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Abstract

In this work we relate the deterministic complexity of factoring polynomials (over finite
fields) to certain combinatorial objects we call m-schemes. We extend the known conditional
deterministic subexponential time polynomial factoring algorithm for finite fields to get an
underlying m-scheme. We demonstrate how the properties of m-schemes relate to improve-
ments in the deterministic complexity of factoring polynomials over finite fields assuming the
generalized Riemann Hypothesis (GRH). In particular, we give the first deterministic poly-
nomial time algorithm (assuming GRH) to find a nontrivial factor of a polynomial of prime
degree n where (n − 1) is a smooth number.
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1 Introduction

We consider the classical problem of finding a nontrivial factor of a given polynomial over a finite
field. This problem has various randomized polynomial time algorithms – Berlekamp [Ber67],
Cantor and Zassenhaus [CZ81], von zur Gathen and Shoup [GS92], Kaltofen and Shoup [KS98]
– but its deterministic complexity is a longstanding open problem. In this paper we study the
deterministic complexity of the problem assuming the generalized Riemann Hypothesis (GRH).
The assumption of GRH in this paper is needed only to find primitive r-th nonresidues in a finite
field Fq which are in turn used to find a root x (if it exists in Fq) of “special” polynomials: xr − a
over Fq (see [Evd89]).

Assuming GRH, there are many deterministic factoring algorithms known but all of them
are exponential-time except on special instances. Rónyai [Ró92] showed under GRH that any
polynomial f(x) ∈ Z[x], such that Q[x]/(f) is a Galois extension, can be factored modulo p in de-
terministic polynomial time except for finitely many primes p. Rónyai’s result generalizes previous
results by Huang [Hua91], Evdokimov [Evd89] and Adleman, Manders and Miller [AMM77]. Over
special finite fields, Bach, von zur Gathen and Lenstra [BGL01] showed that polynomials over
finite fields of characteristic p can be factored in deterministic polynomial time if φk(p) is smooth
for some integer k, where φk(x) is the k-th cyclotomic polynomial. This result generalizes the
previous works of Rónyai [Ró89], Mignotte and Schnorr [MS88], von zur Gathen [vzG87], Camion
[Cam83] and Moenck [Moe77].

The line of research that we extend in this paper was started by Rónyai [Ró88]. There it
was shown how to use GRH to find a nontrivial factor of a polynomial f(x), where the degree
n of f(x) has a small prime factor, in deterministic polynomial time. The basic idea of [Ró88],
in the case when n is even, was to go to a ring extension A(2) := Fq[x1, x2]/(f(x1), f2(x1, x2))

of A(1) := Fq[x1]/(f(x1)), where f2(x1, x2) := f(x2)
x2−x1

, and then use the symmetry of A(2) to
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decompose A(2) under GRH. A decomposition of A(2) gives us a nontrivial factor of f(x) since n is
even. [Ró88] showed that this basic idea can be extended to the case when a prime r|n but then the
deterministic algorithm finds a nontrivial factor of f(x) in time poly(log q, nr). The nr dependence
appears in the complexity estimate because this is roughly the dimension of the algebras, like:

Fq[x1, . . . , xr]/(f(x1), . . . , fr(x1, . . . , xr)) (1)

in which the algorithm does computation. Naively, it would seem that this algorithm will take time
poly(log q, nn) in the worst case (for example when n is a prime). But Evdokimov [Evd94] showed
that Rónyai’s algorithm can be modified such that it is enough to work with algebras like (1) with
r = log n, thus, polynomial factoring can be done deterministically in time poly(log q, nlog n) under
GRH.

We extend Evdokimov’s algorithm and show that our algorithm has an underlying natural
combinatorial structure that we call an m-scheme (a generalization of superschemes introduced
by Smith [Smi94]). An m-scheme on n points is, roughly speaking, a partition P of the set [n]m,
where [n] denotes the set {1, . . . , n}:

[n]m = ∪P∈PP

that satisfies certain “natural” properties (defined in Section 2). There is an abundance of examples
of m-schemes in algebraic combinatorics:

• a regular graph on n vertices is an example of a 2-scheme on n points,

• a strongly regular graph on n vertices is an example of a 3-scheme on n points,

• an association scheme (see [Zie]) gives rise to a 3-scheme and vice-versa. See Section 2.2 for
these kind of examples.

• n-schemes on n points always arise from groups. See Section 2.3 for constructing them from
groups and [Smi94] for the converse. This important example suggests that m-schemes can
be considered as a generalization of finite groups.

• curiously enough, m-schemes on n points also appear when the (m−1)-dimensional Weisfeiler-
Lehman method for graph isomorphism is applied to a graph on n vertices, see [CFI92].

The m-schemes that appear in our polynomial factoring algorithm possess a special structure and
we believe that their properties can be exploited to get a deterministic and efficient polynomial
factoring algorithm (under GRH). We demonstrate that this belief infact works in several cases.

It is a standard result that to solve polynomial factoring it is enough to factor polynomials
that split completely over prime fields (see Berlekamp [Ber67, Ber70] and Zassenhaus [Zas69]).
Thus, we will assume in this paper that the input polynomial f(x) of degree n has n distinct roots
in Fp for some prime p. Our algorithm for factoring f(x) constructs an r-scheme on the n roots
while working in the algebra of Equation (1), over a suitable Fq ⊇ Fp. We give several results in
this work showing how to utilise the properties of these underlying r-schemes to efficiently find a
nontrivial factor of f(x).

