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Abstract

In this paper we consider two refined questions regarding the query complexity of testing
graph properties in the adjacency matrix model. The first question refers to the relation be-
tween adaptive and non-adaptive testers, whereas the second question refers to testability within
complexity that is inversely proportional to the proximity parameter, denoted e. The study of
these questions reveals the importance of algorithmic design (also) in this model. The highlights
of our study are:

e A gap between the complexity of adaptive and non-adaptive testers. Specifically, there
exists a (natural) graph property that can be tested using O(e ') adaptive queries, but
cannot be tested using o(e~3/2) non-adaptive queries.

e In contrast, there exist natural graph properties that can be tested using O(e~!) non-
adaptive queries, whereas Q2(¢~!) queries are required even in the adaptive case.

We mention that the properties used in the foregoing conflicting results have a similar flavor,
although they are of course different.
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1 Introduction

In the last decade, the area of property testing has attracted a lot of attention (see the surveys
of [F01, R01], which are already out-of-date). Loosely speaking, property testing typically refers to
sub-linear time probabilistic algorithms for deciding whether a given object has a predetermined
property or is far from any object having this property. Such algorithms, called testers, obtain bits
of the object by making adequate queries, which means that the object is seen as a function and
the testers get oracle access to this function (and thus may be expected to work in time that is
sub-linear in the length of the description of this object).

Much of the aforementioned work (see, e.g., [GGR, AFKS, AFNS|) was devoted to the study
of testing graph properties in the adjacency matrix model, which is also the setting of the current
work. In this model, introduced in [GGR], graphs are viewed as (symmetric) Boolean functions over
a domain consisting of all possible vertex-pairs (i.e., an N-vertex graph G = ([N], E)) is represented
by the function g : [N]x[N] — {0, 1} such that {u,v} € E if and only if g(u,v) = 1). Consequently,
an N-vertex graph represented by the function g : [N] x [N] — {0,1} is said to be e-far from some
predetermined graph property if at least ¢ - N? entries of g must be modified in order to yield a
representation of a graph that has this property. We refer to € as the proximity parameter, and the
complexity of testing is stated in terms of € and the number of vertices in the graph (i.e., N).

Interestingly, many natural graph properties can be tested within query complexity that de-
pends only on the proximity parameter; see [GGR], which presents testers with query complexity
poly(1/e¢), and [AFNS], which characterizes the class of properties that are testable within query
complexity that depends only on the proximity parameter (where this dependence may be an ar-
bitrary function of €). However, a common phenomenon in all the aforementioned works is that
they utilize quite naive algorithms and their focus is on the (often quite sophisticated) analysis of
these algorithms. This phenomenon is no coincidence: As shown in [AFKS, GT], when ignoring a
quadratic blow-up in the query complexity, property testing (in this model) reduces to sheer com-
binatorics. Specifically, without loss of generality, the tester may just inspect a random induced
subgraph (of adequate size) of the input graph.

In this paper we demonstrate that a more refined study of property testing (in this model)
reveals the importance of algorithmic design (also in this model). This is demonstrated both by
studying the advantage of adaptive testers over non-adaptive ones as well as by studying the class
of properties that can be tested within complexity that is inversely proportional to the proximity
parameter.

1.1 Two Related Studies

Let us start by reviewing the two related studies conducted in the current work.

Adaptivity vs Non-adaptivity. A tester is called non-adaptive if it determines all its queries
independently of the answers obtained for previous queries, and otherwise it is called adaptive.
Indeed, by [AFKS, GT], the benefit of adaptivity (or, equivalently, the cost of non-adaptivity) is
rather small: Specifically, any (possibly adaptive) tester (for any graph property) of query com-
plexity q(IN, €) can be transformed into a non-adaptive tester of query complexity O(g(N, €)?). But
is this quadratic gap an artifact of the known proofs (of [AFKS, GT]) or does it reflect something
inherent?

A recent work by [GnRn] suggests that the latter case may hold: For every ¢ > 0, they showed



that the set of N-vertex bipartite graphs of maximum degree O(eN) is e-testable (i.e., testable with
respect to proximity parameter €) by O(e 3/?) queries, while (by [BT]) a non-adaptive tester for
this set must use Q(e2) queries. Thus, there exists a case where non-adaptivity requires increasing
the query complexity; specifically, for any ¢ < 4/3, the query complexity of the non-adaptive tester
is greater than a c-power of the query complexity of the adaptive tester (i.e., O(e73/2)¢ = o(e~2)).
We stress that the result of [GnRn] does not refer to property testing in the “proper” sense; that
is, the complexity is not analyzed with respect to a varying value of the proximity parameter, while
the property itself is fixed. It is rather the case that, for every value of the proximity parameter,
a different property (which depends on this parameter) is considered and the (upper- and lower-)
bounds refer to this combination (of a property tailored for a fixed value of the proximity parameter).
Thus, the work of [GnRn] leaves open the question of whether there exists a single graph property
such that adaptivity is beneficial for any value of the proximity parameter (as long as € > N _Q(l)).
That is, the question is whether adaptivity is beneficial for the standard asymptotic-complezity
formulation of property testing.

Complexity inversely proportional to the proximity parameter. As shown in [GGR],
many natural graph properties can be tested within query complexity that is polynomial in the
reciprocal of the proximity parameter (and independent of the size of the graph). We ask whether a
linear complexity is possible at all, and if so which properties can be tested within query complexity
that is linear (or almost linear) in the reciprocal of the proximity parameter.®

The first question is easy to answer. Avoiding trivial properties, we note that the property
of being a clique (equiv., an independent set) can be tested by O(1/€) queries, even when these
questions are non-adaptive (e.g., make O(1/¢) random queries and accept if and only if all return 1).
Still, we ask whether “more interesting”? graph theoretical properties can also be tested within
similar complexity (either only adaptively or also non-adaptively).

1.2 Our Results

We address the foregoing questions by studying a sequence of natural graph properties (defined
formally in Section 2.2). The first property in the sequence, called clique collection and denoted
CC, is the set of graphs such that each graph consists of a collection of isolated cliques. For this
property (i.e., CC), we prove a gap between adaptive and non-adaptive query complexity, where
the adaptive query complexity is almost linear in the reciprocal of the proximity parameter. That
is:

Theorem 1.1 (the query complexity of clique collection):

1. There ezists an adaptive tester of query complexity 6(6_1) for CC. Furthermore, this tester
runs in time O(e 1).3

2. Any non-adaptive tester for CC must have query complexity 9(6_4/3).

3. There exists a non-adaptive tester of query complexity 0(6_4/3) for CC. Furthermore, this
tester runs in time O(e=*/3).

!Note that Q(1/€) queries are required for testing any of the graph properties considered in the current work; for
a more general statement see the beginning of Section 6.

2 A more articulated reservation towards the foregoing properties may refer to the fact that these graph properties
contain a single N-vertex graph (per each N) and are represented by monochromatic functions.

3We refer to a model in which elementary operations regarding pairs of vertices are charged at unit cost.



Note that the complexity gap (between Parts 1 and 2) of Theorem 1.1 matches the gap established
by [GnRn] (for “non-proper” testing). A larger gap is established for a property of graphs, called
bi-clique collection and denoted BCC, where a graph is in BCC if it consists of a collection of isolated
bi-cliques (i.e., complete bipartite graphs).

Theorem 1.2 (the query complexity of bi-clique collection):

1. There exists an adaptive tester of query complezity 6(6_1) for BCC. Furthermore, this tester
runs in time O(e ).

2. Any non-adaptive tester for BCC must have query complexity 9(6*3/2). Furthermore, this
holds even if the input graph is promised to be bipartite.

We note that bi-cliques may be viewed as the bipartite analogues of cliques (w.r.t general graphs).
Indeed, bi-cliques arise naturally in applications that are modeled by bipartite graphs (see, e.g., [AFN]),
which is our motivation for stating the furthermore clause of Part 2 (of Theorem 1.2).

Theorem 1.2 asserts that the gap between the query complexity of adaptive and non-adaptive
testers may be a power of 1.5 — o(1). Recall that the results of [AFKS, GT] assert that the gap
may not be larger than quadratic. We conjecture that this upper-bound can be matched.

Conjecture 1.3 (an almost-quadratic complexity gap): For every positive integer t > 5, there
exists a graph property I1 such that the following holds:

1. There exists an adaptive tester of query complezity 6(6_1) for I1. Furthermore, this tester
runs in time O(e 1).

2. Any non-adaptive tester for Il must have query complezity Q(e*”(?/t)).

Furthermore, 11 consists of graphs that are each a collection of “super-cycles” of length t, where
a super-cycle is a set of t independent sets arranged on a cycle such that each pair of adjacent
independent sets is connected by a complete bipartite graph.

We were able to prove Part 2 of Conjecture 1.3, but failed to provide a full analysis of the algorithm
intended for Part 1. We comment that we can prove a promise problem version of Conjecture 1.3;
specifically, this promise problem (stated in Theorem 5.5) refers to inputs promised to reside in a
set II' D II and the tester is required to distinguish graphs in II from graphs that are e-far from II.

In contrast to the foregoing results that aim at identifying properties with a substantial gap
between the query complexity of adaptive versus non-adaptive testing, we also study cases in
which no such gap exists. Since query complexity that is linear in the reciprocal of the proximity
parameter is minimal for many natural properties (and, in fact, for any property that is “non-trivial
for testing”), we focus on non-adaptive testers that (approximately) meet this bound. Among the
results obtained in this direction, we highlight the following one.

Theorem 1.4 (the query complexity of collections of O(1) cliques): For every positive integer c,
there exists a non-adaptive tester of query complezity O(e ') for the set of graphs such that each
graph consists of a collection of upto ¢ cliques. Furthermore, this tester Tuns in time O(e™1).



Discussion. The foregoing results demonstrate that a finer look at (graph) property testing in
the adjacency matrix model reveals the role of algorithm design. In particular, in some cases (see,
e.g., Theorems 1.1 and 1.2), carefully designed adaptive algorithms outperform any non-adaptive
algorithm. Indeed, this conclusion stands in contrast to [GT, Thm. 2], which suggests that a less
fine view (which ignores polynomial blow-ups)* deems algorithm design irrelevant to the model.
We also note that, in some cases (see, e.g., Theorem 1.4 and Part 3 of Theorem 1.1), carefully
designed non-adaptive algorithms outperform straightforward ones.

A different perspective on this work is as a study of the relation between adaptive and non-
adaptive queries. Needless to say, this fundamental relation was studied in a variety of models, and
the current work studies it in a specific natural model (i.e., of property testing in the adjacency
matrix representation).® Our results demonstarte that, in this model, the relation between the
adaptive and non-adaptive query-complexities is not fixed, but rather varies with the computational
problem at hand. In some cases (e.g., Theorem 1.4) the complexities are essentially equal (indeed,
as in the case of sampling [CEG]). In other cases (e.g., Theorem 1.1), these complexities are
related by a fixed power (e.g., 4/3) that is strictly between 1 and 2. And, yet, in other cases (e.g.,
Theorem 5.5) the non-adaptive complexity is quadratic in the adaptive complexity, which is the
maximum gap possible (by [AFKS, GT]). We conjecture that, for any ¢ > 3, there exists a property
for which the aforementioned complexities are related by a power of 2 — (2/t).

1.3 Open Problems

In addition to the resolution of Conjecture 1.3, our study raises many other open problems; the
most evident ones are listed next.

1. What is the non-adaptive query complexity of BCC? Note that Theorem 1.2 only establishes
a lower-bound of Q(e3/2). We conjecture that an efficient non-adaptive algorithm of query
complexity O(¢~3/?) can be devised.

2. For which constants ¢ € [1,2] does there exist a property that has adaptive query complexity
of ¢(¢) and non-adaptive query complexity of ©(g(€)¢)? Note that Theorem 1.1 shows that
4/3 is such a constant, and the same holds for the constant 1 (see, e.g., Theorem 1.4). We
conjecture that, for any ¢ > 2, it holds that the constant 2 — (2/t) also satisfies the foregoing
requirement. It may be the case that these constants are the only ones that satisfy this
requirement.

3. Characterize the class of graph properties for which the query complexity of non-adaptive
testers is almost linear in the query complexity of adaptive testers.

4. Characterize the class of graph properties for which the query complexity of non-adaptive
testers is almost quadratic in the query complexity of adaptive testers.

4Recall that [GT, Thm. 2] asserts that canonical testers, which merely select a random subset of vertices and rule
according to the induced subgraph, have query-complexity that is at most quadratic in the query-complexity of the
best tester. We note that [GT, Thm. 2] also ignores the time-complexity of the testers.

SWe mention that this relation has also been studied in the context of property testing (and in a variety of different
settings). Specifically, in the setting of testing the satisfiability of linear constraints, it was shown that adaptivity
offers absolutely no gain [BHR]. A similar result holds for testing monotonicity of Boolean functions [F04]. In
contrast, an exponential gap between the adaptive and non-adaptive complexities may exist in the context of testing
other properties of Boolean functions [F04]. Lastly, we mention that an even more dramatic gap exists in the setting
of testing graph properties in the bounded-degree model (of [GR02]); see [RaSm].



5. Characterize the class of graph properties for which the query complexity of adaptive (resp.,
non-adaptive) testers is almost linear in the reciprocal of the proximity parameter.

Finally, we recall the well-known open problem (partially addressed in [AS]) of providing a char-
acterization of the class of graph properties that are testable within query complexity that is
polynomial in the reciprocal of the proximity parameter.

1.4 Organization

Section 2 contains a review of the basic notions underlying this work as well as a formal definition
of the graph properties that we study. In Section 3 we present an adaptive tester for Clique-
Collection that has almost-linear query complexity. This result stands in contrast to the (tight)
lower-bound on the query complexity of non-adaptive testers for Clique-Collection, presented in
Section 4. Larger gaps between the query complexity of adaptive versus non-adaptive testers are
presented in Section 5. On the other hand, in Section 6, we present non-adaptive testers of query
complexity that is almost-linear in the reciprocal of the proximity parameter.

2 Preliminaries

In this section we review the definition of property testing, when specialized to graph properties in
the adjacency matrix model. We also define several natural graph properties, which will serves as
the pivot of our study.

2.1 Basic notions

For an integer n, we let [n] = {1,...,n}. A generic N-vertex graph is denoted by G = ([N}, E),
where £ C {{u,v}:u,v € [N]} is a set of (unordered) pairs of vertices. Any set of (such) graphs
that is closed under isomorphism is called a graph property. By oracle access to such a graph
G = ([N],E) we mean oracle access to the Boolean function that answers the query {u,v} (or
rather (u,v) € [N] x [N]) with the bit 1 if and only if {u,v} € E.

Definition 2.1 (property testing for graphs in the adjacency matrix model): A tester for a graph
property 11 is a probabilistic oracle machine that, on input parameters N and ¢ and access to an
N-vertex graph G = ([N|, E), output a binary verdict that satisfies the following two conditions.

1. If G € II then the tester accepts with probability at least 2/3.

2. If G is e-far from I then the tester accepts with probability at most 1/3, where G is e-far
from 11 if for every N-vertex graph G' = ([N],E") € I it holds that the symmetric difference
between E and E' has cardinality at least eN2.5

If the tester accepts every graph in 11 with probability 1, then we say that it has one-sided error. A
tester is called non-adaptive if it determines all its queries based solely on its internal coin tosses
(and the parameters N and ¢€); otherwise it is called adaptive.

%Indeed, it is more natural to require that this symmetric difference should have cardinality at least € - (1;) The

current convention is adopted for sake of convenience.



The query complexity of a tester is the number of queries it makes to any N-vertex graph oracle,
as a function of the parameters N and e. We say that a tester is efficient if it runs in time that is
polynomial in its query complexity, where basic operations on elements of [N] are counted at unit
cost. We note that all testers presented in this paper are efficient, whereas the lower-bounds hold
also for non-efficient testers.

We shall focus on properties that can be tested within query complexity that only depends on
the proximity parameter, e. Thus, the query-complexity upper-bounds that we state hold for any
values of € and N, but will be meaningful only for ¢ > 1/N? or so. In contrast, the lower-bounds
(e.g., of Q(1/€)) cannot possibly hold for € < 1/N?2, but they will indeed hold for any e > N b,
Alternatively, one may consider the query-complexity as a function of ¢, where for each fixed value
of € > 0 the value of N tends to infinity.

Notation and a convention. For a fixed graph G = (|[N], E), we denote by I'(v) = {u:{u,v} €
E} the set of neighbors of vertex v. At times, we look at E as a subset of V' x V; that is, we often
identify E with {(u,v):{u,v}€ E}. If a graph G = ([N], E) is not e-far from a property II then we
say that G is e-close to IT; this means that less than e N? edges should be added and/or removed
from G such to yield a graph in II.

2.2 The graph properties to be studied

The set of graphs that consists of a collection of isolated cliques is called clique collection and is
denoted CC; that is, a graph G = ([N], E)) is in CC if and only if the vertex set [N] can be partitioned
to (C1,...,Ct) such that the subgraph induced by each C; is a clique and there are no edges with
endpoints in different C;’s (i.e., for every u < v € [N] it holds that {u,v} € E if and only if there
exists an i such that u,v € C;). If t < ¢ then we say that G is in CC=¢; that is, CC=C is the subset
of CC that contains graphs that are each a collection of up-to ¢ isolated cliques.

A bi-clique is a complete bipartite graph (i.e., a graph G = (V, E) such that V is partitioned
into (S,V '\ S) such that {u,v} € E if and only if u € S and v € V' \ S). Note that a graph is a
bi-clique if and only if its complement is in CC<2. The set of graphs that consists of a collection
of isolated bi-cliques is called bi-clique collection and denoted BCC; that is, a graph G = ([N], E)
is in BCC if and only if the vertex set [N] can be partitioned to (Vi,...,V;) such that the subgraph
induced by each V; is a bi-clique and there are no edges with endpoints in different V;’s (i.e., each
Vi is partitioned into (S;,V; \ S;) such that for every u < v € [N] it holds that {u,v} € E if and
only if there exists an ¢ such that (u,v) € S; x (V'\ 5)).

Generalizations of BCC are obtained by considering collections of “super-paths” and “super-
cycles” respectively. A super-path (of length t) is a sequence of disjoint sets of vertices, Si, ..., St,
such that vertices u,v € Uie[t] S; are connected by an edge if and only if for some ¢ € [t — 1] it holds
that u € S; and v € S;41. Note that a bi-clique can be viewed as a super-path of length two. We
denote the set of graphs that consists of a collection of isolated super-paths of length ¢ by SP,C
(e.g., SPoC = BCC). Similarly, a super-cycle (of length t) is a sequence of disjoint sets of vertices,
51, ..., 5S¢, such that vertices u,v € ;e[ Si are connected by an edge if and only if for some ¢ € [t]
it holds that u € S; and v € S(;modr)+1- Note that a bi-clique that has at least two vertices on each
side can be viewed as a super-cycle of length four (by partitioning each of its sides into two parts).
We denote the set of graphs that consists of a collection of isolated super-cycles of length ¢ by SC,C
(e.g., SC4C C BCC, where the strict containment is due to the pathological case of bi-cliques having
at most one node on one side).



2.3 Annoying technicalities

We allowed ourselves various immaterial inaccuracies. For example, various quanities (e.g., logy(1/€))
are treated as if they are integers, whereas one should actually use some rounding and compansate
for the rounding error. At times, we ignore events that occur with probability that is inversely
proportional to the number of vertices; for example, when we select a random sample of s = O(1)
(or s = O(1/€)) vertices, we often analyze it as if sampling was done with repetitions. In some
places, we do not specify the “high” (constant) probability with which some events occur; but such
missing details are easy to fill-up. In other places, we specify high constants that are not the best
ones possible.

3 The Adaptive Query Complexity of Clique-Collection

In this section we study the (adaptive) query complexity of clique collection, presenting an almost
optimal (adaptive) tester for this property. Loosely speaking, the tester starts by finding a few
random neighbors of a few randomly selected start vertices, and then examines the existence of
edges among the neighbors of each start vertex as well as among these neighbors and the non-
neighbors of each start vertex.

We highlight the fact that adaptivity is used in order to make queries that refer only to pairs
of neighbors of the same start vertex. To demonstrate the importance of this fact, consider the
case that the N-vertex graph is partitioned to O(1/¢) connected components each having O(eN)
vertices. Suppose that we wish to tell whether the connected component that contains the vertex
v is indeed a clique. Using adaptive queries we may first find two neighbors of v, by selecting
¢ O(1/e) random vertices and checking whether each such vertex is adjacent to v, and then
check whether these two neighbors are adjacent. In contrast, intuitively, a non-adaptive procedure
cannot avoid making all (;) possible queries.

The foregoing adaptive procedure is tailored to the case that the N-vertex graph is partitioned
to O(1/€) (“strongly connected”) components, each having O(eN) vertices. In such a case, it suffices
to check that a constant fraction of these components are in fact cliques (or rather close to being
so) and that there are no edges (or rather relatively few edges) from these cliques to the rest of the
graph. However, if the components (and potential cliques) are larger, then we should check more
of them, but (fortunately) due to their larger size finding neighbors requires less queries, and the
total number of queries remains invariant. These considerations lead us to the following algorithm.

Algorithm 3.1 (adaptive tester for CC): On input N and € and oracle access to a graph G =

([N], E), the tester sets t; = O(1) and ty = O(log(1/¢))?, and proceeds in £ e logy(1/€) + 2
iterations as follows: For i = 1,...,L, the tester selects uniformly t1 - 2° start vertices and for each
selected vertex v € [N] performs the following sub-test, denoted sub-test;(v):

1. The sub-test selects at random a sample, S, of to/(2%€) vertices.
2. The sub-test determines N, = SN T'(v), by making the queries (v,w) for each w € S.

3. If INy| < y/ta/2% then the sub-test checks that for every u,w € N, it holds that (u,w) € E.

Otherwise (i.e., |N,| > y/t2/2%€), it selects a sample of to/(2%€) pairs in N, x N, and checks
that each selected pair is in E.



4. The sub-test selects a sample of ta/(2%€) pairs in Ny x (S\ Ny) and checks that each selected
pair s not in E.

The sub-test (i.e., sub-test;(v)) accepts if and only if all checks were positive (i.e., no edges were
missed in Step 3 and no edges were detected in Step 4). The tester itself accepts if and only if all
Zle t1 - 2" invocations of the sub-test accepted.

The query complexity of this algorithm is S¢_;(¢1 - 2°) - O(ty/2%€) = O(L - tity/€) = O(1/e), and
evidently it is efficient. Clearly, this algorithm accepts (with probability 1) any graph that is in
CC. It remains to analyze its behavior on graphs that are e-far from CC.

