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Abstract

For a permutation grou@ acting on the sef2 we say that two strings,y : Q — {0,1} areG-
isomorphidf they are equivalent under the action@fi. e., if for somer € G we haver(i™) = y(i) for
alli € Q. Cyclic Shift, Graph Isomorphism and Hypergraph Isomasphare special cases, and subcases
corresponding to certain classes of groups have been tieritia design of efficientisomorphism testing
for subclasses of graphs (Luks 1982).

We study the complexity ofz-isomorphism in the context of property testing: we want tal fihe
randomized decision tree complexity of distinguishing thees when: andy are G-isomorphic from
the cases when they are at le&$ar from beingG-isomorphic (in normalized Hamming distance). Error
can be 1-sided or 2-sided. In each case we consider two mdddlse query-1 model we assumés
known and onlyr needs to be queried. In the query-2 model we have to queryabatialy.

We give various upper and lower bounds for the four combamatof models considered in terms of
n = |Q| and|G|. In many cases, substantial gaps remain between the upgphveer bounds. However,
for primitive permutation groupswve obtain a tight (up to polylogf factors) bound Oé(\/nlog |G|)
for the 1-sided error query complexity in the query-2 modad @ tight bound oﬁ:)(log |G|) for the
1-sided error query complexity in the query-1 model. Th&ieextends results of Fischer and Matsliah
(2006) on Graph Isomorphism to a surprisingly general adégsoups which also includes isomorphism
of uniform hypergraphs of any rank. Besides the fact that thelude Graph Isomorphism, primitive
permutation groups are significant because they form thiédibg blocks” of all permutations groups,
providing the base cases of a natural divide-and-conquaoaph successfully exploited in algorithm
design (Luks, 1982).

While all our bounds are in terms of the order®fit seems likely that tighter bounds will depend
on the finer structure af; our result on primitive groups is a first step in this direnti

1 Introduction

“Property testing” is a branch of decision tree complexgudry complexity) theory: with a small number
of randomized queries to the unknown input string, we warftaee a good chance of distinguishing the
cases when the input has a given property from the cases Waangut is “far” from any string having the
property.

This concept was introduced in the context of program cmecky Blum, Luby and Rubinfeld [14]
who showed thdinearity of a function over a vector space can be tested witbrestaninumber of queries.
A central ingredient in the proof of the MIP=NEXP theorem][¥4as the proof thamulitinearity can be
tested with goolylogarithmicnumber of queries. These two papers were among the roote eéchnical
developments culminating in the PCP Theorem [8, 7].

Rubinfeld and Sudan [23] formally defined property testimghie context of algebraic properties. Sub-
sequently, the interest in property testing was extendgdaph properties, with applications to learning and
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approximation[[20]. In recent years the field of combinatioproperty testing has enjoyed a rapid growth
(see, e.qg.[12,13,/4,5] 1], cf. [22,116]).

Notably, Alon and Shapira [1] show that graph properties #na invariant under vertex removal (i. e.,
are inherited by induced subgraphs) are testable by a ecdrmatanber of queries. Isomorphism to a given
graph is an important example of a graph property that is amditary.

The immediate motivation of our work in this chapter comesrfipapers by Fischer [17] and Fischer
and Matsliah[[18] who consider the Graph Isomorphism probie the property testing model. Here two
graphs are given as inputs and we have to test whether thésoanerphic or “far” from being isomorphic.

In this chapter we consider a generalization of graph ispiiem. Let us fix a permutation groug
acting on the sef2. Given two input strings;,y : Q — {0,1}, we sayz is “G-isomorphic” toy if y is a
aw-shift of x for somer € G. We want to test the property:“is G-isomorphic toy,” that is, we want to
distinguish the case whenandy are G-isomorphic from the case when every string thatrissomorphic
to y is far fromz. [Formal definitions are given in Sectibh 2.]

Graph Isomorphism is a special case: we need to chQadsebe the set of unordered pairs of the set
V of vertices; and? = Sym(? (V) the induced action of2 of Sym(V'), the symmetric group acting on
V (son = (“2/‘)). We note that the induced symmetric group action on paigsimitive (does not admit
nontrivial invariant partitions of the permutation dompimhis fact defines the direction in which we extend
results on Graph Isomorphism. We note that by consideriagiuced symmetric group action éftuples,
another primitive action, we also cover the casé-aiform hypergraphs. Herke need not be a constant.
Various finite geometries also correspond to primitive ggsaG-isomorphism includes equivalence under
geometric transformations (projective, orthogonal, shatiic, etc.).