The paper is organized as follows. We formally define m-schemes in Section 2 and exhibit
two important examples. In Section 3 we introduce our framework of the tensor powers A⊗m

of the algebra A := Fp[x]/(f(x)) and present our algorithm that constructs an underlying m-
scheme, on the n roots of f(x), while working in A⊗m. In Section 4 we show how to interpret
Evdokimov’s subexponential algorithm in our framework of m-schemes and give a conjecture about
the structure of m-schemes which if true would make our algorithm deterministic polynomial time
under GRH. We also prove the conjecture in the important example of m-schemes arising from
groups. In Section 5 we show that our framework of m-schemes finds a nontrivial factor of f(x)
in deterministic polynomial time under GRH if n is a prime and (n − 1) is smooth. In Section 6
we show that the levels r (as in Equation (1)) in Evdokimov’s algorithm can be reduced to log n

1.5
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using properties of m-schemes. In Section 7 we introduce a concept of primitivity in m-schemes,
inspired from the connectivity of graphs, and give some hints how it could improve the factoring
algorithm.

2 Introducing m-schemes

In this section we define special partitions of the set [n]m that we call m-schemes on n points. These
combinatorial objects are closely related to superschemes which were first defined by [Smi94].

2.1 Basic definitions

Let V = {v1, . . . , vn} be a set of n distinct elements. For 1 ≤ s ≤ n, define the set of s-tuples:

V (s) := {(vi1 , . . . , vis
) ∈ V s | vi1 , . . . , vis

are s distinct elements of V }.

If s > 1 there are s projections πs
1, . . . , π

s
s : V (s) → V (s−1) given as:

πs
i : (v1, . . . , vi−1, vi, vi+1, . . . , vs) 7→ (v1, . . . , vi−1, vi+1, . . . , vs).

The symmetric group on s elements Symms acts on V (s) in a natural way by permuting the
coordinates of the s-tuples. To be more accurate, the action is the following: for σ ∈ Symms,

(v1, . . . , vi, . . . , vs)σ = (v1σ , . . . , viσ , . . . , vsσ ).

For 1 ≤ m ≤ n an m-collection on V is a collection Π of partitions P1,P2, . . . ,Pm of V =
V (1), V (2), . . . , V (m) respectively. For 1 ≤ s ≤ m we denote by ≡Ps

the equivalence relation on
V (s) corresponding to the partition Ps. We call the equivalence classes of ≡Ps

colors at level s.
We define below some natural properties of collections that are relevant to us. Let Π =

{P1,P2, . . . , Pm} be an m-collection on V .
Compatibility: We say that Π is compatible at level 1 < s ≤ m if ū, v̄ ∈ P ∈ Ps implies that

for every 1 ≤ i ≤ s there exists Q ∈ Ps−1 such that πs
i (ū), πs

i (v̄) ∈ Q. In other words, if two tuples
(at level s) have the same color then for every projection the projected tuples (at level s− 1) have
the same color as well. It follows that for a class P ∈ Ps, the sets πs

i (P ) := {πs
i (v̄)|v̄ ∈ P}, for all

i ∈ [s], are colors in Ps−1.
Regularity: We say that Π is regular at level 1 < s ≤ m if ū, v̄ ∈ Q ∈ Ps−1 implies that for

every 1 ≤ i ≤ s and for every P ∈ Ps,

#{ū′ ∈ P | πs
i (ū′) = ū} = #{v̄′ ∈ P | πs

i (v̄′) = v̄}

We call the tuples in P ∩ (πs
i )−1(ū) as πs

i -fibers of ū in P . So regularity, in other words, means
that the cardinalities of the fibers above a tuple depend only on the color of the tuple.

The above two properties motivate the definition of the subdegree of a color P over a color Q
as #P

#Q
when Π is compatible and regular at level s and πs

i (P ) = Q for some i.
Invariance: An m-collection is invariant at level 1 < s ≤ m if for every P ∈ Ps, and

σ ∈ Symms we have:
P σ := {v̄σ|v̄ ∈ P} ∈ Ps.

In other words, the partitions P1, . . . ,Pm are invariant under the action of the corresponding
symmetric group.

Homogeneity: We say that the m-collection Π is homogeneous if |P1| = 1.
Symmetry: We say that an m-collection Π is symmetric at level s if for every P ∈ Ps and

σ ∈ Symms, we have P σ = P .
Antisymmetry: We say that an m-collection Π is antisymmetric at level s if for every P ∈ Ps

and 1 6= σ ∈ Symms, we have P σ 6= P .
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Definition 1. An m-collection is called compatible, regular, invariant, symmetric, or antisymmet-
ric if it is at every level 1 < s ≤ m compatible, regular, invariant, symmetric, or antisymmetric
respectively.

An m-collection is called an m-scheme if it is compatible, regular and invariant.

We should remark that the m-schemes that appear in our factoring algorithm are homogeneous
and antisymmetric as well. Let us now see some easily describable examples of m-schemes.

2.2 Example: 3-schemes from coherent configurations

Coherent configurations are standard combinatorial objects that have strongly regular graphs as
examples (see [Came99]). Recall that a coherent configuration is just a 2-scheme {P1,P2} that
also has a composition property:

Composition: For any Pi, Pj , Pk ∈ P2 and an (α, β) ∈ Pk the number:

#{γ ∈ V | (α, γ) ∈ Pi and (γ, β) ∈ Pj}

is independent of which tuple (α, β) in Pk we chose. In other words, the relations Pi and Pj can
be “composed” to get a bigger relation that is just a “linear combination” of the relations in P2.

In the literature a homogeneous coherent configuration is usually called an association scheme.
In this paper we do not enforce symmetricity or antisymmetricity in the definition of an association
scheme. Coherent configurations and 3-schemes are similar notions.