Lemma 3.2 If G = ([N], E) is e-far from CC, then on input N,e and oracle access to G, Algo-
rithm 3.1 rejects with probability at least 2/3.

Part 1 of Theorem 1.1 follows.

Proof: We shall prove the contrapositive; that is, that if Algorithm 3.1 accepts with probability
at least 1/3 then the graph is e-close to CC. The proof evolves around the following notion of i-good
start vertices. We shall first show that if Algorithm 3.1 accepts with probability at least 1/3 then
the number of “important” vertices that are not i-good is relatively small, and next show how
to use the i-good vertices in order to construct a partition of the vertices that demonstrates that
the graph is e-close to CC. The following definition refers to a parameter v, which will be set to

O(1/ts).
Definition 3.2.1 A vertex v is i-good if the following two conditions hold.
1. The subgraph induced by T'(v) misses at most 3 - 2°¢ - |T'(v)| - N edges.

2. For every positive integer j < jo def logy(|IT(v)|/ (72 - 2'eN)), the number of vertices in I'(v)
that have at least vo - 2e - N edges going out of T'(v) is at most 277 - |T'(v)].

Note that Condition 1 holds vacuously whenever |T(v)| < 2 - 2'¢ - N. However, when |[T'(v)| >
s - 2% - N, Condition 1 implies that at least 99% of the vertices in I'(v) have at least 0.99 - |T'(v)|
neighbors in T'(v). Condition 2 implies that, when ignoring at most 2770+ |T'(v)| < 72-2%€- N vertices
(in T'(v)), the number of edges going out of I'(v) is at most 2;021 2=G=D|T(v)| - 722"t7 €N, which is
less than 44 - y92%¢ - [T'(v)| - N, since jo < logy(1/722%) < logy(1/72¢€) < 2logy(1/€).

Claim 3.2.2 Ifv has degree at least y2-2"¢-N and is not i-good, then the probability that sub-test;(v)
accepts is less than 5%.

Proof: Intuitively, the lower-bound on |I'(v)| implies that the violation of any of the two conditions
of Definition 3.2.1 is detected with high probability by sub-test;(v). For example, if 1% of the
vertices in I'(v) have less than 0.99 - |'(v)| neighbors in I'(v), then the residual sample N, (created
by sub-test;(v)) is likely to contain a constant fraction of vertices that miss a constant fraction of
neighbors in N,. The actual proof, which refers to the two conditions of i-goodness, follows.

Assume that Condition 1 of i-goodness does not hold for v, and let p def 72'2‘1;'25(‘3»1\] = VTF%I;)fV

denote (the lower bound on) the fraction of missing edges in I'(v). (Note that this event may
happen only if [T'(v)| > 3 - 2% - N.) Then, with probability at least 0.9, it holds that |N,| > m/2,



where m % :TQ . % > t9 -9 > 1. Also note that the members of N, are distributed uniformly in
['(v). Now, consider n = m/2 uniformly distributed vertices in I'(v), and let (; ; = 1 if there is no
edge between the i*® and j* vertices in the sample. Then, Exp(G. ;) > p- Applying Chebyshev’s
Inequality” it follows that, with probability at least 0.9, the fraction of edges that are missing in
the subgraph induced by the said sample is at least p/2. It follows that Step 3 of sub-test;(v)
rejects with probability at least 0.9% (regardless if it examines all pairs in N, x N, or just examines
a random sample of % > Q% pairs).

Assume that Condition 2 of i-goodness does not hold for v; that is, there exists a j < jg such
that more than 277 - |['(v)| vertices in T'(v) have each at least 7 - 2i*7¢ - N edges going out of
I'(v). Using the same setting of m and n as in the previous paragraph (as well as the hypothesis
IT(v)| > 7y2-2%- N), we note (again) that with high probability |N,| > n, and that N, is expected to
contain n-277 = tyyy - 29977 > oy, vertices of “high out-degree” (and it will contain approximately

such a number, with high probability). It follows that the number of pairs in N, x ([NV]\I'(v)) that
are edges is at least n277 - v - 2017¢N/2, which means an edge density of at least p’ def g - 2%€/2.
Since |S| = 4% > 1/p/, with high probability, approximately the same edge density is maintained
also in Ny, x (S'\ N,). Thus, a sample of 2= random pairs in N, x (S \ N,) will hit an edge with
high probability and cause Step 4 (of sub-test;(v)) to reject. The claim follows. O

Claim 3.2.3 If Algorithm 3.1 accepts with probability at least 1/3 then for every i € [£] the number
of vertices of degree at least v2-2'¢- N that are not i-good is at most v1-27*-N, where 1 def O(1/t1).

Claim 3.2.3 follows by combining Claim 3.2.2 with the fact that Algorithm 3.1 invokes sub-test; on
t - 2 random vertices (and using (1 — 7 - 279)%'%" +0.05 < 1/3). Next, using the conclusion of
Claim 3.2.3, we turn to construct a partition (Ci,...,C;) of [N] such that the graph G misses at
most €- (1;[)/2 edges within the C;’s and has at most - (1;[)/2 edges between the C;’s. The partition
is constructed in iterations. We start with a motivating discussion.

Note that any i-good vertex, v, yields a set of vertices (i.e., I'(v)) that is “close” to being a
clique, where “closeness” has a stricter meaning when 7 is smaller. Specifically, by Condition 1,
this clique misses at most s - 2% - [T'(v)| - N edges. But we should also care about how this clique
“interacts” with the rest of the graph, which is where Condition 2 comes into play. Letting C,
contain only the vertices in I'(v) that have less than |I'(v)| neighbors outside of I'(v), we upper-
bound the number of edges going out of C,, as follows: We first note that these edges are either edges
between C, and I'(v) \ C, or edges between C,, and [N]\TI'(v). The number of edges of the first type
is upper-bounded by |C,|-|T'(v)\ C,|, which (by using Condition 2 and jo = logs(|T'(v)|/(72-2%eN)))
is upper-bounded by |C,| - 277°|T(v)| = |C,| - 722N < 492% - [T'(v)| - N. The number of edges of
the second type is upper-bounded by

Jo
Y2 ULy 26 N = 2jo-a2'e- [T(v)] - N, (1)
j=1

by assigning each vertex u € C, the smallest j € [jo] such that |T'(u) \ T'(v)| < 72 - 28He - N,
and using 792799 - N = |['(v)|. Thus, the total number of these edges is upper-bounded by

"Here we have (") random variables, which are partially pairwise independent (i.e., {;; is independent of (s ;

2
if |{i,4,4',5'}| = 4). Furthermore, these random variables assume values in {0,1} (and so ¢?; = ¢;;) and it holds
that n - p = tay2/2 > 1 (rather than merely n®> > 1/p). Assume, for simplicity that Exp((: ;) = p. It follows that

EXP(E,;<J' C‘i,j) = (;) p> n2P/3 and Var(zi<j Ci,j) <4 EXP(Z-;<]"]C Ci,jCi,k) =4n- EXP(Z-;<]' Ci,j) < 2n3p' Thus,

Var 18 _ _36

Exp? < mp = 745+ Which can be made an arbitrary small constant (by an adequate choice of t = ©(1/72)).



(2jo+1)-722%-|T'(v)|-N, which is upper-bounded by 3£-v92%€-|I'(v)|-N (since jo < logy(1/(72-2%)) <
logy(1/72€) = (1+0(1)) - £).

The foregoing paragraph identifies a single (good) clique, while we wish to identify all cliques.
Starting with ¢ = 1, the basic idea is identifying new cliques by using i-good vertices that are not
covered by previously identified cliques. If we are lucky and the entire graph is covered this way
then we halt. But it may indeed be the case that some vertices are left uncovered and that they are
not i-good. At this point we invoke Claim 3.2.3 and conclude that these vertices either have low
degree (i.e., have degree at most 3 -2%€- N) or are relatively few in number (i.e., their number is at
most 1 - 27¢ - N). Ignoring (for a moment) the vertices of low degree, we deal with the remaining
vertices by invoking the same reasoning with respect to an incremented value of i (i.e., i < i+ 1).
The key observation is that the number of violations, caused by cliques identified in each iteration
i, is upper-bounded by the product of the number of vertices covered in that iteration (which is
linearly related to 27%) and the “density” of violations caused by each identified clique (which is
linearly related to 2%). Thus, intuitively, each iteration contributes O(£ys¢ - N2) violations, and
after the last iteration (i.e., i = £) we are left with at most 71 - 27" - N < y1eN vertices, which we
can afford to identify as a single clique (or alternatively as isolated vertices).

Two problems, which were ignored by the foregoing description, arise from the fact that vertices
that are identified as belonging to the clique C, (of some i-good vertex v) may belong either to
previously identified cliques or to the set of vertices cast aside as having low degree. Our solution is
using only i-good vertices for which the majority of neighbors do not belong to these two categories
(i.e., vertices v such that most of I'(v) belongs neither to previously identified cliques nor have low
degree). This leads to the following description.

The partition reconstruction procedure. The iterative procedure is initiated with C = Lo = 0,
Ry = [N] and i = 1, where C denotes the set of vertices “covered” (by cliques) so far, R; 1 denotes
the set of “remaining” vertices after iteration ¢ — 1 and L;_1 denotes the set of vertices cast aside
(as having “low degree”) in iteration ¢ — 1. The procedure refers to a parameter § = ©(1/£) > v,
which determines the “low degree” threshold (for each iteration). The i*! iteration proceeds as
follows, where 7 = 1, ..., £ and F; is initialized to (.

1. Pick an arbitrary vertex v € R; ;1 \ C that satisfies the following three conditions
(a) v is i-good.
(b) v has sufficiently high degree; that is, |T'(v)| > 8- 2% N.
(c) v has relatively few neighbors in C; that is, |I'(v) N C| < |T'(v)|/4-

If no such vertex exists, define L, = {v € R;_1\C : [T'(v)| < B-2%¢-N} and R; = R;_1\(L;UC).
If 4 < £ then proceed to the next iteration, and otherwise terminate.

2. For vertex v as selected in Step 1, let C, = {u € I'(v) : |[I'(w) \ T'(v)| < |T'(v)|}. Form a new
clique with the vertex set C! «— C, \ C, and update F; — F; U{v} and C — CUC/.

Note that by Condition 1c, for every v € F;, it holds that |C]| > |Cy| — (|T(v)|/4), whereas by i-
goodness® (and jo = log,([T(v)|/ (72 -2!eN)) > logy(B/72) = w(1)) we have |C,| > (1—o0(1))-|T(v)|-
Thus, quality guarantees that are quantified in terms of |I'(v)| translate well to similar guarantees
in terms of |C}|. This fact, combined with the fact that C, cannot contain many low degree vertices

8Every v € F; is 4-good and thus satisfies |Cy| > (1 — 2770) - [D(v)|.
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(i.e., vertices cast aside (in prior iterations) as having low degree), plays an important role in the
following analysis.

Claim 3.2.4 Referring to the foregoing procedure, for every i € [£] the following holds.

1. The number of missing edges inside the cliques formed in iteration i is at most 8yye- N?; that
18,

U {(u,w) € C x C} : (u,w) & E}| < 8ype- N

veEF;

2. The number of (“superfluous”) edges between cliques formed in iteration i and either R; or
other cliques formed in the same iteration is 244 - yoe - N?; actually,

U {(u,w) € CL x (Ri—1 \ Cy) : (u,w) € B} < 244 - yoe - N2

veF;

3. |R;| <27" N and |L;| < 2G-D . N.

Thus, the total number of violations caused by the cliques that are formed by the foregoing proce-
dure is upperbounded by (24 + 0(1))£2 - y9¢ - N? = 0(eN?). (We mention that the setting 7o = o(£2)
is used for establishing Item 3.)

Proof: We prove all items simultaneously, by induction from 7 = 0 to ¢« = £. Needless to say, all
items hold vacuously for 7 = 0, and thus we focus on the induction step.

Starting with Item 1, we note that every v € F; is i-good and thus the number of edges missing in
C! xC! CT(v)xT(v) is at most y22% |T'(v)|-N < 2v92%-|C!|- N, where the inequality follows from
|C!| > |T(v)|/2 (which follows by combining |C4| > |Cy| — (T'(v)|/4) and |Cy| > (1 — 27%) - |T(v)],
where jo = logy(|T(v)|/(72 - 2'eN)) > 2). Recall that the i-goodness of v (combined with |T'(v)| >
B-2%- N) implies that T'(v) contains at least 0.99 - |T'(v)| vertices of degree exceeding 0.99 - |T'(v)|.
This implies that |I'(v) N (Uje[z'—l]i L;)| < |Cy|/4, because |T'(v)| > 2% - N whereas every vertex in
Ujefi—1) Lj has degree at most B2t Le- N. Observing that C! = (C/ N R;_1) U (C! N Ujepi—1) L), it
follows that |U,er Cp N Ri 1| > [Uper Cpl/2, and thus 3 cp |Cy| < 2|R; 1]. Combining all the
foregoing, we obtain

U {(ww) € Gy x Cy s (ww) ¢ BY = 3 {(w,w) € C, x Oy : (u,w) € B
vEF; vEF;
< 2v,2%- Z |Gyl - N
vEF;
S 2722i6-2|Ri_1| - N.

Using the induction hypothesis regarding R;_; (i.e., |Ri_1| < 201 . N), Ttem 1 follows.

Item 2 is proved in a similar fashion. Here we use the fact® that i-goodness of v (which follows
from v € F;) implies that the number of edges in C) x (R;_1 \ C.) C C, x ([N]\ Cy) is at most

9This fact was established in the motivating discussion that precedes the description of the procedure (see Eq. (1)
and its vicinity). Specifically, recall that the number of edges in C, x ([N]\ C,) is upper-bounded by the sum of
|Cv x (T'(v) \ C»)| and the number of edges in C, x ([N] \ I'(v)). Using Condition 2 of i-goodness, we upper-bound
both |I'(v) \ C,| and the number of edges of the second type, and the fact follows.
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3¢-752%-|T'(v)|- N, which is upper-bounded by 6£-7,2%-|C;|- N. Using again 3¢ p, |Ch| < 2|R;—1]
and |R; 1| < 2=G=D . N, we establish Item 2.

Turning to Item 3, we first note that L; C R;_; and thus |L;| < |Ri—1| < 2-(~1) . N. As for
R;, it may contain only vertices that are neither in L; nor in J,cp Cy. It follows that for every
v € R; either v is not i-good (although it has degree at least - 2% N) or it has at least |I'(v)|/4
neighbors in previously identified cliques (which implies |I'(v) N (UweU " CL)| > |T'(v)|/4).

jeli
By Claim 3.2.3, the number of vertices of the first type is at most v127° - N. As for vertices of
the second type, each such vertex v (in R;) requires at least |I'(v)|/4 > (- 2%¢ - N/4 edges from
cr &t U Usep B C}, to it (because C' is the set of vertices covered by previously identified cliques
i€l

at the time iteration 7 is completed). By Item 2, the total number of edges going out from C’ to R;
is at most 7 - 244 - yge - N? < 24¢% - 3¢ - N2. On the other hand, as noted above, each vertex of the
second type has least 3 - 2%¢ - N/4 edges incident to vertices in C’. Hence, the number of vertices
of the second type is upper-bounded by

240% - y9e - N2 2402 - v
B2 N g
Thus, |R;| < (y1 + 24627937 1)-27. N. By the foregoing setting of 71,72 and 3 (e.g., v1 = 1/2 and
79 = B/(48¢2)), it follows that |R;| <27¢.- N. O

27N, (2)

Completing the reconstruction and its analysis. The foregoing construction leaves “unassigned” the
vertices in Ry as well as some of the vertices in Ly, ..., Ly. (Note that some vertices in Uf;ll L; may
be placed in cliques constructed in later iterations, but there is no guarantee that this actually
happens.) We now assign each of these remaining vertices to a singleton clique (i.e., an isolated
vertex). The number of violation caused by this assignment equals the number of edges with both

endpoints in R’ def RyU Ule L;, because edges with a single endpoint in R’ were already accounted
for in Ttem 2 of Claim 3.2.4. Nevertheless, we upper-bound the number of violations by the total
number of edges adjacent at R', which in turn is upper-bounded by

J2
Y. IP@I < RN+ > [T(v)

UER[UU-LE[Z] L; 1=1v€EL;

N “oi :
< N+ 20N preN
i=1

- E-NQ—I—ZE-ﬂ-eN?.
By the foregoing setting of 5 (i.e., 8 < 1/8¢), it follows that the number of these edges is smaller

than eN?/2. Combining this with the bounds on the number of violating edges (or non-edges) as
provided by Claim 3.2.4, the lemma follows. W

4 The Non-Adaptive Query Complexity of Clique-Collection
In this section we study the non-adaptive query complexity of clique collection. We first establish
the lower-bound claimed in Part 2 of Theorem 1.1, and next show that this lower-bound is essentially

tight.
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4.1 The Lower Bound

In this section we establish Part 2 of Theorem 1.1. Specifically, for every value of € > 0, we consider
two different sets of graphs, one consisting of graphs in CC and the other consisting of graphs that
are e-far from CC, and show that a non-adaptive algorithm of query complexity 0(6*4/ 3) cannot
distinguish between graphs selected at random in these sets.

The first set, denoted CC,, consists of N-vertex graphs such that each graph consists of (2¢) !
cliques, and each clique has size 2¢ - N. It will be instructive to partition these (2¢)~! cliques into
(4¢) ! pairs (each consisting of two cliques). The second set, denoted BCC., consists of N-vertex
graphs such that each graph consists of (4¢)~! bi-cliques, and each bi-clique has 2¢ - N vertices on
each side. Indeed, CC. C CC, whereas each graph in BCC, is e-far from CC (because each of the
bi-cliques must be turned into a collection of cliques).

In order to motivate the claim that a non-adaptive algorithm of query complexity o(e=*/3)
cannot distinguish between graphs selected at random in these sets, consider the (seemingly best
such) algorithm that selects o(e=2/3) vertices and inspects the induced subgraph. Consider the
partition of a graph in CC into (4¢)~! pairs of cliques, and correspondingly the partition of a graph
in BCC, into (4¢)~! bi-cliques. Then, the probability that a sample of o(e 2/3) vertices contains
at least three vertices that reside in the same part (of 4¢ - N vertices) is o(e=2/%)3 - (4¢)? = o(1).
On the other hand, if this event does not occur, then the answers obtained from both graphs
are indistinguishable (because in each case a random pair of vertices residing in the same part is
connected by an edge with probability 1/2). As will be shown below, this intuition extends to an
arbitrary non-adaptive algorithm.

Specifically, by an averaging argument, it suffices to consider deterministic algorithms, which are
fully specified by the sequence of queries that they make and their decision on each corresponding
sequence of answers. Recall that these (fixed) queries are elements of [N] x [N]. We shall show that,
for every sequence of 0(6*4/ 3) queries, the answers provided by a randomly selected element of CC,
are statistically close to the answers provided by a randomly selected element of BCC.. We shall use
the following notation: For an N-vertex graph G and a query (u,v), we denote the corresponding
answer by ansg(u,v); that is, ansg(u,v) = 1 if {u,v} is an edge in G and ansg(u,v) = 0 otherwise.

Lemma 4.1 Let Gy and G be random N -vertex graphs uniformly distributed in CC. and BCCe,
respectively. Then, for every sequence (v1,v2), ..., (Vag—1,v2q) € [N] X [N], where the v;’s are not
necessarily distinct, it holds that the statistical difference between ansg, (v1,v2), ..., ansg, (V2g—1, Vaq)
and ansg, (v1,v3), .., ansg, (vag_1,v2q) is O(q*?€?).

Part 2 of Theorem 1.1 follows.

Proof: We consider a 1-1 correspondence, denoted ¢, between the vertices of an IV-vertex graph
in CC. U BCC, and triples in [(4€) 1] x {1,2} x [2¢ - N]. Specifically, ¢(v) = (4,4, w) indicates that
v resides in the 5™ “side” of the " part of the graph, and it is vertex number w in this set. That
is, for a graph in CC, the pair (i,4) indicates the j'* clique in the i*! pair of cliques, whereas for a
graph in BCC, the pair (i,j) indicates the j' side in the i*" bi-cliques. Consequently, the answers
provided by uniformly distributed G; € CC. and Gy € BCC, can be emulated by the following two
corresponding random processes.

1. The process A; selects uniformly a bijection ¢ : [N] — [(4€)71] x {1,2} x [2¢- N] and answers
each query (u,v) € [N] x [N] by 1 if and only if ¢(u) and ¢(v) agree on their first two
coordinates (and differ on the third). That is, for ¢(u) = (41,71, w1) and ¢(v) = (ig, j2, w2),
it holds that A;(u,v) =1 if and only if both i1 = i2 and j1 = j2 (and wy # wy).
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2. The process A selects uniformly a bijection ¢ : [N] — [(4¢)~!] x {1,2} x [2¢- N] and answers
each query (u,v) € [N] x [N] by 1 if and only if ¢(u) = (4,4, w1) and ¢(v) = (4,3 — 7, w2).
That is, for ¢(u) = (i1, 71, w1) and ¢(v) = (ig,j2,ws), it holds that As(u,v) = 1 if and only
if ’il = ’iQ but j1 75]2

Let us denote by ¢'(v) (resp., ¢’ (v) and ¢ (v)) the first (resp., second and third) coordinates of
¢(v); that is, ¢(v) = (¢'(v), ¢"(v), ¢" (v)). Then, both processes answer the query (u,v) with 0 if
¢'(u) # ¢'(v), and the difference between the processes is confined to the case that ¢'(u) = ¢'(v).
Specifically, conditioned on ¢'(u) = ¢'(v) (and ¢"(u) # ¢" (v)), it holds that A;(u,v) = 1 if and
only if ¢"(u) = ¢"(v), whereas As(u,v) = 1 if and only if ¢"(u) # ¢"(v). However, since the
(random) value of ¢” is not present at the answer, the forgoing difference may go unnoticed. The
foregoing considerations apply to a single query, but things may change in case of several queries.
For example, if ¢'(u) = ¢'(v) = ¢'(w) then the answers to (u,v), (v,w) and (w,v) will indicate
whether we are getting answers from A; or from A (since A; will answer positively on an odd
number of these queries whereas As will answer positively on an even number). In general, the
event that allows distinguishing the two processes is an odd cycle of vertices that have the same ¢’
value. Minor differences may also be due to equal ¢" values, and so we also consider these in our
“bad” event. For sake of simplicity, the bad event is defined more rigidly as follows, where the first
condition represents the essential aspect and the second is a technicality.

