
Complexity of Counting the Optimal Solutions∗

Miki Hermann
LIX (CNRS, UMR 7161)

École Polytechnique
91128 Palaiseau, France

hermann@lix.polytechnique.fr

Reinhard Pichler
Institut für Informationssysteme

Technische Universität Wien
A-1040 Wien, Austria

pichler@dbai.tuwien.ac.at

Abstract

Following the approach of Hemaspaandra and Vollmer, we can define counting complexity
classes #·C for any complexity class C of decision problems. In particular, the classes #·ΠkP
with k ≥ 1 corresponding to all levels of the polynomial hierarchy have thus been studied.
However, for a large variety of counting problems arising from optimization problems, a precise
complexity classification turns out to be impossible with these classes. In order to remedy this
unsatisfactory situation, we introduce a hierarchy of new counting complexity classes #·Opt

k
P

and #·OptkP[logn] with k ≥ 1. We prove several important properties of these new classes,
like closure properties and the relationship with the #·ΠkP-classes. Moreover, we establish the
completeness of several natural counting complexity problems for these new classes.

1 Introduction

Many natural decision problems are known to be complete for the class ΘkP = ∆kP[log n], defined
by Wagner in [21], or for ∆kP. In particular, they often occur in variants of Σk−1P-complete
problems when cardinality-minimality or weight-minimality (or, likewise, cardinality-maximality
or weight-maximality) is imposed as an additional constraint. Two prototypical representatives of
such problems are as follows (The completeness of these problems in Θ2P and ∆2P, respectively,
is implicit in [6]).

Problem: Min-Card-SAT
Input: A propositional formula ϕ in conjunctive normal form over variables X and a subset of
variables X ′ ⊆ X.
Question: Are X ′ set to true in some cardinality-minimal model of ϕ?

Problem: Min-Weight-SAT
Input: A propositional formula ϕ in conjunctive normal form over variables in X together with a
weight function w : X → N, and a subset of variables X ′ ⊆ X.
Question: Are X ′ set to true in some weight-minimal model of ϕ?

∗A preliminary version without proofs appeared in COCOON 2008.

1

Electronic Colloquium on Computational Complexity, Report No. 44 (2008)

ISSN 1433-8092

A straightforward Θ2P-algorithm for Min-Card-SAT computes the minimum cardinality of
the models of ϕ by means of logarithmically many calls to an NP-oracle, asking questions of the
type “Does ϕ have a model of size ≤ k?”. As soon as the minimum cardinality k0 is known, we
can proceed by a simple NP-algorithm, checking if the subset X ′ is true in some model of size k0.
Analogously, a ∆2P-algorithm for Min-Weight-SAT first computes the minimum weight of all
models of ϕ. In any reasonable representation, the weights are exponential with respect to their
representation (e.g., they are represented in binary notation). Hence, the straightforward algorithm
for computing the minimum weight needs logarithmically many calls to an NP-oracle with respect
to the total weight of all variables. This comes down to polynomially many calls with respect to
the representation of the weights.

Note that the membership in Θ2P and ∆2P recalled above is in great contrast to subset-
minimality, i.e., minimality with respect to set inclusion (or, likewise, subset-maximality), which
often raises the complexity one level higher in the polynomial hierarchy. E.g., the following problem
is well-known to be Σ2P-complete (cf. [14]).

Problem: Min-SAT
Input: A propositional formula ϕ in conjunctive normal form over variables X and a subsetX ′ ⊆ X.
Question: Are X ′ set to true in some subset-minimal model of ϕ?

As far as the complexity of the corresponding counting problems is concerned, only the counting
problem corresponding to Min-SAT has been satisfactorily classified so far. The following problem
was shown to be #·coNP-complete in [3]: Given a propositional formula ϕ in conjunctive normal
form, how many subset-minimal models does ϕ have? On the other hand, the counting complexity
of the remaining aforementioned problems has remained obscure. The main goal of this paper is
to introduce new counting complexity classes #·OptP and #·OptP[log n], needed to pinpoint the
precise complexity of these and many similar optimality counting problems. We will also show
the relationship of these new classes with respect to the known classes in the counting hierarchy.
Moreover, we will show that these new classes are not identical to already known ones, unless
the polynomial hierarchy collapses. Finally, we will present several natural optimization counting
problems, which turn out to be complete for one or the other introduced counting class. The
definition of new natural counting complexity classes is by no means limited to the first level
of the polynomial hierarchy. Indeed, we will show how the counting complexity classes #·OptP
and #·OptP[log n] can be generalized to #·OptkP and #·OptkP[log n] for arbitrary k ≥ 1 with
#·OptP = #·Opt1P and #·OptP[log n] = #·Opt1P[log n].