Besides the fact that the case of primitive groups includesgpls Isomorphism and its immediate gen-
eralizations (hypergraphs) as well as geometric equicaleprimitive permutation groups are significant
because they form the “building blocks” of all permutatigeups in the sense that a “structure tree” can
be built of wich the leaves constitute the permutation donaaid the action aff extends to the tree in such a
way that the action of the stabilizer of any node in the trgwiimitive on the children of the node (cf. [13]).
This structure tree formalizes the natural divide-andgemm approach successfully exploited in algorithm
design[[12] 13, 21].

In “property testing” we want to output 1 if the inputs ageisomorphic and 0 if they are “far” from
being G-isomorphic. The complexity is the number of queries madi#éanput. We consider two models
depending on whether we have to query batandy or we have to query only one of them (the other
is known). We call the models query-2 and query-1, respelgtivA property test can have 1-sided or
2-sided-error.

In this paper we focus mainly on property testing(éisomorphism when the group is primitive. Our
main results are the tight bounds on the query complexitynwhe are allowed only 1-sided error, that is,
the algorithm has to output 1 with probability 1 when the twplits are>-isomorphic and we have to output
0 with high probability when the inputs are “far” from beirgpimorphic. The main results are the following.

Theorem 1.1. [Tight bounds for primitive groups] I€7 is a primitive group then
1. The 1-sided-error query complexity for testiigsomorphism in the query-2 modeﬁ)s{\ /nlog|Gl).
2. The 1-sided-error query complexity for testifigisomorphism in the query-1 model@log |G]).

Theoren 1l generalizes a result of Fischer and Matslighoid&raph Isomorphism. The lower bound
parts of this result is the main technical contribution a$ thaper and is proved in Sectibh 3. For the lower



Query-1 Complexity | Query-2 Complexity

1-sided-error testing | ©(log |G)t, Q(logn)t | O(y/nlog |G}

2-sided-error testing | O(log |G|), Q(logn)T O(y/nlog|G|)

t The lower bound holds whed is transitive andG| = 20" ).
I The lower bound is for primitivés and the upper bound has no tilde.

Table 1: Bounds on the query complexity of Testing of Equinak undet7-isomorphism.

bound proofs we crucially use a classification of primitiveups based on the O’Nan—Scott Theorem (see
[15]).

We also prove some upper and lower bounds for the other dBaem most of these cases, a significant
gap remains between the upper and lower bounds. We presset ibsults in the appendix. The following
is the list of results we prove in the appendix. The tilde ia #symptotic notation indicates polylag(
factors.

Proposition 1.2. [Upper bound]
1. The query-1 complexity of 1-sided and 2-sided effasomorphism testing i©(1 + log |G]).
2. The query-2 complexity of 1-sided and 2-sided e¢teisomorphism testing i©(/n(1 + log |G|)).

In Table 1, we abbreviated the expression log |G| to log |G| for better typography. The only case
where this makes a difference is wheé¥| = 1 so the results as stated in the Table 1 assjdie> 2.

Theorem 1.3.[Lower bound] Let be a transitive group of ordez®™' =), Then the 2-sided-error query-1
complexity of the property testing 6Fisomorphism i$2(logn).

Note that we have tighter lower bound for the same case whisrprimitive.

In Section(2 we give the formal definitions. In Section$ 3, d@nwe give the proofs of the above
three results. In Sectidd 6 we state further nearly tightnidsuthat follow from our results (in addition to
Theoreni 1.11).

Table[l summarizes our results Ghisomorphism. Table 2 gives the results of Fischer and Néditsin
Graph Isomorphism. In Table 3 we specialize our resultseatise of Graph Isomorphism for comparison
with the results of Fischer and Matsliah.

2 Preliminaries

2.1 Definitions

Let Q2 be a set of size. The permutations df form thesymmetric group Sym(£2) of ordern!. We write
the action ofr € Sym(2) asi — i". For a subset C Q) we setS™ = {i" : i € S}.



A subgroupG of Sym(£2) is apermutation group; €2 is thepermutation domain on whichG acts.G
hasorder |G| anddegreen.