Definition 4.1.1 We say that ¢ is bad (w.r.t the sequence (v, v2), ..., (V2g—1,v2¢) € [N] X [N]), tf
one of the following two conditions hold:

1. For some i € [(4¢)" ], the subgraph Q; = (V;, E;), where V; = {vy, : k€[2¢] A ¢'(v) =i} and
E; = {{vog—1,v9x} : vor—1,vax € Vi}, contains a simple cycle.

2. There exists i # j € [2q] such that ¢"'(v;) = ¢" (vj).

Indeed, the query sequence (v1,v2), ..., (V2g—1,v24) Will be fixed throughout the rest of the proof,
and so we shall omit it from our terminology.

Claim 4.1.2 The probability that o uniformly distributed bijection ¢ is bad is at most

3/2 2 ¢

2000 - —_—

et 2e N

Proof: We start by upper-bounding the probability that the second event in Definition 4.1.1 holds.
This event is the union of (22q) sub-events, and each sub-event holds with probability 1/(4e - N).
Thus, we obtain a probability (upper) bound of q?/2eN. As for the first event, for every ¢ > 3, we
upper-bound the probability that some ; contains a simple cycle of length ¢. We observe that the
query graph Q = (Vg, Eg), where Vi = {v; : k€[2q]} and Eg = {{vag_1,v2r} : k€ [g]}), contains
at most (2¢)"/? cycles of length ¢ (cf. [A, Thm. 3]), whereas the probability that a specific simple
t-cycle is contained in some Q; is (4¢)®"1. Thus, the probability of the first event is upper-bounded

by
S0 (o)t < 3 (Vag -4 V) < 3 (6 )
t>3

>3 >3

which is upper-bounded by 2 - (6,/7 - €2/3)3 < 500¢%/2€2, provided 6,/4 - €2/3 < 1/2 (and the claim
hold trivially otherwise). O
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Claim 4.1.3 Conditioned on the bijection ¢ not being bad, the sequences (A1(v1,v2), ..., A1(vag—1,v29))
and (Ag(vi,v2), ..., Aa(v2g—1,v2q)) are identically distributed.

Proof: Noting that Definition 4.1.1 only refers to ¢’ and ¢'’, we fixed any choice of ¢’ and ¢" that
yields a good ¢ and consider the residual random choice of ¢”. Referring to the foregoing subgraphs
Qi’s, recall that pairs with endpoints in different ();’s are answered by 0 in both processes. Note
that (by the second condition in Definition 4.1.1) the hypothesis implies that ¢ assigns different
values to the different vertices in {vx : k € [2¢]}, and it follows that ¢” assigns these vertices
values that are uniformly and independently distributed in {1,2}. Now, using the first condition
in Definition 4.1.1, the hypothesis implies that each @; is a forest, which implies that (in each
of the two processes) the answer assigned to each edge in @Q; is independent of the answer given
to other edges of ;. That is, we assert that (in each of the two processes) the edges of each
forest Q; = (V;, E;) are assigned a sequence of answers that is uniformly distributed in {0, 1}|E"|.
To formally prove this assertion, consider the constraints on the ¢”-values (of V;) that arise from
any possible sequence of answers. These constraints form a system of |E;| linear equations over
GF(2) with variables corresponding to the possible ¢”-values and constant terms encoding possible
equality and inequality constraints.!® Note that the (coefficients of the) linear systems are not
affected by the identity of the process, which does effect the free terms. Furthermore, this linear
system is of full rank; and thus, for each of the two processes and each sequence of answers, the
corresponduing system has 2/Vi~IEil = 2 solutions (i.e., possible assignments to ¢” restricted to
Vi). Thus, in each of the two processes, each query is answered by the value 1 with probability
exactly 1/2, independently of the answers to all other queries. The claim follows. O

Combining Claims 4.1.2 and 4.1.3, it follows that the statistical distance between the sequences
(A1 (v1,V9), ey A1 (V2g 1, v24)) and (Ag(vi,va), ..., Ag(vag 1,v24)) is at most O(¢2€? + ¢?(eN)™1),
and the lemma follows for sufficiently large N. W

4.2 A Matching Upper-Bound

In this section we establish Part 3 of Theorem 1.1. We mention that this improves over the 6(6*2)
bound of [AS, Thm. 2] (which is based on inspecting the subgraph induced by a random set of
O(e 1log(1/e)) vertices).

Algorithm 4.2 (non-adaptive test for CC): On input N and € and oracle access to a graph G =
([N], E), the tester sets £ =logy(1/€) and proceeds as follows.

1. The tester selects a random sample of s def @(6_2/3) vertices, denoted S, and examines all
vertex pairs (in S x S).

2. Fori=1,..,(2¢/3) + O(1), the tester selects uniformly a subset S; C S of cardinality s; def
0(2%) and a sample of O(e71)/s; vertices, denoted R;, and ezamines all the vertez pairs in
Si X Ri.

3. The tester accepts if and only if its view of the graph as obtained in Steps 1-2 is consistent
with some graph in CC. Namely, let g’ + (S x S) U U1 (Si x R;)) — {0,1} be the function
determined by the answers obtained in Steps 1-2. Then the tester accepts if and only if g' can
be extended to a function over S’ x S', where S' = SU U‘flzl R;, that represents a graph in CC.

10The condition A (u,w) =1 iff ¢ (u) = ¢" (v) is encoded by ¢" (u) + ¢" (v) = A1(u,w) + 1, whereas the condition
As(u, w) = 1iff ¢"(u) # ¢"(v) is encoded by ¢" (u) + ¢" (v) = Az(u,w).
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The query complexity of Algorithm 4.2 is dominated by Step 1, which uses O(e~2/3)2 = O(e~*/3)
queries. Clearly, this algorithm accepts (with probability 1) any graph that is in CC. It remains to
analyze its behavior on graphs that are e-far from CC.

Lemma 4.3 If G = ([N], E) is e-far from CC, then on input N,e and oracle access to G, Algo-
rithm 4.2 rejects with probability at least 2/3.

Part 3 of Theorem 1.1 follows.

Proof: We say that a triple (v,u,w) of vertices (resp., a 3-set {v,u,w} C [N]) is a witness (for
rejection) if the subgraph of G induced by {v,u,w} contains exactly two edges. Indeed, Algorithm 4.2
rejects if (and only if), for some witness (v, u,w), the algorithm has made all three relevant queries
(i.e., the queries (v,u), (u,w), and (w,v)).}! A sufficient condition for this to happen is that either
{v,u,w} C S or for some 7 both |{v,u,w} N S;| =2 and |[{v,u,w} N R;] =1 hold. Thus, we say
that a witness is effective with respect to the said samples (i.e., S and the R;’s) if the foregoing
sufficient condition holds. We shall show that, with probability at least 2/3, the samples contain
an effective witness.

Let G' = (V,E') be a graph in CC that is closest to G = (V, E), and let (V1,...,V;) be its
partition into cliques. For the sake of simplicity, we shall refer to the V;’s as cliques, even though
they are not (necessarily) cliques in G, and we shall refer to the partition (Vi,...,V;) as the best
possible partition for G. Two main observations regarding this partition follow.

Observation 1: For every ¢ € [t] and every S C V;, it holds that |[EN(S % (V;\9))| > |Sx(Vi\S)|/2,
since otherwise replacing the clique V; by two cliques, S and V; \ S yields a better partition
for G.

Observation 2: For every ¢ # j € [t], it holds that |[E N (V; x V})| < |V; x V}|/2, since otherwise
replacing the two cliques V; and V; by a single clique V; U V; yields a better partition for G.

Now, since G is e-far from CC, either G' misses § - N 2 edges within these Vj’s or it has 5N 2
superfluous edges between distinct V;’s. We show that in either case, with high constant probability,

the samples produced by Algorithm 4.2 contain an effective witness.

The pivot of the analysis is relating the fraction of bad vertex pairs (i.e., either missing “internal”
edges or superfluous “external” edges) to the fraction of witnesses. Specifically, we shall show that
the existence of 5 - IV 2 missing internal edges (resp., 5N 2 superfluous “external” edges) implies
the existence of Q(e2N3) witnesses. Furthermore, using additional features of the structure of
the set of witnesses, we shall show that with high probability the random sample (as produced
by Algorithm 4.2) contains an effective witness. Specifically, these additional features, which are
established in the elaborate parts of Claims 4.3.1 and 4.3.2, are instrumental to the detection of a
witness (as argued in Claim 4.3.3).

To facilitate the exposition, for every two sets A, B C [N], we let E(A, B) denote the set of

edges with one endpoint in A and another endpoint in B (i.e., E(A, B) “EN (A x B)). For each

vertex v and j € [t], let
I';(v) def V;NT(v) ={ueVj: (u,v) € E}
and

T;(v) € V;\ (T(v) U{o}) = {ue(V; \ {v}) : (u,v) ¢ E}.

"'We note that only the (easy to establish) sufficiency of the foregoing rejection condition is used in the analysis.
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If v € V;, then we use the shorthand: I'(v) = I';(v). Indeed, I'(v) corresponds to the set of internal
edges that are missed by vertex v.

Claim 4.3.1 (using missing internal edges):
2).

Elaborate claim: For every (possibly empty)'? set F of “forbidden” (non-adjacent) vertez-pairs, the
following holds:

Basic claim: For every vertez v, the number of witnesses that contain v is Q(|T(v)

1. For every v € [N] there exists a set W, C T'(v) \ {u : (v,u) € F} such that

S W > (Z TEL”)') Ty

vE[N] vE[N]

and for every uw € W, there ezists a set Wy, C (I'(v) NT'(u)) such that

D IWoul > [Wof?/4.
UEW'U
Moreover, if F =0 then for every v it holds that |W,| > |T'(v)|/4.

(Indeed, each triple (u,v,w) such that v € W, and w € W, , constitutes a witness,
because {u,v} ¢ E whereas w € I'(v) N I'(u); see illustration in Figure 1.)

2. For the sets Wy and Wy as in Part 1 of the claim, letting U( ) def (v,u) :weWy,} it

holds that if each set W, has cardinality at most 62/3N/2 then each Ul(l,z) has cardinality
at most €*/3N?2.

It follows that the total number of witnesses is Q(E €[N] |f( )|?). In particular, if the number of
missing internal edges is at least § - N? (ie., 3¢ \f( )| > e+ N?), then the total number of
witnesses is at least N - Q((eN)?) = Q(e? - N3).

Figure 1: An Illustration for the proof of Claim 4.3.1.

Proof: Using Observation 1, we note that for any choice of ¢ € [t] and for every v € V; it holds that

T@) = Vi\{v}| - [E{v},Vi\ {v})] < & < [Fi(v)] (3)

12Tndeed, in first reading, the reader is encouraged to think of the case F = 0. In fact, this case is one of the two
cases that will be actually used in the sequel.

17



and
|E(T(v),Ti(v)] = |ET(v),Ti(v) U{v})| > %If(v)l-\ﬂ(v)l- (4)

Letting T, = {(v,u,w) : (u,w) €T(v) x T;(v)}, it follows that at least half of the triples (v, u, w)
in T, are witnesses (i.e., (u,w) € E, (u,v) € E, and (w,v) € E), whereas |T,| > |['(v)|>. This
establishes the basic claim.

Let us first establish the elaborate claim for the special case of F' = (). In this case, for every v € V;,

we consider the set
def

= {uel(v) : |[E({u},Ti(v)] > Ti(v)|/4} - ()
By Eq. (4), 2,70 |E({u},I‘Z(v))\ > |T(v)| - |Ti(v)|/2. Tt follows that |W,| > |T'(v)|/4. We note
that (by Eq. (5)), for every u € Wy, it holds that |T';(v) NI'(u)| > |Ti(v)|/4 > |Wy|/4. Next, for
every u € Wy, let W, ,, be an arbitrary subset of |W,|/4 elements in I';(v) N\T'(u). Note that, indeed
W, C T(v) and for every u € W, it holds that W, , C I'(v) NT'(u). Recalling that |W,| > [T'(v)|/4
and |W, | = |Wy|/4, Part 1 follows.

To establish Part 2, we first note that if we select W, ,, uniformly among all |W,,|/4-subsets of
Ti(v) NT(u), then, for any w € V;, the expected size of Ui(uz) is upper-bounded by

2 2

veV; ueW,

MU s :
Wl < 2 wis - v ™

vEV; uEW, 1 veV;

where the inequality uses |T';(v) NT\(u)| > |T;(v)|/4 > |Vi|/8. Thus, if ‘V| Yoev: [Wol2 < /3N2/2
then, with overwhelmingly high probability, it holds that |UqS,2)| < €*/3N?. Picking the sets (i.e.,
the W, ,’s) such that none of the negligible probability events (associated with w € V;) occurs, we
infer that |U. (2)| > ¢*/3N? implies that Svev: [Wol? > ¢*/3N?|V;| /4 (which implies the existence of
v such that |[W,| > €2/3N/2). Part 2 follows.

Note that so far we have established the (elaborate) claim for the special case of F = (). We now
establish the general case by reduction to the former special case. We first modify the sets W, by
omitting from each W, each vertex u such that {v,u} € F. This modification decreases ), |W,| by
at most 2|F'|. Next, we modify the sets W, , by omitting from each W, , a few elements, selected
at random, such that |W, | = |W,|/4 holds (for the modified sets). Clearly, Part 1 holds for the
modified sets. To see that Part 2 holds too, we note that the foregoing argument only relies on the
fact that W, , is a random (|W,,|/4)-size subset of I';(v) NT'(u). The claim follows. O

Another piece of notation. For every ¢ € [t] and every v € V}, let

I'(0) € T@)\ Vi
denote the set of vertices outside of V; that have a superfluous edge to v. That is, I'(v) = U, 4, T'j(v)-
Claim 4.3.2 (using superfluous external edges):

Basic claim: For every vertez v, the number of witnesses that contain v is Q(|T'(v)[?).

Elaborate claim: If 3,¢n [T'(v)| > 500-3,¢(n IT(v)], then there exist constants cy, ..., ¢4 for which
the following holds:
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1. For every v € [N] there exists a set W, C I'(v) such that letting V' = {v : |[W,| >
ITY(v)|/c1} it holds that
3
Y@z Y M) ©

veV! vE[N]
In addition, for every uw € W, there exists a set W, ,,, which is either a subset of T'(v) \
I'(u) or a subset of I'(u) \ T'(v), such that |Wy | > |Wy|/ca.
(Indeed, each (v, u,w) such that v € W, and w € W, ,, constitutes a witness.)

2. For the sets Wy o as in Part 1 of the claim, let UqS,Q) def (v,u) : wE Wy} If for every
v it holds that |T(v)| < €2/3N/2 then each UP has cardinality at most 10e*/3N2.

3. Let F be any set of “forbidden” vertez-pairs in U;; E(V;,V;), and for a vertez v let

F(v) def {u: (v,u) € F}. Then, for each vertez v, there exist modified subsets W, and
Wou (for every u € W,) that satisfy the following modified versions of Parts 1 and 2:

e For Part 1 it holds that W, CT'(v) \ F(v), and Eq. (6) is replaced by

S Wyl > Ci (Z |F'(U)|> — ¢y |F]. (7)
ve[N] 3 ]

vE[N

The other features of the subsets W, and W, ,, hold as stated in Part 1.
e For Part 2 we have that if for every v it holds that |T'(v)\ F(v)| < €2/3N/2 then each
modified U (i.e., () def {(v,u) : wEW,,}) has cardinality at most 10¢*/3N?2.

It follows that the total number of witnesses is (3 ¢[ng |T” (v)|?). In particular, if the number of
superfluous external edges is at least § - N (i.e., 2 ,¢(n] [T'(v)| > €+ N?), then the total number of
witnesses is at least N - Q((eN)?) = Q(e? - N3).

Proof: We first prove Parts 1 and 2, and later present the modifications required for Part 3. The
claim is proved by a (rather tedious) case analysis. In all but one of the cases, the basic claim (i.e.,
for every vertex v, the number of witnesses that contain v is Q(|T’(v)|?)) follows from the elaborate
claim, and so in those cases it suffices to prove the latter. In the exceptional case, the basic claim
follows by invoking Claim 4.3.1.

Each case deals with a different subset of vertices of V. With the exception of the aforementioned
case, Part 1 is proved by presenting, for every relevant vertex v (i.e., v that satisfies the case
hypothesis), a subset W,, C I''(v) of size at least I'(v)/c; and adequate sets W, ,, for each u € W,,.
Furthermore, it will be shown that the vertices covered by these (non-exceptional cases) account
for at least three fourths of the sum >, |IV(v)|.

In order to prove Part 2, for each of the foregoing cases, we consider the restriction of UQS,Q) to
pairs (v,u) such that v obeys the case hypothesis. We show that if |T'(v)| < €*/3N/2 for every such
(2)

v, then the total contribution to Uy’ of the corresponding pairs (v,u) is at most €*/3N2. Since
there are less than ten cases, Part 2 follows.

In the following analysis we consider possible cases that may apply to a generic vertex v.
However, we actually consider the set of all vertices that satisfy the hypothesis of each of these
cases. Hence, when we say that Part 1 (resp., Part 2) is established for the vertices that satisfy a
particular case hypothesis, we mean that the condition is established in the sense described in the
foregoing discussion. We now turn to the actual case analysis.
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Case 1: Much of I''(v) is contained in a single V}; that is, there exists an index j such that |I';(v)| >
IT"(v)|/10. Fixing such an index j, we distinguish two subcases regarding the fraction of V; that is
not covered by I'(v) (i.e., the relative density of T';(v) in V}).

Case 1.1: |T'j(v)| > |V;|/10. In this case, we let W, be a subset of the neighbors that v has in V},
that is, a subset of I'j(v). For each u € W, we let W, ,, be a subset of the non-neighbors of
v in V; that are neighbors of w, that is, a subset of I';(v) N I'j(u). Thus, for every u € W,
and w € W, 4, the triple (v,u,w) is a witness. For an illustration, see Figure 2. Combining
this case hypothesis (which asserts that v has many non-neighbors in V;) with Observation 1
(which guarantees many edges between neighbors and non-neighbors of v in V;), we obtain
many (i.e., Q(|T(v)|?)) such witnesses, and the basic claim follows.

V-

J

L) = [T'(v)[/10

T;(v)] = [Vj]/10

Figure 2: An Ilustration for the proof of Claim 4.3.2, Case 1.1.

In order to actually prove Parts 1 and 2, we now provide a more detailed description of the
choice of W, and W, ,. Let the subset of vertices for which the case (1.1) hypothesis holds

be denoted by V!, For each vertex v € V!, let £(v) def j if 7 is the smallest integer such
that |T'j(v)| > |T"(v)|/10. Next, we define the set

w, & {u€T¢()(v) : [T(w) N (Tey(v))] > [Tey(v)|/4},

and note that (by the case hypothesis) for every u € W, it holds that [(u) N (Tg(p(v))| >
‘V,S(v)|/40. }iy Observation 1, |E(F5(v)(1}),r—§(v)(v))| > \I’g(v)(v)| . |F§(v)(v)\/2. Noting that
|E(Ce(o)(v), Ley(v)| = 2 €T 1y (v) IT(u) N (Tg(yy(v))| and referring to the definition of W,, it
follows that |[W,| > [T¢(yy(v)|/4 > [T'(v)]|/40.

Now, for every u € Wy, let W, ,, be a random subset of [W,|/40 elements in T¢(,)(v) N T(u),
while recalling that the latter set has size at least |Tg()(v)[/4 > |Vg()|/40. Observe that
indeed, for every u € W, and w € W,,,, it holds that W, C I''(v) and Wy, C I'(u) \ T'(v).

(We note that for every w € W, ,, it holds that w ¢ I'(v) and w € T'(u) \ I'(u) (since both
u € Vg(py and Wy C Vg(y)).) Part 1 is thus established for this case (for any v € V1),
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Case

To establish Part 2, we first note that, for any j € [t] and w € V}, the expected size of Uff)
is upper-bounded by

W,|/40 1
% EOATE] < W,

veV 11 (v)=j ueW, | J| veV1-1:¢(v)=5

where the inequality uses |T';(v)NI'(u)| > |V;|/40. As in the proof of Claim 4.3.1, it is possible
to choose the subsets W, , so that the sizes of the sets Ug) are not much larger than (the
upper bounds on the value of) their expected sizes. It follows that if some w € V; satisfies
\Ul(l,2)| > ¢*/3N?, then Yvevitie()=j Wl > e*/3N?|V;|/2. We now consider two cases. In
the easy case there exists a vertex v for which £(v) = j and such that |W,| > €*/3N/2, and

Part 2 follows (since W, C I'(v)). Otherwise, letting V' = {v € V1! : £(v) = j}, we note
that

|W,|?

BV, V)l > 30 W] > D0 55 > V|- &N (8)

, BN
vEV veEV

and it follows that there exists a vertex u € V; such that [T'(u)| > |T'(u)NV’| > €2/3N. Thus,

Part 2 follows in this case.

1.2: |T;(v)| < |V;]/10 (ie., |Tj(v)| > 0.9]V;]). We first note that |T;(v)| > 0.8|T;(v)|, because
otherwise we would obtain a better partition by moving the vertex v from V; to Vj (since
the gain from such a move is at least (|T'j(v)| — |T';(v)|) — |Ti(v)|, whereas |T;(v)| — |Tj(v)| >
0.8|V;| > 0.8|T'j(v)|). We consider two subcases regarding the cardinality of the set I';(v):

1. If |Ty(v)| > 0.9 - |V;], then we let W, be a subset of I';(v), and for each u € W, we let
Wy be a subset of I';(v) \ I'(u). Thus each triple (v, u, w) where v € W, and w € W,
is a witness. For an illustration, see Figure 3. Combining the case hypotheses (which
asserts that V; x V; is essentially covered by I';(v) x I';(v)) with Observation 2 (which
guarantees many non-edges in V; x V;), we obtain (|T'(v)|?) such witnesses. Details
follow.

Let the subset of vertices for which the case hypothesis holds be denoted by V2, and
for each v € V12 define £(v) as in Case 1.1. Let

def

= {u€el;(v) : Ti(v) \ T'(w)] = |Ti(v)]/10} .

Note that for any v € W, it holds that |I;(v) \ T'(u)| > 0.1]T;(v)| > 0.08|T'j(v)|. Using
Observation 2 we have that

B @LT@) < [BV; V)
< 5l
_ 1@l i)
- 2 0.9 0.9
< 07-I0(0)] - ITi(w)]

Hence there are at least 0.3 - |T'j(v)| - |Ts(v)| pairs (u, w) where v € T'j(v) and w € I';(v)
such that w ¢ I'(u). It follows that |[W,| > |I';(v)|/5, where by the hypothesis of Case 1
this value is greater than |IV(v)|/50.
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Lj(v)] > [T (v)]/10

Ti(v)| > [I'(v)]/20
Figure 3: An Illustration for the proof of Claim 4.3.2, 1st subcase of Case 1.2.