The paper is organized as follows: In Section 2, we recall some basic notions and results from
counting complexity. The new counting complexity classes #·OptkP and #·OptkP[log n] are in-
troduced and important properties of them are shown in Section 3. We present several complete
problems for these new classes in Section 4. Finally, concluding remarks are given in Section 5.

2 Preliminaries

We recall the necessary concepts and definitions, but we assume that the reader is familiar with the
basic notions in computational counting complexity. For more information, the interested reader
is referred to Chapter 18 in the book [14] or the survey [4].

The study of counting problems was initiated by Valiant in [19,20]. While decision problems ask
if at least one solution of a given problem instance exists, counting problems ask for the number of

2

different solutions. The most intensively studied counting complexity class is #P, which denotes the
functions that count the number of accepting paths of a non-deterministic polynomial-time Turing
machine. In other words, #P captures the counting problems corresponding to decision problems
contained in NP. By allowing the non-deterministic polynomial-time Turing machine access to an
oracle in NP, Σ2P, Σ3P, . . . , we can define an infinite hierarchy of counting complexity classes.

Alternatively, a counting problem is presented using a suitable witness function which for every
input x, returns a set of witnesses for x. Formally, a witness function is a function A : Σ∗ →
P<ω(Γ∗), where Σ and Γ are two alphabets, and P<ω(Γ∗) is the collection of all finite subsets of Γ∗.
Every such witness function gives rise to the following counting problem: given a string x ∈ Σ∗, find
the cardinality |A(x)| of the witness set A(x). According to [7], if C is a complexity class of decision
problems, we define #·C to be the class of all counting problems #·A whose witness function A
satisfies the following conditions.

1. There is a polynomial p(n) such that for every x and every y ∈ A(x), we have that |y| ≤ p(|x|),
where |x| is the length of x and |y| is the length of y;

2. The decision problem “given x and y, is y ∈ A(x)?” is in C.
It is easy to verify that #P = #·P. The counting hierarchy is ordered by linear inclusion [7]. In
particular, we have that #P ⊆ #·coNP ⊆ #·Π2P ⊆ #·Π3P, etc. Analogously, one can define
the classes #·NP, #·Σ2P, #·Σ3P, etc. Toda and Ogiwara [17] determined the precise relationship
between these classes as follows: #·ΣkP ⊆ #·PΣkP = #·ΠkP. Since the identity #·PΣkP =
#·∆k+1P trivially holds, Toda and Ogiwara also showed that there are no new ∆-classes in the
counting hierarchy.

The prototypical #·ΠkP-complete problem for k ∈ N is #ΠkSAT [3], defined as follows. Given
a formula ψ(X) = ∀Y1∃Y2 · · ·QYk ϕ(X,Y1, . . . , Yk), where ϕ is a Boolean formula and X, Y1, . . . ,
Yk are sets of propositional variables, count the number of truth assignments to the variables in X
that satisfy ψ.

Completeness of counting problems is usually proved by means of polynomial-time Turing re-
ductions, also called Cook reductions. However, these reductions do not preserve the counting
classes #·ΠkP [18]. Hence, parsimonious reductions are usually considered instead. Consider two
counting problems #·A : Σ∗ → N and #·B : Σ∗ → N. We say that #·A reduces to #·B via a par-
simonious reduction if there exists a polynomial-time function f ∈ FP, such that for each x ∈ Σ∗

we have #·A(x) = #·B(f(x)). Parsimonious reductions are a special case of Karp reductions with
a one-to-one relation between solutions for the corresponding instances of the problems #·A and
#·B. However, parsimonious reductions are not always strong enough to prove completeness of
well-known problems in counting complexity classes. E.g., the problem #positive 2sat [2, 20]
of counting satisfying assignments to a propositional formula with positive literals only and with
two literals per clause cannot be #P-complete under parsimonious reductions, unless P = NP.
Therefore Durand, Hermann, and Kolaitis [3] generalized parsimonious reductions to subtractive
reductions and showed that all the classes #·ΠkP are closed under them. Subtractive reductions
are defined as follows. The counting problem #·A reduces to #·B via a strong subtractive reduction
if there exist two polynomial-time computable functions f and g such that for each x ∈ Σ∗ we have