From a coherent configuration {P1,P2} we can define a partition P3 on the triples such that
for any two triples (u1, u2, u3) and (v1, v2, v3) we have:
(u1, u2, u3) ≡P3

(v1, v2, v3) if and only if (u1, u2) ≡P2
(v1, v2), (u1, u3) ≡P2

(v1, v3), (u2, u3) ≡P2

(v2, v3).
It follows that for P ∈ P3, the cardinality #{u3 ∈ V |(u1, u2, u3) ∈ P} of the π3

3-fibers of (u1, u2)
in P is exactly #{u3 ∈ V |(u1, u3) ∈ π3

2(P ) and (u2, u3) ∈ π3
1(P )} and thus regularity at level 3

is equivalent to the composition property of {P1,P2}. It is easy to show that {P1,P2,P3} also
satisfies compatibility and invariance, thus, it is a 3-scheme.

Similarly, a converse can be shown:

Lemma 2. If Π = {P1,P2,P3} is a homogeneous 3-scheme then {P1,P2} is an association
scheme.

Proof. By the hypothesis we already have that {P1,P2} is a homogeneous 2-scheme. Thus, we
only need to show the composition property. Let Pi, Pj , Pk ∈ P2 and let (α, β) ∈ Pk. Then by
compatibility at level 3 there exists a subset S ⊆ P3 such that the set:

{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj}

can be partitioned as:

⊔P∈S{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj , (α, γ, β) ∈ P}

which again by the compatibility of Π at level 3 is:

⊔P∈S{γ ∈ V | (α, γ, β) ∈ P}

now by the regularity of Π at level 3 the size of the above sets is simply #P

#Pk
which is independent

of the choice of (α, β). Thus, {P1,P2} has the composition property. 2
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2.3 Example: orbit schemes

Permutation groups provide a host of examples (see [Smi94]). Let G ≤ SymmV be a permutation
group. The orbits of G on the s-tuples (1 ≤ s ≤ m ≤ n) give an m-scheme. More formally, define
the partition Ps as: for any two s-tuples (u1, . . . , us) and (v1, . . . , vs) in V (s), (u1, . . . , us) ≡Ps

(v1, . . . , vs) iff ∃σ ∈ G, (σ(u1), . . . , σ(us)) = (v1, . . . , vs). It is easy to see that these partitions
naturally satisfy compatibility, regularity and invariance properties and hence form an m-scheme.
We call m-schemes arising in this way orbit m-schemes.

The orbit scheme is homogeneous if and only if G is transitive. Furthermore, assume that G is
transitive and for some integer m < n, gcd(m!, |G|) = 1. Then the corresponding orbit m-scheme is
a homogeneous antisymmetric m-scheme. Our attention to this class of examples has been drawn
by D. Pasechnik.

At the moment, we are not aware of any other examples of homogeneous antisymmetric m-
schemes with m → ∞. The homogeneous antisymmetric m-schemes are the ones that arise in our
factoring algorithm and we do believe that their parameters satisfy more stringent conditions than
the general m-schemes. For a conjecture along these lines see Section 4.1.

2.4 Difference between various notions of schemes

The term schemes arises in the mathematical literature in many contexts. Our m-schemes should
not be confused with the notion of schemes in algebraic geometry. However, our m-schemes are
closely related to association schemes, superschemes (Smith [Smi94]) and height t presuperschemes
(Wojdy lo [Woj01]). Smith’s superschemes are m-schemes that also satisfy a suitable higher dimen-
sional generalization of the composition property. It is not difficult to see that a superscheme on
n points is just a n-scheme on n points. Wojdy lo’s height t presuperscheme consists of the bottom
t levels of a superscheme. In particular, a level 0 presuperscheme is just an association scheme. It
can be shown that a height t presuperscheme on n-points consists just of the first (t + 2) levels of
a (t + 3)-scheme on n points.

3 Decomposition of tensor powers of algebras

In this section we describe our polynomial factoring algorithm and simultaneously show how m-
schemes appear in the algorithm. Recall that in the input we are given a polynomial f(x) ∈ Fp of
degree n having distinct roots α1, . . . , αn in Fp. For any extension field k of Fp we have the natural
associated algebra A := k[X ]/(f(X)). Note that A is a completely split semisimple n-dimensional
algebra over the field k, i.e. A is isomorphic to kn the direct sum of n copies of the one-dimensional
k-algebra k. We interpret A as the set of functions:

V := {α1, . . . , αn} → k

equipped with the pointwise operations. Algorithmically, we have A by structure constants with
respect to some basis b1, . . . , bn (for example, 1, X, . . . , Xn−1) and the problem of factoring f(X)
completely can be viewed as finding an explicit isomorphism from A to kn.

How do the factors of f(X) appear in A? They appear as zero divisors in A. Recall that a zero
divisor is a nonzero element z(X) ∈ A such that y(X)z(X) = 0 for some nonzero element y(X) ∈ A.
This means that f(X)|y(X) · z(X) which implies (by the nonzeroness of y and z) gcd(f(X), z(X))
factors f(X) nontrivially. As gcd of polynomials can be computed by the deterministic polynomial
time Euclidean algorithm, we infer that finding a zero divisor in the factor algebra k[X ]/(f(X))
is – up to polynomial time deterministic reductions – equivalent to finding a nontrivial divisor of
f(X). Furthermore, computing an explicit isomorphism with kn is equivalent to factoring f(X)
completely.
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How are the ideals of A related to the roots of f(x)? Let I be an ideal of A. The support of I,
Supp(I) is defined as

Supp(I) := V \ {v ∈ V | a(v) = 0 for every a ∈ I}

Conversely, for U ⊆ V , the ideal I(U) is defined as:

I(U) := {b ∈ A | b(u) = 0 for every u ∈ U}

and I⊥(U) is the annihilator of I(U):

I⊥(U) := {a ∈ A | ab = 0 for every b ∈ I(U)}.

