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Abstract

For a permutation groupG acting on the setΩ we say that two stringsx, y : Ω → {0, 1} areG-
isomorphicif they are equivalent under the action ofG, i. e., if for someπ ∈ G we havex(iπ) = y(i) for
all i ∈ Ω. Cyclic Shift, Graph Isomorphism and Hypergraph Isomorphism are special cases, and subcases
corresponding to certain classes of groups have been central to the design of efficient isomorphism testing
for subclasses of graphs (Luks 1982).

We study the complexity ofG-isomorphism in the context of property testing: we want to find the
randomized decision tree complexity of distinguishing thecases whenx andy areG-isomorphic from
the cases when they are at leastδ-far from beingG-isomorphic (in normalized Hamming distance). Error
can be 1-sided or 2-sided. In each case we consider two models. In the query-1 model we assumey is
known and onlyx needs to be queried. In the query-2 model we have to query bothx andy.

We give various upper and lower bounds for the four combinations of models considered in terms of
n = |Ω| and|G|. In many cases, substantial gaps remain between the upper and lower bounds. However,
for primitive permutation groups, we obtain a tight (up to polylog(n) factors) bound of̃Θ(

√
n log |G|)

for the 1-sided error query complexity in the query-2 model and a tight bound of̃Θ(log |G|) for the
1-sided error query complexity in the query-1 model. This result extends results of Fischer and Matsliah
(2006) on Graph Isomorphism to a surprisingly general classof groups which also includes isomorphism
of uniform hypergraphs of any rank. Besides the fact that they include Graph Isomorphism, primitive
permutation groups are significant because they form the “building blocks” of all permutations groups,
providing the base cases of a natural divide-and-conquer approach successfully exploited in algorithm
design (Luks, 1982).

While all our bounds are in terms of the order ofG, it seems likely that tighter bounds will depend
on the finer structure ofG; our result on primitive groups is a first step in this direction.

1 Introduction

“Property testing” is a branch of decision tree complexity (query complexity) theory: with a small number
of randomized queries to the unknown input string, we want tohave a good chance of distinguishing the
cases when the input has a given property from the cases when the input is “far” from any string having the
property.

This concept was introduced in the context of program checking by Blum, Luby and Rubinfeld [14]
who showed thatlinearity of a function over a vector space can be tested with aconstantnumber of queries.
A central ingredient in the proof of the MIP=NEXP theorem [11] was the proof thatmulitinearity can be
tested with apolylogarithmicnumber of queries. These two papers were among the roots of the technical
developments culminating in the PCP Theorem [8, 7].

Rubinfeld and Sudan [23] formally defined property testing in the context of algebraic properties. Sub-
sequently, the interest in property testing was extended tograph properties, with applications to learning and
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approximation [20]. In recent years the field of combinatorial property testing has enjoyed a rapid growth
(see, e. g., [2, 3, 4, 5, 1], cf. [22, 16]).

Notably, Alon and Shapira [1] show that graph properties that are invariant under vertex removal (i. e.,
are inherited by induced subgraphs) are testable by a constant number of queries. Isomorphism to a given
graph is an important example of a graph property that is not hereditary.

The immediate motivation of our work in this chapter comes from papers by Fischer [17] and Fischer
and Matsliah [18] who consider the Graph Isomorphism problem in the property testing model. Here two
graphs are given as inputs and we have to test whether they areisomorphic or “far” from being isomorphic.

In this chapter we consider a generalization of graph isomorphism. Let us fix a permutation groupG
acting on the setΩ. Given two input stringsx, y : Ω → {0, 1}, we sayx is “G-isomorphic” toy if y is a
a π-shift of x for someπ ∈ G. We want to test the property “x is G-isomorphic toy,” that is, we want to
distinguish the case whenx andy areG-isomorphic from the case when every string that isG-isomorphic
to y is far fromx. [Formal definitions are given in Section 2.]

Graph Isomorphism is a special case: we need to chooseΩ to be the set of unordered pairs of the set
V of vertices; andG = Sym(2)(V ) the induced action onΩ of Sym(V ), the symmetric group acting on
V (son =

(|V |
2

)
). We note that the induced symmetric group action on pairs isprimitive (does not admit

nontrivial invariant partitions of the permutation domain). This fact defines the direction in which we extend
results on Graph Isomorphism. We note that by considering the induced symmetric group action onk-tuples,
another primitive action, we also cover the case ofk-uniform hypergraphs. Herek need not be a constant.
Various finite geometries also correspond to primitive groups, soG-isomorphism includes equivalence under
geometric transformations (projective, orthogonal, symplectic, etc.).

Besides the fact that the case of primitive groups includes Graph Isomorphism and its immediate gen-
eralizations (hypergraphs) as well as geometric equivalence, primitive permutation groups are significant
because they form the “building blocks” of all permutationsgroups in the sense that a “structure tree” can
be built of wich the leaves constitute the permutation domain and the action ofG extends to the tree in such a
way that the action of the stabilizer of any node in the tree isprimitive on the children of the node (cf. [13]).
This structure tree formalizes the natural divide-and-conquer approach successfully exploited in algorithm
design [12, 13, 21].