B(f(x)) ⊆ B(g(x)) and |A(x)| = |B(g(x))| − |B(f(x))| .

A subtractive reduction is a composition (transitive closure) of a finite sequence of strong subtractive
reductions. Thus, a parsimonious reduction corresponds to the special case of a strong subtractive
reduction with B(f(x)) = ∅. As it is mentioned in [3], subtractive reductions have been shown to be

3

strong enough to prove completeness of many interesting problems in #P and other counting classes,
but their power remains tame enough to preserve several interesting counting classes between #P
and #PSPACE.

3 Optimization Counting Complexity Classes

Recall that, according to [7], a counting complexity class #·C can in principle be defined for any de-
cision complexity class C. However, as far as the polynomial hierarchy is concerned, this definition
does not yield the desired diversity of counting complexity classes. In fact, if we simply consider
#·C for either C = ∆kP or C = ΘkP, then we do not get any new complexity classes, since the re-
lationship #·ΘkP = #·∆kP = #·Πk−1P is an immediate consequence of the aforementioned result
by Toda and Ogiwara [17]. Hence a different approach is necessary if we want to obtain a more
fine grained stratification of the counting hierarchy. For this reason we introduce in the sequel the
counting classes #·OptkP[log n] and #·OptkP for each k ∈ N, which will be appropriate for opti-
mization counting problems. Of special interest will be the classes #·OptP[log n] = #·Opt1P[log n]
and #·OptP = #·Opt1P. We will define the new counting complexity classes via the nondetermin-
istic transducer model (see [15]), as well as by an equivalent predicate based definition following
the approach from [7]. The following definition generalizes the definition of nondeterministic trans-
ducers [15] to oracle machines.

Definition 1 A nondeterministic transducer M is a nondeterministic polynomial-time bounded
Turing machine, such that every accepting path writes a binary number. If M is equipped with
an oracle from the complexity class C, then it is called a nondeterministic transducer with C-
oracle. A ΣkP-transducer M is a nondeterministic transducer with a Σk−1P oracle. We identify
nondeterministic transducers without oracle and Σ1P-transducers.

For x ∈ Σ∗, we write optM (x) to denote the optimal value, which can be either the maximum
or the minimum, on any accepting path of the computation of M on x. If no accepting path exists
then optM (x) is undefined.

The above definition of a nondeterministic transducer is similar to a metric Turing machine
defined in [11] and its generalization in [12]. However, our definition deviates from the machine
models in [11,12] in the following aspects:

1. We take the optimum value only over the accepting paths, while in [11] every path is accepting.
Our ultimate goal is to count the number of optimal solutions. Hence, above all, the objects
that we want to count have to be solutions, i.e., correspond to an accepting computation, and
only in the second place we are interested in the optimum.

2. In [11], only the maximum value is considered and it is mentioned that the minimum value is
treated analogously. We prefer to make the applicability both to max and min explicit. The
definition of the counting complexity classes below is not affected by this distinction.

3. In [12], NP-metric Turing machines were generalized to higher levels of the polynomial hier-
archy by allowing alternations of minimum and maximum computations. However, for our
purposes, in particular for the predicate-based characterization of the counting complexity
classes below, the generalization via oracles is more convenient. Proving the equivalence of
the two kinds of generalizations is straightforward.

4

It will be clear in the sequel that the generalization of nondeterministic transducers [15] to oracle
machines is exactly the model we need. A similar idea but with a deterministic Turing transducer
was used by Jenner and Torán in [8] to characterize the functional complexity classes FPNP

‖ , FPNP
log ,

and FLNP
log .