G is transitive if (Vi,j € Q)37 € G)(i"™ = j). A partitionQ = QU...UQ,, is invariant under
m € Sym(Q) if (Vi)(37)(QF = ;). The partition is invariant unde® if it is invariant under everyr € G.
The trivial partitions correspond taw = 1 or m = n; these are always invariant. @ is transitive and
does not admit any nontrivial invariant partition théhis primitive . The largest primitive permutation
groups of degree other than the symmetric and the alternating groups (grofipgen permutations) have
orderexp(O(y/nlog®n)) ([9, [10]) so except for the two classes of “giants” of ordérandn!/2, resp.,
log(|G|) = O(y/n) for all primitive groups of degree.

We use the notatiom| = {1, 2, 3, ..., n}. Most often we také&) = [n] and writesS,, for Sym([n]).

Definition 2.1. A partial assignmenis a functionp : S — {0, 1} whereS C [n]. We call S the support of
this partial assignment and often dengf¢as|p|. We callz a (full) assignment ifc : [n] — {0,1}. (Note
than a stringe € {0,1}" can be thought of as a full assignment.) We say = if = is an extension op,

i.e., if p = z|g (the restriction ofr to 5).

Ham(z, y) will denote the Hamming distance of the strings (full assignts)z andy.

Definition 2.2. LetT C [n] and letr € S,,.
Let G be a permutation group acting on][ Then the set§"™, wherer € G, are called thé&-shiftsof
T.Ifp: T — {0,1} is a partial assignment then we defpie: 77 — {0,1} asp™ (i) = p(i”_l).

Given two full assignments andy and a permutation grou@ we denote byl;(z,y) the minimum
distance between th@-shifts ofx andy. That is,

dg(xz,y) = min Ham(z™,y™?). (1)
m1,m2EG
SinceG is a group, we have
dg(z,y) = min Ham(z, y™) = min Ham(z", y). )

If dg(z,y) = 0 then we say & is G-isomorphic to y.”
A 2-sided property testerfor G-isomorphism is a probabilistic decision tree, sdaysuch that given
z,y €{0,1}"

if de(x,y) = 0 then with probability> 2 we haveA(z,y) = 1, and,

if dg;(,y) > on then with probability> 2 we haveA(z, y) = 0.

An 1-sided error property tester is one which makes no mistaked§; (x,y) = 0.

The complexity of a property tester is the maximum (over afigible inputs) of the minimum number
of bits that need to be queried. If neithemor y is given (so both need to be queried) then we speak of a
query-2 testeand correspondingly ajuery-2 complexity. If one of them is given (we always assume
is given) and only the other (that i9 needs to be queried then we speak aofuary-1 testeandquery-1
complexity.

The trivial upper bound on the complexity of query-2 testeZ and of query-1 testers is.

All our upper bound results hold for any permutation grégpBut for our lower bound results we need
some more structure ad. In Theoreni_1.3 we assume that the group is transitive whikofeni 1.1l holds
for primitive groups. Our main tool for primitive groups iset O’Nan—Scott Theorem (see Secfidn 3).
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Query-1 Complexity | Query-2 Complexity

1-sided-error testing o(|V)) oO(|V[3/2)

2-sided-error testing o(/V]) QV|), O([V[7/4)

Table 2: The results of Fischer and Matsliah for Graph Isqiism.

2.2 Previous Results

The query complexity of the property testing version of grégmmorphism has been well studied. Fischer
and Matsliah[[18] gave some tight bounds. In case of graphasphism the group that acts.#f,)‘, where

V' is the vertex set of the graph. Hence the order of the grollp|ls Table 2 shows the main results of [18].

2.3 Chernoff bounds

We shall repeatedly use the following version of the Chdipafinds, as presented by N. Alon and J. Spencer
[6, Corollary A.14].

Let X1, X5, ..., X} be mutually independent indicator random variables ng Zf;l X;. Let the
expected value of bep = E[Y]. For alla > 0,

Pr(|Y — p] > ap] < 2e” K,

wherec,, > 0 depends only on.

3 Query Complexity for 1-sided-error Testing of Equivalene under some
Primitive Group Action

3.1 Structure of Primitive Groups

Definition 3.1. Let G be a permutation group acting on a geand H a permutation group acting on a set
B. Thewreath produciG H is the split extension of the base groGf¥ (the cartesian product 6| copies
of G) by H, whereH acts onG? by permuting the factors as it does the element®ofdentifying G?
with the set of functiong : B — G we haveh~! fh(b) = f(h~1(b)) forh € H,b € B.

There are two natural actions 6f: H.

1. The imprimitive action oA x B. The base group acts in the first coordinate by the fijte b) =
(f(b)(a),b) andH acts on the second coordinate in the usual way.