It can be easily seen that Supp is an inclusion preserving bijection from the ideals of A to the
subsets of V with inverse map I⊥. In view of this correspondence, partial decompositions of A
into sums of pairwise orthogonal ideals correspond to partitions of the set V . Let us formulate the
above discussion in a lemma.

Lemma 3. If I1, . . . , It are pairwise orthogonal ideals of A such that A = I1 + · · · + It then
V = Supp(I1) ⊔ · · · ⊔ Supp(It).

We now move up to the tensor powers of A and there we show a way of getting the partitions
of V (m). For m ∈ [n], let A⊗m denote the mth tensor power of A. A⊗m is also a completely split
semisimple algebra; it is isomorphic to knm

. We again interpret it as the algebra of functions from
V m to k. Note that in this interpretation the rank 1 tensor element h1 ⊗ · · · ⊗ hm corresponds to
a function V m → k that maps (x1, . . . , xm) 7→ h1(x1) · · ·hm(xm) .

The essential part A(m) of A⊗m is the ideal consisting of the functions which vanish on all the
m-tuples (v1, . . . , vm) with vi = vj for some i 6= j. Then A(m) can be interpreted as the algebra of
functions V (m) → k. We show below that a basis for A(m) can be computed easily and then this
is the algebra where our factoring algorithm does computations.

Lemma 4. Given f(X), a polynomial of degree n having n distinct roots in Fp, a basis for

A(m) = (k[X ]/(f(X)))(m) over k ⊇ Fp can be computed by a deterministic algorithm in time
poly(log p, nm).

Proof. To see this, consider embeddings µi of A into A⊗m (i = 1, . . . , m) given as µi(a) = 1⊗ . . .⊗
1 ⊗ a⊗ 1 ⊗ . . .⊗ 1 where a is of course in the i-th place. In the interpretation as functions, µi(A)
correspond to the functions on V m which depend only on the ith element in the tuples. Observe
that the set, for 1 ≤ i < j ≤ m:

∆m
i,j = {b ∈ A⊗m | (µi(a) − µj(a))b = 0 for every a ∈ A}

is the ideal of A⊗m consisting of the functions which are zero on every tuple (v1, . . . , vm) with
vi 6= vj . Given a basis for A, a basis for ∆m

i,j can be computed by solving a system of linear
equations in time polynomial in the dimension of A⊗m (over k) which is nm. Finally, notice that
A(m) can be computed as well since it is the annihilator of

∑

1≤i<j≤m ∆m
i,j . 2

Remark 5. The algebras A(m) which we are now going to work with have a simple explicit de-
scription, for example, A(1) is ofcourse k[X1]/(f(X1)) and A(2) is nothing but k[X1, X2]/(f(X1),

f2(X1, X2)) where f2(X1, X2) is a polynomial in A(1)[X2] defined as f(X2)
X2−X1

. Similarly, we can

write down an expression for A(m) inductively.

Like the case of m = 1, ideals and partial decompositions of A(m) into pairwise orthogonal
ideals correspond to subsets and partitions of the set V (m) respectively. If I is an ideal of A(m)

then we again define the support of I, Supp(I) as:

Supp(I) := V (m) \ {v̄ ∈ V (m) | a(v̄) = 0 for every a ∈ I}

Lemma 3 generalizes to:
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Lemma 6. For any s ≤ n, if Is,1, . . . , Is,ts
are pairwise orthogonal ideals of A(s) such that A(s) =

Is,1 + · · · + Is,ts
then V (s) = Supp(Is,1) ⊔ · · · ⊔ Supp(Is,ts

).

Now we will describe our polynomial factoring algorithm that produces m-schemes.

Algorithm Description

Input: a degree n polynomial f(x) having n distinct roots in Fp. Given 1 < m ≤ n we can wlog
assume that we also have the smallest field extension k ⊇ Fp having s-th nonresidues for all s ∈ [m]
(computing k will take poly(log p, mm) time under GRH).

Output: a nontrivial factor of f(x) or a homogeneous, antisymmetric m-scheme on the n points:
V := {α ∈ Fp|f(α) = 0}.

Algorithm overview:

We define A(1) = A = k[x]/(f(x)) and compute A(s), for all s ∈ [m], in time poly(log p, nm)
(by Lemma 4).

Now observe that Autk(A(s)) contains Symms. To see this, just note that there is an action
of Symms on A(s) as a group of algebra automorphism, for σ ∈ Symms this action is the linear
extension of:

(bi1 ⊗ · · · ⊗ bis
)σ = bi1σ ⊗ · · · ⊗ bisσ .