Definition 2 We say that a counting problem #·A : Σ∗ → N is in the class #·OptkP for some
k ∈ N, if there is a ΣkP-transducer M , such that #·A(x) is the number of accepting paths of the
computation of M on x yielding the optimum value optM (x). If no accepting path exists then
#·A(x) = 0. If the length of the binary number written by M is bounded by O(z(|x|)) for some
function z(n), then #·A is in the class #·OptkP[z(n)].

In this paper, we are only interested in #·OptkP[z(n)] for two types of functions z(n), namely
the polynomial function z(n) = nO(1) and the logarithmic function z(n) = log n. Clearly, #·OptkP
is the same as #·OptkP[nO(1)].

Distinguishing between max and min gives no additional computational power, as it is formalized
by the following result.

Proposition 3 Suppose that some counting problem #·A : Σ∗ → N is defined in terms of a ΣkP-
transducer M with the optimum being the maximum (minimum). Then there exists a parsimonious
reduction to a counting problem #·A′ defined via a ΣkP-transducer M ′ with the optimum value
corresponding to the minimum (maximum).

Proof. Let K denote the maximum length of the output on any computation path of M on input
x. Denote the output on a computation path π of M as bπ. Construct M ′ producing exactly the
same set of computation paths as M , where the output b′π on path π is 2K+1 − bπ. The paths in M
producing the maximum (minimum) over all values bπ correspond one-to-one to the paths in M ′

producing the minimum (maximum) over all values b′π. �

Krentel defined in [11] the class OptP[z(n)] of optimization problems for a given function z(n).
He showed that OptP[z(n)] essentially corresponds to FPNP[z(n)] (see also [9]). More precisely, for
every “smooth” function1 z(n) (see [11]) we have the inclusion OptP[z(n)] ⊆ FPNP[z(n)] and every
function f ∈ FPNP[z(n)] can be represented as an OptP[z(n)]-problem followed by a polynomial-time
function h. This correspondence between OptP[z(n)] and FPNP[z(n)] can be generalized as follows:

Lemma 4 For every nondeterministic transducer M with a ∆kP oracle there exists an equivalent
ΣkP-transducer M ′ with the following properties: (i) For every input x there exists a bijective
function h from the computation paths of M on x to the computation paths of M ′ on x, such that a
path π in M is accepting if and only if the path h(π) in M ′ is accepting and, (ii) the output written
on path π is identical to the output written on path h(π).

Proof. By the definition of ∆kP, the oracle of M is realized by a deterministic polynomial time
Turing machine N with a Σk−1P oracle. Without loss of generality, the states in M and N are
disjoint apart from the query state q? and the answer states qY and qN . Then we construct the
machine M ′ as follows: The input tape of M is also the input tape of M ′. The work tapes of M ′

1A function f : N → N is smooth if it is nondecreasing and its unary representation is computable in polynomial

time.

5

are the work tapes of M plus the query tape of M plus the work tapes of N . Moreover, we identify
the input tape of N with the query tape of M . As far as the states of M ′ are concerned, we replace
the query state q? of M by the initial state q0 of N . Moreover, the answer states qY and qN of M
are considered as “ordinary” states. The states of M ′ are thus the states of M (without its query
state) plus the states of N . In addition, we will need some auxiliary states for clean-up tasks, which
we do not describe in detail here. Finally, the transition relation of M ′ consists of the transition
relation of M (where the query state q? is replaced by q0 as stipulated before) plus the transition
function of N . In addition, we need some transitions for clean up tasks, i.e.: when the machine is
about to enter either the state qY or qN of M (i.e., the former answer states which are now treated
as ordinary states), then it first enters some auxiliary state and erases the contents of the tapes
of N first. Clearly, the resulting Turing machine is a nondeterministic transducer with a Σk−1P
oracle. Moreover, on any input x, any path π of M is now extended to exactly one path π′ of M ′,
since N is deterministic. Also π is accepting if and only if π′ is accepting and the output written
by M ′ on the path π′ is the same as the output written by M on π. �

In other words, Lemma 4 shows that replacing the Σk−1P oracle in a ΣkP-transducer by a ∆kP
oracle does not increase the expressive power.