Next, recalling that for any u € W, it holds that |T';(v) \ T'(x)| > 0.08|T;(v)|, we let W, ,,
be a 0.08|W,|-size random subset of I';(v) \ I'(u) C T'(v) \ I'(u), and note that indeed
for every w € W, and w € W, ,, it holds that u,w € I'(v) and (u,w) € E. Thus, Part 1
follows in this case. (We note that for every w € W,,, it holds that w ¢ I'(u) and
w € ['(v) \ IV(v) (since v,w € V}).)

As for Part 2, we first note that for every w € V; the expected size of Uéf) (
is upper-bounded by

008|W| 0.08 )
2 Z Tw) = 0.09Vi] 2 (Wl

veEV; ueW, veEV;

in this case)

where the inequality uses |I';(v) \ I'(u)| > 0.1|T;(v)| > 0.09|V;|. Again, we may select
the sets W, , such that for each w € V; it holds that |Uw2 | < Yvev: . Thus,

if some w € V; satisfies \Uw )| > ¢*/3N?, then Svev: [Wol? > BNV, It follows that
there exists a vertex v € V; such that |W,| > ¢2/3N, and Part 2 follows.

. If Ti(v)] < 0.9 - |V;|, then we proceed somewhat differently than in the other cases
(this is the exceptional case mentioned at the preamble of the proof). Recall that
T(v) = T;(v) = V; \ T'(v), and so [T(v)| > 0.1 -|V;| > 0.008 - |T’(v)| (because |V;| >
IT;(v)| > 0.8|Tj(v)| and |T';(v) > |T'(v)|/10). For the basic claim, we invoke Claim 4.3.1,
translating the lower-bound in terms of |['(v)| (provided by Claim 4.3.1) into a lower-
bound in terms of |IV(v)|. For the elaborate claim, we set W, = @ for every v as in
the case hypothesis. Thus we trivially have that |W,,| > |[W,|/c; for every u € W,,
and Part 2 of the claim holds trivially as well. Finally, we use the premise of the
claim that 3°,¢1n [TV (v)] > 500 3¢ IT(v)]| to infer that the current subcase (in which
IT'(v)| < 125|T(v)|) may account for less than one fourth of the sum Yvey IT ()]
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This completes the treatment of the current case (i.e., Case 1.2), which in turn completes the
treatment of Case 1. (We thus proceed to the following complementary Case 2.)

Case 2: No single V; contains much of I'(v); that is, for every j it holds that |T';(v)| <
IT'(v)|/10. As in Case 1, we consider two subcases regarding the relative part of each V;
covered by I'V(v), but in the current case we consider a partition of the set J o {7 :|T(v)| >
1} and distinguish cases regarding the intersection of I''(v) with the sets V; in each part.!3

Specifically, we let J' def ¢ 2T (v)| > 0.9]V;:|}, and consider the following two subcases.
p Y, J j g g

Case 2.1: 3 ey [T(v)| > 0.5+ |T'(v)]. In this case J' has cardinality at least five (since
e ITj()] > 0.5+ |T'(v)| and |Tj(v)| < 0.1 - |T'(v)| for every j). Let Cy = U, e T'(v)
(note that the vertices in C, belong to several cliques V]) In this case we let W, be
a subset of C,, and for each u € C, we let W, , be a subset of C, \ I'(u). We shall
show that the case hypothesis implies that there are many missing edges between pairs
of vertices in C,. Intuitively, this holds because C,, essentially covers U,c ;» Vj, whereas
(by Observation 2) for any j; # j2 there are many non-edges in Vj; x Vj,. This ensures
that we have many witnesses of the form (v, u,w), where u € W, and w € W, ,,. Details
follow.

several sets V; such that |I';(v)| < |IV(v)|/10

ITj(v)| > 0.9]Vj]

Figure 4: An Illustration for the proof of Claim 4.3.2, Case 2.1.

For every ji # jo € J', by Observation 2 (and since |T';(v)| > 0.9|V;| for every j € J'),
it holds that

1
[ BT, (0), Dy ()] < 5 - [Viu |- V3| < 0.7 [Ty, (0)] - [T (0)]

13We note that the threshold for relative density is also different in the current case.



Letting M e Yitiser (T (v) X Tjy(v)) \ B, we first observe that

M = Z (IT5, ()] - [Tj, ()| = [E(Lj; (v), T, (v))])

J1#j2€J’!
> > (1-0.7) |05 (v)] - [Ty, (v)|
J1#j2€J’
2
= 03- (Zlfj(v)\) - > D)
JeJ! jeJ!

> 03 (05 @) — 0.1 @),

where the last inequality uses the hypotheses of Cases 2 and 2.1. Therefore, |(C, x Cy) \
E| > M > 0.04-T"(v)|%
Defining

v S {ueCy: G\ T(w)] 2002 (W)},
we note that [WW,| > 0.02 - |T"(v)|. Next, we let W,,,, be a 0.02 - [W,|-size random subset
of C, \I'(u) C I"(v) \ T'(u). As in the previous cases, Part 1 follows by the definition
of these sets. (However, unlike in the other cases, here we have w € I'(v) (and it also
holds that w & T'(u)).)

To establish Part 2, we first note that, for any fixed w, the expected size of Ug) is
upper-bounded by

0.02 - \W| 0.02 -
< (9)
vE[N ]ZC’Sw UEZVV |C \F vE[N ]I‘Z’(v)aw uEZVVvOO2

= Z |Wv|

vel’ (w)

where the inequality uses |C, \ T'(u)| > 0.02 - |[I(v)| and W,, C C, C I''(v). Analo-
gously to the previous cases, it follows that if some w satisfies |U75,2)| > €*/3N2, then
Pover(w) [Wol > ¢*/3N2/2. This implies that either |I(w)| > €*/3N/2 or there exists
v € I'(w) such that |[W,| > €¥/3N. Thus, Part 2 holds in Case 2.1.

Case 2.2: Yje 00 ITj(0)] > 0.5+ [T'(v)]. Let J" & J\ J' = {j : 1 < [T;(v)| < 0.9/V;[}, and
note that for j € J” (as considered in this case) it may be that |T'j(v)] < |Vj| and
consequently for j; # jo € J” it may hold that E(T';, (v),[j,(v)) = [T, (v)] - |Tj,(v)|-
More generally, redefining C, o Ujegn Tj(v), it may be that |E(Cy,C,)| = (|gv\), and
so the approach of Case 2.1 may not work in general (although it will work in the first
subcase). Letting J" %< {j € J" |V;| < |T(v)|/10}, we consider two subcases:

1. If Y em [T;(v)] > 0.4 - |T(v)| then we redefine C, © U, ¢ m Ij(v) and show that

|E(Cy, Cy)| < 0.99('6;”‘). Once the latter fact is established, we reach a situation
as in Case 2.1 and proceed exactly as in that case. To show that |E(C,,C,)| <
0.99('%!), we note that otherwise one obtains a contradiction to the optimality of
the partition (by replacing the sub-partition (V;);e s with (Cy, (V;\Cy)jegm), where
V;\ Cy =T(v)). Details follow.
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Assuming, towards the contradiction that |E(C,,Cy)| > 0.99('%”'), we lowerbound
the gain from the aforementioned replacement as follows. The gain from edges inside
C, that do not connect vertices in the same V; is lower-bounded by 0.99 - (‘(’;”l) -

% - (OYE')) which is lower-bounded by 0.36 - |C,|? (when using |I(v)| <
2.5 -|Cy|). On the other hand, we upper-bound the loss from missing edges inside
Cy and from superfluous edges introduced between C, and the various sets V; by
0.01 - (1) + |G, | - maxjeym{|V;|}, which is upper-bounded by 0.26 - |C,|? (when
using |V;| < 0.1-|IV(v)] <0.25 - |Cy)).

2. I 32 ;c g |Tj(v)| > 0.1-|T(v)| then we proceed similarly to Case 1.1. Specifically,
we define _
= T ()] }

def
w, = {“ € Lj(v) : [Tj(w) NL;(v)| 2 =
jeJ”\JHI

and note that W, C I''(v) and that for every j € J”\ J” it holds that [W, N V;| >
IT';(v)|/4 (since E(T';(v),V; \ Tj(v)) > |T;(v)| - |V; \ T'j(v)|/2). Using the subcase
hypothesis, it follows that [Wy| > 37 ;c i g |Tj(v)|/4 > |T'(v)[/40, and using j €
J"\ J" every u € W, satisfies |T'j(u) N T;(v)| > |Tj(v)|/4 > |V;|/40 > |T'(v)|/400.
Next, for every j € J”\ J” and every v € W, NV}, we define W, , to be a random
subset of size |I'(v)|/400 of I'j(u) NI'j(v). Indeed, for every u € W, and w € W, ,, it
holds that w ¢ I'(v) and w € I'(u) \ I'(u). For an illustration, see Figure 5. Given
the lower bounds on the sizes of the sets W, and W, ,, Part 1 follows.

several sets V; (IVjl > |T'(v)|/10)

ITj(v)] > [Vjl/10

Figure 5: An Illustration for the proof of Claim 4.3.2, 2nd subcase of Case 2.2.



To establish Part 2, we first note that, for any fixed w € Vj, the expected size of

5,2) is upper-bounded by

T'(0)1/400 ')
2 AT S A, 2 T

ve[NI\V; wEW,NV; vE[N\V; uer; (v)

T |5 ()] - [T'(v)]
ve[N\V; 101731
where the inequality uses |T'j(u) \ T'j(v)| > |V; \ T';(v)|/4 > |V;]/40. Analogously
to the previous cases, it follows that if some w € V; satisfies |U1(u2)\ > 3N
then 3 ey, IT'(0)] - [T(v)] > 5¢*/3N2|V;|, which implies that either for some
v € [N]\ Vj it holds that |T'(v)| > ¢2/3N or that 2veln\y; 105 ()] > /3N|V;|. In
the latter case, there must be a vertex u € Vj such that [TV(u)| > ¢*/3N. Thus,
Part 2 holds in this subcase of Case 2.2.

Thus, we have established the claim for all subcases of Case 2.2.

Having completed the treatment of the two complementary cases of Case 2 (i.e., Cases 2.1
and 2.2), we complete the treatment of Case 2.

This completes the proof of Parts 1 and Part 2. Note that in each of the various cases we had
|Weyu| > |Wy|/400 (with the minimum lowerbound established in the second subcase of Case 2.2,
where we used |W, | > [T"(v)|/400).

We now turn to proving Part 3. Except for Case 2.1, the modifications of the sets W, and W,
are analogous to those performed in the proof of Claim 4.3.1. Specifically, we first modify the sets
W,, by omitting from each W, all vertices in F'(v) (recall that F(v) = {u : (v,u) € F}). Note that
we have decreased Y, |W,| by at most 2|F|. The only case in which we make further modifications
to the sets W, is in Case 2.1. As we show subsequently, this causes a further decrease in ), |W,| of
at most 98|F|. Hence, Eq. (7) follows by using the fact that Eq. (6) holds for the original sets W,,.
Next, we modify the sets W, ,, by omitting from each W, , a few elements, selected at random,
such that |W, ,| = |W,|/400 holds (for the modified sets). (This modification is done in order to
allow the extension of the argument used in Part 2.)

To see that the generalized Part 2 holds too, we note that in all cases (including Case 2.1) the
argument relies on the fact that W, , is a random (| W,|)-size subset of some (case-specific) subset
of I'(v) and on identifying a vertex v’ for which I''(v') is large (if some U is large). The same
applies to the modified sets (i.e., W,’s and W,,,’s), however here we need to show that I''(v')\ F((v')
is large. Inspecting the various cases, we note that in all cases (except for Case 2.1) the original
argument goes through. Specifically:

In Case 1.1 we showed that the existence of w € Vj such that |U1S)2)| > €*/3N? implies either the
existence of v € V' (i.e., v satisfying £(v) = j) such that |W,| > ¢2/3N/2 or the existence of
u € V; such that |[V(u)| > ¢*/3N. The same argument can be applied to the modified sets
W, and W, ,, when replacing E(V',V;) by E(V',V;)\ F in Eq. (8). Thus, the first subcase
implies that |W,| > ¢2/3N/2 (for some v € V' (and we are done since |T'(v) \ F(v)| > |W,)),
whereas the second subcase implies the existence of u € Vj such that |T'(u) \ F(u)| > /3N
(by using |E(V',V;)\ F| > |V;| - €3N, which implies the existence of u € V; such that
|(T'(u) \ F(u)) N V'| > €/°N).
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In Case 1.2 we showed that the existence of w € V; such that |U7S,2)| > ¢*/3N? implies the existence
of v € V; such that |W,| > €*/3N. The same argument applies to the modified sets W, and
W u-

In Case 2.2 we reduced the first subcase to Case 2.1, whereas the second subcase was similar to
Case 1.1. The adaptation is accordingly.

Indeed, this leaves us with Case 2.1, which is different from the other cases in the sense that it
refers to sets I'(w) such that the vertex w is not necessarily in some set W,. Specifically, recall

that in Case 2.1 we showed that the existence of w € V; such that |U(2)\ > €*/3N? implies that
2veri(w) [Wol > €¢*/3N2/2, which in turn implies that either |T'(w)| > ¢2/3N/2 or |[W,| > €*/3N for
some v € I'(w). However, unlike in Case 1.1,'* we cannot replace I'(w) by I'(w) \ F(w), because
(v,u) € U does not imply that v € I'(w) \ F(w). The source of trouble is that W, , is selected
with no reference to F.

The problem is resolved by modifying the selection of W, ,, as follows. If |F(v)| > |W,|/98 then
W, is reset to an empty set, and otherwise W, ,, is selected as a random (|W,|/100)-size subset of
(Cy\T'(uw))\ F(v) CT'(v)\ F(v) (rather than as a random (|W,]|/50)-size subset of C, \I'(u)). This
allows for replacing I''(v) 3 w by (I(v) \ F(v)) > w in Eq. (9), and so we get

0.01 - [, | - 0.01 - |C,|
et B TONTONFOT = 0B 27, 001°1C

= Z ‘Wv|

vel’(w)\F(w)

where the inequality uses |(C, \ T'(u)) \ F(v)| > 0.01 - |I¥(v)| and W,, C C, C T"(v) \ F(v). We
conclude that the existence of w € Vj} such that |U7§j")| > €*/3N? implies that el (w)\Fw) | Wol >
€*/3N?/2, which in turn implies that either |TV(w) \ F(w)| > €¥/3N/2 or |W,| > €*/3N for some
v € I'(w)\ F(w). Thus, Part 2 follows. We need, however, to examine the effect of this modification
(of the sets W, ,,) on Part 1. The key observation is that the sum of the sizes of the W,’s decreases
at most by 98|F|, because the case of |F(v)| > |W,|/98 (where W, is reset to empty) causes a loss
of at most |W,| < 98|F(v)|, whereas the case of |F(v)| < |W,|/98 (in which we avoid F(v)) causes
(as usual) a loss of at most |F'(v)|). This completes the treatment of general F', and the claim
follows. O

On the existence of effective witnesses. Combining the lemma’s hypothesis with (the basic parts
of) Claims 4.3.1 and 4.3.2, we infer the existence of Q(e2N?) witnesses. Moreover, the elaborate
parts of these claims provide us with some structure that will be useful towards proving that (with
high probability) the sample taken by Algorithm 4.2 contains at least one effective witness (i.e.,
a witness whose three vertex—pairs are inspected by the algorithm). Specifically, by the lemma’s
hypothesis, either ) \F(v)| > 0.001 € N? or 3, cqn [T/ (v)] > 0.999 - - N2, We first analyze
the former case (1e Y ove |1"( )| > 0.001 - € - N2) and the treatment of the latter case (i.e.,
v 1T (0)] > 0.999 - € - N 2) will follow (and be analogous). We consider two subcases:

'The crucial difference is that in Case 1.1 we considered 1" (u) for (v,u) € Uqu), which means that the modification
of W, allows replacing I'(u) by I'(u) \ F(u) (because (v,u) € US? for the modified sets W, implies that v €
I'(u) \ F'(u)).
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Lo I3 Ny T () >e2/3 N2 IT(v)| > 0.0001-¢- N? then applying Claim 4.3.1 with F' = () we obtain
sets W,’s and _VVv,u’s such that Part 1 of Claim 4.3.1 holds. In particular, it follows that

VE[N]:|Wy|>e?/3N/8 v€[N]:|T(v)|>€2/3N/2
0.0001 - € - N2
- 4

= Q(e- N?).

Recall that £ = logy(1/€). Thus, there exists k € {1,...,(2¢/3) + 3} such that for V' o {ve
[N]:27FN < |W,| < 27¥*1N} it holds that 3¢y [W,| = Q(e- N2/£). Fixing this k, we note
that |V'| = Q(2%¢- N/£) and thus Pr[R, N V' # 0] > 8/9, where Ry, is as selected in Step 2 of
Algorithm 4.2 (i.e., Ry is a random set of size ((2¥¢/£)~!)). Fixing any v € Ry NV’, we have
|W,| > 27*N and so Pr[S,NW,, # 0] > 8/9, where S is also as selected in Step 2 (i.e., S is a
random set of size Q(2%)). Finally, fixing any u € Sy N W,,, we have Pr[S, N W, ,, # 0] > 8/9.
Noting that all pairs (Ry x Si)U (Sk x Si) are inspected by Algorithm 4.2, the claim follows.

2. If 3 (v o) 2272 )2 IT(v)| < 0.0001 - ¢ - N2 then applying Claim 4.3.1 with F = {{u,v} :

IT(v)| > €*/3N/2} we obtain sets W,’s and W,,,’s such that Claim 4.3.1 holds. In particular
(by Part 1), it follows that

Yo w| > > W]

vE[N] v€[N]:|T(v)| <e2/3N/2

vE[N]:|T(v)|>€2/3N/2

(0.001 —0.0001
4

v

—2-0.0001) ce-N? = Q(e- N?),

whereas |W,| < |T(v) \ F(v)| < €2/3N/2 holds for every v € [N]. Note that we may assume,
without loss of generality, that |W, ,| < |W,| holds for every u € W,. (Actually, |W,.| =
|W,|/4 holds for the sets constructed in the proof of Claim 4.3.1.)

Letting Ul {v: weW,}, for every w it holds that |U5,1)\ < 2/3N/2 (because v € Ul
implies w € I'(v) and (v,w) € F). Also, by Part 2, we get |U7S,2)| < €*/3N for every w. Using
the following Claim 4.3.3, we shall show that in such a case (with high probability) the sample
S selected in Step 1 (of Algorithm 4.2) contains a witness (i.e., a triple (v, u,w) such that
u € W, and w € W, ,). Loosely speaking, the expected number of witnesses exceeds any

constant, whereas the upper-bounds on the sets |W,], |U51)| and |U,§2)| guarantees sufficient
concentration around the expected value.

The treatment of the case in which 37,cpny [IV(v)] > 0.999 - € - N? is analogous. Specifically, we
consider analogous subcases (with different constants in the differentiating thresholds) and invoke
Claim 4.3.2. Either way, the analysis of the second subcase (above) relies on the following claim.

Claim 4.3.3 (sampling triples via a 3-way Cartesian product of samples): Suppose that the fol-
lowing conditions hold:

1. ZWE[N] EUEWU |Wv,u‘ = Q(62 . N3)

28



2. For every v € [N], it holds that max(|W,|, |U,§1)|, |U52)|) < 23N, where UD€ v e W}

and UD & {(z,y) :v € Wy y}.
3. For every v € [N] and u € W, it holds that [W,,| < €2/3N.

Then, for a sufficiently large constant c that depends only on the constant in the O-notation, with
probability at least 2/3, a uniformly selected sample of c - €~2/3 wertices contains a triple (v, u, w)
such that u € W, and w € W, ,,.

Recall that we only invoke Claim 4.3.3 in the second forgoing case, and whenever we do so all the
conditions in the hypothesis hold. Specifically, we have 3-,c;n] Xuew, [Woul = Zoen QW,|?) =
Qe - N3) (since Yyeqn [Wal = Qe - N?)) as well as [Wo|, Wi, (US| < € 23N (since W, C
T(v)\ F(v) (or W, CT'(v) \ F(v)) and the same holds for Uqgl)). Furthermore, Claim 4.3.1 (resp.,
Claim 4.3.2) implies that in this case (where [T(v) \ F(v)| < ¢ 2/3N/2 (resp., [I'(v) \ F(v)| <
€~2/3N/2), it holds that |U52)| < 1043 N2. By replacing € with ¢/10, the hypothesis holds.

Proof: We may assume, without loss of generality, that for any v and v € W, it holds that
|[Weyu| < |Wy|. (Note that this is the case anyhow in the proofs of Claims 4.3.1 and 4.3.2.) We
denote the vertices of the sample S by v1,...,vs, U1,...,Us,W1,...,ws. We shall prove that, with
probability at least 1 — O(s~1e 2/3), there exists a triple (i,,k) € [s]® such that u; € W,, and
wr € Wy, w;. The proof boils down to applying Chebyshev’s Inequality to ZMkE[S] Gij k> Where
Gk =1ifu; € W, and wy, € Wy, u;, and G jr = 0 otherwise. We first note that

def
p = EXPS{ > Cz',j,k]

i7j1ke[s]
= 3. Prv,u,’wE[N] [u eEW, Nw € qu,u]
1
= 33'@' Z Z (W ul
UE[N} ueEW,

= Q- €
where the last line follows by the first condition in the hypothesis. By Chebyshev’s Inequality it
follows that

Pr { > Gijk=0

i,3,k€[s]

< VaT[Zi,j,ke[s]Ci,j,k]
N EXP[Zi,j,kE[s] Gijik)?

2
> Ci,j,k]

i,5,k€[s]

2
= pu? | Exp ( > Cz',j,k) — Exp

4,3,k €[s]

= “_2' Z EXP[Cil,jl,kl 'Ci2,j2,k2] - MQ (10)
2e[s]6

where £ = (i1,19, j1,j2, k1, k2). The upperbounds on |W,|, |W, .|, |Uu(,1)| and |U1§,2)| will be used in
upper-bounding the large sum (i.e., 2 gels)s ExD[Ciy 1 k1 Ginyjoka))- We decompose the latter sum
into partial sums that correspond to the following cases (regarding the relations between i;-vs-ig,
jl-VS-jQ, and kl-VS-kQ).
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Case of i def 11 =19, J def Jj1 =7J2, and k def ki = ky. There are s® such terms, each having value
Exp| zzjk] = Exp|(; j 1], which equals Pr, ,, vt € Wy A w € Wyo] = p/s®. Thus, the total
contribution of this case is u.

