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Abstract

We observe that many important computational problems ih§t@re a simple self-reducibility
property. We then show that, for any problefnhaving this self-reducibility propertyA has
polynomial-size T€ circuits if and only if it has T€ circuits of sizen'* for everye > 0 (count-
ing the number of wires in a circuit as the size of the circuit). As an example of what this observa-
tion yields, consider the Boolean Formula Evaluation problem (BFE), which is complete for NC
and has the self-reducibility property. It follows from a lower bound of Impagliazzo, Paturi, and
Saks, that BFE requires depffirC® circuits of sizen!* <. If one were able to improve this lower
bound to show that there is some constant 0 (independent of the deptf) such that every TE
circuit family recognizing BFE has size at least™, then it would follow that T€ £ NC!. We
show that proving lower bounds of the fomm*< is not ruled out by the Natural Proof framework
of Razborov and Rudich and hence there is currently no known barrier for separating classes such
as ACC, TC® and NC via existing “natural” approaches to proving circuit lower bounds.

We also show that problems with small uniform constant-depth circuits have algorithms that
simultaneously have small space and time bounds. We then make use of known time-space tradeoff
lower bounds to show that SAT requires uniform degfiC® and AC [6] circuits of sizen' ™ for
some constant depending onl.

1 Introduction

There is consensus in the research community that one of the most challenging and important open
problems in computer science is to prove that various computational problems require large circuits in

order to be computed. However, there is also a great deal of pessimism in the community, regarding
the likelihood of proving such lower bounds on circuit size anytime in the near future. One goal of

*A preliminary version of this paper appeared in the Proceedings of the 23rd IEEE Conference on Computational Com-
plexity, 2008.
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this paper is to suggest that there might be some reason to be more optimistic about prospects for
circuit size lower bounds; we show that in certain settings, superpolynomial bounds would follow
as a consequence of some very modest-sounding lower bound results (such as a lower bound of size
nt0001)  Of course, a confirmed pessimist would say that this is merely evidence that even these
modest-sounding lower bounds are likely to remain beyond our reach.

1.1 The Quest for Circuit Lower Bounds

This paper focuses primarily on the task of proving superpolynomial lower bounds for various well-
studiedrestricted classesf circuits, such as N§ TC?, and CC[6]. The reader can find definitions

of these classes in Section 2, along with a brief discussion of their importance and significance. Here,
we recall just a few salient facts:

e Although it seems at first to be an absurdly weak class?[@Cthe class of problems that
can be solved by constant-depth polynomial-size circuit families 0bM gates) has not yet
been shown to have less computational power than NP. Some theoreticians susped[éat CC
cannot even compute thend function [12, 29]. Showing that AD (or any other problem in
NP) lies outside of C&6] would constitute a significant advance in complexity theory.

e The “majority function” MaJ, which determines if more than half of the input bits are 1, is the
canonical representative of the complexity clas$ T&dnsisting of the problems computed by
constant-depth polynomial-size threshold circuits. Separating the complexity classaad C
CCY[6] is equivalent to proving a superpolynomial lower bound on the size &f6lCircuits
computing MaJ.

e NC! is the class of Boolean functions that can be represented by Boolean formulae of polyno-
mial size. NC has several natural problems that are complete under very restrictive notions
of reducibility; we mention in particular the problem of evaluating a Boolean formula, which
we denote by BFE. Separating the complexity classes &@ TC is equivalent to proving a
superpolynomial lower bound on the size of constant-depth threshold circuits computing BFE.

The problem of separating these and other circuit complexity classes has remained open for more
than two decades. This in itself would be cause for some discouragement about the prospects for
progress. Additional grounds for despair were provided by Razborov and Rudich [39], who showed
that, if a class of circuitg is strong enough to compute pseudorandom function generators, then a
wide variety of proof techniques airgcapableof proving a given problem is too difficult to be com-
puted by circuits ir€. Since there are constructions of pseudorandom function generators computable
in TC® that are conjectured to be cryptographically secure [37], this has been viewed as constituting
a significant barrier to progress on proving circuit lower bounds.

Although superpolynomial circuit size lower bounds have proved elusive, there has been signif-
icant work proving more modest lower bounds. For exampkesteld presents a nearly-cubic lower
bound on the formula size for a certain function [27]. Nonlinear lower bounds on branching program
size have been presented [3, 14]. The time-space tradeoff results that are surveyed by van Melkebeek
[49] give run-time lower bounds of the foraf for small-space computations.

However, none of these lower bounds has led to superpolynomial lower bounds. More to the
point, there was no expectation that a circuit size lower bound of the #6roould possiblyyield
superpolynomial circuit bounds. In this paper, we show that there are several settings where precisely
this sort of “amplification”canoccur.

Moreover, in Section 8 we show that the work of Razborov and Rudich on “Natural Proofs”
[39] poses no barrier to proving weak lower bounds of the fafmThis can be viewed as holding
out some hope of separating circuit classes by proving circuit lower bounds using “natural” proof
techniques.



1.2 Our Contributions

The main tool allowing us to obtain our results is self-reducibility of problems. We show that many
problems in and around NQsuch as BFE, MJ, AND, and many others) argrongly downward
self-reducible Then we show that, for any strongly downward self-reducible set, a lower bound of
sizen® implies a superpolynomial size lower bouhd.

In particular, we obtain the following corollaries:

Corollary If there is some > 0 such thatAND requiresCCP[6] circuits of sizen!*¢, thenAND ¢
CcCYl6).

Corollary If there is some > 0 such thatM AJ requiresCC [6] circuits of sizen!*<, thenCC°[6] #
TCO.

Corollary If there is some > 0 such thaBFE requiresTC circuits of sizen!*¢, thenTC? # NC'.

Let us examine this third corollary more closely. It is interesting to recall that some non-linear
lower bounds for BFEre known. Impagliazzo, Paturi, and Saks showed that any dep@f circuit
for PARITY must have:!*<¢ wires [32] (where; = Q(1/(2.5)%)). Since there is a trivial reduction
from PARITY to BFE (see the detailed definition of BFE in Section 2), the same size lower bound
holds for BFE. In order to separate T@om NC', it would suffice to improve this to a lower bound
of sizen!' < wheree doesnotdepend on.

One might reasonably wonder whether it is overly optimistic to expect to prove constant-depth
circuit size lower bounds that do not depend on the déptMost circuit size lower bounds in the
literature (such as those of [25, 52, 30, 40, 46]) do degrade with depth. For instance, the parity
function requires deptt AC® circuits of size2*™“™) and this is nearly optimal [30]. However,
it is important to note that there are exceptions to this trend; Rossman recently proved that, for every
constant:, the k-clique problem requires ACcircuits withw(n*/*) gatesindependentf the depth
[44].

Clearly, no proof of T€ # NC! can follow from a PARITY lower bound such as the bound of
Impagliazzo, Paturi, and Saks [32], and equally clearly, their argument does not yield a lower bound
on the size of deptd CC"[6] circuits computing BFE (since C(B] circuits of linear size compute
PARITY). In fact, there seem to be no known superlinear lower bounds for BFE on d&}H|q]
circuits for anyq with at least two distinct prime factors. We now turn to the question of obtaining
lower bounds for C€[q] and the related class Az, in order to discuss some of our other theorems.

Fortnow showed that SAT does not have logspace-uniforn dl@uits of sizen' o) [24].
(Several improvements of this result of Fortnow are presented in [48, Theorem 1.5].) Since we
are able to show that modest lower bounds for BFE would yield superpolynomial lower bounds, it is
natural to wonder if the same situation holds for SAT. That is, if one could build on the Fortnow lower
bound, and show that SAT requires N6] circuits of sizen!-°!, would it follow that NP+ AC°[6]?

We know of no such implication — and in Section 5 we show that the approach that works for BFE
cannot transfer directly to SAT. More specifically, in Section 5 we show that all strongly downward
self-reducible sets lie in (uniform) NC. Thus, in order to demonstrate that SAT has the sort of self-
reducibility properties that would enable us to amplify modest lower bounds to superpolynomial
lower bounds, one would have to first prove that P=NP. (It is still conceivable that one could proceed
by arguing thaif NP = ACP[6], then SAT has the desired type of self-reduction, but we have not
been able to construct such an argument.)

It is interesting to note that Srinivasan has shown [47] tha®amn'*€) lower bound on the run-
ning time of algorithms that compute weak approximations (of the fietn?()) to MAX-CLIQUE
would imply P# NP. Using his techniques, we show in Section 6 that if NFAC[6], then there
are AC[6] circuits of sizen!t°(1) that computen!~°(1)-approximations to MAX-CLIQUE. We

1A special case of this general observation (relating only to regular sets) also appears in a survey article by the second
author [35]; the present article expands significantly on the related results of [35].



also use a similar argument to obtain lower bounds on the running time of any algorithm reducing
MAX-CLIQUE to the problem of computing approximations of MAX-CLIQUE.

Even though we do not know how to separate NP fron?[8{Cby presenting a lower bound of
the formn¢ for the size of AC[6] circuits for SAT, we would nonetheless like to be able to present
such a lower bound (as an illustration that current technigques can provide the sort of modest lower
bounds that would separate N@om AC°[6] if such bounds could be proved for BFE). Although
we can not provide such a lower bound, in Section 7 we do provide a lower bound analogous to the
Impagliazzo, Paturi, and Saks bound mentioned above; we show that, fordetleye is a constant
ca such that deptd AC°[6] circuits for SAT require size!' <.

2 Preliminaries

2.1 Circuit complexity classes

This paper focuses on Boolean circuits and in particular on the circuit classiNCits subclasses.
Let us remind the reader of the main definitions, and present some notation. For more background on
circuit complexity, the reader is referred to the text by Vollmer [50].

For a functionf : {0,1}* — {0,1} and aninteger > 1, f,, : {0,1}" — {0, 1} is the restriction
of f to inputs of sizen.

We begin our discussion of circuits by considering a special case: formulBsokan formula
in n variablesey, xs, . . ., x, IS a rooted tree where each internal node is labeled by some function
such as AID, OR or NOT and each leaf is labeled either by one of the input variabjes. . , z,, or
by a constant zero or one (false or true). Given an inpat {0,1}", one can inductively assign a
value to each node of the formula as follows: each leaf labeled by a variable gets the value of that
variable, each leaf labeled by a constant gets the value of that constant, and each internal node gets
the value of the function that labels it applied to the values of its children. In case where the function
labeling a node is not symmetric the order of the children has to be specified. Thematipe)(of
the formula on input: is the value of the root node. Hence a Boolean formula naturally computes
a functionf : {0,1}™ — {0,1}. The nodes of the formula are generally referred tgates The
in-degree of a gate is called itan-in. In addition to the elementary functionsng@, OR, and NOT,
we will also consider gates computing the functiomMwhich evaluates to one if and only if the
strict majority of its inputs is one) and the db-¢ function for an integeg > 2 (which is one if and
only if the number of its inputs set to one is not divisible JJy The MoD-2 function will also be
referred to as the PARITY functiomy(function). Sometimes we allow a more complex function to be
computed by a gate; a node of a formula can be designatedaacla gate Typically all the oracle
gates in a given formula will compute the same Boolean fungjioq0, 1}* — {0, 1}, although we
allow a single formula to have oracle gatesdgrandg,,. for m # m’. The oracle should be viewed
as a parameter for the formula; for a functipand formulap with oracle gates, thiormula¢ with
oracle for g is the formulap where each oracle gate computes the funcfioRor a set4, anoracle
gate forA is an oracle gate computing the characteristic functioA .of

A Boolean circuitis a generalization of a formula where instead of a rooted tree we allow
an arbitrary directed acyclic multi-graph. (We allow multiple edgeswoes) between nodes.)
The nodes of out-degree zero are the output nodes. This way a circuit can compute a function
f:{0,1}™ — {0,1}™, for integersn, m > 1. In circuits we also allow oracle gates to have several
distinct output bits (wires) thus allowing us to have oracle gates for funcgioq$, 1}™ — {0, 1}’”'
form’ > 1. (The tree-like nature of formulas imposes the restrictionsthfat 1 in a formula.)