In “property testing” we want to output 1 if the inputs areG-isomorphic and 0 if they are “far” from
beingG-isomorphic. The complexity is the number of queries made tothe input. We consider two models
depending on whether we have to query bothx andy or we have to query only one of them (the other
is known). We call the models query-2 and query-1, respectively. A property test can have 1-sided or
2-sided-error.

In this paper we focus mainly on property testing ofG-isomorphism when the group is primitive. Our
main results are the tight bounds on the query complexity when we are allowed only 1-sided error, that is,
the algorithm has to output 1 with probability 1 when the two inputs areG-isomorphic and we have to output
0 with high probability when the inputs are “far” from being isomorphic. The main results are the following.

Theorem 1.1. [Tight bounds for primitive groups] IfG is a primitive group then

1. The 1-sided-error query complexity for testingG-isomorphism in the query-2 model is̃Θ(
√

n log |G|).

2. The 1-sided-error query complexity for testingG-isomorphism in the query-1 model is̃Θ(log |G|).

Theorem 1.1 generalizes a result of Fischer and Matsliah [18] on Graph Isomorphism. The lower bound
parts of this result is the main technical contribution of this paper and is proved in Section 3. For the lower
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Query-1 Complexity Query-2 Complexity

1-sided-error testing Θ̃(log |G|)‡, Ω(log n)† Θ̃(
√

n log |G|)‡

2-sided-error testing O(log |G|), Ω(log n)† O(
√

n log |G|)

† The lower bound holds whenG is transitive and|G| = 2O(n1−ε).
‡ The lower bound is for primitiveG and the upper bound has no tilde.

Table 1: Bounds on the query complexity of Testing of Equivalence underG-isomorphism.

bound proofs we crucially use a classification of primitive groups based on the O’Nan–Scott Theorem (see
[15]).

We also prove some upper and lower bounds for the other cases.But in most of these cases, a significant
gap remains between the upper and lower bounds. We present these results in the appendix. The following
is the list of results we prove in the appendix. The tilde in the asymptotic notation indicates polylog(n)
factors.

Proposition 1.2. [Upper bound]

1. The query-1 complexity of 1-sided and 2-sided errorG-isomorphism testing isO(1 + log |G|).

2. The query-2 complexity of 1-sided and 2-sided errorG-isomorphism testing isO(
√

n(1 + log |G|)).

In Table 1, we abbreviated the expression1 + log |G| to log |G| for better typography. The only case
where this makes a difference is when|G| = 1 so the results as stated in the Table 1 assume|G| ≥ 2.

Theorem 1.3. [Lower bound] LetG be a transitive group of order2O(n1−ε). Then the 2-sided-error query-1
complexity of the property testing ofG-isomorphism isΩ(log n).

Note that we have tighter lower bound for the same case whenG is primitive.
In Section 2 we give the formal definitions. In Sections 3, 4 and 5 we give the proofs of the above

three results. In Section 6 we state further nearly tight bounds that follow from our results (in addition to
Theorem 1.1).

Table 1 summarizes our results onG-isomorphism. Table 2 gives the results of Fischer and Matsliah on
Graph Isomorphism. In Table 3 we specialize our results to the case of Graph Isomorphism for comparison
with the results of Fischer and Matsliah.

2 Preliminaries

2.1 Definitions

Let Ω be a set of sizen. The permutations ofΩ form thesymmetric group Sym(Ω) of ordern!. We write
the action ofπ ∈ Sym(Ω) asi 7→ iπ. For a subsetS ⊆ Ω we setSπ = {iπ : i ∈ S}.
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A subgroupG of Sym(Ω) is apermutation group; Ω is thepermutation domain on whichG acts.G
hasorder |G| anddegreen.

G is transitive if (∀i, j ∈ Ω)(∃π ∈ G)(iπ = j). A partition Ω = Ω1∪̇ . . . ∪̇Ωm is invariant under
π ∈ Sym(Ω) if (∀i)(∃j)(Ωπ

i = Ωj). The partition is invariant underG if it is invariant under everyπ ∈ G.
The trivial partitions correspond tom = 1 or m = n; these are always invariant. IfG is transitive and
does not admit any nontrivial invariant partition thenG is primitive . The largest primitive permutation
groups of degreen other than the symmetric and the alternating groups (groupsof even permutations) have
order exp(O(

√
n log2 n)) ([9, 10]) so except for the two classes of “giants” of ordern! andn!/2, resp.,

log(|G|) = Õ(
√

n) for all primitive groups of degreen.
We use the notation[n] = {1, 2, 3, ..., n}. Most often we takeΩ = [n] and writeSn for Sym([n]).

Definition 2.1. A partial assignmentis a functionp : S → {0, 1} whereS ⊆ [n]. We callS the support of
this partial assignment and often denote|S| as|p|. We callx a (full) assignment ifx : [n] → {0, 1}. (Note
than a stringx ∈ {0, 1}n can be thought of as a full assignment.) We sayp ⊆ x if x is an extension ofp,
i. e., if p = x|S (the restriction ofx to S).