2. The product action on the sdt® of B — A functions, where the base group acts coordinatewise
(thatis, ifp € AP f € GB, then(fp)(b) = f(b)(p(b)) and H acts by permuting the coordinates
((hp)(b) = p(h=1(b)) for g € G¥ 1 € H).



Note that these are two permutation representations ofime group. Note also thét: H hasG!? as
a normal subgroup witli as the quotient.

The structure of primitive permutation groups is descrilbbydthe O’Nan—Scott Theorem. A useful
consequence of that theorem is given by Cameron.

Theorem 3.2.[15] There is a (computable) constantvith the property that, it7 is a primitive permutation
group of degree, then one of the following holds:

1. |G| < nclosn,
2. G is a subgroup oﬂut(Aﬁff)) 1 .Sy (product action) containin@Affi))f, whereA is the alternating
group A, acting onk-element subsets. [We can assume without loss of gendtaity < k& < 7]

Soin the caséG| > n°'°8™ the degree of is given by

¢
n= (ZL) and thereforer > m’. (3)
It follows that? < log, n. Also since we can assunie< 2, so
m m\k _ .
>(—) > < )
<k> > < k> > 2" and thereford: < logyn 4)

In fact if |G| > n°1°e™ then we obtain the bound on the size(dhs

G| < (m)*(e!) < m™" < n™¢" [From EquatioiB] (5)

Sincel < log, n we have from Equatio 5,

c(logn)? < log(|G|) < (mlogn + £logt) ~ mlogn. (6)

The last asymptotic equality holds becaidse log n and therefore/ log ¢ = o(log? n).
Therefore,
log |G| < mlogn andm 2 clogn. (7

It follows in particular thatn > 7 (for sufficiently largen). The significance of this is in the known fact
that form > 7 we have
Aut(An) = S, (8)

and thereforeﬁlut(A,(fi)) = 5.
Observation 3.3. If £ = O(y/m) then



Proof. Letk > \/m. Then
k
n= (m> > (@) > ok > ovm,

k k
Thereforem = O((log n)?) which implies from Equatiohlfog |G| < (logn)*. Hence ifk > /m we have
V/nlog |G| = O(y/n). The corollary now follows from Observation B8.3. O

Definition 3.5. Let A, B C [n] andp : A — {0,1} andq : B — {0, 1} be two partial assignments. L&t
be a permutation group dn|. Thenp andq are said to b&;-agreeableif there exists a full assignment
on [n] and two elements;, 75 € G such thatr is an extension of both™ andg¢™. SinceG is a group this
is same as sayingandq areG-agreeable if there exists an elemert G and a full assignment such that
x is an extension of both™ andq. We say thap andq are agreeable through

We say that the partial assignmeptandq are compatible if there is a full assignmenbn [r] which is
an extension of botp andgq.

Definition 3.6. Let G be a permutation group dn]. Letz andy be two full assignments oir|. Thenx
andy are calledk-G-agreeable if for any setd, B C [n] with |A|, |B| < k, the partial assignmentg 4 and
y|p areG-agreeable.

3.2 (G-Agreeability Lemma for G Primitive

The following proposition is folklore.

Proposition 3.7. LetG be a transitive group ofr]. Let us fix4, B C [n] and let us select € G uniformly
at random. Then

. AlB
E(|47 0 B|) = A5 'T‘l |

)
Proof. By G-symmetry, for each € B we havePr(b € A™) = '%“. Now the linearity of expectation yields

the result. O

Corollary 3.8. LetG be a transitive group ofn]. Let A, B C [n] with |A]|, |B| < ey/n. Then,

Pr[A"NB=¢] > (1—é?)
TeG
In particular if A and B are the support of the partial functionsand ¢, respectively, thep andq are
G-agreeable.
Proof. Immediate from Propositidn 3.7 by Markov’s inequality. O

A simple consequence of Corolldry B.8 is thafifis a transitive group then any two full assignments
andy on [n] are/n-G-agreeable.
Next we state the most technical lemma of this chapter GHfeggreeability Lemma for primitive groups.

Lemma 3.9(G-Agreeability Lemma) Let G be a primitive group. Then there exist two full assignments
andy on[n] such thatdg(x,y) > n/6 andz andy are O(y/n log |G|)-G-agreeable.