Thedepthof a circuit is the length of the longest path from an input node to an output node. The
sizeof a circuit is the number of its wires, which is the number of edges in it. We will frequently refer
also to thenumber of gates a circuit,

A circuit computes a function on a fixed number of variables. To compute a fungtion
{0,1}* — {0,1} by circuits we need an infinite family of circui{g’,, } ,>1, where for eactn > 1,



circuit C,, computesf,,. One may abuse notation and say tfigd computable by circuits with prop-
erty v(n). Such an expression means that there is a family of cirddits},,~1 where eactC), has
propertyy(n) and computeg,,. Similarly, asymptotic statements should be interpreted with respect
to the input size; e.g is computable by polynomial-size constant-depth ciraquigans that there is

a circuit family {C,, },,>1, polynomialp(n) and constand, such that eacly’,, computesf,, and has
size at mosp(n) and depth at most. Similarly for formulas.

In addition to functions over the binary alphalj€t1}, we also consider functions over an arbi-
trary alphabek. In such cases we assume that there is some fixed encoding®Bir {0, 1}* of
symbols fromY into fixed-length binary strings; circuits for a function over the alphabeperate
on inputs encoded symbol-by-symbol by Bin. Furthermore, a circuit for a function with non-Boolean
output produces a binary encoding of the output symbol. The definitions of computability by circuits
and of all the other terms extend naturally also to this case, however we only require that a circuit
computing functionf defined on* operate correctly on binary strings corresponding to binary en-
codings of strings fron*. Thus, on inputs that do not correspond to binary encoded strings from
¥*, the circuit may give an arbitrary output. For example a funcfion* — {0, 1} is computed
by a circuit family {C,, },>1 if for somek > 1 there is a binary encoding Bin® — {0, 1}* such
that for eachm > 1, and each input € X", C,,(Bin(z)) outputsf, (x). In this case the size of the
input is considered to be although its binary encoding has lendth. Oracle gates for a function
over an arbitrary alphabét also operate on binary encoded strings fiopand on invalid inputs we
assume that they output all zeros. (We state this convention only in order to make such oracle gates
unambiguous; none of our results depends on it.)

A languageA is a subset oE£* for some finite alphabet. Every language naturally corresponds
to its characteristic function4 : ¥* — {0,1} defined byya(z) = 1 ifand only if z € A. Vice
versa, every function intg0, 1} corresponds to a language. We will identify languages with their
characteristic functions. We say thatis recognizedy {C,, },>1 if its characteristic function is
computable by{C), } ,>1.

This allows us to define the following classes of functions.

¢ NCU is the class of functions computable by polynomial-size constant-depth circuits built using
fan-in two AND and Cr gates and unary &I gates.

¢ ACC is the class of functions computable by polynomial-size constant-depth circuits built using
unbounded fan-in AD and R gates and unary dir gates.

e CC[q] is the class of functions computable by polynomial-size constant-depth circuits having
onlyunbounded fan-in MD-q gates.

e AC'[q] is the class of functions computable by polynomial-size constant-depth circuits of un-
bounded fan-in AD and Cr gates and unary &N gates, along with unbounded fan-ind#é-¢
gates.

e CC is the union of all the classes €fg| (for ¢ > 2).
e ACC is the union of all the classes A{g] (for ¢ > 2).

e TCY is the class of functions computable by polynomial-size constant-depth circuits of un-
bounded fan-in MJ gates and unary &I gates.

e NC! is the class of functions computable by circuits of fan-in twepAand Or gates, and
unary NOT gates, having deptR(logn).

e NC is the class of functions computable by circuits of fan-in twenfand Cr gates, and unary
NoT gates, having deptf(log” n) for a constant.



Some authors define these classes in terntangfuagesnstead offunctions and use notation such

as FAC or FNC!, etc., to refer to the associated class of functions. We prefer the simpler notation,
and are confident that no confusion will result. We use the names of the function classes to denote
also the corresponding circuit families; e.g., we refer to *A@cuit families” or more succinctly to

“ACO circuits”.

As presented, these classes momuniform i.e., it is not required that there be an easy way to
construct the circuits for inputs of lengith We shall also need to consider logspace-uniform and
Dlogtime-uniform versions of these classes [13]. A circuit far{iy,, } ,>1 is logspace-unifornif
there is a procedure that runs in logarithmic space and on iripiitoutputs the description af’,.

A circuit family {C,, },,>1 is Dlogtime-uniformif there is a procedure that on inpt, i, r, 7, s, t),
wheren, i, j, r, s are integers encoded in binary aht a gate type (e.g., D, OR, NOT, oracle,
input, 0,1), runs in time linear in its input size and accepts if and only if the gaf&,dfaving label

1 is of typet and itsr-th child is thes-th output bit of the gate labeled In case of the gatébeing

an input gate, the procedure accepts if gatakes the value of the-th input bit. Furthermore, the
procedure accepts, i, j, s, output) if and only if thes-th output bit of gate is thej-th output bit of
the circuitC,,. We also require that the procedure accepts the iaput d) if and only if d is equal

to the fan-in of the gate af’,, having label; without this condition it is not always clear that Turing
reducibilities defined in terms of uniform circuit families are closed under composititus, for
example, Dlogtime-uniform ACis the class of functions computable by Dlogtime-uniform families
of AC? circuits, or more precisely, the class of functions computable by some Dlogtime-uniform
family of circuits of polynomial-size and constant-depth that are built using unbounded fargn A
and Cr gates and unary &It gates.

A stringw € {0, 1}* of lengthn is the binary representation of an integer= """ | 2" ‘w;.

The logarithm base two is denoted loy,.

We use the following convention throughout the paper. Whenever we refer to some reat value
(such asi = logn or a = n€) in a context where there should be an integral quantity (for instance:
“a string of lengthy”) the reader should read it ds].

2.2 Reductions and complete problems

The reader is probably familiar with the notion of polynomial-time many-one reducikiljty Polynomial-
time reducibility is an extremely useful tool for classifying NP-complete problems and more generally
for classifying the complexity of problems that are not believed to lie in P. However, it is of no use
at all in identifying important distinctions among different problems in P. For that, it is necessary to
use a more refined tool, such as A@ductions.

For languagedl andB we writeAgf,}LCOB if there is a function- € Dlogtime-uniform AC such
that, for allz, x € Aifand only ifr(z) € B. More generally, for any class of functiofiswe say that
A<C B ifthere is a function € C such that for any, xa(z) = x5(r(z)). The function- is called
themany-one reduction ofl to B. We say thatd is complete forD under<¢, reductions ifA € D
and for any languag® € D, B<¢, A. (Note, we require onljanguagego reduce ta4; otherwise
no language could be complete for a class that contains any non-Boolean function.) Although AC
reductions may seem to be quite restrictive, most natural examples of NP-complete problems remain
complete undex ¢’ reductions. For any clagsthat is closed undec™®’ reductions, e.g. N&
any language that is complete f@runder<2¢ reductions is also complete undef’ reductions
[2,1].

Note that we have definel;if,}LCO reducibility for uniformreductions. IfA is complete for any of
the uniform circuit classegthat we consider under uniform €’ reductions, then it is also complete

2There are additional conditions that are required, in order to obtain a satisfactory definition of unifdrvelefer the
reader to the work of Ruzzo, who gives a uniformity condition with the desirable property that unifotncdi@sponds to
logarithmic time on an alternating Turing machine [45].



for the correspondingonuniformclass under nonunifornt_(f,}LCO reductions. (See the discussion
before Proposition 3.)

NC! has several natural and important problems that are complete grﬁﬁ@rreductions. We
give detailed definitions of three such problems: the word problem over the permutationSgroap
five elements [11], the Boolean Formula Evaluation problem [17], attdonnectivity on directed
graphs of width 5.

(1) The word problem ovefs. The word problem over the permutation grosip is the task of
evaluating the product of a sequence of permutations. More generally we defwerthgroblem
over a finite monoidV/ first. A monoid M is a finite set with an associative binary operation and
identity element ,,. We denote the operation & multiplicatively. The word problem ové¥! is the
functionW,,; : M* — M that assigns to each sequemeg mo, ..., m, of elements from\/ their
productm = myms - - - m,, overM. The empty sequeneds assigned the identity elemeny;. The
word problem overS; is the word probleniVs, over the permutation groufls = { permutations
on five elementg. The binary operation o885 is the composition of permutations; the identity
element ofS5 is the identity permutation. (The word problem ov&r can also be presented as a
languageconsisting of those pait@n, (m1, ..., m,)) forwhichm = myms - - - m,,, and technically

it is this language that is complete for NOndergﬁFo reductions — but this language has the same
complexity as the functional version of the problem that we have presented, and that version is more
convenient to work with; working with the language would rather obscure things.)

(2) The s-t-connectivity problem on directed graphs of width Bhis is an NC-complete variant

of s-t-connectivity. We say that a directed graighof widthk if its vertices can be partitioned into
layerswhere each layer is of size at mdstthe layers are linearly ordered and every edge goes from
vertices of one layer to the vertices of the next layer. Every two consecutive layers of a5width
directed graph form a bipartite graph and this bipartite graph can be representecbyaaljacency
matrix. Thus a widttb directed graph witlm + 1 layers can be described by a sequence dfx 5
adjacency matrices. Thet-connectivity problem on directed graphs of width 5 is the problem of
deciding whether a given vertexin the first layer is connected by a path to a vertedf the last

layer in a width5 directed graph. It is more convenient for us to work with the following functional
version of connectivity (which has the same complexity as the decision problem), where we ask
about connectivity between all vertices of the first and last layers>Let {0, 1}5*° be the set of
binary5 x 5 matrices. We define W5-STCONNX* — X as follows. ForA;, Ay,..., A, € X,
W5-STCONN A4, ... 4,) = A, whereA € ¥ represents the connectivity between the first and
last layer of a width 5 directed graph with+ 1 layers with adjacency matrices,, Ao, ..., A,. Itis

a standard fact that is equal to the product; A - - - A,, over the ring({0, 1}, OR, AND) — and this

could also be taken as a formal definition of W5-STCONN. Moreover, one can view W5-STCONN as
a word problem over the monold, where the binary operation is matrix multiplication over the ring
({0,1}, OR, AND) and the identity element & is the identity matrix. This view of W5-STCONN

will also be useful for us. Clearly, the word problem o&ris a special case of W5-STCONN.

(3) The Boolean Formula Evaluation problerRoughly speaking, the Boolean Formula Evaluation
problem is the set of formulas that evaluate to true. We will make use of its variant where we focus
only on balanced formulas (that is, formulas whose graph ésrapletebinary tree of depthi).

Input instances thus consist of a string25f zeros and ones representing the values that label the
leaves of the formula, along with a sequenc@®bf- 1 labels for the internal nodes of the tree. Let

¥ ={0,1,A,V,®}. The set BFE consists of all of the “well-formed formulas” over alphab#tat
evaluate to 1.

In order to simplify the proof that our construction in Proposition 12 is Dlogtime-uniform, we
choose a particular encoding that will be convenient. The “well-formed formulas” consist of strings
of the formwvz such that for somd, z is a string of lengtr2¢ in {0, 1}*, andv is a string of length
2¢ — 1in {A, Vv, ®}* representing the labels of the internal nodes of the formula, given in the order
specified by the following recursive definition.



If d = 1, then there is only one internal node, so there is no need to specify the order.

If d = 2, then the label of the root is listed first, followed by the label of the left child, and then
by the label of the right child.

If d > 2andd = 2¢ — 1, then the2® — 1 labels of the subtre® of depthc closest to the root are
given first, in the order specified for trees of deptThis is followed by2¢ encodings of the subtrees
of depthc — 1 whose values feed intf (starting from the leftmost subtree), in the order specified for
trees of deptle — 1.

If d > 2andd = 2¢, then the2® — 1 labels of the subtre® of depthc closest to the root are given
first, in the order specified for trees of depthThis is followed by2¢ encodings of the subtrees of
depthc whose values feed intf (starting from the leftmost subtree), in the order specified for trees
of depthe.

The reader may wonder if it is necessary to be so particular about our encoding of the problem
BFE. To some extent, the choice of encoding is crucial. For instance, if a formula were not encoded
as a formula, but instead were encoded as an unsorted list of gates and edges, then it is an easy ex-
ercise to show that evaluating a formula is complete for L, using the fact that determining whether
a vertexu occurs before a vertexin a directed line graph presented as an unsorted list of edges is
complete for L [22]. Thus it is at least important that the formulas in BFE be presented as parenthe-
sized expressions or some similar encoding. The general (not-necessarily balanced) Boolean formula
evaluation problem is in NE[17], and thus there are “ef'ficientgfnCU reductions from the general
formula evaluation problem to the balanced encoding that we have chosen for BFE, but the reductions
that one obtains from known NQlgorithms (e.g., [17, 16, 15]) do not appear to be computable by
linear-sizeAC? circuits. This is one reason why we do not know how to obtimiear-sizestrong
downward self-reductions for the general Boolean formula evaluation problem, such as we present
for BFE. The reason why we include as an operation in BFE is so there will be a linear-size reduc-
tion from PARITY to BFE, so that the non-linear PARITY lower bounds [32] will immediately carry
over to BFE.