Ham(x, y) will denote the Hamming distance of the strings (full assignments)x andy.

Definition 2.2. Let T ⊆ [n] and letπ ∈ Sn.
Let G be a permutation group acting on [n]. Then the setsT π, whereπ ∈ G, are called theG-shiftsof

T . If p : T → {0, 1} is a partial assignment then we definepπ : T π → {0, 1} aspπ(i) = p(iπ
−1

).

Given two full assignmentsx andy and a permutation groupG we denote bydG(x, y) the minimum
distance between theG-shifts ofx andy. That is,

dG(x, y) = min
π1,π2∈G

Ham(xπ1 , yπ2). (1)

SinceG is a group, we have

dG(x, y) = min
π∈G

Ham(x, yπ) = min
π∈G

Ham(xπ, y). (2)

If dG(x, y) = 0 then we say “x is G-isomorphic to y.”
A 2-sided property tester for G-isomorphism is a probabilistic decision tree, sayA, such that given

x, y ∈ {0, 1}n

if dG(x, y) = 0 then with probability> 2
3 we haveA(x, y) = 1, and,

if dG(x, y) ≥ δn then with probability> 2
3 we haveA(x, y) = 0.

An 1-sided error property tester is one which makes no mistake ifdG(x, y) = 0.
The complexity of a property tester is the maximum (over all possible inputs) of the minimum number

of bits that need to be queried. If neitherx nor y is given (so both need to be queried) then we speak of a
query-2 testerand correspondingly ofquery-2 complexity. If one of them is given (we always assumey
is given) and only the other (that isx) needs to be queried then we speak of aquery-1 testerandquery-1
complexity.

The trivial upper bound on the complexity of query-2 testersis 2n and of query-1 testers isn.
All our upper bound results hold for any permutation groupG. But for our lower bound results we need

some more structure onG. In Theorem 1.3 we assume that the group is transitive while Theorem 1.1 holds
for primitive groups. Our main tool for primitive groups is the O’Nan–Scott Theorem (see Section 3).
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Query-1 Complexity Query-2 Complexity

1-sided-error testing Θ̃(|V |) Θ̃(|V |3/2)

2-sided-error testing Θ̃(
√

|V |) Ω(|V |), Õ(|V |5/4)

Table 2: The results of Fischer and Matsliah for Graph Isomorphism.

2.2 Previous Results

The query complexity of the property testing version of graph isomorphism has been well studied. Fischer
and Matsliah [18] gave some tight bounds. In case of graph isomorphism the group that acts isS(2)

|V |, where
V is the vertex set of the graph. Hence the order of the group is|V |!. Table 2 shows the main results of [18].

2.3 Chernoff bounds

We shall repeatedly use the following version of the Chernoff bounds, as presented by N. Alon and J. Spencer
[6, Corollary A.14].

Let X1,X2, . . . ,Xk be mutually independent indicator random variables andY =
∑k

i=1 Xi. Let the
expected value ofY beµ = E[Y ]. For allα > 0,

Pr[|Y − µ| > αµ] < 2e−cαµ,

wherecα > 0 depends only onα.

3 Query Complexity for 1-sided-error Testing of Equivalence under some
Primitive Group Action

3.1 Structure of Primitive Groups

Definition 3.1. Let G be a permutation group acting on a setA andH a permutation group acting on a set
B. Thewreath productG oH is the split extension of the base groupGB (the cartesian product of|B| copies
of G) by H, whereH acts onGB by permuting the factors as it does the elements ofB. Identifying GB

with the set of functionsf : B → G we haveh−1fh(b) = f(h−1(b)) for h ∈ H, b ∈ B.
There are two natural actions ofG o H.

1. The imprimitive action onA × B. The base group acts in the first coordinate by the rulef(a, b) =
(f(b)(a), b) andH acts on the second coordinate in the usual way.

2. The product action on the setAB of B → A functions, where the base group acts coordinatewise
(that is, if p ∈ AB , f ∈ GB , then(fp)(b) = f(b)(p(b)) andH acts by permuting the coordinates
((hp)(b) = p(h−1(b)) for g ∈ GB , h ∈ H).
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Note that these are two permutation representations of the same group. Note also thatG oH hasG|B| as
a normal subgroup withH as the quotient.

The structure of primitive permutation groups is describedby the O’Nan–Scott Theorem. A useful
consequence of that theorem is given by Cameron.

Theorem 3.2. [15] There is a (computable) constantc with the property that, ifG is a primitive permutation
group of degreen, then one of the following holds:

1. |G| ≤ nc log n.

2. G is a subgroup ofAut(A
(k)
m ) o S` (product action) containing(A(k)

m )`, whereA
(k)
m is the alternating

groupAm acting onk-element subsets. [We can assume without loss of generalitythat1 ≤ k ≤ m
2 ].