3.3 Lower Bounds for 1-sided error Testing

Proof of Part 1 of Theorem[1.1

Let A be a 1-sided-error query-2 property tester @disomorphism. Let the inputs beandy. After
the queries are made we get two partial functieng, andy|q,. Now if z|g, andy|q, areG-agreeable
then we have no proof that; (z, y) # 0. SinceA is a 1-sided-error tester, it has to output 1. So by Lemma
[3.9 we see that there existsandy such thatdg(z,y) > %n and A(z,y) has to be 1 if the query size is

O(y/nlog |G]). So the result follows from the lemma.

Proof of Part 2 of Theorem[1.1

We recall the example for lower bound of 1-sided query-1 demity of graph isomorphism given by
Fischer and Matsliah [18]. The unknown graph is the comped@h onn vertices while the known graph
is the union ofn/2 isolated vertices and a complete graphmgi2 vertices. Note that without querying at
leastn /4 pairs of vertices it is impossible to give a certificate of asmmorphism. This gives the lower
bound ofn /4 for the graph isomorphism case.

A similar example can be given in case of isomorphism undienifive group action. First of all we
assume that the primitive group is of size more th&li¢ ™ where the: is same as in Cameron’s Theorem 3.2.
Now we use the structure of the primitive group given by CamekVe continue with the same notation as in
Sectior 3.4. We partitiof; into three disjoint parts, namely,, V4, andV,, where|V, | = [V;| = V.| = %
The known input is

. Va, Ve, Vool .,V
o(W) = 1iff W e (1,k—1,k,...,k>
The unknown input is
- (VaU W), Ve, Va, ..., Ve
y(W) = Lt W€ ( L k—1k. .k >

Note that one need to make at least6 queries to give a certificate of non-isomorphism betweerivioe
inputs. Now from Equatiohl7 we get a lower bounomm).

logn

3.4 Proof of theG-Agreeability Lemma for Primitive Groups

Proof of Lemma319lf |G| < ncl8™ then,/nlog |G| = O(y/n) and the result follows from Corollafy 3.8.
Therefore from Theorein 3.2 and Corollary]3.4 we may assumtaithis a subgroup oSﬁ,]f)) 1 Sy (product
action) containing{Aﬁ,’f))g, andk < /m. Hence in rest of the proof we will use from Leminal3.3 that

m mk
()=o)
where the impied constant is absolute.

If {=1andG = ST(,?) thend is the group of automorphisms of the complete graphovertices. This
case was settled by Fischer and Matsliah [18]. We generdilg@etechnique.
For our convenience we have the following definition.

Definition 3.10. LetT}, T5, . .., T, be disjoint sets angl;, o, . . . , r; be positive integers satisfying;_, r; =
R. Then by("72--T+) e mean the set dt-tuples formed by; distinct elements from the s&} for all

T1,72,..Ts

1 <17 <s. Thatis,



iy

TlaTQ)"'vTS — OS .
T1,72,...,Ts i—1 !
G is a subgroup oSf,’f) .Sy (product action) containingAﬁ,’i))é. G is naturally isomorphic to a subgroup
of S, 1 .S, acting in its imprimitive action oy = u 1V;, where|Vi| = m and theV; are all disjoint. Then

We will first have to define two full aSS|gnmentzsandy, onn bits. The grougs is a map from) to V.
The rest of our proof has the following two parts:

¢ Define the full assignmentsandy and prove thatl;(z,y) > én for some constant.

e LetQ, andQ@, be two query sets far andy, respectively such that bot&,,| and|Q, | is O(y/nlog|G)).

Then we prove that there exist a permutatios: 7y X w9 X - -+ X 7y € (Aﬁ,’f))é such that)? and@,
are compatible.

We start with defininge.

Definition of the full assignmentsz and y
We partitionV; into three disjoints part&, U; andUs such that

|U3| :m<1—E), |U1|:m(%—l—e) and|U2| :m(%_€>

We definexr andy as
U17U37V-27"'7w

1,k—1,k,k,...,k>

x(W):liffWe(

U25U35‘/2)°”7‘/f

1
y(W) = Liff W e (1,k—1,k,k,...,k

Note that a map frornv to V gives a reordering of the bits is

Now note that number ofs inz andy is m(mgjl%))(ﬁ +e (Mt andm(m;:%))(i — (M

respectively. So from the difference in numberisfin z andy we see that

dg(x,y) > 2em (mél_—1%)> (::) -1

For k = 1 the right-hand side iQem’ = 2en. If k& # 1 then from Lemmad 3]3 and the fact that
)k > 1 we obtain

s P0) R ()