Even in this restricted form, BFE is complete for NQSee, for example, the proof of Lemma
7.2in[13].)

Proposition 1 [11, 17] Ws. , BFE, W5-STCONNare problems complete fodC! undergﬁco re-
ductions.

The problem W5-STCONN remains complete for Ni€directed edges are permittéal both
directionsbetween adjacent layers, as well as in the undirected case. The arguments that we present
for W5-STCONN also carry over to these variants, with minor technical modifications.

Although NC' has several natural complete problems un;dﬁ?o reductions, many of the other
complexity classes we consider (such ad' J&C[¢], and ACC) are not believed to hawenycom-
plete problems undeﬁic0 reducibility. Some of them do, however, have complete problems under
ACC-Turing reducibility. Our main theorems rely on different variants of Turing reducibility, and thus
we need the following general definition.

For any circuit complexity class, we defineC-Turing reducibility. Letf andg be two functions.

We say thatf <%.g if there is a family of circuits of polynomial size computiffgwhere the circuits
haveoracle gatesfor the functiong in addition to the collection of gates that is provided in the
definition of the circuit clasg.® The family of circuits is called theeduction off to g. We say that

f is complete forD under<¢. reductions iff € D and for any functiory € D, g<%f. Itis an

3In this paper, we do not make use of NCuring reducibility, and indeed this definition would need to be modified in order
to coincide with the definition of N&Turing reducibility as studied by Cook [20] and Wilson [51] and others. In defining
ACF reducibility, each oracle gate is considered to have depth 1, as in our definition, but in defirfing#i@ibility, Cook
and Wilson felt that it was more in keeping with the flavor of bounded fan-in circuits to define the depth of an oracle gate to be
the logarithm of its fan-in. Using their convention, an NTuring reduction could have oracle gates of only bounded fan-in,
which is not a very useful notion. In contrast, our definition yields exactly the type of “R@ing reducibility” that we need
in our definition of “pure self-reducibility”.



easy observation that languages complete fof Nﬁnergﬁfo reductions are also complete for NC
under<4¢’ reductions.

Proposition2 e MAJis complete fofC° under<Y’ reductions.
e MoD-q is complete foAC®[¢] under<4°° reductions.
e AND is complete foACC® under<$’ reductions.

Turing reducibility will be used in the next section, in order to define downward self-reducibility.

Reductions can be either uniform or nonuniform. The reader can verify that all of the examples
of reductions that we present in this paper are Dlogtime-uniform. It is worth observing thas if
complete for any of thaniformclasses that we consider under unifog“j};CO or <$ reductions, then
it is also complete for the correspondingnuniformclass under nonuniform reductions of the same
type. For example, iB is in nonuniform NC, then there is a nonuniform family of Boolean formulae
{¢n}n>1 acceptingB. The setD = {(¢, z) : a boolean formula given in infix notation evaluates
to 1 onz} is in uniform NC' [17, 16] and thus there is a uniform reduction fréio A. Composing
this uniform reduction with the nonuniform reduction Bfto D that mapse to (¢,, z) yields the
desired nonuniform reduction &f to A. Note that, for this example, it is important th@te defined
in terms of Boolean formulae, instead of, say, logarithmic depth Boolean circuits, since it is not
known whether logarithmic depth Boolean circuits can be evaluated in ®WGimilar construction
works also for constant-depth circuits. As an example we briefly explain the cas€’6f| CI€ B is
in nonuniform CC[q| then it is accepted by a family of ] circuits of depthi and size at most*
for somek, d > 1 and anyn > 2. Without loss of generality one may also assume that these circuits
are layered and between any two gates there is at most one wire. Considerfhe-sgtC, z) : C
is a CC[q] circuit of depthd encoded by a sequence|ef® x |z|* adjacency matrices, one for each
level of the circuit, such that'(z) = 1}. Clearly,D has uniform C&]q] circuits of depthO(d) and
sizen®*), Hence it reduces td. SinceB nonuniformly reduces t® by transitivity it also reduces
nonuniformly toA.

Since completeness results carry over from the uniform setting to the nonuniform setting, we will
henceforth slightly abuse notation and simply say that a setcomplete undex$. reductions” even
when( is a nonuniform class, without explicitly mentioning that the reductions must be nonuniform
in this case.

The following fact about Dlogtime-uniform Turing reductions is not entirely obvious, and thus
for completeness we provide a proof. Let circuit fan{iy}, } be a Turing reduction of to g, and let
{D,} be a Turing reduction of to h. Thecompositiorof these reductions is the reductionfofo /
that results by replacing each oracle gat€'gfhaving fan-inm by D,,,.

Proposition 3 For any of the classe€ defined in this section, the composition of two Dlogtime-
uniform <$. reductions is a Dlogtime-uniforra§. reduction.

Proof. Let{C,} and{D,} be two Dlogtime-uniform families of reductions. Define a new family
{E,} whereFE,, has the following gates:

{i : ¢ is a non-oracle gate af,, }U

{(#,m, j) : i is an oracle gate df', that has fan-inn andj is a gate ofD,,, }.

Since the definition of Dlogtime-uniformity ensures that it is easy to recognize the fan-in of an oracle
gate, it is routine to establish that the famity, (with the obvious connections among gates to im-
plement the composed reduction) is Dlogtime-uniform. For all of the polynomial-size circuit classes
C defined in this section, it is immediate that the resulting redudlidn} is also a<$. reduction. O



3 Downward self-reducibility

In this section we define downward self-reducibility and present several examples of downward self-
reducible functions. Intuitively, a function is downward self-reducible if it can be efficiently computed
from its own values at shorter inputs. We give a formal definition next.

A C self-reduction forf is a family of oracle circuits witnessing th#&%. f, where on inputr,
the oracle circuit does not feed inputnto any of its oracle gates.

Self-reducibility sometimes also goes by the name “autoreducibility.” The term “self-reducibility”
is more common in those settings (as here) where interest centers on routines that enforce the condi-
tion thatx is not queried, by ensuring that all queries have lespttrterthan the length of.

Definition 4 Letf : {0,1}* — {0,1}* be afunction, and let be a class of circuits. Let(n), m(n) :
IN — IN be functions such that for all, m(n) < n. We say thaff,, is downward self-reducible to
Jm(n) by aC reduction of sizes(n) if there is a family ofC oracle circuits{C, },>1 computingf
such that for eacl, C,, uses its oracle gates to quefyon inputs of size at most(n), and has at
mosts(n) wires.

Most of the self-reductions that we present consist of almost no hardware other than oracle gates.
We call such reductions “pure”; pure self-reduction forf is an NC self-reduction forf, i.e., a
self-reduction where thenly gates are oracle gates, as well as bounded fannin And Cr gates
and unary NbT gates.

Definition 5 Let f : {0,1}* — {0,1}* be a function. Let(n), m(n) : IN — IN be functions such
that for all n, m(n) < n and letd > 1 be an integer. We say thd, is downward self-reducible to
Jm(n) Dy @ pure reduction of depthand sizes(n) if there is a circuit family{C}, },,>1 such that for
eachn, C,, computes,, is of depth at most, size at mos¢(n), and consists of fan-in twAND and
OR gates, unanNoT gates and oracle gates that compute functfoon inputs of size at most(n).

We use the term “pure” rather than simply calling them™N&ductions, since the term “NCusually
refers to computation in which the output depends on at ©¢$} bits of the input, and pure self-
reductions do not share that property.

We will almost exclusively be interested in functions that are downward self-reducible to inputs
of size at mostn(n) = n¢, for somee > 0. This notion of downward self-reducibility is essentially
identical to what Goldwasseat al. call “strong downward self-reducibility” [26]. Hence, if is
downward self-reducible tg,- by a pure reduction for some > 0, we will also call itstrongly
downward self-reducible (Similarly, if f is downward self-reducible tg,. by aC reduction for
some clasg, we will say thatf is C strongly downward self-reducible.) For our purposes however,
it is important to pay close attention to the size and depth of the reduction.

The rest of this section is devoted to showing that the following problems are strongly downward
self-reducible: AD, Wy, MOD-q, W5-STCONN MAJ and BFE. We also present somewhat weaker
downward self-reducibility results for various types of iterated matrix multiplication problems.

We start with an example that may seem trivial, but is nonetheless useful.

Proposition 6 For any0 < ¢ < 1, AND,, is downward self-reducible t&ND,, by a Dlogtime-
uniform pure reduction of deptf(1/¢) and sizeO(n). Similarly for OR.

Proof. Consider the AD function. The idea of the proof is simple: form a tree of dett1 /¢)

from AND,,c gates and assign to each leaf one of the variables. Howeaadn may be arbitrary

so this construction may not be uniform. Thus to provide a Dlogtime-uniform construction one has
to be careful about the details. We provide a more detailed construction below to demonstrate the
necessary techniques. A reader familiar with the issues of uniformity may want to skip the rest of the
proof. Let an integek satisfy2¢=1 < 1/e < 2%, If n < 42" then a tree of AD, gates can be used

to compute AID,,. So assume for the rest of the proof that 42" Pick the largest integer> 1
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such thae? < n!/2" and the smallest integer such thatr < (2°)™. We will use AND,. gates to
build the circuit. We will label gates of the circuit by labels frdit, 1,...,m} x ({0,1}¥)™. Not
all labels will be valid; some labels will be unused. We describe the valid labels together with the

associated gates next. Let,no,...,n,, € {0,1}¢ be such thati;ny - - - n,, is the /m-bit binary
representation af — 1 padded with leading zeros if necessary. Considgnws, . . ., w,, € {0,1},
w = wwy - wy, andd € {0,1,...,m}. (d,w) represents a valid label in any of the following
cases:

1. Ifd = 0 andw; = wy = --- = w,, = 0 then(d, w) is the label of the single output¥D,.

gate with inputs from gates labeled by, w}ws - - - w,,,) for anyw} € {0, 1}%.

2. 1f0 < d < m, wyws ---wy precedes or is equal to;ns - - - ng in the lexicographical order
andwgy1 = wgyo = - - = wy, = 0° then(d, w) labels an AID,. gate with inputs from gates
labeled by(d + 1, wyws - - - wawly, yway2 - - - wy, ) for anywy, ;€ {0, 1}

3. f0<d<m,wwy - -wyg_1 = nins---nqg_1, ng Precedesv, in the lexicographical order
andwgi1 = war2 = - - = w,, = 0 then(d, w) labels a gate with constant one.

4. If d = m, wiws - - - w,, precedes or is equal to,ns - - - n,, in the lexicographical order then
(d,w) labels an input gate associated witth input variable, wheré— 1 is represented by
in binary.

No other label is used. Sinceis a constantk is also a constant. One can verify easily from

the description of the gate labeling that the connectivity language for the circuit with respect to this
labeling is decidable by a Dlogtime procedure. (Giwgn binary, one can find andm in time linear

in the binary representation ef Incrementing and decrementing a number in binary representation
can also be done in time linear in the length of the binary representation. All other operations are
clearly in linear time assuming our Dlogtime machine has at least two tapes.) One can also easily
verify that the described circuit computes exactiy@, .

We claim that it contain®(n) wires. Indeed, the number of wires between bottom levelwbA
gates and inputs is at mast+ 2¢. The layer one up contains at mest2’ + 2¢ wires, the next one
n/(29)2 + 2¢, and so on. Thus the number of wires in the circuit is at @ast (m + 1)2¢. Since
e < 1, we have thak > 1 and hence’ < /n. Furthermore2‘(™=1) < n so,m < 1+ logn. Thus
the number of wires in the circuitis boundedby + /n - (2 + logn). O

The case of AD and Qr can be further generalized to word problems over finite monoids.

Proposition 7 For any finite monoid\/ and any0 < e < 1, (W), is downward self-reducible to
(War)ne by a Dlogtime-uniform pure reduction of depit{1/¢) and sizeO(n).