So in the case|G| > nc log n the degree ofG is given by

n =

(
m

k

)`

and thereforen ≥ m`. (3)

It follows that` ≤ log2 n. Also since we can assumek ≤ m
2 , so

(
m

k

)
≥

(m

k

)k
≥ 2k and thereforek ≤ log2 n. (4)

In fact if |G| > nc log n then we obtain the bound on the size ofG as

|G| ≤ (m!)`(`!) < mm``` ≤ nm`` [From Equation 3] (5)

Since` ≤ log2 n we have from Equation 5,

c(log n)2 < log(|G|) < (m log n + ` log `) ∼ m log n. (6)

The last asymptotic equality holds because` < log n and thereforè log ` = o(log2 n).
Therefore,

log |G| . m log n andm & c log n. (7)

It follows in particular thatm ≥ 7 (for sufficiently largen). The significance of this is in the known fact
that form ≥ 7 we have

Aut(Am) = Sm, (8)

and thereforeAut(A
(k)
m ) = S

(k)
m .

Observation 3.3. If k = O(
√

m) then

(
m

k

)
= Θ

(
mk

k!

)
.

Corollary 3.4. Either
√

n log |G| = Õ(
√

n) or

m

(
m

k

)`/2

= Õ(
√

n log |G|)
.
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Proof. Let k >
√

m. Then

n =

(
m

k

)
>

(m

k

)k
> 2k > 2

√
m.

Thereforem = O((log n)2) which implies from Equation 6log |G| < (log n)3. Hence ifk >
√

m we have√
n log |G| = Õ(

√
n). The corollary now follows from Observation 3.3.

Definition 3.5. Let A,B ⊂ [n] andp : A → {0, 1} andq : B → {0, 1} be two partial assignments. LetG
be a permutation group on[n]. Thenp andq are said to beG-agreeableif there exists a full assignmentx
on [n] and two elementsπ1, π2 ∈ G such thatx is an extension of bothpπ1 andqπ2. SinceG is a group this
is same as sayingp andq areG-agreeable if there exists an elementπ ∈ G and a full assignmentx such that
x is an extension of bothpπ andq. We say thatp andq are agreeable throughπ.

We say that the partial assignmentsp andq are compatible if there is a full assignmentx on [n] which is
an extension of bothp andq.

Definition 3.6. Let G be a permutation group on[n]. Let x andy be two full assignments on[n]. Thenx
andy are calledk-G-agreeable if for any setsA,B ⊂ [n] with |A|, |B| ≤ k, the partial assignmentsx|A and
y|B areG-agreeable.

3.2 G-Agreeability Lemma for G Primitive

The following proposition is folklore.

Proposition 3.7. LetG be a transitive group on[n]. Let us fixA,B ⊂ [n] and let us selectπ ∈ G uniformly
at random. Then

E(|Aπ ∩ B|) =
|A||B|

n
. (9)

Proof. By G-symmetry, for eachb ∈ B we havePr(b ∈ Aπ) = |A|
n . Now the linearity of expectation yields

the result.

Corollary 3.8. LetG be a transitive group on[n]. LetA,B ⊂ [n] with |A|, |B| ≤ ε
√

n. Then,

Pr
π∈G

[Aπ ∩ B = φ] > (1 − ε2)

In particular if A andB are the support of the partial functionsp andq, respectively, thenp andq are
G-agreeable.

Proof. Immediate from Proposition 3.7 by Markov’s inequality.

A simple consequence of Corollary 3.8 is that ifG is a transitive group then any two full assignmentsx
andy on [n] are

√
n-G-agreeable.

Next we state the most technical lemma of this chapter - theG-Agreeability Lemma for primitive groups.

Lemma 3.9(G-Agreeability Lemma). LetG be a primitive group. Then there exist two full assignmentsx
andy on [n] such thatdG(x, y) ≥ n/6 andx andy are Õ(

√
n log |G|)-G-agreeable.
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3.3 Lower Bounds for 1-sided error Testing

Proof of Part 1 of Theorem 1.1
Let A be a 1-sided-error query-2 property tester forG-isomorphism. Let the inputs bex andy. After

the queries are made we get two partial functionsx|Qx andy|Qy . Now if x|Qx andy|Qy areG-agreeable
then we have no proof thatdG(x, y) 6= 0. SinceA is a 1-sided-error tester, it has to output 1. So by Lemma
3.9 we see that there existsx andy such thatdG(x, y) ≥ 1

6n andA(x, y) has to be 1 if the query size is

Õ(
√

n log |G|). So the result follows from the lemma.

Proof of Part 2 of Theorem 1.1
We recall the example for lower bound of 1-sided query-1 complexity of graph isomorphism given by

Fischer and Matsliah [18]. The unknown graph is the completegraph onn vertices while the known graph
is the union ofn/2 isolated vertices and a complete graph onn/2 vertices. Note that without querying at
leastn/4 pairs of vertices it is impossible to give a certificate of non-isomorphism. This gives the lower
bound ofn/4 for the graph isomorphism case.