So if we choose = @ wherec is the constant implied in th® notation then we get that

do(w,y) > é(?)zzén

9

( _

=




Now we give the second part of the proof. gt and@, be query sets far andy, respectively, such

I -
that|Q,|,|Qy| < M whereM = 2 (mgglilk))(rg)é r

To prove thatr andy are M-G-agreeable, we have to giverac (A,(fi))f C G that mapsy to V such
that@7 and@, agrees.
If a € U; then we define

o Ul)U3)V2a"'7‘/f
qm(a)—{we <1’k_1’k’.”7k>‘wEQmandaEw}

Similarly if b € U, let

- Ul)U3)V2a"'7‘/f
qy(b)_{we (1,k—1,k,...7k>‘wEanndbew}

Now by an averaging argument there exist séts U; andB C U, such thatA|, |B| > 29—’;1 and for all
a € Aandb € B we have

9k
|4z(a)l gy (0)] = M.
(kil)l) X (Agrlf))é_l acting on the Se(kU_SiV,i’,;'j_V"k). Pick a random element € H. Note

m(1—¢
that H acts transitively on the s¢f”;'2:").

Fix an arbitrary even bijection from to B, i.e., an even permutation ¢f] which mapsA to B. Let
a € A be mapped td € B. We call a pair(a, b) acceptable ify,(a)™ N qy(b) = ¢. We want to calculate
the probability of a paifa, b) being acceptable.

Note thatg, andg, are two subsets df;*% 7). So from Lemma&3I8 we get that probability that
andb are compatible is more thét

So the expected number @i, b) pairs that are acceptable is %29—? = & = em. So there exist a
permutationt’ € H such thatm of the (a, b) pairs are acceptable. These acceptable pairs along with the
permutationt’ give a map froma set’ C A C U; to B’ C B C U, such that), and@, are compatible.
Now we have

LetH = A

[UN\A'| = |Un

and
|Ua| = |U2\B'|.

Hencen’ and the map from the acceptable pairs can be extended to @angapfsfom V' to V by mapping
U;\A" andU; to U; andU,\ B’ respectively, such th&7 andQ, are compatible.

Finally from Corollary(3.4 we havé/ = O(y/nlog|G|). O

4 Upper bounds for Transitive groups

Proof of Proposition[1.2

Definition 4.1. We definequery sequenceas the sequence of elementg:afconsisting of the positions of
the bits of the input that will be queried. Repetition is petea.
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The proofs of both parts of Proposition 11.2 are rather sinaplglications of the Chernoff bound; we
describe the proofs for completeness.

Proof of Part 1 of Proposition 1]2In this part we only have to query bits of Let us choose a real number
p, 0 < p < 1, appropriately (see below). The length of the query sequénhwill be m = pn. We say that
two partial functiong, ¢ contradictat if both p(i) andq(:) are defined ang(i) # ¢(i). The following is
the test:

1. Construct the query sequen@e= (a1, ...,a,) by choosingpn elements ofin| independently at
random. (So there is a small chance that the same elemertserckwice.)

2. Query the bits of corresponding t@). So we obtain the partial functiari.

3. If for somer € G the partial functionzc|7g2 andy contradict in fewer thanpn /2 places then output 1.
Otherwise output 0.

Now to prove that the above test works we have to show thatefteoutputs the correct answer with
probability at least.

Given a permutatiom € G, we say that théth bit queried contradictg along if z(a;) # y(al). We
define the(0, 1)-variable X7 by

X = 1if the ith bit queried contradictg along.

X™ =) XT is the number of places the partial information of the twings contradicts along. Since

the members of the query sequence are chosen independeatly” are mutually independent indicator

random variablesi(= 1, ..., m; « is fixed). So we can use the Chernoff bound to estimate the X ™.
Suppose that one of the following conditions holds for agivec G:

() =™ andy agrees completely;
(i) =™ andy differ in more tharyn places.

It follows that the expected value &™ is less tharD in Case (i) and greater thamd in Case (ii). Let
n=204/2.
So, using the Chernoff bound we obtain,

Pr (| Xy — E(Xx)| > nnp] < 2exp (¢, 5mp) - (10)

If there existsr € G satisfying condition (i) (so the correct answer is 1), thelyability we err is less than
the right-hand side of this inequality.
If every m € G satisfies (i) (so the correct answer is 0), the probabiligyesr is less thajiz| times the

right-hand side by the union bound. So in any case, the pilitigadf error is less thanG| exp (—cn/5np).
If we takep = %ﬂf‘) then the probability of error is less th%m
Note that this is an 1-sided error algorithm. So the quergrhexity for the 1-sided err@r-isomorphism
testing isO(pn) = O(1 + log |G|).
]
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Proof of Part 2 of Propositiof 112In this part we have to query both andy. Again we choose a real
numberp, 0 < p < 1, appropriately (see below). The total length of the queguseace will be2m = 2pn.
The following is the test:

1. Construct two query sequena@s = (ai,...,an) andQsz = (b1,...,by,), by choosing thesem
elements ofn| independently at random.