The proof is essentially the same as fanBand Cr; one uses gates computifigy, on inputs
of size< n° and constants for the binary encodingl@f. If for an integerq > 2 we consider the
monoidZ, = ({0, 1,...,¢ — 1}, +(mod ¢)) then we obtain the next corollary.

Corollary 8 Forany0 < e < 1, (MoD-q),, is downward self-reducible ttM oD-¢),,. by a Dlogtime-
uniform pure reduction of deptfi(1/¢) and sizeO(n).

Proof. Clearly, Mob-q can be computed usind’z,. The other way around is also true: one can
computelVz, using Mob-¢g. The proof of the corollary consists of showing heWz,_ ), can be
computed using gates f¢MoD-¢), and then applying the previous propositioné, . A reader
familiar with the issue of conversion betwe@M ob-q), and1Wz, may want to skip the rest of the
proof.

Letb > 1 be a constant, Bin Z, — {0,1}® be an arbitrary injective function, ard > 4q
be an integer. We show how to u$klop-¢), gates to computéii’z, ), encoded by Bin. Let
r1,%2,...,7 € Zg be aninput toWz, andy,...,ye be its encoding by Bin. We will build
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a circuit that takegy,, ..., yg as its input and outputs, - - - z,, wherez; - - - z, is the encoding of
Ele z;(mod ¢) by Bin. The circuit will be of constant depth (depending only on Bin gnaind use
O(¢) bounded fan-in AD, OR and NOT gates and MoD-¢ gates of fan-irf. The circuit computes
as follows.

Letm = [¢/q]| — 2. Partition arbitrarily{1, . . ., £} into non-empty sets, So, ..., S, of size at
most2q. Sincel > 4q, this is possible. For eaghe {1, ..., m}, letw; = 1%ies; ©(medDga=2 e, x5 (moda),
Clearly, > =", 327, (wi); = S, zi(modq). As ¢ andb are constanty, w - - - w,, can be com-
puted fromys, . ..,y by a circuit of constant depth usin@(¢) fan-in two AND and QR gates and
unary NOT gates.

Forj =0,...,q—1, letg; be a Mob-q gate of fan-ir¢ that takes as its inpuit; ws - - - w,,, 091977
padded with zeros to the length6fClearly,g; evaluates to zero if and onIyEf=1 x; = j(mod q).
Hence, the output afy, . . ., g4—1 uniquely determineif:1 x;(mod ¢q). The output ofyo, . . ., gg—1
can thus be processed by a constant size circuit consisting of bounded fam,jioR and NOT gates
to compute BilﬁZle z;(mod ¢)). This gives the desired circuit for computiig’z, ), encoded by
Bin. (For? < 4q one can build a constant-depth circuit computiiigz, ), using fan-in two AND
gates and unary dIT gates.)

By Proposition 7, there are constaht® and a function Bin Z, — {0, 1} such that for all
large enough, there is a circdit, of depth< k/e with < kn wires that compute§Vz, ),, encoded
by Bin using fan-in two AID and Cr gates, unary NT gates and gates f¢¥l'z, ), encoded by Bin,
for ¢ < n°. TakeC, and replace each gate f0’z_ ), by the circuit constructed in the preceding
paragraph to obtain a circuit, computing(Wz, ),. The circuitC;, consists of fan-in two AD and
OR gates, unary NT gates andMoD-¢), gates, for < n°. Since eaciiVz, ), gate of fan-inéb is
replaced by a constant-depth circuit that uegg) wires, the depth and the number of wires(gf
are only a constant factor larger than thatihf

If we encode an input; , va, ..., v, € {0,1} symbol by symbol by Bin and we feed the resulting
string into the circuitC/, we obtaind""_, v; = j(mod ¢) encoded by Bin. From this encoded value
one can decode the output ofd®-q on inputwvy, ..., v,. Hence using(n) additional fan-in two
AND and Cr gates and unary dir gates one can convert the circalf into a constant-depth circuit
for (MoD-q),,. The overall size of the circuit will be linear in

One can verify that the construction can be made Dlogtime-uniform. Indeed, the circuit comput-
ing Wz, using Mob-q gates can be made Dlogtime-uniform, and its gate labeling can be concate-
nated with the labeling of gates @, to obtain a gate labeling @f;,. Additional labels can be used
for gates calculating the Bin encoding and decoding of input and outptif ofThe details of these
constructions are rather straightforward and we leave them to the interested reader. O

Because of the connection between W5-STCONN and word problems over monoids we also
obtain:

Proposition 9 For any0 < ¢ < 1, W5-STCONN, is downward self-reducible t&/5-STCONN,-
by a Dlogtime-uniform pure reduction of depil{1/¢) and sizeO(n).

We can prove a similar self-reducibility claim also fora¥l This time the proofis a little bit more
involved and uses the following lemma.

Lemma 10 There is a constand such that for anyi < ¢ < m there is a Dlogtime-uniform depth
d circuit family with at mostt{m gates (consisting of fan-in twAND gates, unaryNoOT gates and
oracle gates foMAJ,,,), taking as its input-bit binary representations of integeys, . . . , v, and
producing as output a sequence of integers . ., z, each represented b+ log(m + 1) bits such
thaty; +yo + -+ Y = 21 + -+ + 2¢.

Proof. First, observe that we can computa,,, and (r,,,, using a gate for MJ,,,, and constants

m

0Oandl. Forj = 1,...,¢, letz; = 2795 (y;);. It follows from the definition of binary
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representationthat + yo + - - + ¥ = 21 + - - - + 2¢. Thus we only need to show how to compute
the (¢ +log(m+ 1))-bit binary representation af;, . . ., z, from binary representation @f, . . ., Y.
(Note each of the representations:ef. . ., z,,, has/ of its bits always set to zero.)

Fix j € {1,...,¢}. Letgs,...,gm be MAJ,,, gates where fok = 1,...,m, g, takes as its
input (y1);(y2); - - - (ym); 1™ *F10F=1. Clearly, the outpuy; - - - g,, = 1211 Wi g2 (Wi,
Fork =1,...,m—1,letg; = (gx AND (NOT gx+1)) andg,, = g.. Theng;, evaluates to one
if and only if >, (v;); is k. Hence, theh-th bit of thelog(m + 1)-bit binary representation of
>t (yi); is obtained by taking the ®of gates in the sefq;; k € {1,...,m} and theh-th bit
of thelog(m + 1)-bit binary representation df is ong. Thus to obtain théog(m -+ 1)-bit binary
representation o}~ | (v;); we needm MAJ,,, gates;n — 1 AND, gates,m — 1 NOT gates and
log(m + 1) OR,, gates. Hence, to obtain all theg(m + 1)-bit representations of_" , (y;), for
different j's we need at most/m (non-input) gates in total. The desired binary representation of
z; is obtained by concatenating the binary representatiofs'8f, (v;); with 07 on left ando‘~7 on

right. Dlogtime-uniformity of the circuit is routine to establish. O

Theorem 11 For any0 < € < 1, MAJ,, is downward self-reducible tol AJ,, by a Dlogtime-uniform
pure reduction of deptt(1/¢) and sizeD(n'*) consisting of a linear number of gates.

Proof. First, we prove the claim far = 1/2 to illustrate the technique. For simplicity and clarity we
mostly ignore rounding issues. We can view the input dsbit integersa, ..., a,. To determine

the output of MaJ,, we will compute the binary representation of the sum of these integers. The total
sum will be obtained in several stages. Each stage will take as an input a sequenge. . , a,,, of

integers and convert it into a shorter sequence of integets, . . ., b,,,» having the same sum, i.e.,

m’ < manda; + as + -+ + an, = by + - -+ + by, The first stage will start with the input as a
sequence of 1-bit integers and the last stage will output a single integer representing the total sum of
the input bits. As no integer at any stage can attain a value largentha@ncan always truncate any
number of more thatvg(n + 1)-bits to thelog(n + 1) least significant bits. (If convenient we may

also pad a binary representation of any number by leading zetos(to+ 1)-bits.)

Stage 1:n x 1-bit — (24/n+6) x log(n + 1)-bits. This stage takes a sequence of hitsas, . . ., a,
and outputsy, by, ..., by sy6. Partition{l,...,n} into setsSy, Sa, ..., 5 mie Of consecutive
integers, each set of size at mQét /2. Using Lemma 10 compute for eagh=1,...,2\/n + 6 in
parallel the integeb; = EieSJ a;. Outputby, ..., by .6 padded tdog(n + 1)-bits. Lemma 10
(with ¢ = 1 andm = /n/2) provides a circuit with at mogt,/n gates for computing eadh, so in
total we need)(n) of AND,, NOT and MAJ_/; gates for this stage.

Stage 2:(2/n+6) x log(n+1)-bits — 5[log(n+1)] x log(n+ 1)-bits. This stage takes a sequence

of log(n + 1)-bit integersay, as, . .., as s @and outputds, b, . .., bsfiog(n+1y1- Similarly to the
previous stage divide the's into five subsequences of size at mgst/2 and using Lemma 10 (with

¢ =log(n + 1) andm = /n/2, truncating the outputs tiog(n + 1) bits), compute for each of the
subsequencdsg(n + 1)-bit integers representing the sum of thés in that subsequence. Output

all the 5[log(n + 1)] integers that were obtained from the application of the lemma. Since each
subsequence contains at mgsi/2 integers, this stage requires at most,/n logn) many ANDo,

NoT and MAJ ., gates.

Stage 3: 5[log(n + 1)] x log(n + 1)-bits — 3 x log(n + 1)-bits. This stage getsog(n + 1)-
bit integersay , as, . . ., asfiog(n+1)] @Nd outputshy, be, b3. It proceeds as follows. We divide the
binary representation of eaeh, i € {1,...,5[log(n + 1)1}, into blocks ofloglogn consecutive
bits. Each block is regarded adag log n-bit integer so we get integets 1, a; 2, ..., a; ,, wWhere
k ~log(n + 1)/loglogn anda; = Z?:l 2(k=g)[loglognlg, ..

Forj = 1,...,k, we apply Lemma 10 on the sequence;, as j, - . ., s[log(n+1)],; O Obtain
dj1,dja, ... dj1oglogn, Where3 28Tl o srloglosn 5. penote the value of the sum
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sj. The sequencé, 1,d; s, ..., d;10g10sn representdoglogn integers, each havin@(loglogn)
bits. Hence altogether they constitute oiilloglogn)? bits. Hence, using a DNF formula of
size20(oglogn)* < po(1) pyilt from no) ANDO (10 10g n)2 Jates and a single ®).q) gate we can
calculate from the sequen@gi,d; o, . . ., dj 10g 10s » €8CH bit of the binary representationsgf For
all 5 we do the whole calculation in parallel.

Finally, eachs; represents a sum of at mdstlog(n + 1)] integers each olog log n-bits, so
it can be represented lyg(5[log(n + 1)] + 1) + loglogn < 5 + 2loglogn bits. We can form
three integer$y, bo, b3 from sy, ..., s, that represent the sum of thg's (see Fig. 1). Formally,
bi =3 icsimoas 2K 818 L5 wherej ranges from to k.

This stage involve®(logn/loglogn) applications of Lemma 10 with parametérandm of
order less thaivg n, andk(5+2 log log n) DNF formulas of sizex®(™). Hence, it can be implemented
by a constant-depth circuit consisting of a linear numberebA NoT and MAJ,,.1) gates.

log log n loglogn loglogn loglogn log log n log log n
a1 ‘ aj,l 412 41,3 414 45 .k ‘
o |

+ + + + + +
dclogn ‘ ‘

b, 0 . 0 %M 00 ... M

b, 00..0 /;///M 00..07 /5//% . 00

by Y //i%%oo 07 ////%oo N 00
A

log c +2loglogn

—log ¢ +log log n

Figure 1: Adding(k log log n)-bitintegersai, as, . .., aciogn: b1 +b2+bs = a1 +az+- -+ aciogn-

Stage 4:3 x log(n + 1)-bits — 1 x log(n + 1)-bits. Adding two n-bit integers can be done by
ACY circuits usingO(n?) many AND,,, OR,, and NoT gates (see, e.g. [50, Theorem 1.15]). Hence,
adding thredog(n + 1)-bit integers can be done by constant-depth circuits uSifigg® n) many
ANDjog(n+1)s ORiog(n+1) @nd NOT gates. Thus summing the inpaf, a2, az of this stage can be
done by a constant-depth circuit usi@glog2 n) many MAJo (¢ ») @and NOT gates to obtain the final
sum.