We show next that the definition of #·OptkP[z(n)] via Turing machines (see Definition 1) has
an equivalent definition via predicates. The basic idea is to decompose the computation of a ΣkP-
transducer M into a predicate B, which associates inputs x with computations y, and a function f
which computes the number written by the transducer M following the computation path y.

Theorem 5 For any function z(n), a counting problem #·A : Σ∗ → N is in the class #·OptkP[z(n)]
if and only if there exist an alphabet Γ, a predicate B on Σ∗×Γ∗, and a polynomial-time computable
function f : Γ∗ → N satisfying the following conditions.

(i) There is a polynomial p(n) such that every pair of strings (x, y) ∈ B satisfies the relation
|y| ≤ p(|x|);

(ii) The predicate B is decidable by a ∆kP algorithm;
(iii) The length of f(y) is bounded by O(z(|x|)) for every (x, y);
(iv) optB

f (x) = opt({f(y) | (x, y) ∈ B}) with opt ∈ {max,min};

(v) A(x) = {y | (x, y) ∈ B ∧ f(y) = optBf (x)}.

Proof. [⇒]: Let #·A be a counting problem in #·OptP[z(n)] and let M be the corresponding ΣkP-
transducer. Without loss of generality, we assume that the nondeterministic Turing machine M
makes on every input x only binary choices denoted by 0 and 1. Let b = p(|x|) be the polynomial
computation bound of the Turing machine M on every given input x. Each computation path π
of M on an input x corresponds to exactly one run a1 · · · ab of nondeterministic choices with
ai ∈ {0, 1}. We define a binary predicate B ⊆ Σ∗ × Γ∗, where Γ = {0, 1}, with the intended
meaning that every string y ∈ {0, 1}∗ describes the computation path of M on x, such that a
pair (x, y) ∈ Σ∗ × Γ∗ belongs to B if and only if y describes an accepting computation path. The
predicate B clearly satisfies the condition (i) and is decidable by a ∆kP algorithm, i.e., satisfying
condition (ii). Finally, we define f(y) as the output on the computation path y, setting f(y) = 0
for any non-accepting path. Then the predicate B and the function f fulfill the conditions (iii)
to (v). In particular, the equality A(x) = {y | (x, y) ∈ B ∧ f(y) = optB

f (x)} holds.
[⇐]: Suppose that #·A : Σ∗ → N is a counting problem such that A(x) = {y | (x, y) ∈ B∧f(y) =

optBf (x)} holds for a predicate B ⊆ Σ∗ × Γ∗ decidable by a ∆kP algorithm and a polynomial-time

6

computable function f . We define a nondeterministic transducer M with a ∆kP oracle as follows.
The machine M on input x has a computation path y ∈ Γ∗ satisfying |y| ≤ p(|x|), where p(|x|) is
the polynomial bound on the length of all strings y with (x, y) ∈ B. We stipulate that a path y
of M on x is accepting if and only if (x, y) ∈ B. By condition (ii), the latter test can be done by a
∆kP oracle. Moreover, on every accepting path y the machine M outputs the binary representation
of f(y) computable in polynomial time. Hence, M is a nondeterministic transducer with a ∆kP
oracle, such that A(x) = {y | y is an accepting path yielding the optimal value optB

f (x)} holds.
By Lemma 4, there exists a ΣkP-transducer M ′ equivalent to M . Hence, the counting problem
#·A is defined via a ΣkP-transducer, namely M ′. �

As far as complete problems for these new complexity classes are concerned, we propose the fol-
lowing natural generalizations of minimum cardinality and minimum weight counting satisfiability
problems to quantified Boolean formulas.

Problem: #Min-Card-ΠkSAT
Input: A ΠkSAT formula ψ(X) = ∀Y1∃Y2 · · ·QYk ϕ(X,Y1, . . . , Yk) with k ∈ N, where ϕ is a
quantifier-free formula and X,Y1, . . . , Yk are sets of propositional variables, such that Q is either ∃
(for k even) or ∀ (for k odd).
Output: Number of cardinality-minimal models of ψ(X) or 0 if ψ(X) is unsatisfiable.