2. Query the bits of andy corresponding t6); and(Q)- respectively. So we obtain the partial functions
x|Q1 andy|Q2.

3. If for some group element € G, the partial functionyc|7g21 contradicts the partial functiog|q, in
fewer thanp?né/2 places then output 1. Otherwise output 0.

To prove that the above test works we have to show that thewgistits the correct answer with proba-
bility at leastZ.

Given a permutatiom € G, we say that théth bit queried inx contradictsy|Q alongr if aI € Q2
andz(a;) # y(al'). We define th€0, 1)-random variableX” by

X[ = 1ifthe ith bits queried contradict along

X™ = )" XT is the number of places the queried information about thesings contradicts along
m. Since the members of the query sequences are chosen ingefigntheX” are mutually independent
indicator random variables & 1,...,m; = is fixed). So we can use the Chernoff bound to estimate the
value of X™.

For any group element, let D be the set of positions of the bits ©f that differ fromy. The expected
number number of bits i, that are queried ig|D,|. Now for X7 to be 1 we must also havg € Q.
Now the expected number of bits in, that are queried in both andy is p?|D,|. SOE[X™] = p?|D,|.

Suppose that one of the following conditions holds for agivec G:

() =™ andy agrees completely;
(i) =™ andy differ in more tharvyn places.

If condition (i) holds then D, | is less thar) and henceZ[X™] is less tharep?n. In case of condition
(ii), | D, | is greater thamn and henceZ[X ™| is greater thawp?n. Letn = §/2. From the Chernoff bound
we get,

Pr[| X" — E[X7]| > 77p2n} < 2exp (—cn/(;an) (11)

If there existst € G satisfying condition (i) (so the correct answer is 1), thelability we err is less
than the right-hand side of this inequality.

If for every = condition (ii) is satisfied then the probability we err isdéban|G| times the right-hand
side by the union bound.

If we takep = %ﬁf' the error is less tha%u.
n

Again note that this algorithm is also 1-sided. So the quecgmplexity of 1-sided errak-isomorphism

testing isO(y/n(1 + log |G])). O
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5 Lower bounds for Transitive Groups

Proof of Theorem[1.3
We will use the following lemma and the Theorem.

Lemma5.1. If G is a transitive permutation group antiis a subset ofn], |S| = k then there exist at least
7z pairwise disjointG-shifts ofS.

Theorem 5.2. (|16, [19) Letz € {0,1}"™. Suppose that there exists a distributibp on inputsy € {0,1}"

such thatf(z,y) = 1, and a distributionDx on inputsz € {0,1}" such thatz and z are e-far from

satisfying thef. Suppose further that for an@ C [n] of sizeq, and anyg : @ — {0,1}, we have
%PrDP‘Q(g) < Prp,|o(g). Then any 2-sided-error property test férequires at least queries.

Proof of Theoreri 113Let = be a full assignment. For any subgetC [n] of sizek and any@ € {0,1}*
letpg = {m € G : 2™|p = Q}|. We callz “almost universal” if for allQ < {0, 1}* and for all subseP
of sizek, we havelpg — x| < ¢ 2k) Note that this means that if we piek € GG at random then for all

Q € {0,1}* and for all subseP we have

Pr(z™[p = Q] — p| < p/5

wherep = 1/2%.