A similar example can be given in case of isomorphism under primitive group action. First of all we
assume that the primitive group is of size more thannc log n where thec is same as in Cameron’s Theorem 3.2.
Now we use the structure of the primitive group given by Cameron. We continue with the same notation as in
Section 3.4. We partitionV1 into three disjoint parts, namelyVa, Vb, andVc, where|Va| = |Vb| = |Vc| = m

3 .
The known input is

x(W ) = 1 iff W ∈
(

Va, Vc, V2 . . . , V`

1, k − 1, k, . . . , k

)

The unknown input is

y(W ) = 1 iff W ∈
(

(Va ∪ Vb), Vc, V2, . . . , V`

1, k − 1, k, . . . , k

)

Note that one need to make at leastm/6 queries to give a certificate of non-isomorphism between thetwo
inputs. Now from Equation 7 we get a lower bound ofΩ( log(|G|)

log n ).

3.4 Proof of theG-Agreeability Lemma for Primitive Groups

Proof of Lemma 3.9.If |G| ≤ nc log n then
√

n log |G| = Õ(
√

n) and the result follows from Corollary 3.8.

Therefore from Theorem 3.2 and Corollary 3.4 we may assume that G is a subgroup ofS(k)
m ) o S` (product

action) containing(A(k)
m )`, andk <

√
m. Hence in rest of the proof we will use from Lemma 3.3 that

(
m

k

)
= Θ

(
mk

k!

)

where the impied constant is absolute.
If ` = 1 andG = S

(2)
m thenG is the group of automorphisms of the complete graph onm vertices. This

case was settled by Fischer and Matsliah [18]. We generalizetheir technique.
For our convenience we have the following definition.

Definition 3.10. LetT1, T2, . . . , Ts be disjoint sets andr1, r2, . . . , rs be positive integers satisfying
∑s

i=1 ri =
R. Then by

(
T1,T2,...,Ts

r1,r2,...,rs

)
we mean the set ofR-tuples formed byri distinct elements from the setTi for all

1 ≤ i ≤ s. That is,
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(
T1, T2, . . . , Ts

r1, r2, . . . , rs

)
=

{
s⋃

i=1

Si

∣∣∣Si ⊆ Ti, |Si| = ri

}

G is a subgroup ofS(k)
m oS` (product action) containing(A(k)

m )`. G is naturally isomorphic to a subgroup
of Sm o S`, acting in its imprimitive action onV = ∪`

i=1Vi, where|Vi| = m and theVi are all disjoint. Then
any full assignment is a function from the set

(V1,...,V`
k,k,...,k

)
to {0, 1}.

We will first have to define two full assignments,x andy, onn bits. The groupG is a map fromV to V.
The rest of our proof has the following two parts:

• Define the full assignmentsx andy and prove thatdG(x, y) > δn for some constantδ.

• LetQx andQy be two query sets forx andy, respectively such that both|Qx| and|Qy| is Õ(
√

n log |G|).
Then we prove that there exist a permutationπ = π1 × π2 × · · · × π` ∈ (A

(k)
m )` such thatQπ

x andQy

are compatible.

We start with definingx.

Definition of the full assignmentsx and y
We partitionV1 into three disjoints partsU1, U2 andU3 such that

|U3| = m

(
1 − 1

k

)
, |U1| = m

(
1

2k
+ ε

)
and|U2| = m

(
1

2k
− ε

)

We definex andy as

x(W ) = 1 iff W ∈
(

U1, U3, V2, . . . , V`

1, k − 1, k, k, . . . , k

)

y(W ) = 1 iff W ∈
(

U2, U3, V2, . . . , V`

1, k − 1, k, k, . . . , k

)

Note that a map fromV to V gives a reordering of the bits isx.

Now note that number of1s in x andy is m
(m(1− 1

k
)

k−1

)
( 1
2k + ε)

(
m
k

)`−1
andm

(m(1− 1
k
)

k−1

)
( 1
2k − ε)

(
m
k

)`−1

respectively. So from the difference in number of1s inx andy we see that

dG(x, y) ≥ 2εm

(
m(1 − 1

k )

k − 1

)(
m

k

)`−1

For k = 1 the right-hand side is2εm` = 2εn. If k 6= 1 then from Lemma 3.3 and the fact that(
1 − 1

k

)k−1 ≥ 1
e we obtain

2εm

(
m(1 − 1

k )

k − 1

)
∼ 2ε

mk(1 − 1
k ))k−1

(k − 1)!
≥ εk

2mk

ek!
= Θ

(
εk

(
m

k

))
.

So if we chooseε = 1
6ck wherec is the constant implied in theΘ notation then we get that

dG(x, y) ≥ 1

6

(
m

k

)`

=
1

6
n.
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Now we give the second part of the proof. LetQx andQy be query sets forx andy, respectively, such

that |Qx|, |Qy| ≤ M whereM = m
18k

√(m(1− 1
k
)

k−1

)(m
k

)`−1
.