This knowledge of explicit automorphisms of A(s) can be exploited to efficiently decompose these
algebras under GRH (see Theorem 2.3 in [Ró92]). Thus, for all 1 < s ≤ m we can compute
mutually orthogonal ts ≥ 2 ideals Is,i of A(s), such that:

A(s) = Is,1 + . . . + Is,ts

By Lemma 6, the above decomposition induces partitions Ps for all 1 < s ≤ m such that:

Ps : V (s) = Supp(Is,1) ⊔ · · · ⊔ Supp(Is,ts
)

Thus, together with P1 := {V } we have an m-collection Π := (P1, . . . ,Pm) on the set V .
Now we will show how to refine this m-collection to an m-scheme using algebraic operations

on the ideals Is,i of A(s). To do that, we first need a tool to relate lower level ideals Is−1,i to
higher level ideals Is,i′ . For every 1 < s ≤ m, we have s embeddings ιsj : A⊗(s−1) → A⊗s sending

bi1 ⊗ · · · ⊗ bis−1
to bi1 ⊗ · · · ⊗ bij−1

⊗ 1 ⊗ bij
⊗ · · · bis−1

. Restricting to A(s−1) and multiplying

the images of ιsj by the identity element of A(s), we obtain algebra embeddings A(s−1) → A(s)

denoted also by ιs1, . . . , ι
s
s. In the function interpretation, ιsj(A(s−1)) is just the set of functions in

A(s) which do not depend on the jth coordinate of tuples.
Compatibility of the m-collection Π at level 1 < s ≤ m corresponds to: for every pair of ideals

Is−1,i and Is,i′ in the decomposition of A(s−1) and A(s) respectively and for every j ∈ {1, . . . , s},
the ideal ιsj(Is−1,i)Is,i′ can be assumed to be either zero or Is,i′ . Otherwise we can efficiently
compute a subideal of Is,i′ , hence, refining Is,i′ and the m-collection Π.

Regularity of the m-collection Π at level 1 < s ≤ m corresponds to: for every pair of ideals
Is−1,i and Is,i′ in the decomposition of A(s−1) and A(s), respectively, and for every j ∈ {1, . . . , s},
ιsj(Is−1,i)Is,i′ can be assumed to be a free module over ιsj(Is−1,i). Otherwise by trying to find a free
basis, we can efficiently compute a zero divisor in Is−1,i, hence, refining Is−1,i and the m-collection
Π.

Compatibility and regularity of Π create a natural connection between the ideals of levels (s−1)
and s, for all 1 < s ≤ m. In the case when a pair of ideals Is−1,i and Is,i′ in the decomposition
of A(s−1) and A(s) respectively satisfies ιsj(Is−1,i)Is,i′ = Is,i′ : Is,i′ is a free module over ιsj(Is−1,i)
which in other words means that the elements in Is,i′ can be viewed as univariate polynomials
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with coefficients in Is−1,i. The rank of the free module Is,i′ over ιsj(Is−1,i) can easily be seen to be
equal to the subdegree of Supp(Is,i′ ) over Supp(Is−1,i).

Invariance of the m-collection Π at level 1 < s ≤ m may be assumed, since if for some
σ ∈ Symms the decomposition of A(s) is not σ-invariant, then we can find two ideals Is,i and Is,i′

such that Iσ
s,i ∩Is,i′ is neither zero nor Is,i′ , thus, we can efficiently refine Is,i′ and the m-collection

Π.
Homogeneity of the m-collection Π corresponds to: the algebra A(1) = A is not in a decom-

posed form.
Antisymmetricity of the m-collection Π at level 1 < s ≤ m corresponds to: for any ideal Is,i

at level 1 < s ≤ m and for any σ ∈ Symms \ {id}, we can assume Iσ
s,i 6= Is,i. Otherwise σ is an

algebra automorphism of Is,i and hence we can find its subideal efficiently under GRH by [Ró92],
thus, refining Is,i and the m-collection Π.

Note that invariance and antisymmetricity at level s entail s! | ts.
By the observations above: we can keep applying ideal operations in the algebras A(s), s ∈

[m], till either we get a nontrivial factor of f(x) or the underlying m-collection Π becomes a
homogeneous, antisymmetric m-scheme on n points. The time taken by our algorithm is clearly
poly(log p, nm).

Remark 7. At this point we are able to reprove Ronyai’s result [Ró88]: under GRH, we can
deterministically find a nontrivial factor of a degree n polynomial over Fp in time poly(log p, nr),
where r is the smallest prime divisor of n. The proof is to algorithmically try constructing an
r-scheme as above and show by an easy divisibility argument that there exist no homogeneous,
antisymmetric r-schemes on n points if r is a divisor of n. This guarantees that our algorithm will
be forced to find a nontrivial factor of f(x).

4 m-schemes in Evdokimov’s Algorithm

We saw in the last section how to either find a nontrivial factor of a given f(x) or construct an
m-scheme on the n roots of f(x). Our aim is to analyse the “bad case” of the algorithm when we
get no nontrivial factor but instead we get an antisymmetric, homogeneous m-scheme. Can the
properties of these m-schemes be used to factor f(x)? In the rest of the paper we will try to answer
that question. Here we start with an exposition of Evdokimov’s idea [Evd94] in our framework of
m-schemes. We show below that [Evd94] exploited the presence of matchings in the m-schemes.

Definition 8. A color P ∈ Ps, for 1 < s ≤ m, in an m-scheme {P1, . . . ,Pm} is called a matching
if there exist 1 ≤ i < j ≤ s such that πs

i (P ) = πs
j (P ) and |πs

i (P )| = |P |.

The presence of matchings can be used to efficiently refine the underlying m-scheme.

Lemma 9. If the color P ∈ Ps is a matching then under GRH we can refine the m-scheme Π =
{P1, . . . ,Pm} deterministically in time poly(log p, nm).

Proof. Following the notation of the above definition, it is obvious that if color P is a matching
then both πs

i and πs
j are bijections, therefore the map πs

i (πs
j )−1 is a permutation of πs

j (P ). Fur-

thermore, this permutation is nontrivial as P ⊆ V (s). So in the corresponding orthogonal ideals
decomposition of A(1), . . . ,A(m), both the maps ιsi and ιsj give isomorphisms Is−1,ℓ′ → Is,ℓ, where
the ideals Is−1,ℓ′ and Is,ℓ correspond to πs

j (P ) and P respectively. This means that the map

(ιsi )−1ιsj is a nontrivial automorphism of Is−1,ℓ′ . It follows from [Ró92] that, assuming GRH, we
can obtain a proper decomposition of Is−1,ℓ′ and hence refine the m-scheme Π. 2

Now we show the idea of [Evd94] to find a matching in log2 n levels.