We prove the existence of an almost universal string usiagthbabilistic method. Pick a random full
assignment. Fix a subse’ C [n] of sizek and queries the bits of corresponding to the indices . For
a fixed@ € {0, 1}* we will estimatep. Using Lemma&5]1 we can plagg disjoint GG-copies of the subset
Pin [n]. LetS denote the set of disjoint copies Bf Let v?(m) be the(0, 1)-indicator variable indicating
whether thei-th G-copy of P mS is same a%). Sincex is chosen randomly these random variables are
mdependent Letg(x) = Zv x). Sovg(x) be the number of time§ occurs inS. The expected value
of vg () is 1757 So using the Chernoff bound

n n C1/5M
[, | < _ .
Pr HUQ(“T) k22k‘ ~ 5k22k] = QGXP( k22k>
So using the union bound we get
Pr[vr € G,vQ € {0, 1},

\ <

(‘T ) k22k 5]922]“}

> 1 - 2exp (5 ) 1GI(})2*

If |G| = 20" ~°) for any positivec andk < (1 — ~)(log n) (Wherey > 0), this probability is non-zero.
Now since we had exactlin/k?) times of disjoint copies oP, so there is a string such that

Vr e G,VQ € {0,1}", VP, |Pr[a"|p = Q] — p| < u/5

wherep = 1/2%.
Similarly we can show that existence of a full assignmenhshat it is 1 -far from z and still “almost
universal.” The argument is similar. Now probability thateamdom string i%-close tox is less tha%.

Using the same argument as above we can say that the prop#idli a random string i%-far fromz and

is an “almost universal” string is more th{ﬂ 5567 — 2€xp (—22/—25:) G| (}) 2’“). This is also positive
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for k < 1"% if |G| = 2°("). Hence there exists a full assignment {0, 1}" which is%-far fromz and is
“almost universal.”

Now let = be the string that to which we have full access. The unknowingsis chosen from the
following two distributions.

e Dp: Uniform randomG-shift of x.
e Dy: Uniform randomG-shift of y.

Now we now thatr andy are%-far. And since both are “almost universal,” for all subsetC [n] of
size(1 — ) logn and allQ € {0,1}*,

2/3 Pr [2"|p = Q] < Prly"lp = Q).

Now by Theorem 3.5 we can say that it will be impossible to éessomorphism with less thafl —~) log n
queries. So the query-1 complexity of any property tester-agomorphism i€ (logn).
]

6 Tight bounds and comparisons

In addition to our main result, Theordm 1.1, we obtain tightitds for polynomial-sized groups. Note that
these include all linear groups of bounded dimension. Timetsen include most finite simple groups: all the
classical finite simple groups of bounded dimension (lin@anplectic, orthogonal, and unitary groups) and
all exceptional simple groups of Lie type, not only in thaiatural” representations but in any representation
(cf. [15]).

Corollary 6.1. LetG be a transitive permutation group and| = n°("). Then the query-1 complexity of
1-sided-error and 2-sided-error property testing@fisomorphism i© (logn).

The next corollary gives an essentially tight bound for ediugps of ordeexp(polylog(n)). This includes
all linear groups, and also includes all finite simple groipany representation, except for the alternating
groups.

Corollary 6.2. Let G be a permutation group and assumg(|G|) = (logn)®®. Then the query-2

complexity of 1-sided error property testing@fisomorphism i9(y/n).

For comparison with the results of Fischer amd Matsliah, ise anclude a table of corollaries of our
results when specialized to Graph Isomorphism. In this wastaken = (') and define to beG = SI(‘2/)|
(the induced symmetric group action) and hehgg|G|) = log(|V|!) ~ y/n/2logn. In the case of 1-
sided error, query-2 complexity, the special cases of onegeg bounds (for primitive groups) match the
Fischer—Matsliah bounds.
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Query-1 Complexity | Query-2 Complexity

1-sided-error testing o(v)t O(|[V[3/2)t

2-sided-error testing | O(|V|), Qog(|V)) O(V]3/?)

T Matches the Fischer—-Matsliah bounds.
I New results.

Table 3: Corollaries of our results to Graph Isomorphism.

7 Future Work

We obtain tight bounds for the 1-sided error query compjexihen the group is primitive. Obtaining tight
bound for the 2-sided error query complexity would be thei@ls next step. Also we want to obtain tight
bounds in the case when the group is transitive and not jusiitiye. In the tight bounds for primitive
groups that we obtain, we use the classification of primigik@ups. But is the special structure of primitive
groups essential or are there similar bounds for the getraraitive groups?

A test case would be the automorphism group of a completenbinee in its action on the leaves.
We have reason to believe that a solution to this case wolnhg s close to solving the general case of
transitive groups. LeTy denote the complete binary tree with = 2" leaves. LetG be the action of the
automorphism group of the tree on the leaves. Given a striafjlength N we place the bits of on the
leaves of the tre@y. ThenG permutes the bits of. For this particular transitive group, the query-1 and
guery-2 complexities of testing-isomorphism are wide open both in the 1-sided error andi@dserror
cases.
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