Case of 1 def 11 =12, J def J1 = Jj2, and ki # ky. There are less than s* such terms, each having
value Exp[(; j k; - Gi jko), Which equals

Prv,u,wl,w2E[N] [u e Wy N wi,wy € Wv,u]
< Prv,u,wle[N] [u eEWy N wy € W%u] . 'u,ufg?é([N] {PerE[N] [w2 € Wv’u]}

< % €23
s
where the inequality is due to |W, .| < ¢*/3N. Thus, the total contribution of this case is

smaller than (s€%/3) - p.

Case of i def i1 =19, j1 # jo2, and k def k1 = ko. There are less than s*

value Exp|[(; j, & - Gi j»,k), Which equals

such terms, each having

Prv,ul,uz,wE[N] [ul,uQ eW, NwE€e Wv,ul N W’U,uz]
< Prouwein € Wo A w € Wog, |- max {Pru,emlus € W]}

B 93

< —S-€
g3

where the inequality is due to |W,| < €%/3N. Thus, the total contribution of this case is
smaller than (s€%/3) - p.

Case of 1 def i1 = 49, j1 # j2, and ki # ky. There are less than s° such terms, each having value
EXP[C@',jl,kl . C’i,jz,kz]: which equals

Prv,ul,u2,w1,w2€[N] [ul,uz eWy, N wy € W’U,ul N wy € W’u,ug]

< Prv,ul,wle[N] [u1 eW, Nw; € Wv,ul] - max {Prug,wge[N] [UQ eEWy AN wy € W’u,uz]}
v,u1,w1 €[N]
I 2/3\2
< 3—3 - (6 )
where the inequality is due to [W,| < €2/3N and |W, ,| < ¢?/3N. Thus, the total contribution
of this case is smaller than (s€%/3)? - p.

Case of i1 # 19, j def Jj1 =7J2, and k def ki1 = ky. There are less than s* such terms, each having
value Exp[(;, jk - Giy,j k), Which equals

Pry, vsuwelN] e Wy NWy, ANw € Wy, o N W, 4]
S Prouwenlu € Wo, Aw € Woyu] - max {Pro,eplu € W]}

v1,u,we[

© e2/3

< =
g3

where the inequality is due to |US"| < ¢2/3N (and u € W,, iff v, € USY). Thus, the total
contribution of this case is smaller than (se2/3) - p.
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Case of i1 # 19, j1 # jo, and k def ki = ky. There are less than s° such terms, each having value
EXP[Cil g1,k " Ci2’j2,k], which equals

Prvl,vz,ul,ug,we[N] [U1 S VVv1 N ug € Wv2 AN weE VVvl,u1 N Wv2’u2]
< Pryuwenur € Wy, A w € Wy, 4]+ max {Pruzme[N][w € Wv2,U2]}
v1,u1,wE[N]

B o4y3
< —
53 C
where the inequality is due to \U&2)| < */3N? (and w € Wy, 4y, iff (va,u2) € Ug)). Thus, the
total contribution of this case is smaller than s2¢*/3 - 4.

Case of i1 # 19, j def 41 = j2, and ki # ky. There are less than s® such terms, each having value
EXp[C’il,j,h . Cig,j,kg]; which equals
PrUl:vZa"—":wlwaE[N] [u € W'Ul N sz A wi,wa € Wvl,u N W’”Q,“]
< Prvl,u,wle[N] [u eEW, ANwp € Wvl,u] + max {Prvg,wge[N} [u €Wy AN wy € Ww,u]}
v1,u,w1€[N]

Ko 9/3
< —-€
53
where the inequality is due to |U1Sl)| < /3N and |W,, .| < €¥/3N. Thus, the total contribu-

tion of this case is smaller than (s€%/3)? . p.

Case of i1 # 49, j1 # j2, and ky # ky. There are less than s% such terms, each having value
Exp(Ciy ja k1 * Cinyjjka) = Exp|¢; ;k|?, which equals (u/s®)?. Thus, the total contribution of
this case is smaller than 2.

Thus, we have one case (i.e., the first one) contributing p, three cases (each) contributing se/ -
three cases (each) contributing (se2/3)? - i, and one case (i.e., the last one) contributing p2. Using
these upperbounds in Eq. (10), we obtain

Pr l > Gk = 0] < w2 ((nt3- 5 pt3- (s pt p?) — p?)
i,j,kE[s]

= pt- (1 + 3se?/® + 3(862/3)2)

Using i1 = Q(s3€?) and a sufficiently large s = O(e 2/3), we obtain an error bound of O((se?/3)?/(s%¢?)) =
O(s~'e2/3) < 1/3, and the claim follows. O
This completes the proof of Lemma 4.3. W

5 Larger Adaptive vs Non-adaptive Complexity Gaps

We start by establishing Theorem 1.2, which refers to the adaptive vs non-adaptive complexity gap
of testing Bi-Clique Collections. We believe that the ideas underlying the adaptive algorithm and
the non-adaptive lower-bound (presented in Sections 5.1 and 5.2) can serve as a basis for establishing
the larger gap stated in Conjecture 1.3. Indeed, as shown in Section 5.3, this is the case with respect
to the non-adaptive lower-bound (which indeed establishes Part 2 of Conjecture 1.3). In Section 5.4
we outline an adaptive algorithm that we believe to be suitable for Part 1 of Conjecture 1.3.
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5.1 The Adaptive Query Complexity of Bi-Clique Collection

The tester for BCC is obtained by extending the ideas that underly the tester for CC (i.e., Al-
gorithm 3.1). The extension is relatively straightforward, but the analysis will have to address
additional difficulties (i.e., beyond those encountered in the analysis of Algorithm 3.1).

Algorithm 5.1 (adaptive tester for BCC): On input N and € and oracle access to a graph G =
([N], E), the tester sets £ = logy(1/€)+2, t1 = O(£) and to = O(L*), and proceeds in £ iterations as
follows: Fori=1,....4, the tester selects uniformly t, -2" start vertices and for each selected vertex
v € [N] performs the following sub-test, denoted sub-test;(v):

1. The sub-text selects at random a sample, S, of ty/(2%€) vertices, and determines N,, = SNT(v),
by making the queries (v,w) for each w € S. If N, # 0 then it selects u at random in N, and
continue to the following steps. (Otherwise, the sub-test halts and accepts v.)

2. The sub-text determines N, = SNT'(u), by making the queries (u,w) for each w € S.

8. If [N, x Ny| < t9/2% then the sub-test checks that for every (wi,ws) € N, x Ny, it holds that
(w1, wy) € E. Otherwise (i.e., [N, x Ny| > t2/2%), it selects a sample of to/(2%€) pairs in
N, x N, and checks that each selected pair is in E.

4. Let B = (N, x N,) U (N, x N,). If |B| < to/2e then the sub-test checks that for every
(w1, wy) € B it holds that (w1, wq) ¢ E. Otherwise (i.e., |B| > ty/2%), it selects a sample of
ta/(2%€) pairs in B and checks that each selected pair is in not E.

5. The sub-text selects a sample of t3/(2%€) pairs in (N, UN,) x (S'\ (N, UN,)) and check that
each selected pair is not in F.

The sub-test (i.e., sub-test;(v)) accepts if and only if all checks were positive (i.e., no edges were
missed in Step 3 and no edges were detected in Steps 4 and 5). The tester itself accepts if and only
if all Zle t1 - 2° wnwvocations of the sub-test accepted.

The query complexity of this algorithm is 3°¢_; (1 - 2%) - O(ta/2%€) = O(£-t1t2/€) = O(1/€). Clearly,
this algorithm accepts (with probability 1) any graph that is in BCC. It remains to analyze its
behavior on graphs that are e-far from BCC.

Lemma 5.2 If G = ([N], E) is e-far from BCC, then on input N,e and oracle access to G, Algo-
rithm 5.1 rejects with probability at least 2/3.

Part 1 of Theorem 1.2 follows.

Proof: We proceed as in the proof of Lemma 3.2; that is, we will show that if Algorithm 5.1
accepts with probability at least 1/3 then the graph is e-close to BCC. The proof evolves around a
revised notion of i-good start vertices, which is defined on top of the notion of i-good edges. The
definition refers to the parameters 2 and 73, which will be determined such that v, = ©(1/t9) and

Y103 = O(1/t).
Definition 5.2.1 An edge (v,u) is i-good if the following three conditions hold.

1. The number of missing edges in T'(v) x T'(u) is at most vy - 2% - |['(v,u)| - N edges, where

T'(v,u) % T(v) UT(w); that is, |(T(v) x T(w)) \ E| < 7s - 2% - [T(v,u)| - N.
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2. The number of edges in (T'(v) x I'(v)) U (I'(u) x I'(u)) s at most yo - 2% - |T'(v,u)| - N.

3. For every positive integer j < jo def logy(IT(v,u)|/(v2 - 2'eN)), the number of vertices in
['(v,u) that have at least o - 2'7Ve - N edges going out of I'(v,u) is at most 277 - |['(v, u)|.

A wvertex v 1is i-good if at least (1 — ~y3) - |T'(v)| of its neighbors yield a edge that is i-good; that is,
if [{u € T'(v) : (v,u) is i-good}| > (1 —73) - |T'(v)]-

Claim 5.2.2 Ifv has degree at least 2-2'¢-N and is not i-good, then the probability that sub-test;(v)
rejects is at least y3/2.

Proof: By the hypothesis [['(v)| > 72 - 2% - N, with probability at least 0.9, Step 1 of sub-test;(v)
generates a non-empty sample of vertices in I'(v). Conditioned on this event (and using the hy-
pothesis that v is not i-good), with probability at least 73, the vertex u € I'(v) selected in this
sample is such that (v,u) is not i-good. We fix such an edge (v,u) for the rest of this proof.

Assume that Condition 1 of i-goodness does not hold for (v,u), and let p = def % >

% denote (the lower bound on) the fraction of missing edges in I'(v) x I'(u). (Note that
this event may happen only if min(|T'(v)|, |T'(u)|) > 72 - 2’ N.) Then, with probability at least 0.9,
it holds that min(|N,|,|N,|) > m/2, where m < bz min(| U)l P > ¢y - 45 > 1. Also note that

the members of N,, and N, are distributed uniformly in I'(v ) and I'(u), respectively. Considering
n = m/2 uniformly distributed vertices in I'(v) and n uniformly distributed vertices in I'(u), it
follows (as in the proof of Claim 3.2.2) that, with probability at least 0.9, the fraction of edges
that are missing in the subgraph induced by the said sample is at least p/2. It follows that Step 3
rejects with probability at least 0.92 > 0.8 (regardless if it examines all pairs in N, x N,, or just
examines a random sample of t2 > t272 pairs).

The treatment of Condltlon 2 is snmlar, except that here we refer to the number of edges (in
(T(v) x T(v)) U (T(u) x T(u))) over [T(v)|? + |T(u)|> = O(|T(v,u)|?). Indeed, treating I'(v,u) as a
whole facilitates the streamlining of the proof with the treatment of Condition 1 in Claim 3.2.2.
We conclude that if Condition 2 (of i-goodness of (v,u)) is violated, then Step 4 of the test rejects

with probability at least 0.8.

Finally, we turn to Condition 3 of i-goodness. Assuming that this condition does not hold for
(v,u), we show that Step 5 of the test rejects with probability at least 0.8. The proof is analogous
to the analysis of Condition 2 in Claim 3.2.2, except that I'(v,u) replaces I'(v). Thus, sub-test;(v)
rejects with probability at least 0.9 - 79 - 0.8, and the current claim follows. O

Claim 5.2.3 If Algorithm 5.1 accepts with probability at least 1/3 then for every i € [{] the number
of vertices of degree at least vo-2'¢-N that are not i-good is at most y1-27*-N, where y173 = O(1/t1).

Proof: Assuming to the contrary that the number of these vertices exceeds v; -27* - N, Claim 5.2.2
implies that a single invocation of sub-test; rejects with probability at least 4127 - y3/2. Recalling
that Algorithm 5.1 invokes sub-test; on #; - 2! random vertices (and using ¢; > 2 - (1173)7}), the
claim follows. O

Additional difficulties. As stated up-front, the current proof faces additional difficulties that were
not encountered in the proof of Lemma 3.2. These difficulties refer to the partition reconstruction
procedure, which is supposed to provide an approximately good partition of the graph to bi-cliques.
The first problem refers to the case that (v,u) is i-good, but most of I'(v, u) belongs to previously
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identified bi-cliques and furthermore these vertices reside in I'(u) (rather than in I'(v)). Thus, we
cannot “charge” these vertices to edges that are adjacent to v, but rather develop a charging rule
that allows us to charge v indirectly via its typical neighbors w. The second problem refers to
the treatment of low-degree vertices, and it arises from the fact that vertices in I'(v, u) may have
vastly different degrees (which, indeed, occurs in the case that I'(v) has a significantly different
cardinality than I'(u)). Our solution is based on using two different degree thresholds (depending
on the relation between the degree of a vertex and the degree of most of its neighbors). With this
motivation in mind, we turn to the actual description of the (iterative) partition-reconstruction
procedure.

The partition reconstruction procedure. The iterative procedure is initiated with C = Ly = L(l) =

L(z) L<I) 0, Ry = [N] and ¢ = 1, where C denotes the set of vertices “covered” (by bi-cliques)
so far, R1_1 denotes the set of “remaining” vertices after iteration ¢ — 1 and L;_; denotes the set
of vertices cast aside (as having “low degree”) in iteration i — 1. The set L;_1 is the union of three

sets, Lgl)l, 52)1, and LS )1, where the first two sets correspond to two degree thresholds, denoted 5;
and [y, and the third set consists of many subsets that use intermediate thresholds (for avoiding
a non-smooth transition). (We shall set 8 = ©(1/£) and By = ©(B1/£) > v2.) The i'h iteration
proceeds as follows, where 4 = 1,...,¢ and F; is initialized to 0.

1. Pick an arbitrary vertex v € R;_; \ C that satisfies the following three conditions

(a) v is i-good.

(b) v has sufficiently high degree in the following sense: either |T'(v)| > (1 -2%- N or for some
k € [¢'], where £ = logy 4(B2/B31) = O(log ), both |T'(v)| > 0.9% - B; - 2% - N and ¢ (v)
hold, where ¢;(v) represents the condition that a significant fraction of v’s neighbors
have a significantly higher degree than v itself; specifically, ¢r(v) holds if

HwEF(v):|F(w)|> (1.1+1§€,>-|1"(v)|}‘ > % (1)

Note that ¢p(v) holds if [{w € T'(v) : |[T'(w)| > 1.2 - [T'(v)|}| is greater than |T'(v)|/100¢,
and the corresponding degree bound is 3; - 2%¢ - N (because 0.9° = 3, /B1)-

(c) There exists u € I'(v) \ C such that the edge (v,u) is i-good and

(T(v,u) \ C)\ (U L)
71<i—1

(i.e., relatively few vertices of I'(v, u) are covered by C or cast aside in previous iterations
due to having low degree).

(v, w)l

>
- 5

If no such vertex v exists, then define
LY = {weRi1\C:—¢1(v) A(T(W)|<B1 -2 N)},

LV = U {v€Ri1\C: g(v) Ary1(v) A (ID(0)| <0.9°6; - 2e - N},
ke[er—1]

LY = {weRi1\C:p()A(T(v)|<ps- 2 N)},

Li=rPurP ur® and R = Ry \ (L; U C).

If 4 < £ then proceed to the next iteration, and otherwise terminate.
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2. For vertex v as selected in Step 1, pick an arbitrary v € I'(v) \ C satisfying Condition lc. Let
Cyu ={w € T(v,u) : [T(w) \T'(v,u)| <|T'(v,u)|}. Form a new bi-clique with the vertex set
Cyu — Cyu \ C, and update F; « F; U {(v,u)} and C « CUCy,. This bi-clique will have

v,
def

I (v) def I'(v) N Cy,, on one side and I'(u) = T'(u) N C;, , on the other side.

Note that by Condition 1c (and the definition of i-goodness), for every (v,u) € Fj;, it holds that
|Coul > (1 =0(1)) - |T(v,u)| and [T(v,u) \ C| 2 |T(v,u)|/5. Thus, |C,,| 2 |Cyul = [T(v,u) N C| >
|T'(v,u)|/6, which allows translating quality guarantees that are quantified in terms of |I'(v,u)]
to similar guarantees in terms of |C, ,|. In fact, |Cy ., \ (Uj<i—1 Lj)| > [T'(v,u)|/6, which enables
further translation of these guarantees to quantification in terms of |C, , N R;_1|.

Claim 5.2.4 Referring to the foregoing procedure, for every i € [£] the following holds.

1. The number of missing edges inside the bi-cliques formed in iteration i is at most 12yg€e - N?;
that s,

U {(wy,wy) € T'(v) x TV(u) : (w1, wy) & E}| < 127y¢ - N2.

(v,u)€eF;

2. The number of (“superfluous”) edges inside the bi-cliqgues formed in iteration i is at most
127y9€ - N?; that is,

U {(w1,wy) € (T'(v) x T'(v)) U (T'(u) x T'(u)) : (w1, ws) € E}| < 127y9¢- N2,

(v7u)€Fi

3. The number of (“superfluous”) edges between bi-cliques formed in iteration i and either R;
or other bi-cliques formed in the same iteration is at most 36£ - yoe - N2; actually,

U {(’LU1,1U2) S C,I);u X (Ri—l \ C,ll)m) : (u,w) S E} < 36/ - Y2€ - N2.

(v,u)eF;

4. |Ri| <27" N and |L;| <2°GD.N.

Thus, the total number of violations caused by the bi-cliques that are formed by the foregoing
procedure is upperbounded by (36 + 0(1))¢% - y2¢ - N? = 0(eN?).

Proof: We prove all items simultaneously, by induction from ¢ = 0 to ¢ = £. Needless to say, all
items hold vacuously for ¢ = 0, and thus we focus on the induction step.

Starting with Item 1, we note that every (v,u) € F; is i-good and thus the number of edges
missing in I'(v) x I'(u) C T'(v) x T'(u) is at most y92%€-|T'(v,u)|- N. As in the proof of Claim 3.2.4,
we need to relate |T'(v,u)| to |C} , N R;_1| (in order to upper-bound the contribution of all pairs
in F;). We recall that C;, = Cy. \ C, where C is the set of vertices that are already covered
when this bi-clique I'(v,u) is identified. Also recall that |I'(v,u) \ Cyul = o(1) - [T'(v,u)| and
(D(v,u)\ C)\ L| > [T(v,u)|/5, where L % (J;ep;_yy Lj. Using C,, = (C',,, N R; 1)U (Ch, N L), we
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get that C;, ,NR; 1 = (Cy\C)\L and it follows that |C;, ,NR; 1| > [(T'(v,u)\C)\L|—o(|T(v,u)|) >
IT'(v,u)|/6. Combining all the above (and recalling that the sets Cy, , are disjoint), we obtain

U {(wi,wz) €'(0) xI'(w) : (wi,wa) € B} < ma2'e- Y |D(v,u)|- N
(”7“)6Fi (’U,U)EFi

Y92'€ - 6|R;_1| - N.

IN

Using the induction hypothesis regarding R; 1 (i.e., |R; 1| < 27(¢~1 . N), Item 1 follows.

Item 2 is proved in a similar fashion. As for Item 3, we adapt the proof of Item 2 of Claim 3.2.4.
Specifically, the number of edges in Cy 4 X ([N] \ Cy ) is upper-bounded by the sum of |Cy, X
(C'(v,u) \ Cy,u)| and the number of edges in C, ,, X ([N]\ I'(v,u)). Using Condition 3 of i-goodness
(of (v,u)), we upper-bound both |I'(v, u)\ C, | and the number of edges of the second type. Hence,
the number of edges in C}, , X (R; 1\ Cy ) € Cyu X ([N]\ Cyp) is at most 3¢ - y92% - |T(v,u)| - N.
Using again 35, e, [T'(v,v)| < 6|R;—1] and [R;i—1| < 271 . N we establish Ttem 3.

Turning to Item 4, we first note that L; C R;,_; and thus |L;| < |R;—1| < 2-(~1) . N. As for
R;, let us consider all the cases that might lead to placing a vertex v in R;; that is, the various
violations of the three conditions in Step 1.

Violation of Condition (b): not having sufficiently high degree. We observe that vertices that violate
Condition (b) do not contribute to R;, because each such vertex is either covered in iteration
i or ends-up in L;. Specifically, let v be an arbitrary vertex that violates Condition (b), and
let k(v) € {0,1,...,¢'} be the largest index k such that ¢x(v) holds (where ¢ is fictitiously
defined such that it always holds). Then, Condition (b) is equivalent to requiring that |T'(v)| >
0.9%(Y) . B, . 2% . N holds. Indeed, if the latter condition does not hold, then v is placed in L;
(and the converse holds as well).

In the subsequent cases, we shall assume that Condition (b) does hold with respect to the
vertex v.

Violation of Condition (a): not being i-good. Here we refer to vertices that are not i-good although
they have degree at least 83 - 2°¢- N > 79 - 2'¢ - N. By Claim 5.2.3, the number of vertices of
this type is at most v;27* - V.

Violation of Condition (c). Here we refer to vertices that satisfy both Conditions (a) and (b) but
violate Condition (c), which refers to the existence of a good edge that yields a bi-clique
with sufficiently many new vertices. The rest of the proof is devoted to upper-bounding the
number of such vertices. Loosely speaking, this is done by using the upperbound established
in Item 3, while relying on the hypothesis that these vertices satisfy both Conditions (a)
and (b).

Recalling that we refer to vertices taht satisfy both Conditions (a) and (b), we first upper-bound
the number of vertices that have relatively many neighbors in the current C (i.e., vertices v such
that |[T'(v) N C| > |T'(v)|/8). As in the proof of Claim 3.2.4, each such vertex v requires at least

I'(v)|/8 > B2 - 2% - N/8 edges from C’ U C!, | to it, whereas by Item 3 the total
(v u)ely v u
number of edges going out from C’ to R; is at most i - 36/ - y¢ - N2. Hence, the number of vertices
of this type is upper-bounded by
3602 - y9e- N2 3602 - v,
Br-2i-N [

jeri Fi

-27'N < 0.1-27°N, (12)
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where the last inequality uses vo < (B2/(360£2).

In the rest of the proof we consider only vertices that have have relatively few neighbors in the
current C (i.e., |I'(v) N C| < |T'(v)|/8). In particular, by the case hypothesis (i.e., v is i-good),
there exist u ¢ C such that (v,u) is i-good (because the fraction of “non-good” pairs is at most
73 < 1/2). Thus, we focus on the condition |(I(v,u) \ C) \ L| > |T'(v,u)|/5, where L % U;<;_; L;
and C denotes the current set of covered vertices. We distinguish three cases with respect to the
relation between |I'(v)| and |T'(u)|.