Lemma 10. If the m-scheme Π := {P1, . . . ,Pm} on n points is antisymmetric at the second level,
|P1| < n and m ≥ log2 n then there is a matching in {P1, . . . ,Pm}.
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Proof. We will give an effective way of finding a matching given such a Π. Choose P1 ∈ P1 with

d1 := |P1| > 1. It is clear that Q2 = P
(2)
1 is a disjoint union of some colors in P2. Choose a

smallest color P2 ∈ P2 with P2 ⊆ Q2. By the definition of an m-scheme: π2
1(P2) = π2

2(P2) = P1.

Also, by antisymmetry we can infer that d2 := |P2|
|P1|

< d1/2. If d2 = 1 then P2 is a matching.

If d2 > 1 then we proceed in the following iterative way. Suppose that, for some 2 < s < m,
we have already chosen colors P1 ∈ P1, . . . , Ps−1 ∈ Ps−1 with πi

i−1(Pi) = πi
i(Pi) = Pi−1 and

1 < di := |Pi|
|Pi−1|

< di−1/2 for every 2 ≤ i ≤ s − 1. Since ds−1 > 1, the set Qs = {v̄ ∈
V (s)|πs

s−1(v̄) ∈ Ps−1, π
s
s(v̄) ∈ Ps−1} is nonempty. Let Ps be a smallest class from Ps with Ps ⊆ Qs.

Again antisymmetry implies that ds := |Ps|
|Ps−1|

< ds−1/2. If ds = 1 then Ps is clearly a matching.

Otherwise we proceed to the level (s + 1) and further halve the subdegree. This procedure finds a
matching in at most log2 d1 ≤ log2 n rounds. 2

From our algorithm in the last section and the above two lemmas it follows that, under GRH,
we can completely factor f(x) deterministically in poly(log p, nlog n) time. This is the result of
Evdokimov [Evd94].

It might be worth noting that in the above Lemma we used antisymmetry (and even invariance)
merely at level 2. Indeed, if a compatible and regular m-collection {P1, . . . ,Pm} is antisymmet-
ric at level 2 then for every 1 < s ≤ m and every s-element subset {v1, . . . , vs} ⊆ V we have
(v1, . . . , vs−1, vs) 6≡Ps

(v1, . . . , vs, vs−1). (This can be seen by projecting to the last two coordi-
nates.)

4.1 A Conjecture about Matchings

Here we make a conjecture about the structure of homogeneous, antisymmetric 4-schemes and
higher schemes. It might seem a bit unmotivated but we show below, interestingly, that it is true
in the case of orbit schemes. Note that orbit schemes are the only (infinite) family of 4-schemes
we currently know that are homogeneous and antisymmetric.

Conjecture 11. There exists a constant m ≥ 4 such that every homogeneous, antisymmetric
m-scheme contains a matching.

It is clear by Lemma 9 that a proof of this conjecture would result in a deterministic polynomial
time algorithm for factoring polynomials over finite fields (under GRH).

We will now show that Conjecture 11 holds, with m = 4, for the important example of orbit
schemes. It is easy to see that the 2-scheme associated to a permutation group G is antisymmetric
if and only if |G| is odd. Assume that G is a nontrivial permutation group of odd order on V =
{1, . . . , n}. Let H be a subgroup minimally containing the stabilizer G1 of G. Let B = Orb(H, 1)
be the orbit of 1 under the action of H . Then H acts as a primitive permutation group on B.
Also, by [Ser96], there is a base of size s ≤ 3 of H . This is a subset {b1, . . . , bs} ⊆ B such that
Hb1 ∩ · · · ∩ Hbs

= N , where where N is the kernel of the permutation representation of H on
B. We assume that this base is irredundant, in particular K = Hb1 ∩ · · · ∩ Hbs−1

> N . Since
Kbs

= N < K there exists bs+1 ∈ Orb(K, bs) \ {bs}. In order to simplify notation, we assume
b1 = 1, b2 = 2, . . . , bs+1 = s + 1. The first equality b1 = 1 can be ensured using the transitivity
of H on B, while the others can be achieved by renumbering V . From G1 < H we infer that
N = H1 ∩ · · · ∩ Ht = G1 ∩ · · · ∩ Gt holds for every t ∈ {1, . . . , s + 1}. Let P be the G-orbit
of (1, . . . , s + 1). Since (1, . . . , s − 1, s) and (1, . . . , s − 1, s + 1) are in the same orbit, we have
πs+1

s (P ) = πs+1
s+1(P ). Also, since the (1, . . . , s) and (1, . . . , s, s + 1) both have stabilizer N , the size

of the orbits of both tuples coincide with |G : N |. These properties imply that P is a matching.

9



5 Factoring polynomials of smooth prime degree

We saw in Section 3 how to obtain a homogeneous m-scheme on n points from a given polynomial
of degree n and we also saw in Lemma 2 that a homogeneous 3-scheme is an association scheme.
We now use a recent interesting result of Hanaki and Uno [HU06] about the structure of association
schemes, on a prime number of points, to factor polynomials when n is a smooth prime number.

Theorem 12. If n > 2 is prime, r is the largest prime factor of (n−1) and f(x) is a degree n poly-
nomial over Fp then we can find a nontrivial factor of f(x) deterministically in time poly(log p, nr)
under GRH.