The resulting total sum obtained from Stage 4 of the circuit can be compared with the binary
representation af /2 by an AC circuit consisting ofD(log? n) many ANDIog(n+1)s ORlog(n+1) @nd
NOT gates or alternatively Mio 1., ) @and NOT gates. As each stage of the computation can be done
by constant-depth circuits consisting of a linear numberebA NoT and MAJ_;; gates the lemma
follows fore = 1/2.
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For generak the computation proceeds similarly, but the first two stages are replaced by a re-
peated use of a stage that reduces the input sequenes, . . ., a,, to the sequenck,, bo, . . ., by,
form’ = (2mlog(n + 1))/n¢. The reduction is done using Lemma 10 applied on subsequences of
a;'s of lengthn®/2. Oncem’ < n¢/2, a single application of Lemma 10 produdes(n + 1) integers
that can be passed to the last two stages of the above procedure. Clegarlye repetitions will
suffice for the first stage, each repetition requiring at mdst® - O(n¢) = O(n) gates for MaJ,«,

AND, and NOT.

We have established that the self-reductions have a linear number of gates, but it remains for us
to prove the size bound @(n'*<) by counting the number of wires. There &@én) gates, each
having fan-in at most¢. Thus the total size i©(n!*¢). Dlogtime-uniformity of the circuit is routine
to establish. O

We have seen thatMp, OR, MOD-¢q, and MAJ are all downward self-reducible. We saw also
that downward self-reducibility holds for the word problem over any finite monoid, which yields
self-reductions for some of the standard complete problems fdr N¢5-STCONN and the word
problem overSs. We thank Mario Szegedy for pointing out that BFE (another standard complete
problem for NC) is also downward self-reducible:

Proposition 12 For any0 < ¢ < 1, BFE, is downward self-reducible tBFE,. by a Dlogtime-
uniform pure reduction of deptfi(1/¢) and sizeO(n).

Proof. We will show that there is a constantind an oracle circuit familyC,, },,>1 such thatC,, is
a pure reduction of depthand sizeO(n) reducing BFE, to BFE,,,:,», where no path from a leaf to
the root ofC,, encounters more than two oracle gates.

We first show that this suffices to prove the proposition. Note that if we replace each oracle gate
for BFE,, in C,, by the oracle circuit’,,,, we obtain a Dlogtime-uniform family of pure reductions
of depth3c and sizeD(n) reducing BFE to BFE,,,:,4, where no path from a leaf to the root©#,
encounters more than four oracle gates. (Notice, each oracle gate for 8550 (m) wires and is
replaced by a circuit having al€d(m) wires. Thus, the size of the circuit gets at most multiplied by
some constant.) By induction, we obtain, for evira Dlogtime-uniform family of pure reductions
of depth(2* — 1)c and sizeO(n) reducing BFE, to BFE,,. ...

Thus, in particular, foe of the form1/2%~! there is a Dlogtime-uniform family of pure reductions
of depth(2* — 1)c = O(1/¢) and sizeO(n) reducing BFE to BFE, . ,., since4kn!/2" < n1/2"""
for all largen. The theorem follows, since everys within a factor of 2 of some smaller number of
the form1/2k—1.

We now proceed to prove the claim, by presenting the circuit fafily}. BFE contains only
inputs of lengthn of the formn = 24+ — 1 for some integet, so assume has this form. Assume
thatd is odd; the construction is simplerdfis even. Let us denote the firgt — 1 input symbols by
v, and the las2? input symbols byt.

The output gate of’,, will be an AND gate of fan-in two, where one chitdchecks if the input is
a well-formed formula, and the other chibcevaluates the formula, assuming that it is well-formed.
We consideb first.

The gateb is an oracle gate that has as its input the strifigf, wherev’ consists of the first
2(d+1)/2 _ 1 symbols ofv, andz’ is a string of2(d + 1)/2 symbols consisting of the outputs of
oracle gates;, for 1 < i < 2(4+1)/2_|f the input stringuz is well-formed, the string’ encodes the
subformula of the formula having depth roughly half of the depth efand containing the output
gate ofv, and the oracle gatés will evaluate the subformulas aefthat feed inta’. More precisely,
the oracle gaté; will take as input a stringv;, z; ), wherev; is thei-th block of length(?—1)/2 — 1
afterv’ in v, andz; is thei-th block of lengtt2(¢=1)/2 in 2. It is immediate that the gateproduces
the desired output, if the input is a well-formed formula. A routine calculation shows that the queries
have length bounded bin'/2.

We now turn to the construction of the subcircuithat tests if the input is well-formed. Recall
that the input is well-formed if and only if € {A, v, ®}* andz € {0, 1}*. This is simply an AD of
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n conditions (call them;), where each conditiosy can be computed using N@ircuitry. We need
to evaluate this AD using oracle gates for BEEwherem < 4n!/2. To do this, we first use another
layer of NC circuitry to halve the fan-in of the unbounded fan-in& that we need to compute; we
compute conditions; defined byc; = cz;_1 A cgj forj =1,...,(n —1)/2 andcy,, 4 5 = cn.
Note that the input is well-formed if and only if BRE’z") evaluates to true, wherg’ consists of
the bitsc; andv” = A=1/2 This well-formed instance of BFE can be evaluated using queries to
BFE,, for m < 4n!/2, using the same construction as was used for thelgatesvaluate a formula.

To complete the proof, we merely observe that the number of wires is easily seen to be linear in
n, and we note that Dlogtime-uniformity is routine to establish. O

Indeed, we point out that any problem that is complete for a complexity class that has a strongly
downward self-reducible complete problem must be strongly downward self-reducible. See Proposi-
tion 24.

Another problem for which we can prove downward self-reducibilitiygsated Matrix Multipli-
cation Let IMM,, 4 : {0,1}4°¢ — {0, 1}%*n(*+lozd) phe the problem of computing the product of
n d x d matrices, with each entry being a non-negatit integer. Define thenodularversion of
the Iterated Matrix Product to be the function mIMM,, : {0, 1}"%* 54 —, {0, 1}4°los9 computing
the Iterated Matrix Product modulo some integer 2. Finally, we will also need to consider the
Booleaniterated Matrix Product problem BIMM, : {0,1}"¢" — {0,1}%" which is the Iterated
Matrix Problem over the ring{0, 1}, OR, AND).

The following proposition is immediate using the same technique as in Proposition 6:

Proposition 13 For any0 < ¢ < 1 and anyn,d,q > 1, mIMM,, 4, is downward self-reducible
to mIMM .« 4, by a Dlogtime-uniform pure reduction of depti(1/¢) and sizeO(nd? log q) using
O(n) oracle gates fomIMM 4 4, n/? < ¢ < n¢. SimilarlyBIMM,, 4 is reducible toBIMM - ; by
a reduction of depti®(1/¢) and sizeO(nd?) usingO(n) oracle gates.

The following more interesting lemma will be useful in the next section.

Lemma 14 There is a universal constantrr such that for any) < ¢ < 1 and anyd(n) < n,
IMM . 4(n),n is downward self-reducible tMM ;< ;(,,) .- by @ Dlogtime-unifornTCP-reduction of
depthO(1/¢) and sizeD(d(n)? - n3+2¢crr) usingO(n?) oracle gates.

Here,ccrr is a specific constant that can be determined from a paper of Hesse et al. [31]. The
exact value otcrg is not important for our purposes, but we estimate that < 10.
Proof. Hesse et al. [31] give Dlogtime-uniform PQircuits with O(n°crr) wires that do the
following tasks:

e take as input twar-bit integersa andb, and output: mod b. (Call this circuitA,,.)

e take as input am-bit integera, and output itsChinese Remainder Representatioa., a se-
quence of: pairs(a;, b;) of O(log n)-bit numbers where, = amod b; and allb; are distinct
primes depending only om. (Call this circuitB,,.)

e take as input: pairs(a;, b;) of O(logn)-bit numbers and output afi(n log n)-bit numbera
satisfyinga; = amodb; and0 < a < [[, b;, if the b; are distinct primes. (Call this circuit
R,.)

Letn be large enough and sét= d(n). Using these three circuit families we can reduce IMM,

to the problem of computing(n?) instances of mIMM 4, in parallel forO(n?) distinct prime
O(logn)-bit numbersg;. Namely to compute the iterated product, we first compute the Chinese
Remainder Representation of each input matrix; this give®@s’) instances of mIMM, , ., to
solve. Next, we compute the iterated product mod each ofitlfthereby obtaining the output in
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Chinese Remainder Representation). Finally, we convert the answer to binary representation. The
following three steps describe the computation in more detail.

Step 1. We convert the input matrice&/;, M, ..., M,, into 2n? > n(n + logd) sequences of
d x d matricesM j, Ma j, ..., M, ;, j € {1,2,...,2n?} as follows: For each € {1,...,n} and
k.0 € {1,...,d} we apply the circuitB,,,> on the entry()M;)x ¢ of M; padded by leading zeros to
2n? bits, to obtain((M; 1)k, q1), (Mi2)ke:G2), - - -, (M; 202 )k, g2n2 ). Thatis, each matrig/;
consists of the entries dff; modulo theO(log n)-bit primeg;. This step consists of - d* copies of
circuit Ay,2 so it can be done by a PQircuit of sizeO(d?n!*2ccrr),

Step 2.For eachj € {1,2,...,2n?}, we compute the produc¥; of matricesM; ;, M j, ..., M, ;
modg;. To do so, we use the pure self-reduction of miMM,, to mIMM,,c 44, given by Propo-
sition 13. However as we do not have oracle access to n”;[L\(MJ, we replace each oracle gate
for mIMM,q,q,, n°/? < £ < n€, by a small sub-circuit consisting of an oracle gate IMM giv-
ing an intermediate matri}/ followed by an application of the circuit,,2 on each entry of\/
(padded by leading zeros &#? bits) to obtainM mod g;, i.e., the result expected from the oracle
gate mIMM 4,4,. Thus, to computeV;, we use a TE€ circuit with O(n) oracle gates for IMM g,
n/? < £ < n¢, O(nd?) copies of Ay>, andO(nd? logn) wires for the original self-reduction.
In total to implement this step we ne€¥(n?) oracle gates for IMMy, andn? - O(nd? logn +
nd?n?eccrr 4 @2n2¢) = O(n3t2eccrrg?) wires.

Step 3. From the previous step we obtain matricgs, N», ..., No,2 Which represent the product
N of matricesM;, ..., M,. Here,N; = Nmodg;. For eachk,? € {1,...,d} apply the circuit
Ropz on ((N1)k,e, 1), (N2)ke,q2); - - - s (Nan2)k,e, g2n2) to Obtain the entryV.; of N. This step
requiresd? copies ofR,,,2, S0 in total it use®)(d*n2°crr) wires.
The desired circuit for IMM 4, is obtained by combining the above three steps. Clearly, the
circuit will use O(n?) oracle gates for IMM g, £ < n® andO(d?(n3+2ccrr 4 pli2ecrr)) wires,
O

4  Amplifying lower bounds

In the previous section we have established several downward self-reducibility results. In this section
we show that any problem that is downward self-reducible in this way has circuits of polynomial size
of some type if and only if it has very small circuits of that type. Thus, if a small circuit size lower
bound can be proved for any such problem, it can be “amplified” into a superpolynomial size lower
bound.

The general form of our claims is:

If a function f is computable by polynomial-size circuits of ty@ehen for anye > 0, f
is computable by circuits of typ@ usingO(n'*€) gates and wires.

The circuit types we will consider are ACACC®, CC?, TC? and NC circuits. The functiong we

will consider will typically (but not always) be complete for some complexity class. For example
MAJ is complete for T€ (undergl}CU reductions), and the word problem {8k is complete for

NC!, and so on. The consequence of our claim is that establishing a lower botira'0f<) for

somee > 0 on the number of wires or gates necessary to comput®uld separate some of the
circuit classes. The following proposition summarizes known relationships between these circuit
classes.

Proposition 15
AC® ¢ ACC? C TCY C NC!

CC’ C ACC?, CC° ¢ AC®
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Except for the proper inclusion ACC ACC? [25, 52, 30] which also implies CCZ AC° the
precise relationship among AGOCC?, TC? and NC is not known, and any separation or collapse
would constitute major progress in theoretical computer science. Separation of, 8dypMANC!
would typically entail showing that no polynomial-size T €rcuit family can compute some chosen
function from NC. We show that this same separation follows already from a much smaller lower
bound.