Problem: #Min-Weight-ΠkSAT
Input: A ΠkSAT formula ψ(X) = ∀Y1∃Y2 · · ·QkYk ϕ(X,Y1, . . . , Yk) with k ∈ N, where ϕ is a
quantifier-free formula and X,Y1, . . . , Yk are sets of propositional variables, and a weight function
w : X → N assigning positive values to each variable x ∈ X.
Output: Number of weight-minimal models of ψ(X) or 0 if ψ(X) is unsatisfiable.

We define the classes #Min-Card-SAT and #Min-Weight-SAT to be the #Min-Card-
Π0SAT and #Min-Weight-Π0SAT, respectively. Moreover, we can assume, following the ideas
of Wrathal [22], that the formula ϕ is in CNF for k even and in DNF for k odd. Notice that for k
even (odd), the formula ϕ has an odd (even) number of variable vectors, since the first variable
block X remains always unquantified.

Theorem 6 For every k ∈ N, the following problems are complete via parsimonious reductions.
#Min-Weight-ΠkSAT is #·Optk+1P-complete and #Min-Card-ΠkSAT is #·Optk+1P[log n]-
complete.

Proof. For the membership, we show that for both counting problems there exist an appropriate
predicate B ∈ ∆k+1P (actually, we shall even show B ∈ ΣkP) and a polynomial-time computable
function f according to Theorem 5. Let B be a binary predicate defined on pairs (x, y), where x is a
ΠkSAT formula and y is a truth assignment to the variables in x. Clearly, there exists a polynomial
function p, such that |y| ≤ p(|x|) holds for all (x, y) ∈ B. Moreover, B can be decided by a ΠkP
algorithm using a ΣkP oracle and reversing its answer. For the problem #Min-Weight-ΠkSAT,
we define f(y) as the total weight of the variables which are evaluated to true in y. This function
value requires polynomial space with respect to the input. For #Min-Card-ΠkSAT, we define f(y)
as the number of variables evaluated to true in y. The latter function value requires logarithmic
space with respect to the input. In both cases, the function f can be computed in polynomial time.
The set of weight-minimal respectively cardinality-minimal models of a given formula x corresponds

7

to the set {y | (x, y) ∈ B ∧ f(y) = optBf (x)} for the respective function f . By Theorem 5, #Min-
Weight-ΠkSAT is in #·Optk+1P and #Min-Card-ΠkSAT is in #·Optk+1P[log n].

Hardness of #Min-Weight-ΠkSAT. Let #·A be an arbitrary counting problem in #·Optk+1P
and let x be an instance of #·A. By Definition 2, there exists a Σk+1P-transducer M , such that
#·A(x) is the number of computation paths of M on x which yield the optimum value optM (x).
By Proposition 3 we may assume that the optimum value is the minimum. By Galil’s construction
in [5], the computation of a polynomially time bounded nondeterministic Turing machine M can
be parsimoniously reduced in polynomial time to a propositional formula ϕ, such that there is a
one-to-one correspondence between the accepting computation paths of M on x and the satisfying
truth assignments of ϕ. Likewise, if M is equipped with a ΣkP oracle, then the computation of
M can be parsimoniously reduced in polynomial time to a ΠkSAT formula ψ, such that there is a
one-to-one correspondence between the accepting computation paths of M on x and the satisfying
truth assignments of ψ.

Suppose that the length of the output of M on any path is bounded by m = p(|x|) for some
polynomial p(n). We may assume that every output ofM on x has precisely this length. This can be
easily achieved by padding of leading zeros. Suppose that ψ is of the form ψ(y1, . . . , y`, z1, . . . , zm),
such that z1, . . . , zm correspond to the output of a computation path and y1, . . . , y` are the re-
maining variables needed to encode the computation of M on x. Note that every propositional
variable must get a positive weight. However, we can make sure that the truth assignment to
y1, . . . , y` has no effect on the computation of the optimum by transforming ψ to the formula
ψ′ = ψ(y1, . . . , y`, y

′
1, . . . , y

′
`, z1, . . . , zm) = ψ ∧ (y1 ≡ ¬y′1) ∧ · · · ∧ (y′` ≡ ¬y′`). In other words, any

satisfying truth assignment of ψ′ will assign the value true to exactly ` variables out of the 2`
variables y1, . . . , y`, y

′
1, . . . , y

′
`.