Proof. Wlog we can assume that f(x) has n distinct roots (αi’s) in Fp. From Section 3 we can
again assume that we have constructed a homogeneous antisymmetric (r + 1)-scheme on n points:
(P1, . . . ,Pr+1). Now from Lemma 2 we know that (P1,P2) is an antisymmetric association scheme.
From [HU06]: ∃d|(n − 1), ∀P ∈ P2, #P = dn. If d = 1 then we have matchings in P2 and hence
by Lemma 9 we can find a nontrivial factor of f(x).

On the other hand if d > 1 then the colors in (P2, . . . ,Pr+1) naturally induce homogeneous
antisymmetric r-schemes on d points (for example, restrict the partitions to tuples that have α1 in
the first coordinate). As d has a prime divisor which is at most r there do not exist such schemes
by Remark 7.

The time complexity follows from our algorithm overview. 2

6 Reducing the number of levels in Evdokimov’s algorithm

We saw in Lemma 10 that a homogeneous m-scheme on n points that is antisymmetric at level 2
has a matching below the ⌈log2 n⌉-th level. Recall from Section 3 that from a polynomial we can
construct an m-scheme that is antisymmetric at every level > 1 and not just at level 2. Are we
then guaranteed to get a matching at a level less than log n? We conjecture that there should be
a matching at a much smaller level as intuitively antisymmetricity reduces the subdegrees of the
colors but we could prove only a constant fraction of log n upper bound on the number of levels.
First we prove a lemma:

Lemma 13. Let Π = (P1, . . . ,P4) be a homogeneous, antisymmetric 4-scheme on n > 8 points.
Then there is a color P ∈ P2 and its π3

3-fiber Q ∈ P3 such that π3
2(Q) = π3

3(Q) = P and the
subdegree of Q over P is less than n

8 .

Proof. Clearly, P1 just has one color, say, [n]. If P2 has more than two colors then by antisymmetry
it has at least 4 colors and hence one of the colors P ∈ P2 will have subdegree over [n] less than
n
4 . Again by the antisymmetry a π3

3-fiber Q ∈ P3 of P will have subdegree < n
8 and π3

2(Q) =
π3

3(Q) = P .
In the case when P2 has just two colors - P and its “flipped” color PT - let us define:

Q1 := {x ∈ [n] | (1, x) ∈ P}
Q2 := {x ∈ [n] | (1, x) ∈ PT }

Then obviously Q1, Q2 are disjoint sets of size n1 := n−1
2 partitioning {2, . . . , n}. Clearly, the

image of the colors in P3 restricting the first coordinate to 1 gives us an antisymmetric partition Γ

of the sets Q
(2)
1 , Q1 ×Q2, Q2 ×Q1 and Q

(2)
2 ; which is an association scheme on Q

(2)
1 and Q

(2)
2 . By

the antisymmetricity of Π, the colors corresponding to Q2 × Q1 are just the transpose (i.e. swap
the two coordinates) of those corresponding to Q1 × Q2. Each color in Γ can be naturally viewed
as a n1×n1 zero/one matrix. For example, a color R corresponding to Q1×Q2 can be represented
as a matrix whose rows are indexed by Q1 and whose columns are indexed by Q2 such that: for
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all (i, j) ∈ Q1 × Q2, Ri,j = 1 if (i, j) ∈ R and Ri,j = 0 if (i, j) 6∈ R. Interestingly, in the matrix
representation the composition property of Lemma 2 simply means that the linear combinations
of the identity matrix I and the colors in the partition of Q1 × Q1 (or Q2 × Q2) by Γ is a matrix
algebra, say A1 (or A2).

If Q
(2)
1 (or Q

(2)
2 ) is partitioned by Γ into more than two parts then by antisymmetry there will

be ≥ 4 parts which means that one of the parts will have subdegree < n
8 . This gives us a required

π3
3-fiber Q ∈ P3 of a P ∈ P2.

So we can assume that Q
(2)
1 and Q

(2)
2 are both partitioned into exactly two parts. Say,

• R and RT are the two matrices representing the partition of Q
(2)
1 by Γ.

• S and ST are the two matrices representing the partition of Q
(2)
2 by Γ.

Note that: R + RT = S + ST = J − I where I is the identity matrix and J is the all one matrix
of suitable dimensions.

How do the partitions of Q1 × Q2 look like? Let U be a matrix in the partition of Q1 ×Q2 by
Γ. If U = J (i.e. Γ partitions Q1 × Q2 in a trivial way) then by antisymmetricity P3 has exactly
3! = 6 colors each of cardinality n · #U = n · n2

1. But this is a contradiction as 6 · n · n2
1 is not

n(n− 1)(n− 2). Thus, Γ partitions Q1 ×Q2 into at least 2 colors. Now since by antisymmetricity
the number of colors in P3 has to be a multiple of 6, we deduce that Γ partitions Q1 × Q2 into
at least 4 colors, say, {U1, . . . , U4}. By the composition property of Γ, U1U

T
1 is in A1. In other

words, there are positive integers α, β such that:

U1U
T
1 = αI + β(R + RT )

= βJ + (α − β)I

Thus, if U1 is a singular matrix then U1U
T
1 = βJ implying that U1 has equal rows. We can repeat

the same argument with UT
1 U1 (which is in A2) and deduce that U1 has equal columns. Now a

zero/one matrix U1 can have equal rows and equal columns iff U1 = J . This contradiction implies
that U1 is an invertible matrix. But then:

{U1U
T
1 , U1U

T
2 , U1U

T
3 , U1U

T
4 }

is a set of 4 linearly independent matrices in A1 which contradicts the fact that A1 is a matrix

algebra of dimension 3. This contradiction implies that one of Q
(2)
1 or Q

(2)
2 is partitioned into at

least four parts.
Thus, in all the cases the lemma is true. 2

From the above lemma we see that at 2 levels higher we get a suitable color with subdegree
reduced to a fraction of 2−3. This immediately gives us the following constant-factor improvement
to Lemma 10.