Case of |T'(v)| > [T'(u)| (i-e., |T'(v)| > 1.3|T'(u)|). Using the case hypothesis (which implies |T'(v)| >
|T'(v,u)|/2), it suffices to show that [(T'(v) \ C) \ L| > |[T'(v)|/2. Since |I'(v) N C| < |'(v)|/8,
we focus on upper-bounding |I'(v) N L| for typical v. The intuition is that in the current case
—1(v) holds and so (v ¢ L; implies) |T'(v)| > Bi - 2°eN, whereas each vertex in ['(v) N L,
has at most 3 - 27eN neighbors of degree at least 3; - 2'e N (which yields a total count of
232eN? edges in Lj x (Ri—1 \ L;)). Thus, the number of vertices v € R;_1 \ L; for which
|T'(v) N L| > |T'(v)|/8 holds is sufficiently small. Details follow.

Using the hypothesis that (v,u) is i-good (and referring to Condition 2 of Definition 5.2.1),
we note that the number of edges with both endpoints in T'(v) is at most - 2%¢-|T'(v,u)|- N <
v2 - 271e- |T(v)| - N. Thus, less than (200£)~! fraction of the vertices in I'(v) have more that
200£ - 7y5 - 20tLe . N < B9 - 2% - N/100 < |T'(v)|/100 such edges, where the inequalities are due
to 2 < B2/40000¢ and |T(v)| > B2 - 2%- N (since v € L;). By Condition 3 of Definition 5.2.1,
at most (200£)~! fraction of the vertices in I'(v) have at least 2004 - y5 - 2% - N < |T'(v)|/100
edges going out of I'(v,u). We conclude that less than a (100£) ! fraction of the vertices in
['(v) have degree exceeding |I'(u)| + 0.02|T'(v)| < |T'(v)|, and so —¢1(v) holds. The latter fact
allows us to increase our lower-bound on |T'(v)| (from |T'(v)| > B - 2'eN) to [T'(v)| > By - 2'eN
(using again v € L;). Thus, if [T(v) N L| > |T(v)|/8 then there exist at least 3; - 2°cN/8 edges
from L =U,<,_1 Lj to v.

We upper-bound the number of such vertices v (i.e., for which |I'(v) N L| > |I'(v)|/8), by
upper-bounding the number of edges that may go from L to any vertex of degree at least
B1 - 2%eN. The contribution of each vertex in ng) to this number is at most 3y - 27¢eN,

because vertices in L§-2) have degree at most 3 - 27eN. As for the vertices in L;\ ng),
each such vertex u’ violates ¢y and thus can contribute at most |I'(u')|/100£ to this number,
because at most a 1/100£ fraction of its neighbors have degree exceeding 1.2|T'(u')| < B1-2¢eN
(since |T'(w')] < B1 -27eN and j < i — 1), whereas we count edges to vertices of degree at
least 1 - 2'eN. Thus, the contribution of each vertex in u' € L; to the count is at most
max(fBs - 27eN, |T'(u')|/100£) < By - 27eN/100£ (since B2 < B1/100£ and |T'(u')| < By - 27€N).
Recalling that |L;| < |Rj_1| < 27U~DN, it follows that the number of bad vertices (i.e.,
vertices v of degree at least B - 2°eN with at least |['(v)|/8 neighbors in L) is at most

Sjci-i L4l - Br-Pe- N/10OL (i —1)- By - 2¢ - N?/100¢
B - 2'eN/8 = B - 2eN/8
< 0.16-27°N,
whereas the rest of the vertices v € R;_1 \ L; satisfy |I'(v) N L| < |I'(v)|/8. Recalling that

IT(v) N C| < |T'(v)|/8, we conclude that |(I'(v) \ C)\ L| > |T'(v)|/2, and the claim follows;
that is, the current case is only responsible for 0.16 - 27N vertices violating Condition (c).

Case of |T'(v)| < |T'(u)| (i-e., [T'(v)| < 0.7|T(u)|). In this case we shall show that |(I'(u) \ C)\ L| >
IT'(w)|/2 (and use |T'(u)| > |T'(v,u)|/2). We first show that |I'(u) N L| < |T'(u)|/8, and later
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turn to show that typically |I'(u) N C| < |T'(w)|/8 holds as well. The proof of the first claim
is supported by the intuition that almost all vertices in I'(u) have the approximately the
same degree as v and satisfy ¢p (since most of their neighbors have degree approximately
IT'(uw)| > |T'(v)|), which implies that they cannot be in L (because vertices in L that satisfy
¢ have degree at most [ - 271eN, whereas v € R;_; \ L; has degree at least [ - 2ieN).
Details follow.

We start by showing that almost all vertices in I'(u) satisfy ¢». Analogously to the previous
case, at most 1% of the vertices in I'(u) have more than 0.02 - |I'(v)| neighbors not in I'(v).
On the other hand, by using Condition 1 of Definition 5.2.1, at least 99% of the vertices in
I'(u) have at least 0.99 - [['(v)| neighbors in I'(v), whereas at least 99% of the vertices in I'(v)
have degree at least 0.99-|T'(u)|. Let us denote by V the subset of I'(u) containing vertices v’
such that |T'(v")| < 1.02-|T'(v)| and I'(v')NT'(v) contains at least 0.98- |I'(v)| vertices of degree
at least 0.99 - |I'(u)|. Then, |V| > 0.98|T'(u)|, because 98% of the vertices in I'(u) have both
degree at most 1.02- |I'(v)| and at least 0.99-|I'(v)| neighbors in I'(v) (whereas at most 1% of
the vertices in I'(v) have degree smaller than 0.99-|I'(u)|). We note that each vertex in V' has
degree at most 1.02 - [T'(v)| < 0.72 - |T'(u)|, whereas at least a 0.98/1.02 > (100¢) ! fraction
of its neighbors have degree at least 0.99 - [I'(uw)| > 1.2 - 0.72 - |I'(u)|, which implies that each
vertex in V satisfies ¢y . Using the latter fact and recalling that each vertex in V has degree
at least 0.99-|T'(v)| > 0.99- 85 -2'eN (since v & L;), we show that VN L = (. The latter claim
follows by noting that for every v/ € L that satisfies ¢p it holds that |T'(v')| < B - 207 1eN,
whereas every v’ € V satisfies both ¢p and [T'(v')| > 0.99- 85 - 2°eN. Finally, using VNL = §
and |V| > 0.98|T'(u)|, we get |[I'(u) N L| < |T'(u) \ V| < 0.02|T(u)|.

Having established |I'(u) N L| < [I'(u)|/8, we now turn to provide a similar upper-bound for
|T'(u) N C|. Unlike in the previous case (or rather in the preliminary proof that I'(v) N C' is
small), here we cannot directly charge the vertices in I'(u) N C to edges going out from C to
v. Still an indirect charging rule will work; that is, we first charge such vertices to u, and
then distribute the charge to u’s neighbors.

Specifically, suppose that |[I'(u) N C| > |I'(u)|/8. This means that there are at least |I'(u)|/8
edges going out from C to u. Wishing to charge these edges to the initial vertex v (while
considering all initial v € R;_1\ L;), we charge each neighbor of u by one eighth of an edge (i.e.,
1/8 unit) as its share in the edges going from C' to u. (This guarantees that, when considering
different initial vertices, it still holds that each edge going out of C is charged at most 1 unit.)
Indeed, an important observation is that we are not concerned with the existence of a specific
u € I'(v) that violates |['(u) N C| < |I'(u)|/8, but should be concerned only if this violation
occurs for all u € I'(v) \ C such that (v, u) is i-good (and |['(u)| > |T'(v)|/0.7), since otherwise
we may just pick some u € I'(v) \ C such that (v,u) is i-good and |I'(u) N C| < |T'(u)|/8.
Thus, we get into trouble with v only if, for every u € I'(v) \ C that (v,u) is i-good, both
IT(w)| > |T'(v)|/0.7 and |T'(u)NC| > |T'(u)|/8 hold.!® Let us denote the set of such bad vertices
by B, and note that each vertex v € B is charged with at least (|T'(v)|/2)-(1/8) > (2-2%eN/16
edges going from C to I'(v), where I'(v)|/2 is a lower-bound on the number of vertices u € I'(v)
such that u ¢ C and (v,u) is i-good.'® Since the total number of edges going out from C is at
most 362 - yy¢e- N2, we upper-bound |B| by 0.1-27¢N (as in Eq. (12), except that here we use
2 < B2/(6000£2)). To re-cap, note that we showed that the current case is only responsible

15Tf |T'(u)| > |T'(v)]/0.7 does not hold then this u is handled in the other two cases.
'6Recall that the fraction of vertices u € T'(v) such that u € C is at most 1/8, whereas the fraction of vertices
u € T'(v) such that (v,u) is not i-good is 3 < 3/8.
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for 0.1 - 27N vertices that violating Condition (c).

Case of |T'(v)| = |T'(u)| (i-e., 0.7|T'(u)| < |T'(v)| < 1.3|T'(u)|. We first note that the analysis of |I'(u)N
C| for a typical (v,u), as presented in the previous case (of |['(v)| < [I'(u)|), still applies.
Thus, for all but 0.1 - 27*N vertices v, there exists a vertex u such that either the first case
holds (i.e., |I'(v)| > 1.3|T'(u)|) or |I'(u) N C| < |['(w)|/8. (If the first case holds then we
proceeds as in the first case, and otherwise we proceed as follows.) We shall show, below,
that [I'(u) N L| < |T'(u)|/8, and conclude that |(I'(u) \ C) \ L| > |I'(w)|/2, which in turn is
lower-bounded by |I'(v,u)|/5 (since |T'(u)| > |T'(v,u)|/2.3).

The claim |T'(u) N L| < |T'(u)|/8 is supported by the intuition that almost all vertices in I'(u)
have approximately the same degree as v. However, in the current case these vertices do
not necessarily satisfy ¢y and so their being in L does not necessarily mean their having
degree below 3, - 2~ 'eN, which is significantly smaller than |'(v)| > B2 - 2'eN. So we need a
different method to argue that being in L is inconsistent with having degree approximately
IT'(v)|]. Indeed, the source of trouble is that for two different thresholds 4’ > (" it may
be the case that v ¢ L; holds because |I'(v)| > B” - 2°¢N, whereas v’ € L; holds because
IT(v')| < B'-29eN. Here is where the intermediate thresholds (and the different ¢) come into
play: we shall show that whenever the foregoing happens it holds that 4’ ~ 8" (rather than
B' > 24", which would have not given anything). Specifically, we shall show that if ¢ (v) holds
then ¢_1(v'") must hold for almost all v € T'(u). Thus, if v € L; due to |T'(v)| > 0.9%3; - 2te N
(and ¢ (v) holds), then v’ € L; implies that |T'(v")| < 0.9%718;-27e N, which yields the desired
contradiction. Details follow.

Using arguments as in the previous two cases, we first establish that at least 99% of the vertices
in T'(u) have degree at most (1+£2)-|T'(v)| and have at least (1—£2)-|T'(v)| neighbors in T'(v).
(Here the argument relies on o < (2/(500¢2) and |T'(u)| > |T'(v)|/1.3 > B2-2%eN/1.3.) Let us
denote this (large) subset of I'(u) by V, and note that v € V. Similarly, one can show that at
least 1 — (200£) ! of the vertices in I'(v) have degrees in the interval [(1 4 (300£") 1) - |T'(u)]].

Hence, for every v’ € V, it holds that |['(v')] is in the interval (14 (300¢')~!)-|T'(v)|, whereas
-1
at least % > 1 —(100£)~! of its neighbors (i.e., the vertices in I'(v')) have degrees in

the interval [(1 & (300¢') 1) - |T(u)|]. Denoting (for every v’ € V),

Iy def T (u)] }}
= 13
pLv) SQF(v’)S.t.n|15a\i|l“(v’)|/100€ {522 { |T'(v)] (13)

we infer that for every v € V (including v) it holds that p(v') = gigggﬁl’%:%ﬁ*gz;; =(1+

(100¢)71) - % It follows that p(v') > % cp(v) > (1= (30£)71) - p(v).

Recall that k(v') € {0,1,...,#¢'} is the largest index k such that ¢g(v') holds (where ¢y always
holds). Indeed, p(v) > 1.1+ ’fé? and |T'(v)| > 0.9%(®) . 3, - 2%¢. N (because v € L;). Combining
p(v") > (1—(30£)71) - p(v) and p(v) > 1.1+ %12?, it follows that for every v’ € V it holds that
p(v") > 1.1+%, which implies k(v') > k(v)—1. It follows that VNL = @, because otherwise
we obtain, for some j < i —1, a vertex v’ € V N L; such that [T(v')| < 0.9¥). 8, . 27¢. N <
0.9¥@®~-1. 3 .2"-1¢. N < |I'(v)|/1.8, which contradicts [T(v')| > (1 — (300¢)~1) - [D(v)| >
I'(v)|/1.8. Recalling that |V > 0.99 - |T'(u)|, we conclude that |T'(u) N L| < 0.01|T(u)].

Combining the preliminary bound (of Eq. (12)) and the bounds of the foregoing three cases, we
conclude that at most (0.1 +0.16 + 0.1 +0.1) - 27°N < 0.5 - 27*N vertices satisfy conditions (a)
and (b) but violate Condition (c).
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Recall that R; only contains vertices that satisfy Condition (b) but violate either Condition (a)
or Condition (c). The number of the former was upper-bounded by 7; - 27* N, whereas the number
of the latter was just upper-bounded by 0.5 - 27*N. Thus, |R;| < (71 + 0.5)-27%- N, and Item 4
follows by the foregoing setting of 71 < 1/2. This completes the proof of the current claim. O

Completing the reconstruction and its analysis. The foregoing construction leaves “unassigned” the
vertices in Ry as well as some of the vertices in Ly, ..., Ly. (Note that some vertices in Uf;ll L; may
be placed in bi-cliques constructed in later iterations, but there is no guarantee that this actually
happens.) For sake of elegance, we assign each of these remaining vertices to a two-vertex bi-clique
(i.e., an isolated pair of vertices connected by an edge). Ignoring the number of edges used in
these bi-cliques (which is negligible), the number of violation caused by this assignment equals the

number of edges with both endpoints in R’ def Ry,U (Ule L;), because edges with a single endpoint
in R’ were already accounted for in Item 3 of Claim 5.2.4. Nevertheless, we upper-bound the
number of violations by the total number of edges incident to R’, which in turn is upper-bounded
by
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By the foregoing setting of 51 (i.e., f1 < 1/4¢), it follows that the number of these edges is smaller
than eN2/2. Combining this with the bounds on the number of violating edges (or non-edges) as
provided by Claim 5.2.4, the lemma follows. W

5.2 Non-Adaptive Lower-Bound for Bi-Clique Collection

In this section we establish Part 2 of Theorem 1.2 by adapting the proof presented in Section 4.1.
Specifically, for every value of € > 0, we consider two different classes of graphs, one consisting
of graphs in BCC and the other consisting of graphs that are e-far from BCC, and show that a
non-adaptive algorithm of query complexity 0(6_3/ 2) cannot distinguish between graphs selected
at random in these classes.

The first class, denoted BCC., consists of N-vertex graphs such that each graph consists of
(16€)~! bi-cliques, and each bi-clique has 8¢ - N vertices on each side. It will be instructive to
partition these (16¢)! bi-cliques into (32¢)~! pairs (each consisting of two bi-cliques), and view
each of these bi-cliques as a super-cycle of length four with 4¢ - N vertices in each of its four
independent sets. The second class, denoted SCgC., consists of N-vertex graphs such that each
graph consists of (32¢)~! super-cycles of length 8, and each of these super-cycles has 4¢- N vertices
in each of its eight independent sets. Indeed, BCC. C BCC, whereas each graph in SCgC, is e-far from
BCC (because each of the super-cycles of length 8 must be turned into a collection of bi-cliques).
We note that both classes contain only bipartite graphs.

In order to motivate the claim that a non-adaptive algorithm of query complexity 0(6*3/ 2)
cannot distinguish between graphs selected at random in these classes, consider the algorithm that
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selects o(e~3/%) vertices and inspects the induced subgraph. Consider the partition of a graph in
SCsC. into (32¢)"! pairs of bi-cliques (equiv., super-cycles of length 4), and correspondingly the
partition of a graph in SCgCe into (32¢)~! super-cycles of length 8. Then, the probability that a
sample of o(e 3/4) vertices contains at least four vertices that reside in the same part (of 32¢ - N
vertices) is o(e3/*)* - (32¢)> = 0(1). On the other hand, one may show that if this event does not
occur, then the answers obtained from both graphs are indistinguishable. As will be shown below,
this intuition extends to an arbitrary non-adaptive algorithm.

As in Section 4.1, it suffices to consider deterministic algorithms. We shall show that, for every
set of 0(6*3/ 2) queries, the answers provided by a randomly selected element of BCC, are statistically
close to the answers provided by a randomly selected element of SCgC.. As in Section 4.1, for an
N-vertex graph G and a query (u,v), we denote the corresponding answer by ansg(u,v).

Lemma 5.3 Let Gy and Gy be random N-vertex graphs uniformly distributed in BCC. and SCgCe,
respectively. Then, for every sequence (vi,v2), ..., (Vag—1,v2q) € [N| X [N], where the v;’s are not
necessarily distinct, it holds that the statistical difference between ansg, (vi,v2), ..., ansg, (V2g—1, Vaq)
and ansg, (v1,v9), ..., ansg, (v2g-1,V24) s O(g2€®).

Part 2 of Theorem 1.2 follows.

6 7 0 1 6 7 0 1

Figure 6: A single part, consisting of eight independent sets, in BCC. and SCgCe.

Proof: We adapt the proof of Lemma 4.1. Here, we consider a 1-1 correspondence, denoted ¢,
between the vertices of an N-vertex graph in BCC, U SCgCe and triples in [(32¢)7] x {0,1, ..., 7} x
[4€ - N]. Specifically, ¢(v) = (i,j,w) indicates that v resides in the (j + 1)** independent set of the
ith part of the graph, and it is vertex number w in this set. Recall that in the case of a graph
in BCC, the eight independent sets are arranged in two super-paths (each of length 4), whereas
in the case of a graph in SCgC, the eight independent sets are arranged in a single super-path of
length 8. (See Figure 6.) Consequently, the answers provided by uniformly distributed G; € BCC,
and Gy € SCgC, can be emulated by the following two corresponding random processes.

1. The process A; selects uniformly a bijection ¢ : [N] — [(32¢)7!] x {0,1,...,7} x [4e - N]
and answers each query (u,v) € [N] x [N] by 1 if and only if for ¢(u) = (¢1,j1,w1) and
¢(v) = (42, j2,w2) it holds that both i; = 49 and j; = (jo £ 1 mod 4) + |j2/4] - 4.

2. The process As selects uniformly a bijection ¢ : [N] — [(32¢)71] x {0,1,...,7} X [4e - N]
and answers each query (u,v) € [N] x [N] by 1 if and only if for ¢(u) = (i1,j1,w1) and
o(v) = (i, j2, we) it holds that both i; =9 and j; = jo £ 1 mod 8.

Let us denote by ¢'(v) (resp., ¢"(v) and ¢ (v)) the first (resp., second and third) coordinates of
¢(v); that is, ¢p(v) = (¢'(v), ¢"(v), ¢" (v)). Then, both processes answer the query (u,v) with 0 if
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¢'(u) # ¢'(v), and the difference between the processes is confined to the case that ¢'(u) = ¢'(v).
Specifically, conditioned on ¢'(u) = ¢'(v), it holds that A;(u,v) =1 if and only if ¢"(u) = (¢"(v) £
1 mod 4)+ | ¢"(v)/4]-4, whereas Ay(u,v) = 1 if and only if ¢"(u) = ¢"(v)+1 mod 8. However, since
the (random) value of ¢” is not present at the answer, the foregoing difference may go unnoticed.
These considerations apply to a single query, but things may change in case of several queries. In
general, the event that allows distinguishing the two processes is a simple cycle of at least four
vertices that have the same ¢’ value. Minor differences may also be due to equal ¢"’ values, and so
we also consider these in our “bad” event.

Definition 5.3.1 We say that ¢ is bad (w.r.t the sequence (v, v2), ..., (V2g—1,v2q4) € [N] X [N]), if
one of the following two conditions hold:

1. For some i € [(32¢) 1], the subgraph Q; = (V;, E;), where V; = {vy, : k€[2¢] A ¢'(v) =i} and
E; = {{vog—1,vor} : vog—_1,v2r € Vi}, contains a simple cycle of length at least four.

2. There exists i # j € [2q] such that ¢"'(v;) = ¢" (vj).

Indeed, the query sequence (v1,v2), ..., (v2g—1,v24) Will be fixed throughout the rest of the proof,
and so we shall omit it from our terminology.

Claim 5.3.2 The probability that o uniformly distributed bijection ¢ is bad is at most

2.3 g’
10) _1
@)+ e

Proof: We start by upper-bounding the probability that the second event in Definition 5.3.1 holds.
We have (%{) sub-events, and each holds with probability 1/(32¢ - N). As for the first event, for
every t > 4, we upper-bound the probability that some ; contains a simple cycle of length ¢. Asin
the proof of Claim 4.1.2, we observe that the query graph contains at most (2q)t/ 2 cycles of length
t, whereas the probability that a specific simple ¢-cycle is contained in some Q; is (32¢)*~!. Thus,

the probability of the first event is upper-bounded by

@) (320 <> (V/2q- 32 e<t*1>/t)t <> (50v/3- 63/4)t,

t>4 t>4 t>4

which is upper-bounded by 2 - (50,/7 - €¥/4)* = O(¢%¢%), provided that 50,/g - €¥/* < 1/2 (and the
claim hold trivially otherwise). O

Claim 5.3.3 Conditioned on the bijection ¢ not being bad, the sequences (A1(v1,v2), .., A1(vag—1,v2q))
and (As(vi,v2), ..., Aa(vag—1,v2q)) are identically distributed.

Proof: Noting that Definition 5.3.1 only refers to ¢’ and ¢"’, we fixed any choice of ¢’ and ¢" that
yields a good ¢ and consider the residual random choice of ¢”. Referring to the foregoing subgraphs
Qi’s, recall that pairs with endpoints in different @);’s are answered by 0 in both processes. Note
that (by the second condition in Definition 5.3.1) the hypothesis implies that ¢" assigns different
values to the different vertices in {vg : k € [2¢]}, and it follows that ¢" assigns these vertices values
that are uniformly and independently distributed in {0,1,...,7}. Now, using the first condition
in Definition 5.3.1, the hypothesis implies that the only simple cycles appearing in Q; = (V;, E;)
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have length three. We shall show that this implies that (in each of the two processes) the answer
assigned to each edge in @); is independent of the answer given to other edges of Q.