To prove thatx andy areM -G-agreeable, we have to give aπ ∈ (A
(k)
m )` ⊆ G that mapsV to V such

thatQπ
x andQy agrees.

If a ∈ U1 then we define

qx(a) =

{
w ∈

(
U1, U3, V2, . . . , V`

1, k − 1, k, . . . , k

)∣∣∣w ∈ Qx anda ∈ w

}

Similarly if b ∈ U2 let

qy(b) =

{
w ∈

(
U1, U3, V2, . . . , V`

1, k − 1, k, . . . , k

)∣∣∣w ∈ Qy andb ∈ w

}

Now by an averaging argument there exist setsA ⊂ U1 andB ⊂ U2 such that|A|, |B| > 2m
9k and for all

a ∈ A andb ∈ B we have

|qx(a)|, |qy(b)| ≤
9k

m
M.

Let H = A
(k−1)

m(1− 1
k
)
× (A

(k)
m )`−1 acting on the set

(
U3,V2,...,V`
k−1,k,k,...,k

)
. Pick a random elementπ′ ∈ H. Note

thatH acts transitively on the set
( U3,V2,...,V`
k−1,k,k,...,k

)
.

Fix an arbitrary even bijection fromA to B, i. e., an even permutation of[n] which mapsA to B. Let
a ∈ A be mapped tob ∈ B. We call a pair(a, b) acceptable ifqx(a)π

′ ∩ qy(b) = φ. We want to calculate
the probability of a pair(a, b) being acceptable.

Note thatqa andqb are two subsets of
(U3,V2,...,V`

k−1,k,...,k

)
. So from Lemma 3.8 we get that probability thata

andb are compatible is more that3
4 .

So the expected number of(a, b) pairs that are acceptable is≥ 3
4

2m
9k = m

6k = εm. So there exist a
permutationπ′ ∈ H such thatεm of the (a, b) pairs are acceptable. These acceptable pairs along with the
permutationπ′ give a map from a setA′ ⊂ A ⊂ U1 to B′ ⊂ B ⊂ U2 such thatQx andQy are compatible.
Now we have

|U1\A′| = |U1|
and

|U2| = |U2\B′|.
Henceπ′ and the map from the acceptable pairs can be extended to a mapping π from V to V by mapping
U1\A′ andU2 to U1 andU2\B′ respectively, such thatQπ

x andQy are compatible.
Finally from Corollary 3.4 we haveM = Õ(

√
n log |G|).

4 Upper bounds for Transitive groups

Proof of Proposition 1.2

Definition 4.1. We definequery sequenceas the sequence of elements of[n] consisting of the positions of
the bits of the input that will be queried. Repetition is permitted.
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The proofs of both parts of Proposition 1.2 are rather simpleapplications of the Chernoff bound; we
describe the proofs for completeness.

Proof of Part 1 of Proposition 1.2.In this part we only have to query bits ofx. Let us choose a real number
p, 0 < p < 1, appropriately (see below). The length of the query sequence Q will be m = pn. We say that
two partial functionsp, q contradictat i if both p(i) andq(i) are defined andp(i) 6= q(i). The following is
the test:

1. Construct the query sequenceQ = (a1, . . . , am) by choosingpn elements of[n] independently at
random. (So there is a small chance that the same element is chosen twice.)

2. Query the bits ofx corresponding toQ. So we obtain the partial functionx|Q.

3. If for someπ ∈ G the partial functionx|πQ andy contradict in fewer thanδpn/2 places then output 1.
Otherwise output 0.

Now to prove that the above test works we have to show that the test outputs the correct answer with
probability at least23 .

Given a permutationπ ∈ G, we say that theith bit queried contradictsy alongπ if x(ai) 6= y(aπ
i ). We

define the(0, 1)-variableXπ
i by

Xπ
i = 1 if the ith bit queried contradictsy alongπ.

Xπ =
∑

Xπ
i is the number of places the partial information of the two strings contradicts alongπ. Since

the members of the query sequence are chosen independently,theXπ
i are mutually independent indicator

random variables (i = 1, . . . ,m; π is fixed). So we can use the Chernoff bound to estimate the value ofXπ.
Suppose that one of the following conditions holds for a given π ∈ G:

(i) xπ andy agrees completely;

(ii) xπ andy differ in more thanδn places.

It follows that the expected value ofXπ is less than0 in Case (i) and greater thanpnδ in Case (ii). Let
η = δ/2.

So, using the Chernoff bound we obtain,

Pr [|Xπ − E(Xπ)| > ηnp] ≤ 2 exp
(
−cη/δnp

)
. (10)

If there existsπ ∈ G satisfying condition (i) (so the correct answer is 1), the probability we err is less than
the right-hand side of this inequality.

If every π ∈ G satisfies (ii) (so the correct answer is 0), the probability we err is less than|G| times the
right-hand side by the union bound. So in any case, the probability of error is less than|G| exp

(
−cη/δnp

)
.

If we takep = 2+log(|G|)
cη/δn then the probability of error is less than13 .