Theorem 16 LetC be one of the circuit classes considered above (and the class of associated func-
tions), andf be a function. If for some, and s(n) : N' — N, for every0 < e < €, fn IS
downward self-reducible tg,. by a pure reduction of dept®(1/¢) and sizeO(s(n)), and f has
polynomial-size circuits of typ@, then for every’ > 0, f has circuits of type of sizeO(s(n)n* ).

Proof. Assume thalf,, has circuits of typ&€ with n* + k wires. Lete = min(€’/k, ¢). Consider

the reduction off,, to f,. that is of sizeD(s(n)) and hence has at mo8ts(n)) oracle gates. If we
replace each oracle gate féy. by the circuit of typeC of sizen* + k, we obtain a circuit of type

C for f,, with O(s(n)n*) = O(s(n)n) wires. The claim follows. (Technically, clagsmay not
allow for bounded fan-in AD, OR or NOT gates which may appear in the pure reduction hence, one
needs to simulate such gates by constant-size circuits ofGypéowever, this simulation does not
affect the size bound by more than a constant factor.) O

By analyzing the depth of the circuits constructed in the proof of Theorem 16, one can observe
that if C is a class obounded depthircuits, thenf has circuits of typ€ having depttO(1/¢’) and
O(s(n)n°) wires. For most of our arguments, for ary < 1, eithers(n) = n or s(n) = n'te,

This yields the following corollary.

Corollary 17 1. If for somee > 0, W5-STCONNrequiresCC circuits with at least2(n'*¢)
wires, thenCC? # NC!. The same is true witACC® andTC? in place ofCC", and withBFE
andWs, in place ofW5-STCONN

2. If for somee > 0, MAJ requiresCC circuits with at least2(n!*<) wires thenCC® # TCP.
The same is true witACC? in place ofCC".

3. If for somee > 0, AND requiresCCP circuits with at least2(n!+¢) wires thenCC® # ACCP.

Contrast this with the situation for SAT; if SAT is in PCwe have no way to bound the number
k such that T€ sizen” is sufficient to compute SAT. (Although, as we mentioned in Section 1.2,
Srinivasan has shown that if 2 NP then there are algorithms running in tim&"< that compute
weak approximationto MAX-CLIQUE [47]. See also our Section 6.)

Although stated as a sequence of implications, the preceding corollary is really a sequence of
equivalencessince W5-STCONN is complete for Nmnderg‘;‘;FO reductions, MJ is complete
for TCOunder<Y’ reductions, and AD is complete for ACE under<$°’ reductions. Thus, for
example, W5-STCONN is in ACCif and only if NC' = ACCP.

We remark that, since our self-reductions are Dlogtime-uniform, one can compute a cdfistant
such that, for example, if BFE is in Dlogtime-uniform TQhen it has T€ circuits with O(n!*¢)
wires where the uniformity machine runs in timk€log n. (We have not computed the value &f
— and indeed this value may depend on minor details of the particular formulation that is used in
defining Dlogtime-uniformity — but we anticipate that = 4 is sufficient; the self-reductions have
averyregular structure, and th@(logn) running time of the “original” T€ circuit family ends up
being simulated only to determine the structure of circuits for inputs ofrsifer small values ot.)

Sometimes concrete lower bounds are easier to prove for specially-constructed sets, rather than
for the standard complete sets for a complexity class. The following corollary shows that we can also
“amplify” lower bounds for such specially-constructed sets, since if one can show that a specially-
constructed set lies in NCthen typically one can determine some upper bound on the dép}tof
the NC' circuits computingf.

18



Corollary 18 Let f be computable b)MC! circuits of depthi(n). If f does not hav&C® circuits of
sizeO(3%™)) thenTC" # NC'. The same is true witACC? andCC" in place ofTC®.

Proof. If f has NC circuits of depthi(n), then it has a balanced formula of siz€™), and thus
there is a reduction of to instances of BFE of size#(™). If TC® = NC! then evaluating Boolean
formulae of lengttf can be done by TCcircuits of sizeO(¢+¢€) for any choser > 0, by Corollary
17. The claim follows. O

The technique is applicable also to other circuit classes, so if we pick a furfcfiom e.g. TC
and we know that it is computable by Tircuits of sizeO(n*), then if TC’ = ACC? then for every
e > 0, f is computable by ACEcircuits usingO(n*(1+)) wires. So proving af(n*(**+)) lower
bound on the size of ACCcircuits for f separates ACCfrom TC.

This technique is applicable, to a certain extent, also to classes larger thanmit6t, let us
consider NL. Boolean iterated matrix product BIMM is complete for NL. We do not know how
to work directly with BIMM,, ,,, and thus we work with slightly smaller matrices instead.

Theorem 19 If NL C NC! then for any > 0, BIMM n.ovieEw IS COMputable bWC! circuits of size
O(n'*¢). The same is true wittC’, ACC?, andTC" in place ofNC'.

Note, one can replace the dimension bo@®#=™ in the theorem by any other function fromi(®).
The contrapositive may be more informative; if one can show for some0 that BIMM,, , /5=
requires NC circuits of sizeQ2(n' <) then one has shown that NC£ NL. Unlike the earlier
theorems in this section, we obtain only an implication, and not an equivalence —since, Bl
is not known (or believed) to be complete for NL. Note that this result is fot bi€uit size; it does
not seem to translate into a useful statement afwatulasize.
Proof. Since BIMM,,,, is in NL, our assumption implies that BIMM, is computable by NE
circuits of sizeO(n*) for somek > 0. Lete > 0 and set’ = ¢/k. Then BIMM, .- ... is computable
by NC' circuits of sizeO(n<*) = O(n¢) and hence BIMM , == is computable by NEcircuits
of sizeO(n°) for any? < ne . (Here, we are taking advantage of the fact thdf&"™ grows more
slowly thann<’ for any¢’ > 0.) By Proposition 13, BIMMV, 5vieew is downward self-reducible to
BIMM . , iz by a pure reduction of siz8 (n22v1°e™) with O(n) oracle gates for BIMM, .z,
¢ < n¢. We can replace each oracle gate by an Nitcuit of sizeO(n¢), yielding an NC circuit of
sizeO(n22V18™ 4 p . nf) = O(n'+e). O

We now turn to the complexity class #L (the class of functions that count the number of accepting
paths of NL machines). This is the largest complexity class that we know how to address using
these techniques. Iterated Matrix Multiplication IMM ,, is a problem complete for #L (see [9]).

IMM ,, 5uieg ,, IS @ subproblem not known (or expected) to be complete for #L, but also not known
to lie in any smaller complexity class.

Theorem 20 Let ccrr be the constant from Lemma 14.#f C TCO thenIMMmQWg—n’n is com-
putable byTC? circuits of sizeO(n2¢crr+4), The same is true witNC! in place of TC'.

Thus to separate #L from Tt suffices to show a lower bound af(n?¢crr+4) on the size of
TC? circuits computing IMV, 5z ,,. Similarly for NC'.
Proof. Since IMM, ,, ,, is in #L, by our assumption, IMM, ,, is computable by TE circuits of
sizeO(n*) for somek > 0. Chooses = 1/k. Then IMM,. ,,c .« is computable by TE€circuits of
sizeO(n*) = O(n) and hence IMM. 5vrz7 ,,c is computable by TEcircuits of sizeO(n).

By Lemma 14, IMM, , 1w ,, is downward self-reducible to IMM , 1oz, by TC circuits
of sizeQ(22VTen . p2corrtd) < O(n2ccrntd), There are)(n?) oracle gates in this reduction, and
each gate for IMM. , == ,,. can be replaced by circuits with(n) wires, yielding T circuits of
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sizeO(n?¢crrt4 1 nd) = O(n2ccrrt4) This yields the bound for TCcircuits in the statement of
the lemma.

To prove the claim regarding NQircuits, it suffices to remark that eachal} gate in the T€
reduction above can be replaced by Nercuitry of sizeO(¢). (This follows from the fact that MJ
is computable by NEcircuits of linear size [50, Lemma 2.11.1].) The depth of the circuit increases
by a factor of at mos®(log n) and the size by at most a constant factor. O

The preceding two theorems do not make use of problems that are knownctumpdetefor
well-known complexity classes, and thus we obtain amlglicationsregarding NL and #L, instead
of equivalentstatements concerning whether these classes collapse withHi@vever, it is worth-
while noting that IMM, 3 ,, is complete for GapNE[18] (the class of functions over the integers,
computable by polynomial-size arithmetic formulae). All functions in'Nt@e in GapNG¢, and it has
been conjectured that GapN€oincides with NC [4]. GapNC is the only well-studied complexity
class not known to be contained in NGor which we can present a complete problem that is strongly
downward self-reducible.

Theorem 21 GapNC C TC' if and only ifIMM,, 5., hasTC? circuits of sizeO(n?crr+3). The
same is true wittNC* in place of TC°.

Proof. Let us prove the first equivalence. Assume that GapNCTC®. Since IMM, 3, is in
GapNC, there isk > 0 such that IMM, 3, has TC circuits of sizeO(n*). Lete = 2ccrr/k. By
Lemma 14, IMM, 3 ,, is downward self-reducible to IMM 3 ,,« by TCP circuits of sizeD(d?n3+2¢crr )
with O(n?) oracle gates. Replace each oracle gate in the reduction by theifEGit for IMM ,,c 3.,
of sizeO(n*) = O(n2°crr) to obtain a TE circuit of sizeO(9 - n3+2¢crr 4 p3p2ccrr) computing
IMM ,, 3 ,. This shows one implication. The other implication follows from the fact that MM is
complete for GapNEunder<2<’ reductions.

The equivalence for NCfollows from the first one by an argument similar to the proof of the
previous theorem. O

5 Limits on downward self-reducibility

In the previous section we have seen that downward self-reducibility provides us with an interesting
tool for the study of circuit classes. We have shown that in order to separate circuit classes such as
ACCY and NC, quadratic lower bounds for the circuit complexity of certain'N@mplete problems
would suffice. What about separating ACftom, say NP? That should in principle be a much easier
task. Can we use the technique of downward self-reducibility to establish an analog of Corollary 17
for ACC' versus NP?

The following theorem shows that there are significant obstacles to overcome before such an
approach can work. Namely, in order to establish that a problem is strongly downward self-reducible,
one must already have an efficient algorithm for the problem.

Theorem 22 Let f : {0,1}* — {0, 1}* be a function and > 0 .

1. If f is strongly downward self-reducible, thgne NC and f hasCC’[q] circuits of size2”‘i,
whenever > 2 is an integer with at least two distinct prime factors.

2. If fis TCO strongly downward self-reducible, thg¢ne NC and f hasTC? circuits of size2™’.
3. If fis strongly downward self-reducible via polynomial time Turing reductions fhisrin P.

Proof. We prove the second claim first.
2) Letn > 2. In order to build a circuit forf,,, start with the T€ circuit of depthd and sizen*
that reduced’, to f,., for somee < 1. If we replace each oracle gate in this circuit with the circuit
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that reduceg),- to f,¢)c, the depth of the new circuit i and the size is at most' + n* - n°*. We
repeat the process until the oracle gates are of@3izg, at which point we replace the oracle gates
by circuitry of sizeO(1) computingf on small inputs. The number of stagesiélog logn); thus
the depth isiC(cglosn) — 16091 5, The size of the circuit is polynomially bounded hf - n<* -
ne’k ... < nk/(=)_ Finally, replace each W gate by an N€ circuit. It is easy to verify that the
resulting circuit is logspace-uniform if the self-reduction circuits are. This establisheg thédC.

In order to see thaf has TC circuits of size2"5, merely follow the same iteration process as above,
but continue for onlyO(1) stages instead @(log logn) stages. This results in a P@racle circuit
with oracle gates fof,, with m < n%. Now replace each oracle gate with a DNF expressiorf;for
(Clearly, if the self-reduction is an ACcircuit instead of a T€ circuit, thenf has AC circuits of
size2"’ J)

1) The hypothesis for this implication is stronger than the hypothesis in part 2; we are assuming
a gl}co downward self reduction, rather thang%CO reduction. Hence again we can conclude that
f € NC. We obtain the upper bound 21’ on CC|q] circuit size in a similar way. We use the same
iterative process fo©(1) steps and obtain an oracle circuit with oracle gatesffpmith m < n?,
where all of the other gates have fan€iX{1). The DNF expression fof,, can be computed by
CCY[¢] circuits of sizeO(2™), by using CC]q] circuits of size2™ to compute each RD of fan-inm
[12]. At most one of these KD gates will evaluate to 1, and hence taking thebAq of these AND
gates computes the DNF fdgy,.