Now the desired instance of #Min-Weight-ΠkSAT consists of the propositional formula ψ′

and the following weights: w(yi) = w(y′i) = 1 for all i ∈ {1, . . . , `} and w(zj) = 2m−j for all
j ∈ {1, . . . ,m}. The Σk+1P-transducer M has no accepting computation path on x if and only
if ψ (and thus also ψ′) is unsatisfiable. Therefore, in this case, both counting problems yield the
same result, namely 0. Suppose now that M does have an accepting computation path on x.
The number z1 · · · zm (written in binary notation) output on an accepting path of M corresponds
to

∑m
j=1 zj · w(zj), i.e., the total weight of the variables evaluated to true. Hence, there is a

one-to-one correspondence between the accepting computation paths of M on x which yield the
minimum value optM (x) = z1 · · · zm and the satisfying truth assignments of ψ′ with minimal weight
`+

∑m
j=1 zj · w(zj).

Hardness of #Min-Card-ΠkSAT. Adapting the above proof to the counting problem #Min-
Card-ΠkSAT is easy. Note that now every unquantified variable has the weight 1. On the other
hand, the length m of the binary representation of the numbers output by M is logarithmically
bounded. Let w′(zj) = 2m−j for j ∈ {1, . . . ,m}. We transform the previous formula ψ′ into the
desired instance ψ′′ of #Min-Card-ΠkSAT by producing w′(zj)−1 = 2m−j−1 copies of zj for each
j ∈ {1, . . . ,m}. For each zj we construct the formula ρj = (zj ≡ zj1)∧ (zj ≡ zj2)∧ · · · ∧ (zj ≡ zjK)
with K = 2m−j − 1. Then we set ψ′′ = ψ′ ∧ ρ1 ∧ · · · ∧ ρm. It is straightforward to verify that there
exists a one-to-one correspondence between the accepting computation paths of M on x yielding the
optimum value optM (x) = z1 · · · zm and the satisfying assignments of ψ′′ with minimal Hamming
weight `+

∑m
j=1 zj · w

′(zj). �

As usual, also the versions of #Min-Weight-ΠkSAT and #Min-Card-ΠkSAT restricted to
3 literals per clause are #·Optk+1P-complete and #·Optk+1P[log n]-complete, respectively, since

8

there exists a parsimonious reduction to them, presented e.g. in [10].
Apart from containing natural complete problems, a complexity class should also be closed with

respect to an appropriate type of reductions. We consider the closure of the considered counting
classes under subtractive reductions. Note that we cannot expect the class #·OptkP[z(n)] to be
closed under subtractive reductions for any function z(n) since we can always get an arbitrary
polynomial speed-up simply by padding the input. We show in the sequel that the two most
interesting cases, namely #·OptkP and #·OptkP[log n] for each k ∈ N, are indeed closed under
subtractive reductions.

Theorem 7 The complexity classes #·OptkP and #·OptkP[log n] are closed under subtractive
reductions for all k ∈ N.

Proof. Suppose that some counting problem #·A belongs to #·OptkP (respectively to
#·OptkP[log n]) and that another counting problem #·A′ reduces to #·A via a strong subtractive
reduction. We need to show that #·A′ also belongs to #·OptkP (respectively to #·OptkP[log n]).
Following Theorem 5, there exists a binary predicate B decidable by a ∆kP algorithm and a polyno-
mial p, such that every pair (x, y) ∈ B satisfies the relation |y| ≤ p(|x|), together with a polynomial-
time computable function f : Γ∗ → N, such that A(x) = {y | (x, y) ∈ B ∧ f(y) = optBf (x)} and the
length of f(y) is polynomially (resp. logarithmically) bounded with respect to |x|.