We first note that, in each of the two processes, every query (var_1,vsx) such that ¢"(vor_1) =
¢"(vor—1) (mod 2) is answered negatively (i.e., in such a case, A1(vog_1,v9x) = Aa(Vog_1,V9%) =
0). Thus, fixing any (random) values of (¢”(vg) mod 2 : k € [2¢]), we may omit from Q; = (V;, E;)
all edges that connect vertices that have the same value of ¢ (mod 2), because the answers to
these queries are already determined (as 0, in each of the two processes). This omission eliminates
(from ;) all cycles of length three, which are the only simple cycles in the original @;, and thus
each modified Q; is a forest. We can now proceed analogously to the proof of Claim 4.1.3, although
things are slightly more complex here. Specifically, we consider the residual random values of ¢”
(conditioned on ¢" mod 2); that is, we augments the fixed values of ¢” mod 2 with the random
values of |¢” /2|, which are uniformly distributed in {0,1,2,3}. We view these random selections
as taking place in an order determined by some fixed traversal of each tree (of the aforementioned
forest), and note that at each step (and in each of the processes) the new random value (uniformly
distributed in {0,1,2,3}) yields answer 1 (to the corresponding query) with probability 1/2.

1. In the case of Ay, the query/edge (u,v) € E; (which satisfies ¢'(u) =i = ¢'(v) and ¢"(u) =
¢"(v) +1 (mod 2)) is answered 1 if and only if ¢"(u) = (¢"(v) £ 1 mod 4) + [¢"(v)/4] - 4
holds (which means that |¢"(u)/4| = |¢"(v)/4]). Thus, A1(u,v) = 1 with probability 1/2.

i=¢'(v) and ¢"(u) =

2. In the case of Ag, the query/edge (u,v) € E; (which satisfies ¢'(u) =
(v) £ 1 mod 8 holds. Thus,

¢"(v) +1 (mod 2)) is answered 1 if and only if ¢"(u) = ¢
Ay (u,v) = 1 with probability 2/4.

Thus, in each of the two processes, each query is answered by the value 1 with probability ex-
actly 1/2, independently of the answers to all other queries. The claim follows. O

Combining Claims 5.3.2 and 5.3.3, it follows that the statistical distance between the sequences
(A1(v1,v2), ey A1 (V2g—1,V24)) and (Ag(v1,v2), ..., Az (vag—_1,V24)) is at most O(g*e3 +¢*(eN)™1), and
the lemma follows for sufficiently large N. W

5.3 Non-Adaptive Lower-Bound for Super-Cycle Collection

In this section we establish a lower-bound on the non-adaptive query complexity of testing Super-
Cycle Collections. We do so by generalizing the ideas presented in Section 5.2.

Specifically, fixing any ¢ > 4, for every value of ¢ > 0, we consider two different classes of graphs,
one consisting of graphs in SC;C and the other consisting of graphs that are e-far from SC;C, and
show that a non-adaptive algorithm of query complexity o(e (2=2)/t) cannot distinguish between
graphs selected at random in these classes.

The first class, denoted SC;C,, consists of N-vertex graphs such that each graph consists of
(t?¢)! super-cycles of length ¢, and each super-cycle has te- N vertices in each of its ¢ independent
sets. It will be instructive to partition these (#2¢)~! super-cycles into (2¢?¢)~! pairs. The second
class, denoted SCs;C,, consists of N-vertex graphs such that each graph consists of (2¢2¢) ! super-
cycles of length 2¢, and each super-cycle has te- N vertices in each of its 2¢ independent sets. Indeed,
S8CCe C SCiC, whereas each graph in SCy:C, is e-far from SC;C (because each of the super-cycles
of length 2¢ must be turned into a pair of super-cycles of length ¢).

As in Section 5.2, we motivate the claim that a non-adaptive algorithm of query complexity
o(e~(#=2)/t) cannot distinguish between graphs selected at random in these classes by considering
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a specific algorithm that inspects the subgraph induced by a random set of o(e_(t_l)/ t) vertices.
The probability that a sample of o(e*(tfl)/ t) vertices contains at least t vertices that reside in the
same part (of (2t2¢) - N vertices) is (0(5_(1_1)”)) - (2t%¢)*=1 = o(1), where the o-notation refers to
a fixed value of ¢ and a varying value of ¢ > 0. On the other hand, one may show that if this
event does not occur, then the answers obtained from both graphs are indistinguishable. As will
be shown below, this intuition extends to an arbitrary non-adaptive algorithm. Following the same
conventions as in Section 5.2, it suffices to prove the following

Lemma 5.4 (Lemma 5.3, generalized): For every fized t > 4, let G1 and Ga be random N-
vertex graphs uniformly distributed in SCiCe and SCoiCe, respectively. Then, for every sequence
(V1,12), -ny (V2g—1, V29) € [N] X [N], where the v;’s are not necessarily distinct, it holds that the sta-
tistical difference between ansg, (vi,v2), ..., ansg, (vag—1,v2¢) and ansg,(vi,va), ..., ansqg, (V2g—1, Vag)
is O(qt/2e1).

Part 2 of Conjecture 1.3 follows. Indeed, Lemma 5.3 is obtained as a special case (of Lemma 5.4)
by setting ¢ = 4. The following proof is slightly different from the proof provided in Section 5.2.

Proof: We generalize the proof of Lemma 5.3. We consider a bijection, denoted ¢, between the
vertices of an N-vertex graph in SC;Cc U SCq;C. and triples in [(2¢2¢) 1] x {0,1,...,2t — 1} x [te- N].
Specifically, ¢(v) = (4, j,w) indicates that v resides in the (j +1)* independent set of the i*! part of
the graph, and that it is vertex number w in this set. Recall that in the case of a graph in SC;C, the
2t independent sets in each part are arranged in two super-paths (each of length t), whereas in the
case of a graph in §CyC, the 2¢ independent sets are arranged in a single super-path of length 2¢.
Consequently, the answers provided by uniformly distributed G; € SC,C. and Gy € SC9:C, can be
emulated by the following two corresponding random processes.

1. The process A; selects uniformly a bijection ¢ : [N] — [(2t2¢)7!] x {0,1,...,2¢t — 1} x [te- N]
and answers each query (u,v) € [N] x [N] by 1 if and only if for ¢(u) = (i1,j1,w1) and
¢(v) = (42, j2,w2) it holds that both iy = i3 and j1 = (jo £1 mod t) + [j2/t] - t.

2. The process Aj selects uniformly a bijection ¢ : [N] — [(2t%¢)7!] x {0,1,...,2t — 1} x [te- N]
and answers each query (u,v) € [N] x [N] by 1 if and only if for ¢(u) = (i1,j1,w1) and
o(v) = (i9, j2, we) it holds that both i; = i9 and j; = jo £ 1 mod 2t.

Again, let us denote by ¢'(v) (resp., ¢"(v) and ¢"'(v)) the first (resp., second and third) coordinates
of ¢(v); that is, ¢(v) = (¢'(v), ¢"(v), ¢"(v)). Then, both processes answer the query (u,v) with 0
if ¢'(u) # ¢'(v), and the difference between the processes is confined to the case that ¢'(u) = ¢'(v).
Specifically, conditioned on ¢'(u) = ¢'(v), it holds that A;(u,v) =1 if and only if ¢"(u) = (¢"(v) =
1modt)+ [¢"(v)/t] - t, whereas As(u,v) = 1 if and only if ¢"(u) = ¢”(v) + 1 mod 2¢. In general,
the event that allows distinguishing the two processes is a simple cycle of at least t vertices that
have the same ¢’ value. Minor differences may also be due to equal ¢" values, and so we also
consider these in our “bad” event.

Definition 5.4.1 (Definition 5.3.1, generalized): We say that ¢ is bad (w.r.t the sequence of
queries (v1,v2), ..., (Vag—1,v2q) € [N] X [N]), if one of the following two conditions hold:

1. For some i € [(2t%¢) 1], the subgraph Q; = (Vi, E;), where V; = {vg : k€ [2q] A ¢'(v) =i} and
E; = {{vok—1,vor} : vog—1,var € Vi}, contains a simple cycle of length at least t.
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2. There exists i # j € [2q] such that ¢" (v;) = ¢ (v;).

Indeed, the query sequence (vi,vy), ..., (V2g—1,v24) Will be fixed throughout the rest of the proof,
and so we shall omit it from our terminology.

Claim 5.4.2 (Claim 5.3.2, generalized): The probability that a uniformly distributed bijection ¢ is
bad is at most

2

O(1)2t . gt/2¢t1 q

-+ 5

Proof: We start by upper-bounding the probability that the second event in Definition 5.4.1 holds.

We have (%) sub-events, and each holds with probability 1/(2t2¢ - N). As for the first event, for

every £ > t, we upper-bound the probability that some (; contains a simple cycle of length £ by
(29)%/? - (2t%¢)*~'. Thus, the probability of the first event is upper-bounded by

Z(Zq)e/z . (2t2€)171 < Z (3t2\/§_€(t71)/t)g’

o>t o>t

which is upper-bounded by 2-(3t2\/§-e(t*1)/t)t = O(t)?-¢'/?e 1, provided that 3t2\/§-e(t*1)/t <1/2
(and the claim hold trivially otherwise). O

Claim 5.4.3 (Claim 5.3.3, generalized): Conditioned on the bijection ¢ not being bad, the sequences
(A1(v1,v2), ..., A1(V2g—1,v2q)) and (Az(v1,v2), ..., A2(vag—1,v2q)) are identically distributed.

Proving this claim is the only difficulty in extending the proof of Lemma 5.3 to the current setting.
Indeed, the following proof yields a slightly different proof of Claim 5.3.3.

Proof: Again, we fix any choice of ¢/ and ¢"’ that yields a good ¢, and consider the residual random
choice of ¢"(v1), ..., ¢"(vaq), which (by the second hypothesis in Definition 5.4.1) are uniformly
and independently distributed in {0,1,...,2¢ — 1}. Considering any of the aforementioned graphs
Q; = (Vi, E;), we note that this graph does not contain simple cycles of length greater than ¢ — 1.

Figure 7: A single part, consisting of 2¢ independent sets, in SC;C. and SCs;C,. The ellipses indicate
the values of 1"

We now consider ¢” : V; — {0,1,...,2t — 1} as being selected at random in two stages. In the
first stage we assign each vertex a random value mod ¢, and in the second stage we assign each
vertex a random bit representing its most significant bit; that is, for each vertex v € V;, we first
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determine (at random) the value ¢”(v) mod ¢, which we denote by 9" (v), and next determine (at
random) the bit |¢"(v)/t|, which we denote by 7" (v). Thus, ¢"(v) = ¢"(v) + 7" (v) - t, and it will
be instructive to depict the graphs as in Figure 7. Fixing an arbitrary setting of values for the first
stage, we shall consider what may happen in the second stage.

For every fixed setting of 9", we consider the residual graph Q; = (V;, E}), where E; contains
only the queries in F; that are still undetermined (given ¢"); that is, (u,v) € E; is placed in E. if and
only if " (u) =¢"(v) £1 (mod t), whereas all the other queries (or rather the answers to them)
are already determined (as being answered by 0). We shall consider the connected components of

', and show that (conditioned on the foregoing setting of ¢"") the answers provided to the queries
in E! under A; are distributed identically to the answers provided under A,. Specifically, for each
possible sequence of answers, we shall show a 1-1 correspondence between the assignments of 7"
that yield these answers under A; and the assignments of 7" that yield these answers under A,.
(Recall that ¢"(v) = 9"(v) + 7" (v) - t.) That is, for each possible sequence of answers and each
connected component of @}, we shall show that the number of assignments of 7" that yield these
answers under A; is independent of j € {1, 2}.

Let C = (V/”, E!) be an arbitrary connected component of Q; = (V;, E'), and let A” : B/ —
{0,1} describe an arbitrary sequence of answers to the queries E.. Our aim is proving that the
number of assignments of 7 that yield these answers under A; (i.e., satisfy A;(u,w) = A" (u,w)
for every (u,w) € E}') is independent of j € {1,2}. Furthermore, we shall show that this number is
either two or zero (when considering only the assignment of 7" to V). Consider any spanning tree
T of C, rooted at an arbitrary vertex v € V. For each choice of o € {0,1}, we shall prove that
there exists a unique assignment 7 : V — {0, 1} such that 7”/(v) = o and 7" is consistent with A”
and A; (resp., A2) on the edges of T. That is, the resulting 7" is such that the answers as mandated
by A" for the edges of T fit the answers that A; (resp., As) provides with respect to ¢” = " +¢-7".
As we shall see, these assignments might be inconsistent with the value of A” on edges that do not
belong to the spanning tree. However, we shall show that there is an inconsistency when fitting A,
if and only if there is an inconsistency when fitting Ay. Details follow.

Fitting the process A;: Recall that the value of 7" on the root of T was set to o. The value of

7" on all other vertices is set, by traversing the tree T, in the following manner. When
traversing the tree edge (u,w) from a vertex u for which 7”(u) was already determined to a
new w (for which 7”(w) is still undetermined), we set ©”(w) «— 7" (u) if A”(u,w) =1 and
m(w) < 1 — 7"(u) otherwise (i.e., if A”(u,w) =0).
Note that this process determines the values of the bits 7”(w) for all w € V/ such that the
tree-neighbors u and w are assigned the same bit if and only if A”(u,w) = 1. This is indeed
consistent with the definition of A;. Furthermore, the setting of the values of 7" is uniquely
determined by the requirement to be consistent with A;.

Fitting the process Ay: We assign values exactly as in the case of fitting Ay, with a single exception
that refers to the case that the tree-edge (u,w) € EY satisfies {¢"(u),¢" (w)} = {0,t — 1}.
In this case (where vertex u has already been assigned a value), we set 7/ (w) «— 1 — 7" (u) if
A"(u,w) =1 and 7" (w) < 7"(u) otherwise (i.e., if A”(u,w) = 0).
That is, in this case (i.e., {¢"(u),¥"(w)} = {0,¢ — 1}), the process determines the value
of 7"(w) such that the tree-neighbors u and w are assigned the opposite bits if and only if
A" (u,w) = 1.

As noted in the foregoing discussion, while each of the two assignments is consistent with A” (and
the corresponding A;) on the edges of the spanning tree 7', there may be inconsistencies with the
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edges of E! that are not tree edges. It remains to show that there is an inconsistency with respect
to the process A; if and only if there is an inconsistency with respect to the process Ajs.

We shall say that an edge (u,w) € E! (e.g., an edge of the spanning tree T') is a crossing edge
if {¢"(u),v"(w)} = {0,t —1}. By definition of the two assignments, the only difference between
them is caused when traversing a tree edge that is a crossing edge. For such an edge, the value of
7 is flipped when fitting the process Ay if and only if it is not flipped when fitting the process
Aj. Thus, for each u € V", the value assigned to 7”(u) when fitting As is the XOR of the value
assigned to 7”(u) when fitting A; and the parity of the number of crossing edges that belong to
the tree path from (the root) v to u.

Now, consider an edge (u,w) € E! that is not an edge in the spanning tree 7. Consider the
simple tree paths from the root v to vertices u and w, respectively, and let us denote their branching
point by v'. Let p, (resp., p,) be the path on the spanning tree T leading from v’ to u (resp., w),
and p/, be the path from v’ to u obtained by augmenting p,, with the (non-tree) edge (w,u). Then,
the union of p, and p!, constitutes a simple cycle, which by the hypothesis has length smaller than
t. As we shall show in the next paragraph, it follows that the parity of the number of crossing
edges on p, equals the parity of the number of crossing edges on p.,. In other words, the parity of
the number of crossing edges on p, equals the parity of the number of crossing edges on p,, if and
only if (u,w) is not a crossing edge. Assuming that (u,w) is not a crossing edge, consider the value
assigned to 7”(u) and 7" (w) when fitting A; (by following the paths from the root to u and w,
respectively). Then, A”(u,w) is inconsistent with 7”(u) and 7" (w) as determined when fitting the
process A; if and only if A”(u,w) is inconsistent with 7"/ (u) and 7’ (w) as determined when fitting
the process A, because in both cases 7" (u) @ 7'(w) is the same value (since the total number
of crossing edges on p, and p,, is even). A similar argument holds when (u,w) is a crossing edge
(since then 7" (u) @& 7" (w) flips from A; to As), and the claim follows.

To verify the assertion regarding the parity of the number of crossing edges on p, and on pl,
consider the values assigned by 1" to the vertices in the union of p, and p). Since the union
of p, and pl, is a cycle of length less than ¢, these values must belong to a proper subset, S, of
{0,...,t — 1}. If this set does not contain {0,¢ — 1}, then we are done (since neither of the paths
may contain a crossing edge). Otherwise, for some j, it holds that S is a subset of the union of
S1={j+1,...,t —1} and Sy ={0,...,5 — 1}. If ¥ (v') and 9""(u) belong to the same Sk, then the
parity of the number of crossing edges on both p, and p!, is even (since these paths can only move
from one subset to the other via a crossing edge).!” Similarly, if ¢”(v') and %" (u) do not belong
to the same subset then the parity on each of these paths must be odd. O

Combining Claims 5.4.2 and 5.4.3, the lemma follows. M

5.4 A candidate adaptive tester for Super-Cycle Collection

In this section we outline an adaptive 6(6*1)—query algorithm what we conjecture to be a tester
for SC,C, where t > 5 is fixed. The algorithm is a significant generalization of Algorithm 5.1, and
we focus on outlining the corresponding sub-test, denoted sub-test;(v).

Recall that in Algorithm 5.1 this sub-test consists, essentially, of finding an edge (v,u) and
checking the potential bi-clique induced by it (i.e., I'(u) x I'(v)). In the current context we try
to find a t-cycle (vg,v1,...,v4—1) such that vg = v and for every j € {0,...,t — 1} it holds that
vj € T'(Vj—imoat) N T'(Vj41modr) # T'(Vj—1modt) U I'(Vj41imoar). Given such a candidate t-cycle

"Note that the 1""-values of intermediate vertices along any path must be “adjacent” modulo ¢, and so moving
between {j +1,...,t — 1} and {0,..., 7 — 1} is only possible via (¢t — 1, 0).
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7, letting I;(7) def (C(vj—1modt) N T'(Vj41modt), we check that I;(7) X Ij;1moar(V) is a bi-clique,
and that I'(v;) = Jj—1modt(V) U Ij11moat(V). Each of these activities is is to be performed by
making poly(log(1/¢))/(2%€) queries. The implementation of the various checks is similar to the
implementation of similar checks performed in Algorithm 5.1, and so we focus on finding the
aforementioned t-cycle.

Starting with vg def v, we obtain v; € I'(v) just as (u was obtained) in Algorithm 5.1. In
fact, we may obtain v;_; € I'(v) in the same way, except that we need to verify that the latter
vertex is actually in a different independent set than v;. This is done by checking that I'(v;—1) is
different from I'(v;), where any w in the symmetric difference of I'(v1) and I'(v;—1) can serve as a
witness. (Indeed, w € T'(v1) \ I'(v+—1 can be used as vy.) Similarly, when holding a partial path
(Vt—jy ey V05 -y V), We seek a vertex vgii (resp., v;_(jy1)) such that T'(vgy1) and T'(vg—1) (resp.,
['(vi—(j+1)) and T'(v;_(j_1))) are different. When the path reaches length t—1 (i.e., holds ¢ vertices),
we treat it as a candidate t-cycle.

We note that, as in the case of Algorithm 5.1, it may happen that the foregoing algorithm
fails to find a t-cycle, (vg,...,v:—1. In this case, the algorithm performs only a subset of the

checks outlined above. Specifically, suppose that the algorithm failed to extend the partial path

7 (V¢—js -, V0, ..., V) any further. Then, for intermediate vertices the checks are as before, but

for the extremes we should proceed with more care. For example, assuming the path contains at
least four vertices, we let I;_;(7) def (C(v4—j+1moat) \ Lt—j+2mode(7)-

Clearly, the foregoing algorithm always accepts any graph in SC;C. One can also verify that,
for every i < £ % log,(1/€) +2, this algorithm rejects with high probability any graph in SCpCo—s,

where SC9:Cy-i is as in Lemma 5.4. Since graphs in SCxC,/, are e-close to SC;C, we conclude that

the aforementioned algorithm distinguishes graphs in SC;C from graphs in SCq;C’ def Ui>5 SCatCy—i

that are e-far from SC;C. This yields an algorithm for testing a promise problem, denoted Il;, which
refers to inputs in SC;C USCy;C’ such that the tester is required to accept inputs in SC;C and reject
inputs (in SCxC’) that are e-far from SC;C.

Theorem 5.5 (an almost-quadratic complexity gap for promise problems): For every positive
integer t > 5, the promise problem 11; satisfies the following:

1. There exists an adaptive tester of query complezity 6(6_1) for 11;. Furthermore, this tester
runs in time O(e™1).

2. Any non-adaptive tester for Il must have query complexity Q(e_2+(2/t)).

Indeed, Part 1 follows by the foregoing algorithm, whereas Part 2 follows from Lemma 5.4. We also
note that there exists an efficient non-adaptive tester of query complexity O(e=2t(2/%)) for II,. This
tester merely inspects the subgraph induced by a uniformly selected set of O(e~1+(1/Y)) vertices,
and rejects if and only if this set contains ¢ vertices such that the subgraph induced by these ¢
vertices is a simple t-vertex path.

6 Non-Adaptive Testing with O(1/¢) Complexity
We first note that €(1/€) (adaptive) queries are required for testing any graph property that is

non-trivial for testing, where a graph property II is non-trivial for testing if there exists ey > 0 such
that for infinitely many N € N there exist N-vertex graphs G and G5 such that Gy € II and Gs
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is €p-far from II. We note that all properties considered in this work are non-trivial for testing.
On the other hand, the negation of this (non-triviality) condition means that for every e > 0 and
all sufficiently large N € N either II contains no N-vertex graph or all N-vertex graphs are e-close
to II. In such a case (for every such e and N), the tester may decide without even looking at the
graph.'® Turning back to properties that are non-trivial for testing, we prove that any tester for
such a property must have query complexity €2(1/¢).

Proposition 6.1 Let II be a property that is non-trivial for testing. Then, any tester for I has
query complezity 2(1/e).

Note that the claim holds also for general properties (i.e., arbitrary sets of functions).