Proposition 14. If the m-scheme Π := {P1, . . . ,Pm} on n points is antisymmetric at the first
three levels, |P1| < n and m ≥ 2

3 log2 n then there is a matching in {P1, . . . ,Pm}.

7 Primitivity of m-schemes and further research

A 2-scheme Π = (P1,P2) on n points can be viewed as a complete directed colored graph on n
vertices, where vertices of one color correspond to a P ∈ P1 and the edges of one color correspond
to a Q ∈ P2. If an m-scheme is coming from a polynomial f(x), over k, then we can try to relate
graph properties of the m-scheme to the algebraic properties of the ideals defining the m-scheme.
It turns out that such m-schemes can be efficiently tested for one such property: connectivity.
One can introduce a related notion: primitivity which is actually an extension of the primitivity
of association schemes.
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Let Π be a homogeneous 2-scheme on the points [n] with P2 = {P2,1, . . . , P2,t2}. For every
index i ∈ {1, . . . , t2} let G2,i denote the undirected graph on [n] whose edges are unordered pairs
{u, v} where either (u, v) ∈ P2,i or (v, u) ∈ P2,i. We say that Π is primitive if all the graphs
G2,1, . . . , G2,t2 are connected.

Let I2,i := I⊥(P2,i) be the ideal of A(2) corresponding to P2,i. We define a subset S(I2,i) of
A(1) whose meaning would be clear later:

S(I2,i) := {h ∈ A(1) | (h ⊗ 1 − 1 ⊗ h) ∈ I⊥2,i}

It is easy to see that k ⊆ S(I2,i) is a subalgebra of A(1). The following lemma relates the subalgebras
S(I2,i) to the notion of primitivity.

Lemma 15. The dimension of the algebra S(I2,i) over k is equal to the number of the connected
components of the graph G2,i.

Proof. Let G2,i have c connected components. Observe that h(x) ∈ S(I2,i) iff (h(x1)−h(x2))I2,i =
0 iff h(u) = h(v) for all (u, v) ∈ Supp(I2,i). The last condition precisely means that h(x) is constant
on the connected components of G2,i. It follows that the polynomials hj(x), for j ∈ [c], that are
1 on all the vertices in the j-th connected component and 0 on the rest, form a basis of S(I2,i).
Thus, the dimension of S(I2,i) is c. 2

The above lemma shows that if for some i the graph G2,i is not connected (say, it has c
connected components) then (by solving a system of linear equations) we compute a nontrivial
subalgebra S(I2,i) of A(1). This in explicit terms means that if Π was obtained from a polynomial
f(x) of degree n then we can compute g(y) of degree c such that S(I2,i) ∼= k[y]/(g(y)) and:

A(1) ∼= (k[y]/(g(y)))[x]/(f̃(y, x))

where, the degx of f̃(y, x) is n
c
. Thus, we get two polynomials g(y) and f̃(y, x) of degrees c and n

c

respectively to factor (the latter over the algebra S(I2,i) ∼= k[y]/(g(y)) rather than over the base
field k). If we succeed in finding a nontrivial factor of either of these polynomials then we can find
a zero divisor in A(1) and then a factor of f(x) therefrom. In particular, if c ≤ √

n then it seems
to be worth proceeding with factoring g(y).

We can generalize the notion of primitivity to higher levels as well.

Definition 16. Let Γ = (P1, . . . ,Pm) be a m-scheme. For a P ∈ Ps such that πs
s(P ) = πs

s−1(P ) =:

Q ∈ Ps−1, we fix (v1, . . . , vs−2) ∈ πs−1
s−1(Q). We define the graph G(P, v1, . . . , vs−2) on the vertex

set {v ∈ [n] : (v1, . . . , vs−2, v) ∈ Q} with edges {u, v} such that either (v1, . . . , vs−2, u, v) ∈ P or
(v1, . . . , vs−2, v, u) ∈ P . It turns out that connectedness of G(P, v1, . . . , vs−2) is independent of the
choice of the tuple (v1, . . . , vs−2). We say that Γ is primitive at level s if for every P ∈ Ps with
πs

s(P ) = πs
s−1(P ), the graph G(P, . . .) is connected. We say that Γ is primitive if it is primitive at

all levels 2 ≤ s ≤ m.

Put Is,i := I⊥(P ), Is−1,i′ := I⊥(Q), Is−2,i′′ := I⊥(πs−1
s−1(Q)) and define:

S(Is,i) := {h ∈ Is−1,i′ | (ιss(h) − ιss−1(h)) ∈ I⊥s,i}

One can show that S(Is,i) is a subalgebra of Is−1,i′ and the number of connected components of

G(P, . . .) is
dimkS(Is,i)
dimkIs−2,i′′

. Thus in case of imprimitivity, we can compute a subalgebra ”between”

Is−2,i′′ and Is−1,i′ by solving a system of linear equations. If 1 <
dimkS(Is,i)
dimkIs−2,i′′

≤
√

dimkIs−1,i′

dimkIs−2,i′′
, it

seems to be worth proceeding with decomposing the ideal Is−1,i′ by finding a zero divisor in the
subalgebra S(Is,i).

We feel that primitivity imposes strong conditions on the parameters of an m-scheme but we
do not know how to exactly use primitivity or imprimitivity and leave that for future research.
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