Note that this is an 1-sided error algorithm. So the query-1 complexity for the 1-sided errorG-isomorphism
testing isO(pn) = O(1 + log |G|).

11



Proof of Part 2 of Proposition 1.2.In this part we have to query bothx and y. Again we choose a real
numberp, 0 < p < 1, appropriately (see below). The total length of the query sequence will be2m = 2pn.
The following is the test:

1. Construct two query sequencesQ1 = (a1, . . . , am) andQ2 = (b1, . . . , bm), by choosing these2m
elements of[n] independently at random.

2. Query the bits ofx andy corresponding toQ1 andQ2 respectively. So we obtain the partial functions
x|Q1 andy|Q2 .

3. If for some group elementπ ∈ G, the partial functionx|πQ1
contradicts the partial functiony|Q2 in

fewer thanp2nδ/2 places then output 1. Otherwise output 0.

To prove that the above test works we have to show that the testoutputs the correct answer with proba-
bility at least23 .

Given a permutationπ ∈ G, we say that theith bit queried inx contradictsy|Q2 alongπ if aπ
i ∈ Q2

andx(ai) 6= y(aπ
i ). We define the(0, 1)-random variableXπ

i by

Xπ
i = 1 if the ith bits queried contradict alongπ.

Xπ =
∑

Xπ
i is the number of places the queried information about the twostrings contradicts along

π. Since the members of the query sequences are chosen independently, theXπ
i are mutually independent

indicator random variables (i = 1, . . . ,m; π is fixed). So we can use the Chernoff bound to estimate the
value ofXπ.

For any group elementπ, let Dπ be the set of positions of the bits ofxπ that differ fromy. The expected
number number of bits inDπ that are queried isp|Dπ|. Now for Xπ

i to be 1 we must also haveaπ
i ∈ Q2.

Now the expected number of bits inDπ that are queried in bothx andy is p2|Dπ|. SoE[Xπ] = p2|Dπ|.
Suppose that one of the following conditions holds for a given π ∈ G:

(i) xπ andy agrees completely;

(ii) xπ andy differ in more thanδn places.

If condition (i) holds then|Dπ| is less than0 and henceE[Xπ] is less thanεp2n. In case of condition
(ii), |Dπ| is greater thanδn and henceE[Xπ ] is greater thanδp2n. Let η = δ/2. From the Chernoff bound
we get,

Pr
[
|Xπ − E[Xπ]| > ηp2n

]
≤ 2 exp

(
−cη/δp

2n
)

(11)

If there existsπ ∈ G satisfying condition (i) (so the correct answer is 1), the probability we err is less
than the right-hand side of this inequality.

If for every π condition (ii) is satisfied then the probability we err is less than|G| times the right-hand
side by the union bound.

If we takep =
√

2+log |G|
cη/δn the error is less than13 .

Again note that this algorithm is also 1-sided. So the query-2 complexity of 1-sided errorG-isomorphism
testing isO(

√
n(1 + log |G|)).
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5 Lower bounds for Transitive Groups

Proof of Theorem 1.3
We will use the following lemma and the Theorem.

Lemma 5.1. If G is a transitive permutation group andS is a subset of[n], |S| = k then there exist at least
n
k2 pairwise disjointG-shifts ofS.

Theorem 5.2. ([16, 19]) Letx ∈ {0, 1}n. Suppose that there exists a distributionDP on inputsy ∈ {0, 1}n

such thatf(x, y) = 1, and a distributionDN on inputsz ∈ {0, 1}n such thatx and z are ε-far from
satisfying thef . Suppose further that for anyQ ⊂ [n] of sizeq, and anyg : Q → {0, 1}, we have
2
3 PrDP |Q(g) < PrDN |Q(g). Then any 2-sided-error property test forf requires at leastq queries.

Proof of Theorem 1.3.Let x be a full assignment. For any subsetP ⊆ [n] of sizek and anyQ ∈ {0, 1}k

let pQ = |{π ∈ G : xπ|P = Q}|. We callx “almost universal” if for allQ ∈ {0, 1}k and for all subsetP
of sizek, we have|pQ − n

2k | ≤ n
5(2k)

. Note that this means that if we pickπ ∈ G at random then for all

Q ∈ {0, 1}k and for all subsetP we have

|Pr [xπ|P = Q] − µ| ≤ µ/5

whereµ = 1/2k.
We prove the existence of an almost universal string using the probabilistic method. Pick a random full

assignmentx. Fix a subsetP ⊂ [n] of sizek and queries the bits ofx corresponding to the indices inP . For
a fixedQ ∈ {0, 1}k we will estimatepQ. Using Lemma 5.1 we can placenk2 disjoint G-copies of the subset

P in [n]. Let S denote the set of disjoint copies ofP . Let vQ
i (x) be the(0, 1)-indicator variable indicating

whether thei-th G-copy of P inS is same asQ. Sincex is chosen randomly these random variables are
independent. LetvQ(x) =

∑
vQ
i (x). SovQ(x) be the number of timesQ occurs inS. The expected value

of vQ(x) is n
k22k . So using the Chernoff bound

Pr
[∣∣∣vQ(x) − n

k22k

∣∣∣ >
n

5k22k

]
≤ 2 exp

(
−

c1/5n

k22k

)
.