Proof: Let ¢g > 0 be as in the definition, and consider any N € N such that II contains some
N-vertex graphs as well as some N-vertex graphs that are e-far from II. Let Gy be any N-vertex
graph that is e-far from II, let G; € II be an N-vertex graph closest to G, and let 6 > ¢ denote
the relative distance between Gy and G1. Let D denote the set of vertex pairs on which Gy and G,
differ; indeed, |D| = 6 - N2. Now, for every € < ¢, consider a graph, G, obtained at random from
Gy and G1 by uniformly selecting a random R C D of cardinality e- N? and letting G agree with G
on all pairs in R and agree with G otherwise. Clearly, any tester that makes o(€y/€) queries cannot
distinguish G from G; (becuase regardless of is query selection strategy, its next query resides in
R with probability at most |R|/|D| < €/€p). Thus, such a tester cannot decide correctly on both
G and G; (because G is e-far from II whereas G; € II). Recalling that ¢ is a fixed constant, the
proposition follows. W

6.1 Clique and Bi-Clique

We start with the problem of testing whether the given graph is a clique (or, equivalently, an
independent set). The algorithm consists of selecting uniformly O(1/€) vertex-pairs and checking
whether each of these pairs is connected by an edge. Clearly, if the graph is e-far from being a
clique, then a randomly selected pair of vertices is connected with probability at most 1 — e. The
foregoing algorithm and analysis seem to provide the simplest example of a graph property that
can be tested by O(1/¢) non-adaptive queries. A somewhat less simple example is provided by
testing the property of being a bi-clique.

Algorithm 6.2 (non-adaptive test of bi-cliqueness): On input N and € and oracle access to a
graph G = ([N], E), the tester sets t = O(1/¢) and selects arbitrarily a start vertez s (e.g., s =1).
Fori=1,...,t, the tester selects uniformly a pair of vertices (u;,v;), and makes the queries (s,u;),
(s,vi), and (u;,v;). The tester accepts if and only if for every i an even number of answers are
positive (i.e., indicate the existence of an edge).

Clearly, if G is a bi-clique then for every i either all vertices reside on the same side (and so
(s,u;), (s,v:), and (u;,v;) are all non-edges) or a single vertex is in solitude (and is thus adjacent
to the other two vertices). To analyze what happens when G is e-far from being a bi-clique we
observe that s induces a partition of the graph to neighbors and non-neighbors (i.e., the 2-partition
(T'(s),[N]\ I'(s))). That is, if G were a bi-clique then every vertex v € I'(s) (resp., v € [N]\ I'(s))
would have satisfied T'(v) = [N]\ T'(s) (resp., ['(v) = I'(s)).!? However, since G is e-far from being

®Indeed, there exists natural graph properties that are trivial for testing (e.g., connectivity, non-planarity, having
no vertex of odd degree); see [GGR, Sec. 10.2.1].
19Tndeed, this is a simple application of the “induced partition” idea, which underlies the analysis of many of the

testers of [GGR].
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a bi-clique, it follows that either there are §-N? edges in (I'(s) x I'(s)) U(([N]\T(s)) x ([N]\T(s)))

€

or £+ N? edges are missing from I'(s) X ([N]\ T'(s)). Thus, the sample of ¢ pairs will hit such an
edge with probability at least 2/3.

6.2 Collection of a constant number of cliques

For any constant ¢, we consider the set of graphs that consists of a collection of (up to) ¢ cliques;
that is, the property CC<¢. Note that the special case of CC<? is analogous to bi-clique, because
a graph G = ([N], E) is in CC=? if and only if its complement graph ([N],([N] x [N])\ E) is a
bi-clique. The general case (i.e., ¢ > 3) seems less easy (for non-adaptive testers).

Algorithm 6.3 (non-adaptive test for CC=¢): On input N and € and oracle access to a graph
G = ([N], E), set £ =logy(1/€) and proceed as follows.

1. Select a uniform sample of 6(6*1/2) vertices, denoted S, and examine all vertex pairs in S.

2. Fori=1,...,{ select, uniformly at random, samples of ©(log(1/€)/(2%€)) and O(2¢) vertices
in [N] denoted T} and T?, respectively, and a sample of ©(min{2¢,1/(2%€)}) vertices in S,
denoted S;. Examines all the vertex pairs in S; x (T} UT?) and in T} x T2,

3. Accept if and only if the view of the subgraph as obtained in Steps 1-2 is consistent with some
graph in CC<¢. Namely, let ¢' : <(S x S)U <Uf:1 ((Si x (THuT?)u(T! x Tf)))) — {0,1}
be the function determined by the answers obtained in Steps 1-2. Then, the test accepts if and
only if g’ can be extended to a function over S' x S' that represents a graph in CC<¢, where

§' = SU (U1} uT?)).

It is instructive to spell-out the meaning of the acceptance criterion that underlies Step 3. Indeed,
this criterion is equivalent to the conjunction of the following four conditions:

(i) The subgraph induced by S is in CC=°.
In such a case, we denote the corresponding cliques by C4, ..., Cy, where ¢ < c.

(ii) For every i € [¢] and every v € T} UT?, either T'(v) N S; = 0 or, for some j € [¢'], it holds that
]_"(v) ns; = Cj ns;.

(iii) For every i € [{], if |{j : C; N S; # 0}| = c then every v € T;' UT? has neighbors in S;.

(iv) For every i € [¢] and for every v € T}! and u € T? such that T'(v) N'S; # @ and T'(u) NS; # 0
the following holds. If I'(v) N S; = ['(u) N S; then (v,u) € E, while if I'(v) N S; # T'(u) N S;,
then (v,u) ¢ E.

Algorithm 6.3 has query complexity
e ~
1SI? + 3 (1Sil - (1T + [T2) + [T} - |72]) = O(1/€) +log(1/e) - O(log(1/e) /) = O(1/e)
=1

and accepts every graph in CCS® with probability 1. We thus turn to analyze the case that the
input graph G = (|[N], E) is e-far from CC<¢. Namely, we show:
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Lemma 6.4 If G is e-far from CC<¢ then Algorithm 6.3 rejects with probability at least 2/3.
Theorem 1.4 follows.

Proof: Consider first the choice of S. We think of S as being selected in ¢ 4+ 1 phases, where
in phase ¢, a new uniform sample S*, of ©(e~'/2) vertices, is selected (recall that ¢ is a constant).
Intuitively, the objective of the first ¢ phases is to ensure, with high (constant) probability, that as
long as the number of vertices that do not have any neighbor among the vertices selected so far is
relatively big, we obtain such a vertex in the next phase. After ¢ phases we use the selected vertices
to define a partition of the graph vertices into at most ¢ subsets with some ezceptional vertices
(which either do not have any neighbor among the vertices selected in the previous phases or are
somehow inconsistent with these vertices). The objective of phase ¢+ 1 is to ensure that (with high
probability) the number of exceptional vertices is relatively small (or else, cause rejection). The
analysis relies on the fact that CC=¢ is a hereditary property (i.e., any induced subgraph of any
graph in CC<€ is also in CC=°).

For each 1 <t < c+ 1, let S<t = (Ji_; S*. Recall that the algorithm queries all vertex pairs in
S x S. Hence, if for any 1 < ¢t < ¢+ 1, the subgraph induced by S<* is not a collection of at most c
cliques, then the algorithm rejects, and we are done. Otherwise, let C¥, ..., Ci(t) denote the ¢ < ¢
cliques in the subgraph induced by S<!. For each 1 < t < ¢, we define the following partition of
the set [N] of all graph vertices:

Vi € (v :T)nSt=0f for 1<j<c®,
R} def {v : T(v) NSt = 0}

def
R NN\ (Rbu( U v))-

1< <e®

That is, for 1 < j < ¢®, the subset Vjt consists of the vertices that neighbor all vertices in C’; and
no other vertex in S<!, the subset R} consists of all vertices that have no neighbor in S<!, and R!
consists of all vertices that either neighbor only some of the vertices in one of the cliques C;f (but
not all) or have neighbors in more than one of the cliques. Observe that VjH'1 - Vjt and RB‘H - RB
while RI! D RY.

Given the above notation, we make two observations. The first observation is that for any
1 <t < g if S contains some vertex in Rf, then the subgraph induced by S<(+1) is not a
collection of at most c cliques, and so the algorithm rejects. It follows that if |R!| > %61/ IN for
some t < ¢, then the algorithm rejects with high probability. The second observation is that if
S+ contains some vertex in Rj, then c(1) > ¢(®) + 1. Note that, as long as |Rj| > 1€'/2N, the
probability that S**! does not contain any vertex in R} is at a small constant. Therefore, either
|R§| < iel/ 2N, or the algorithm rejects with high probability, because the subgraph induced by
S§=(c+1) consists of more than ¢ connected components. From this point on, we assume that the
subgraph induced by S<(“*1) is a collection of at most ¢ cliques, that |R§| < iel/ 2N and that
|R§| < %el/ 2N. (We later take into account the small constant probability that this is not the case
(but that the algorithm did not reject).)

To simplify the notation, we use the shorthand Ry for R§, and R; for R§, the shorthand ¢’ for
¢®, and the shorthand Vj for V7. We also denote RgUR; by R. We start by making the simplifying
assumption that for each sufficiently large V;, the corresponding C; contains a number of vertices
that is proportional to the size of V;. To be precise, |C;|/|S| > 1(|V;|/N) holds for every 1 < j < ¢/

1/2

that satisfies |V;| > <5~N. We justify this assumption at the end of the proof.
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Recall that G is e-far from CC=¢. This means that for every partition of the graph vertices into
at most ¢ subsets, the total number of vertex pairs that either belong to the same subset but do
not have an edge between them, or belong to different subsets but do have an edge between them,
is greater than eN2. In particular, this holds for the partition of [IV], denoted (‘7]-)3-6{0717___761}, that
we define as follows:

e For every j € [¢], it holds that V; C V.

e The vertices in R are partitioned among the ‘7}’3 as follows. For every vertex v € R and
J €[], let ej(v) = |T'(v) NVj| (resp., & = |V; \ I'(v)|) be the number of neighbors (resp.,
non-neighbors) that v has in Vj. If ¢ = ¢ then each vertex v € R is placed in the subset ‘7]
for which &;(v) + Ygere)\(jy €x(v) is minimized. If ¢’ < ¢ then we do the same, except that
every vertex v € R that satisfies 325_, e (v) < minjeen{8;(v) + e g5} ex(v} is placed in
Vo; that is, v is placed in Vj if for every j € [¢/] it holds that e;(v) < &;(v).

We note that it may be the case that ‘70 = (; indeed, this always happens when ¢’ = c.

Recall that |R| < %61/ ZN. Therefore, the total number of vertex pairs in R x R is at most %EN Z,
It follows that if G is e-far from CC=¢ then (at least) one of the following three events must occur:

1. There are at least ieN 2 missing edges between pairs of vertices that belong to the same subset
Vi that is, 335, |(V; x V;) \ B| > §N°.

2. There are at least %eN 2 superfluous edges between pairs of vertices that belong to different
subsets V; and Vi; that is, S5 Y51 |(V; x Vi) N E| > §N2.

3. The total number of missing and superfluous edges contributed by pairs of vertices in R X
(UJ L V;) is at least eN2. That is, if for each j € [] and v € RN V; we let

zv) =ei(v)+ Y, elv), (14)
kel?1\{i}

and for v € RN 170 we let

z(v) = Y ex(v), (15)

1<k<c!

then Z;IZO Y verni: T(V) 2 £N?. (Recall that Vo = 0 whenever ¢ = c.)
J

It remains to prove that in each of the three foregoing cases the algorithm rejects with probability at
least 5/6. Specifically, we shall show that, with probability at least 5/6, there exists an ¢ € [¢] such
that the sample S; U T} UT? contains a set of vertices that induce a subgraph not in CC <€ that is
inspected by the algorithm. More specifically, this set will contain at most one vertex from each 77,
and we shall use the fact that the algorithm inspects all pairs in (S; x (T} UT2))U(T} x T2)U(S; x S;).

In what follows let € = 7.

Case 1: Zj:l |(V; x V;)\ E| > £N%. In this case there must be an index 1 < j* < ¢ such that the
number of missing edges with both endpoints in Vj- is at least SNV 2. that is,

> Vi \ ({v} UT(@))] > N (16)

’UE‘/j*
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In particular this implies that |Vj-| > S5 1//2N For each i € [£], we define a subset Bj; of Vj« as
follows.

Bri={v e Vie WG\ (0} UT@)I > 5} an

where Bj« o = (. By Eq. (16), we have

Z|B] 'L\B] = 1| 21 _4_CN2 (18)

and thus there exists i* € [{] (i.e., a set Bj« ;=) such that

21"

€ <
B | > N >2V¢N . 19
[Bjee| > ;N > 27 (19)

By the definition of B i if Bj«; # 0, then |Vj«| > N/2%". Since Bj« ;= # 0, it holds that |Vj«| > aN
where o = max{1/2%", 5T /2} We shall show that, with high probability, the following three events
occur: (1) S;+ contains at least one vertex w from Cj; (2) T;i contains at least one vertex v from
Bj» i+ C Vj=; and (3) T2 contains at least one vertex u from Vj~ \ ['(v). If the three event occur
then the algorithm rejects since it obtains evidence that the graph is not in CC=¢ (in the form of
(w,v), (w,u) € E and (v,u) ¢ E). (Indeed, v € I'(w) since w € Cj= and v € Vj=, and u € T'(w)\I'(v)
since u € Vj=\I'(v). Also note that the algorithm queries all pairs in (S; x (TAUT2))U(TL x T2).)

Let a be as defined in the foregoing discussion. Since |Vj«| > /N and we assume that
|Cj+|/|S| > 3|Vj<|/N, the probability that the first event does not occur is at most (1 — a/2) %!
which is a small constant (due to our choice of |S;«| = ©(1/a)). Similarly (by our choice of
ITL| = ©(log(1/€)/(€2¥")) = ©(£/(€2"")) = Q(1/(¢'2"))), the probability that Ti. does not contain
any vertex from Bj« ;« is a small constant (due to the density of Bj« ;« as lowerbounded in Eq. (19)).
Finally, assuming that 7} contains a vertex v € Bj»;=, the probability that 72 (which has size
©(2%")) does not contain any vertex from Vj« \ I'(v) is a small constant as well (since, by definition
of Bjs j=, the set V= \ I'(v) has density at least 27").

Case 2: Z Zk_ﬁ_l |(V; x Vi) N E| > £N2. In this case there exists at least one pair of subsets,
Vj« and Vi (Where j* # k*), such that |(Vj« x Vi-)NE| > ;5 N?. Assume, without loss of generality,
that |Vj«| > |Vi«|, so that in particular |Vj«| > 62/0 N. Slmllarly to Case 1, it follows that there
exists a index 7* € {1,...,£} and a subset Bj«;+ C Vj« such that |Bj ;| > ¢/2°° N and for every
v € Bjx 4 it holds that |V« N T'(v)| > N/2%". Analogously to Case 1, here we can show that, with
high probability, the following three events occur: (1) S;« contains at least one vertex w from Cjx,
(2) T} contains at least one vertex v from Bj» ;=, and (3) T2 contains at least one vertex u from
V= NT'(v). If these three events occur then the algorithm rejects since it obtains evidence that the
graph is not in CC=¢ (in the form of (w,v) € E, (w,u) ¢ E and (v,u) € E). The probability that
these three events occur is lower-bounded as in Case 1.

Case 3: Z;IZO EveRm; z(v) > £N2. For each v € R, let z(v) be as defined in Eq. (14) & (15), and
let R 4 {1} €ER : z(v) > E1/2N}. Since |R| < $€!/2N, we have that 2i=0 Lve(r\R)Y; (V) <
|R|- 1/2N < §N?. Therefore, 3% Yverny; T(v) > £N?2. By the definition of R/, for every v € R/,
we have that :c( ) > N/2¢ for some i < £/2+ 2. Therefore, if we define B; = {v : z(v) > N/2'} for

i=1,...,£/242, then there is an index i* € [(/2+42] such that [B;«| > £2" N > ¢'2°° N. Similarly
to the previous cases, with high probability, the sample T;. contains at least one vertex v in B;«.
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We next show that for each fixed choice of such a vertex v € B;«, with high probability over the
choice of the samples S;= and T2, we obtain evidence containing v that G is not in CC e (i.e., a set
of vertices that induce a subgraph not in CC¢, while having at most one vertex in each Th).

Let j* € {0,1,...,¢'} be such that v € Vj, and define &y(v) = eg(v) = 0. Observe that since
UNS YN/]* we must have that

ej=(v) —ej-(v) <ep(v) —ex(v)  (VE#j7), (20)

where if ¢’ = ¢ then 1 < k < ¢/, while if ¢ < ¢ then 0 < k < ¢/. (Note that Eq. (20) holds since
otherwise v would be placed in Vi.) Eq. (20) will be useful when we consider the following subcases
(which refer to v € Vj«).

e We first consider the subcase in which j* = 0 (which may occur only when ¢’ < ¢). In this

subcase, since €;«(v) —ej- (v) = 0—0 = 0, for every k € [¢/] we have that e (v) > ex(v). On the
other hand, since z(v) = Y5_, ex(v) > N/2¥", there exists at least one index k* € [¢'] such that
exs(v) > N/(c2"). Since &g« (v) > ep=(v), we have that &g-(v) > N/(c2"") as well. This also
implies that |Vi«|/N > (c2°") L, and since we assume that |Cy=|/|S| > §|Vi+|/N, we have that
|Cr<|/|S] > (2¢27)71. Recall that |T2| = ©(2%), and that |Si<| = ©(min{2"",1/(e27)}) =
0(2""), since i* < £/2 + 2 (where £ = log(1/¢)).
Now, if |Cx= NT'(v)| > |Ck=|/2, then, with high probability, the sample S;- contains a vertex
w in Cypx NT(v) (since |Cy| = Q(|S]/27)), and T2 contains a vertex u in Vi« \ I'(v) (since
ep(v) = Q(N/27)). Otherwise (i.e., |Cp= \ T(v)| > |Ci+|/2), with high probability, S;-
contains a vertex w in Cy~ \ T'(v), and T2 contains a vertex u in Vi« N T'(v) (since ex«(v) =
Q(N/2%)). In either cases, w € Cy+ and u € Vj+, which implies (u, w) € E, and w € T'(v) iff
u ¢ I'(v), which implies that |{(u,w), (w,v), (u,v)} NE| = 2.

In the subsequent subcases we assume that j* > 0.

e We next consider the subcase in which both ej«(v) > N/2°+1 and ej«(v) > N/2+2 hold.
Setting k* «+ j*, we reach a situation as in the first subcase (since & (v) = Q(N/2"") and
ex=(v) = Q(N/2%)), and we are done as in the first subcase (while noting that first subcase
does not rely on j* # k*).

e The next subcase refers to e;+(v) > N/2° ™! and ej«(v) < N/2¢ T2, In this subcase e;+(v) —

ej<(v) > 0 and so it can occur only when ¢’ = c (since otherwise v would be placed in
Vo, whereas here j* # 0)). The fact that e;«(v) — ej«(v) > N/2"2 implies that, for every
k €[]\ {j*}, it holds that &,(v) > ex(v) + &x(v) — ej«(v) > N/20 2. Similarly to the
previous subcase, we know that |Cy|/|S| > 1/2""+3 for all k, and we have that |S;<| = ©(2%)
(as well as [T2] = ©(21")).
If there exists k* € [/] such that |Ck« N T'(v)] > |Ck«|/2, then with high probability, S;
contains a vertex in Cy« N T'(v), and T2 contains a vertex in Vi« \ I'(v). Otherwise (i.e.,
|Cx \ T (v)| > |Ckl|/2 for every k € [']), with high probability, for every k € [¢/], the sample
S;= contains a vertex in Cy \ I'(v), and recalling that ¢ = ¢ we obtain evidence (in the form
of an independent set of size ¢ + 1) that G is not in CC=°.

e Lastly, we consider the subcase in which é;«(v) < N/2¢ 1. Since e;«(v) + X kee\ -} €k(v) =
z(v) > N/2%, we obtain Lkele\(j*} €k (V) > N/2"° 1, In such a case, there exists a k* €
[¢']\ {j*} for which ej=(v) > N/(c2""+1). If e;«(v) > N/(c2¥"*?2), then with high probability,
T2 contains one vertex u in V= NT'(v) and one vertex v’ in Vj« N T'(v), while S;+ contains
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one vertex w in Cy- and one vertex w’ in Cj-, and we have evidence that G is not a union of
cliques (since (v,u), (v,u’), (u,w), (v',w") € E whereas (w,w') ¢ E, and all five vertex pairs
are inspected by the algorithm).2 Otherwise (i.e., ej«(v) < N/(c2©*2)), by Eq. (20), we
have that eg=(v) > ep«(v) + €« (v) — ej«(v) > N/(c2"+2), and we are in essentially the same
situation as the first subcase (since we have eg-(v) = Q(N/2%") and &«(v) = Q(N/21)).

It remains to deal with the assumption that |C}|/|S| > 3|V;|/N holds for every j that satisfies
V| > %N . To this end, we add one more phase in the choice of S (where we think of this phase

as taking place before phase ¢+ 1 that was used in the foregoing discussion to bound |R|). Let S’
denote the vertices selected in the first ¢ phases and let S” be the vertices selected in the additional
phase, where |S”| = 4|S’|. Let C1,...,C’ be the cliques in the subgraph induced by S’, and for
each 1 <j < ¢ let Vj' be the vertices that neighbor all vertices in C;- and no other vertices in S’. In
the sample S, let C7 = S"NV/. By a multiplicative Chernoff bound, with high probability over the

choice of ", it holds that [C}|/|S"| > (3/4)|V]|/N for every j that satisfies |V]| > %N. Assume

that this is, in fact, the case. Then, we define C; = C;UC] and V; = {v: T'(v) N (S US") = Cj}.

If there is any new clique in S” then it corresponds to a small set of vertices (since the set

of vertices that do not belong to any V; is small).?! Using the fact that S is the union of §,

S” and the sample selected in phase ¢ + 1, we have |S| < (3/2)S”| (since |S”| = 4|S'| and

|18 = c- (IS| = |8 = [5"])) and [C5l/|S| > (3/4)|CF|/1S"| = (3/4) - (3/4)|V}|/N. Using Vj C VJ,
1/2

we get that |C;|/|S| > 1|V;|/N for every |V;| > S—-N. W

20 Actually, note that it also holds that (u',w) € E, and thus we obtain evidence in the form of the four vertex
pairs (v,u), (v,u'), (u,w), (u',w). Note that we can obtain evidence in the form of three vertex pairs by considering
cither (v, u), (o, ), (v, ) ot (v, ), (u, w), (v, ).

2Tndeed, the sizes of the sets V; behave as the sizes of the sets V;, which were analyzed in the beginning of this
proof. Also note that this additional clique may causes the algorithm to reject (whenever it causes the total number
of cliques to exceed c).
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