3) Again we use the obvious recursive algorithm. We run the Turing reduction and whenever it
asks an oracle query about a smaller instancéwé recursively invoke the reduction on the smaller
instance. If the reduction runs in tin@(n*) then the total running time of the algorithm will be
bounded by:* - nk - n’k ... < pk/(1=9) Sincee is constant, the time is polynomial. O

As a corollary, using the fact that every problem in NEreducible viagi‘jlc0 reductions to BFE,
we obtain the following upper bound on the complexity of problems int Néhich appears to be a
new observation.

Corollary 23 For everys > 0 and every integeq > 2 with at least two distinct prime factors, every
problem inNC! hasCC[¢] circuits of size2™ .

Speculation:Although Theorem 22 suggests that we abandon any attempt to show that SAT has
the downward self-reducibility property, it does not exclude the following approach for trying to
prove an analog of Corollary 17 for NP. (Such an analog might, for instance, state that=f NP
TCP then SAT has T€ circuits of sizen?.) Rather than trying to present a self-reduction for SAT
unconditionally perhaps one can start with tassumptiorthat NPC TC? and construct a downward
self-reduction of SAT (or some other specially-constructed set in NP) and conclude that under this
assumption SAT has almost linear size®Tercuits.

This is the appropriate time to observe that if NPTC?, then SAT certainly does have the strong
downward self-reducibility property; this follows from Proposition 24 below. However, since one
can say nothing about the size of this self-reduction (other than that it is computed by’ aorae®
circuit of polynomial size), this does not seem to allow us to conclude that SAT hasifid@its of,
say, quadratic size.

Proposition 24 Let C be one of our constant-depth circuit classes. feind g be functions that
are equivalent undex$ reductions (i.e.f <$ g <$ f), and letf beC strongly downward self-
reducible. Themy is alsoC strongly downward self-reducible. Moreover, the size of the self-reduction
of f can be determined from the sizes of the reductions betyesrd g and the size of the strong
downward self-reduction of.

Proof. The polynomial-size reductions betwegrand g each ask queries of size at mast for
somek, for all n > 2. The strong downward self-reduction ffreducesf,, to f, for somee > 0.
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Let ¢ be such that’ < 1/(2k?). Let {C,} be the circuit family that is thé-fold composition of
the downward self reduction ¢f. By Proposition 3{C,,} is aC downward self-reduction that, on
inputs of lengthn® makes no query of length greater thart)< < nl/(*). If we compose the
reduction fromg to f with the reduction computed b§C,, }, we obtain a reduction af, t0 f,,1/x).
Composing this reduction with the reduction frghto g, we obtain a reduction of,, to g,,1,2. This
establishes thatis C strongly downward self-reducible. O

6 Inapproximability of MAX-CLIQUE

In this section we adapt the technique of Srinivasan [47] to the setting of constant-depth circuit
classes, and also obtain a lower bound on the complexity of any polynomial-time reduction of
MAX-CLIQUE to the problem of computing approximations to MAX-CLIQUE.

For functionsf : {0,1}* — IN anda : IN — IN, a functiong : {0,1}* — IN «a-approximates
fif glz) < f(z) and f(z) < af|z])g(x) for all x € {0,1}*. MAX-CLIQUE is the following
computational problem: given an undirected gr&pldetermine the size of the largest cliqueGhn
For simplicity we assume th&t is given by its adjacency matrix. We say that 8ieeof G is the
number of vertices iri7. It is known [53] (see also [28, 23, 33, 34]) that if for somg 0 there is a
n!~c-approximation to MAX-CLIQUE computable in P thenPNP.

We use the technique of Srinivasan [47] to show the following statement:

Theorem25Let k > 1 and lete = ¢(n) < 1 be such that(n) = w(loglogn/logn). If

MAX-CLIQUE is computable byAC[q] circuits of sizeO(n*) then an'~<(")-approximation to
MAX-CLIQUE is computable bAC|¢] circuits of sizeD(n!+(*=1<(")) The same is true withC®

andNC! in place ofAC?[q].

Itis interesting to note that the depth of thgn'+(*~1<("))-size circuits does not increase while
decreasing(n). As stated, the theorem holds only for nonuniform circuits, but a uniform version
holds for any functiore(n) that is sufficiently easy to compute. To prove the theorem we need the
following simple lemma.

Lemma 26 There is a constant > 0 such that for any,m > 1 there is a Dlogtime-uniform
constant-depth circuit of size at mast‘¢m consisting of unbounded fan-l\ND and OR gates,

and unaryNoOT gates, that takes as its inp&bit binary representations of integeys, . . . , v, and

produces as its output the binary representation ef max{y1, y2, ..., Ym}-

Proof. The computation of the circuit proceeds in three steps. We identify intégers, 2¢ — 1
with their ¢-bit binary representations.

Step 1: compute bitshg, by, . . ., bye_; Whereb; = 1iff i € {y1,...,yn}. Fori =0,...,2¢—1and
w € {0,1}¢, letg; (w) be a circuit that evaluates to oneufis the binary representation afClearly,
gi(w) can be constructed from a singlevs, gate and at mogt NOT gates. Bitb; is obtained by
taking OR of g;(y;) for j = 1,...,m. Thus to computéy, b1, ..., by._; we need2 OR,, gates,
2m AND, gates andm NOT gates (as the NT gates may be reused by different gaggg/;) and
gir(y;))- Hence, we need at most 2¢/m wires for this step.

Step 2: compute the ‘suffix-OR” of by, by, ..., bye_;. The suffix-Cris a vector of bitgly, d1, ..., dse_
with the property thatl; = 1 if and only if for somei’ € {i,i+ 1,...,m}, b, = 1. It can be com-
puted by Dlogtime-uniform constant-depth circuits of siz€*) consisting of AvD, OR and NOT
gates of fan-in at mog’, as was shown by Chandra, Fortune and Lipton [19].

Step 3: compute the outputz. Fori = 0,...,2° — 2 lete; = (d; AND (NOT d;; 1)) andege_; =
dse_;. Hence, the&-th bit of the/-bit binary representation afis obtained by taking the ®@of gates
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computinge; for all thosei such that thek-th bit of the/-bit binary representation afis one. This
step requireg OR,¢ gates, an@‘ — 1 AND, and NOT gates.

Clearly, the combination of the above three steps gives a constant«¥pth size circuit that
correctly computes. Dlogtime-uniformity of the circuit is routine to establish. O

Proof of Theorem 25. Let us assume that we have an %g circuit family of size O(n*) that
computes MAX-CLIQUE. We will build an A€q] circuit family of sizeO(n'*(*~1)¢) computing a
n!—c-approximation of MAX-CLIQUE. The computation of the approximation proceeds as follows:
we partition the vertices of the gragh into n' =< partsVi,...,V,:-. of size at mostn]. For
i=1,...,n'~¢ we compute in parallel MAX-CLIQUE of: restricted tol;. Then we output the
largest of these partial results. The correctness of the algorithm follows from the simple observation
that if G contains a clique of siz¢(G) then for some, V; contains at least(G)/[n' <] vertices of

that clique and hence MAX-CLIQUE df restricted toV; is at leastf (G)/[n'~¢].

The size of a circuit carrying out the computation can be bounded as follows. We'use
circuits of sizeO(n*) to compute the value of the' ~¢ MAX-CLIQUE subproblems. This requires
sizeO(n'*+*=1)¢) in total. By Lemma 26 we can find the maximum of the < values in the range
{0,...,n°} by an AC circuit of sizeO(n'=¢-n¢-log n¢) = O(nlogn). Thus the size of the circuits
is bounded byD(n'* (=), Dlogtime-uniformity of the circuit is routine to establish. The case of
TC% and NC is proven by essentially the same argument. O

The technique from the previous proof can be also used to establish the following claim.

Theorem 27 Let0 < € < 1 andk < 1/e be constants. If there is a polynomial time algorithm
that solvesMAX-CLIQUE,, using an oracle forn!~¢-approximation ofMAX-CLIQUE,,,, where
m < n*, thenMAX-CLIQUE , is downward self-reducible tAX-CLIQUE ,,.x.

Proof.  In the proof of Theorem 25 we have seen how to compute'ac-approximation of
MAX-CLIQUE,, by asking queries to MAX-CLIQUE.. If there is a polynomial time algorithm
that solves MAX-CLIQUE, using an oracle forn!~¢-approximation of MAX-CLIQUE, where
m < n*, then we can combine it with the above reduction to obtain the desired self-reduction.

This gives rise to what is perhaps the first example of a lower bound showing that there is no
“quick” reduction between two natural NP-optimization problems. For many natural NP-complete
problemsA and B, very efficient reductions betweet and B are known. (For example, for any
problemA € NTIME (n 1og0(1) n), there is a many-one reduction frafto SAT that is computable
in time O(nlog®® n) [21].) Itis easy to show that iz ¢ NTIME (n¥), then any reduction from
B to SAT requires timmk/logo(l) n — but this does not provide any useful lower bound on the
complexity of reducing natural problems to SAT, since no natural NP-complete problem is known
to lie outside of NTIMEn). There seems to be no pair of natural NP-complete problémasd B
known, where a reduction from to B is known to require more than linear time (even under the
assumption that = NP).

In contrast to this, consider the problem of computing@approximation to MAX-CLIQUE.
Zuckerman presents a deterministic polynomial-time Turing reduction from MAX-CLIQUE to this
approximation problem [53]. (More precisely, Zuckerman shows that distinguishing graphs having
only small cliques from graphs witharge cliques is complete for NP under many-one reductions,
i.e., that one can decide the membership of a formula in SAT from the answer to an instance of
an arbitraryn' ~<-approximation of MAX-CLIQUE,. The polynomial-time Turing reduction from
MAX-CLIQUE follows from the trivial observation that MAX-CLIQUE is computable if¥ =
PYP.) How long must the queries in this reduction be? Assuming thatNfP, Theorems 27 and 22
tell us that the queries in this reduction must ask about graphs with atfesasttices. We can state
the following claim

Corollary 28 P = NP if and only if there is anv < 2 and a deterministic polynomial-time Turing
reduction fromMAX-CLIQUE to the problem of computing @n-approximation taMAX-CLIQUE
that asks queries of size no greater theh
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Proof. One direction follows from the observation that if-P NP then there is a polynomial-time
Turing reduction for this problem that asks queries of §¥e) (or asks no queries at all).

For the other direction: If there is a reduction from MAX-CLIQUE to the problem of computing a
v/n-approximation to MAX-CLIQUE that asks queries only to graphs of sfzéor somen: < 2, then
by Theorem 27, MAX-CLIQUE is downward self-reducible to MAX-CLIQUE.,.. By Theorem
22, this implies that MAX-CLIQUE is computable in polynomial time, and hence=NP. O

Clearly, analogous statements can be proved.feapproximation for any value of such that
0 <e<landa < 1/(1—c¢);the case = 1/2is likely to be of greatest interest. Similar claims can
be also proved for probabilistic reductions instead of deterministic ones, under the assumption that
SAT does not have probabilistic polynomial-time algorithms.

It is worthwhile mentioning that, in some sense, decreasing the size of the query length in Zuck-
erman’s reduction [53] from MAX-CLIQUE to computingra/2-approximation to MAX-CLIQUE
is auniversalapproach to proving B NP. If any approach will work, then this approach will.

7 Circuit lower bounds

We observed in Section 1.2 that, although BFE requiresisizé+ on depthd TCP circuits [32], no
similar bound for ACC or even C@[g] circuits is known. Here, we present lower bounds of this sort
for SAT.

We begin this section by showing that problems with small constant-depth circuits have algo-
rithms that run quickly and have small space bounds. Let T(8(s(n)) denote the class of prob-
lems that are computable by machines running in tini&(n) that use space at maS{(s(n)). (This
definition is somewhat sensitive to the underlying model of computation. We shall always refer ex-
plicitly to either the Turing machine model or the random access machine model, to clarify which
class is meant.)