So using the union bound we get

Pr
[
∀π ∈ G,∀Q ∈ {0, 1}k,∀P,

∣∣vQ(xπ) − n
k22k

∣∣ ≤ n
5k22k

]

≥ 1 − 2 exp
(
− c1/5n

k22k

)
|G|

(
n
k

)
2k.

If |G| = 2O(n1−ε) for any positiveε andk ≤ (1− γ)(log n) (whereγ > 0), this probability is non-zero.
Now since we had exactly(n/k2) times of disjoint copies ofP , so there is a stringx such that

∀π ∈ G,∀Q ∈ {0, 1}n,∀P, |Pr [xπ|P = Q] − µ| ≤ µ/5

whereµ = 1/2k.
Similarly we can show that existence of a full assignment such that it is 1

3 -far from x and still “almost
universal.” The argument is similar. Now probability that arandom string is13 -close tox is less than 1

2o(n) .

Using the same argument as above we can say that the probability that a random string is13 -far from x and

is an “almost universal” string is more than
(
1 − 1

2o(n) − 2 exp
(
− c1/5n

k22k

)
|G|

(
n
k

)
2k

)
. This is also positive
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for k ≤ log n
2 if |G| = 2o(n). Hence there exists a full assignmenty ∈ {0, 1}n which is 1

3 -far from x and is
“almost universal.”

Now let x be the string that to which we have full access. The unknown string is chosen from the
following two distributions.

• DP : Uniform randomG-shift of x.

• DN : Uniform randomG-shift of y.

Now we now thatx andy are 1
3 -far. And since both are “almost universal,” for all subsetP ⊂ [n] of

size(1 − γ) log n and allQ ∈ {0, 1}k ,

2/3 Pr
π∈G

[xπ|P = Q] ≤ Pr
π

[yπ|P = Q] .

Now by Theorem 3.5 we can say that it will be impossible to testG-isomorphism with less than(1−γ) log n
queries. So the query-1 complexity of any property tester ofG-isomorphism isΩ(log n).

6 Tight bounds and comparisons

In addition to our main result, Theorem 1.1, we obtain tight bounds for polynomial-sized groups. Note that
these include all linear groups of bounded dimension. Thesein turn include most finite simple groups: all the
classical finite simple groups of bounded dimension (linear, symplectic, orthogonal, and unitary groups) and
all exceptional simple groups of Lie type, not only in their “natural” representations but in any representation
(cf. [15]).

Corollary 6.1. Let G be a transitive permutation group and|G| = nO(1). Then the query-1 complexity of
1-sided-error and 2-sided-error property testing ofG-isomorphism isΘ(log n).

The next corollary gives an essentially tight bound for all groups of orderexp(polylog(n)). This includes
all linear groups, and also includes all finite simple groupsin any representation, except for the alternating
groups.

Corollary 6.2. Let G be a permutation group and assumelog(|G|) = (log n)O(1). Then the query-2
complexity of 1-sided error property testing ofG-isomorphism is̃Θ(

√
n).

For comparison with the results of Fischer amd Matsliah, we also include a table of corollaries of our
results when specialized to Graph Isomorphism. In this casewe taken =

(|V |
2

)
and defineG to beG = S

(2)
|V |

(the induced symmetric group action) and hencelog(|G|) = log(|V |!) ∼
√

n/2 log n. In the case of 1-
sided error, query-2 complexity, the special cases of our general bounds (for primitive groups) match the
Fischer–Matsliah bounds.
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Query-1 Complexity Query-2 Complexity

1-sided-error testing Θ̃(|V |)† Θ̃(|V |3/2)†

2-sided-error testing Õ(|V |), Ω(log(|V |)) Õ(|V |3/2)

† Matches the Fischer–Matsliah bounds.
‡ New results.

Table 3: Corollaries of our results to Graph Isomorphism.

7 Future Work

We obtain tight bounds for the 1-sided error query complexity when the group is primitive. Obtaining tight
bound for the 2-sided error query complexity would be the obvious next step. Also we want to obtain tight
bounds in the case when the group is transitive and not just primitive. In the tight bounds for primitive
groups that we obtain, we use the classification of primitivegroups. But is the special structure of primitive
groups essential or are there similar bounds for the generaltransitive groups?

A test case would be the automorphism group of a complete binary tree in its action on the leaves.
We have reason to believe that a solution to this case would bring us close to solving the general case of
transitive groups. LetTN denote the complete binary tree withN = 2h leaves. LetG be the action of the
automorphism group of the tree on the leaves. Given a stringx of lengthN we place the bits ofx on the
leaves of the treeTN . ThenG permutes the bits ofx. For this particular transitive group, the query-1 and
query-2 complexities of testingG-isomorphism are wide open both in the 1-sided error and 2-sided error
cases.
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