Theorem 19 For every realc such thatl < ¢ < 5/3, there exists a positive real such that SAT
cannot be solved by both



1. aIl; machine with random access that runs in tinfeand
2. a deterministic random-access machine that runs in timeand space:.

Moreover, the constartapproaches 1 from below wherapproaches 1 from above.

Theorem 20 For everyd there is a constard > 0 such that SAT does not have Dlogtime-uniform
depthd TCP circuits with fewer tham'*€ wires.

Proof. Assume that the claim fails for some depttihus for every > 0, SAT has Dlogtime-uniform
depthd TCP circuits with fewer tham!+< wires.

By Theorem 18, this implies that for all smalands, SAT is in TISP@!te 4+ n® nl*te=9%), In
particular, this is true if we pick = 2¢; hence we conclude that for all small enougit 0, SAT is
in TISP('*+¢, n'—). Since this is true for akt, we have in particular that SAT is in DTIME() for
alle > 1.

Picke < 3. We thus have SAT is in TISR{-5, n' ).

By Theorem 19, if we let approach 1 from above, the valueefin Theorem 19) approaches 1
from below. Thus there is some valuewof 1 for whiche > 1 — € (in the statement of Theorem 19).
Fix these values of ande. Summarizing, we now have that SAT is in TISP{, n®).

At this point, by Theorem 19, we know that SAT is not in b®th Time(z°) and TISP{!?, n®).
But we have already observed (three paragraphs ago) thatsSATDTIME(n¢) and thus it is in
II; Time®®). Thus we must conclude that SAT is not in TISP{, n®). But this contradicts the
conclusion of the preceding paragraph. ]

8 Conclusions and open problems

The most important and interesting question raised by tligkwis the question of whether it can
ultimately lead to separations of complexity classes. H@rea number of other questions naturally
arise. We close by listing two such questions.

e Are there sets complete for every level of the NC hierarclay #ie downward self-reducible
to instances of size“? Or is there some fundamental reason why we were unable tafind
downward self-reduction of this sort for any problem thatasplete for NL or L?

e If NP = TC?, does SAT have TCcircuits of quadratic size? If NEXE non-uniform C®[6],
does the standard complete set for NEXP havé[6)Ccircuits of quadratic size? (Even if
arguments based on downward self-reducibility fail fortgeons outside of NC, perhaps there
is another approach that leads to the same conclusion.)
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