A technical matter that must be dealt with in stating the following theorem, is that Dlogtime-
uniformity does not seem to guarantee that there is a quick way to enumerate, for a givén gate
the list of gategy for which there is a wire frony to h. There are some standard techniques for
ensuring that this property holds (see, e.g., [6]), but we note that these techniques seem to involve a
polynomial blow-up in the circuit size, which we would prefer to avoid. We believe that, for most
uniform families of circuits that are constructed, a quick enumeration of the inputs to a given gate
will nonetheless be possible. Rather than alter the definition of Dlogtime-uniformity, in this section
we simply say that a circuit family istrongly uniformif it is Dlogtime-uniform, and in addition, on
input (n, 4, h), the name of the gatgthat is thei-th input to the gate i, having labelh can be
computed in timaog®™ n.
Theorem 29 If A has strongly-uniformTCcircuits of depthd with O(n'*€) wires then for every
0<d<1+4eAeTISP((n'te +n%)log?® n n*+<=916g%" 1) on random access machines
and A € TISP((n'+e+9d10g%M) p plte=d 16690 1) on Turing machines. The same is true with
ACY[¢] or CC°[q] in place of TCY.

Proof. A naive recursive way to evaluate the circuit in spétgog n) would require time) (n4(1+<) log n).
Since we can use more space we will use it to remember the computed values of gates that have fan-
in larger thann?. The faster algorithm then will also recursively evaluate the circuit but whenever

it computes the value of a gate with fan-in larger thdrit records the value so such a gate will be
evaluated at most once. On a random access machine we will store the values in a binary search tree,
on a Turing machine we will store them in a simple list. Since there are at@(@st™/n?) gates

with fan-in larger tham? we will need space onlg) (n' <=9 1og®?) n). Finding the value of a gate

and whether it has already been computed will tékh)go(l) n) time on a random access machine
andO(n!+e=? logo(l) n) on a Turing machine. To bound the total time needed to evaluate the circuit
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notice that we will have to recursively evaluate a tree of fan-in at mband depthi. To traverse the
tree we will need to make?®? visits to the nodes. Beside that we will have to evaluate the gates with
large fan-in. Since there are at ma@stn' <) wires leading into them these gates will additionally
cost at mosO(n'*¢) node visits. This yields the claimed time bound. O

We need to make use of known time-space tradeoffs for SAT. The following theorem is a special
case of Theorem 1.3 in the excellent survey article by van Melkebeek [49]:

Theorem 30 For every realc such thatl < ¢ < 5/3, there exists a positive realsuch that SAT
cannot be solved by both

1. a co-nondeterministic machine with random access that runs in@itné) and
2. a deterministic random-access machine that runs in @irve'-5) and spaced(n®).

Moreover, the constartapproaches 1 from below wherapproaches 1 from above.

Theorem 31 For everyd > 1 there is a constan¢é; > 0 such that SAT does not have strongly-
uniform depthd TCP circuits of sizeO(n'*<¢). The same is true witAC[g] or CC°[q] in place of
TCO.

Proof. Assume that the claim fails for some depth> 2; thus for every > 0, SAT has strongly-
uniform depthd TCP circuits withO(n!*<) wires.

Pick anye < 1/(3d — 1) andé = 3e. By Theorem 29, SAT is solvable on random access
machines in TISR@! T + nd?)log® M n, nite=310g%W p) C TISP!T2¢ 4 pddte pl+2e-0) C
TISP('T2¢, n'~<). Since this is true for at < 1/(3d — 1), we have in particular that SAT is in
DTIME(n°) on random access machines foratb 1.

For the rest of the proof fix some< 1/(3d—1). In particular, we have SAT is in TISR{->, n'=¢)
on random access machines.

By Theorem 30, if we let approach 1 from above, the valuecfin Theorem 30) approaches 1
from below. Thus there is some value©f> 1 for whiche > 1 — € (in the statement of Theorem
30). Fix these values afande. Thus, we now have that SAT is in TISP(®, n°) on random access
machines.

At this point, by Theorem 30, we know that SAT is not both solvable by co-nondeterministic
random access machine in tifign°), and in TISP{!°, n¢) on random access machines. But we
have already observed (three paragraphs ago) that SAT is in DTINIBOd thus it is solvable in
co-nondeterministic timé(n¢). Thus we must conclude that SAT is not in TISP{, n¢). But this
contradicts the conclusion of the preceding paragraph. €asd follows from the case off = 2.

O

8 The Natural Proofs barrier

Razborov and Rudich [39] identified a significant obstacle to further progress in proving lower bounds
on circuit size, by observing that existing lower bound arguments rely on the existence of an easy-to-
recognize combinatorial property of a functignhat (a) is shared by a large fraction of all functions,

and (b) is shared by no function that has small circuits of a given type. Razborov and Rudich showed
that any “Natural Proof” that follows this paradigm and shows that a function cannot be computed by
circuits of a clas€ constitutes a proof that cannot compute pseudorandom function generators. It

is not clear how significant an obstacle this poses for proving lower bounds again$} £iG¢ there

is not much evidence that ACCircuit families can compute pseudorandom function generators.
However, for T this is a serious impediment, since Naor and Reingold have presented a good
candidate pseudorandom function generator that is computablifSVT (The reader should keep

in mind the distinction between pseudorandoimctiongenerators and pseudorandbitgenerators.
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It is known that there are no pseudorandimmctiongenerators computable in AC36]; in contrast,
if the Naor-Reingold generator is secure, then there are pseudordiitigemerators computable in
NC° [10].)

It is premature to argue very strongly that we have identified a path around this obstacle. After
all, the only new lower bound that this paper offers is to be found in Section 7, and that bound follows
from known time-space tradeoff results. (These time-space tradeoffs, in turn, rely on diagonalization,
which lies outside the natural proofs framework, but only gives lower boundsiié@rmcircuit fam-
ilies. The natural proofs framework addresses the problem of finding lower boundgrfoniform
circuit complexity.)

However, we contend that it is at least plausible that a natural proof could form the basis for a
proof that NC # TC, even assuming that the Naor-Reingold generator is cryptographically secure.

How?

A proof that NC # TC could conceivably consist of two parts:

1. A proof that BFE requires TCcircuits of sizen'®, and
2. Appeal to Corollary 17, to conclude that N& TC°.

Let us assume for the moment that someone hands us a natural proofibftimaver bound that
takes care of the first part of this hypothetical argument. The entire two-part argument nonetheless
fails to be a “natural” proof, because the proof of Corollary 17 centers on strong downward self-
reducibility, which is a combinatorial property that is shared by onbaaishingly small fraction
of all Boolean functions om variables, contrary to the requirements of a natural proof. (Strictly
speaking, the strong downward self-reducibility property is not a “combinatorial property” in the
sense of the Natural Proofs framework, as it is a relationship between function values on different
input sizes. However, all strongly downward self-reducible functions must have truth-tables of small
Kolmogorov complexity (since the truth-table of sz&is determined completely by a truth-table of
size2”5), and thus they constitute a tiny fraction of all functions.)

So now we are left with the question of whether it is reasonable to hope that a natural proof could
possibly show that BFE requires T@ircuits of sizen'-®.

First, we note that there are already examples of natural proofs that yield lower bounds of the
form n* for some fixedk. The parity lower bound of Impagliazzo, Paturi, and Saks gives a lower
bound of this form for BFE on TCcircuits of depthd [32]. Hastad gives a nearly cubic lower bound
on formula size [27]. These are natural proofs.

Next, in order to directly address the question of what obstacles have been identified by Razborov
and Rudich that might block a proof showing that BFE require§ Eitcuits of sizen!®, let us
examine their framework more closely, by recalling their definitions of “natural” and “useful” com-
binatorial properties.

Let F,, denote the class of all Boolean functiofis : {0,1}" — {0,1}. A property{T, C
F, }new is QuasiP-naturalif there is a sub-property;* C T, },ew such that for some, ¢ > 0

1. |T%| > |F,|/2¢", and

2. there is a deterministic algorithm that given a truth-table of a fungfijon{0, 1} — {0, 1}
decides whethef,, € T)* in time 2"°.

Furthermore, a properyT,, C F, },en is usefulagainst a circuit class if no sequence of functions
{fn € T\, }ne is computable by circuits from.

Razborov and Rudich show that afyuasiP-natural property that is useful against T€an
be used as a subroutine to foil any purported pseudorandom function generator that is computable
in TC°. More generally, they show how to transform any natural lower bound proof into a lower
bound on the complexity of computing a pseudorandom function generator. However it is absolutely

essential for their argument, that there bsimgle natural propertyl” that is useful against TC
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circuits of sizen* for everyk; lower bounds for circuits of size* for small fixedk translate into
lower bounds for pseudorandom function generators that are so weak as to be uninformative. More
to the point, such natural properties can easily be shown to exist.
To be concrete, let us exhibit an example of a prop&ty: {7}, }»en that isQuasiP-natural
and useful against TCircuits of sizeO(n'-?). Our propertyl” is defined as follows:

T, = {fn:{0,1}" — {0,1}; f, does not have circuits of deplte* n and sizen?
consisting of Maj and NoT gateg.

It is a trivial exercise to verify thal” is natural and useful against T@ircuits of sizeO(n'5).

Of course, we are not able to establish that BFE has profeériy it does, then by Corollary 17
NC! £ TCC. Clearly, this argument makes use of no special properties 8f @e can easily
come up with aQuasiP-natural property that will be useful against any class of circuits of a fixed
polynomial size.

However, the existence of properfy does not seem to imply anything very interesting about
the nonexistence of pseudorandom function generators (and consequently does not yield interesting
upper bounds on the complexity of factoring Blum integers, which would follow if the Naor-Reingold
generator is insecure [37]). Thus it seems to us that it is reasonable to hope for a “natural” proof that
BFE satisfies property’, which would then yield an “unnatural” proof of PG£ NC!, by Corollary
17.

9 Conclusions and open problems

So are there reasons to be more optimistic about prospects for lower bounds? We are not sure. The
truth is that we do not understand computation. All the known lower bounds essentially rest on
information theoretic arguments and none of them really ta&egputatiorinto account. We realize

that this is a vague statement; part of the challenge in seeking lower bound proofs is to be able to
say something more precise. For example we are unable to haodlsion so our bounds typically
deteriorate with depth. Hence, the underlying message of Razborov and Rudich — namely, that we
need to go beyond combinatorial arguments — is still a worthwhile message. We identify two still
unresolved challenges that we believe would advance our understanding of computation:

e Prove((n?) lower bounds on the length of width 5 branching programs computing an ex-
plicit function (by which we mean any problem in NP). It appears that nothing better than
Q(n?/logn) is known [38, 41].

. ProveQ(nHl/ﬁ) lower bounds on the size of depthCC"[6] or TC® circuits computing an
explicit function.

Are there perhaps fundamental barriers that remain in our path, as we attempt to prove circuit
lower bounds?

One way to explore this question is to follow the lead of Razborov [43], who showed that (under
cryptographic assumptions) the bounded arithmetic proof sySeaannot prove that SAT requires
circuits of superpolynomial size. (In earlier work, Razborov had argued that most existing lower
bound arguments can be carried out in even weaker systems [42].)

Perhaps technigues similar to those of Razborov [43], combined with our observations, can enable
one to prove thas? (or a similar system) cannot prove that BFE require8 €icuits of sizen!*e.

The most important and interesting question raised by this work is the question of whether it can
ultimately lead to separations of complexity classes. (This topic is also discussed in a recent survey
[5].) However, a number of other questions naturally arise. We close by listing two such questions.
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e Are there sets complete for every level of the NC hierarchy that are downward self-reducible
to instances of size? Or is there some fundamental reason why we were unable to find a
downward self-reduction of this sort for any problem that is complete for NL or L? (In Theorem
19 we worked with a restricted version of the NL-complete problem BIMM; the restriction is
not believed to be complete for NL.) Showing that a complete set for L is strongly downward
self-reducible (via a pure reduction) would show that every problem in L has subexponential-
size CC[q] circuits (by Theorem 22), which would be a new upper bound. However, we know
of no similar obstacle to showing that sets complete for L or NL aré s@ngly downward
self-reducible, or that functions complete for #L are“T&rongly downward self-reducible.
Note in this regard that problems in NL have subexponential-siZeciCuits [7] and functions
in #L have subexponential-size T€ircuits [8].

e If NP = TC?, does SAT have TCcircuits of quadratic size? If NEXE nonuniform CC[6],
does the standard complete set for NEXP havé@[G]Circuits of quadratic size? (Even if
arguments based on downward self-reducibility fail for problems outside of NC, perhaps there
is another approach that leads to the same conclusion.)
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