Since #·A′ reduces to #·A via a strong subtractive reduction, there are two polynomial-time
computable functions g1 and g2 such that for each x ∈ Σ∗ we have A(g1(x)) ⊆ A(g2(x)) and
|A′(x)| = |A(g2(x))|− |A(g1(x))|. Now let B′ be a binary predicate over Σ∗× (Σ∗ · {∗} ·Σ∗ · {∗} ·Γ∗),
where ∗ is a delimiter symbol not occurring in Σ ∪ Γ. The predicate B′ contains the pairs (x, y′)
where y′ = g1(x) ∗ g2(x) ∗ y such that (g2(x), y) ∈ B and (g1(x), y) /∈ B. We define the function f ′

on the strings y′ as f ′(g1(x) ∗ g2(x) ∗ y) = f(y). Thus, a pair (x, y′) belongs to B′ if and only if it
is accepted by the following algorithm:

1. extract g1(x), g2(x), and y from y′;
2. check that (g2(x), y) belongs to B;
3. check that (g1(x), y) does not belong to B.
4. check that f ′(y′) = f(y).
Since ∆kP is closed under complement, the predicate B′ is decidable by a ∆kP algorithm

and there exists a polynomial function p, such that the relation |y′| ≤ p(|x|) is satisfied for each
(x, y′) ∈ B′. The function f ′ is computable in polynomial time and the length of the function
values f ′(g1(x)∗g2(x)∗y) is polynomially (logarithmically) bounded with respect to x, since f(y) is
polynomially (logarithmically) bounded with respect to g1(x) and g2(x). Function f ′ is computable
in polynomial time and the length of the function values f ′(g1(x) ∗ g2(x) ∗ y) is polynomially
(logarithmically) bounded with respect to x, since f(y) is polynomially (logarithmically) bounded
with respect to gi(x) with i ∈ {1, 2}.

It remains to show that A′ is indeed defined by B′ and f ′, i.e.: A′(x) = {w ∈ Σ∗ ·{∗}·Σ∗ ·{∗}·Γ∗ |
B′(x,w) ∧ f ′(w) = optB′

f ′ (x)}.
The cases A(g1(x)) = ∅ and A(g1(x)) = A(g2(x)) are easy. We only consider the case that

both A(g1(x)) 6= ∅ and A(g1(x)) ⊂ A(g2(x)) hold. By A(g1(x)) 6= ∅, there exists some y′ ∈ Γ∗

with y′ ∈ A(g1(x)) and, of course, also y′ ∈ A(g2(x)). Hence, B(gi(x), y
′) holds and also f(y′) =

optBf (gi(x)) for i ∈ {1, 2}. Thus, in particular, optBf (g1(x)) = optBf (g2(x)), since both optimal
values are identical to f(y′).

9

By the assumption A(g1(x)) ⊂ A(g2(x)), there also exists some y′′ ∈ Γ∗ with y′′ ∈ A(g2(x)) and
y′′ /∈ A(g1(x)). By y′′ ∈ A(g2(x)) we know that B(g2(x), y

′′) holds and also f(y′′) = optBf (g2(x)).

But then, since y′′ /∈ A(g1(x)) and optBf (g1(x)) = optB
f (g2(x)), we know that B(g1(x), y

′′) does not

hold. Hence, by the definition of B′ and f ′, also optB
′

f ′ (x) = optBf (g2(x)) holds.
To conclude the proof, it suffices to show that for all strings w = g1(x) ∗ g2(x) ∗ y, the following

equivalence holds: B′(x,w) ∧ f ′(w) = optB′

f ′ (x) if and only if y ∈ A(g2(x)) ∧ y /∈ A(g1(x)).
[⇒]: B′(x,w) implies that (g2(x), y) belongs to B while (g1(x), y) does not. Hence, y /∈ A(g1(x)).

On the other hand, since f(y) = f ′(w) = optB
′

f ′ (x) = optB
f (g2(x)) holds, we have y ∈ A(g2(x)).

[⇐]: Let y ∈ A(g2(x)) and y 6∈ A(g1(x)). By the former condition, we have B(g2(x), y)
and f(y) = optBf (g2(x)). Then also f(y) = optB

f (g1(x)) holds, by the equality optBf (g1(x)) =

optBf (g2(x)). Hence, y 6∈ A(g1(x)) implies that (g1(x), y) does not belong to B. Thus, (x,w)

belongs to B′ and f ′(w) = f(y) = optB
f (g2(x)) = optB

′

f ′ (x) holds. �

Our new considered classes #·OptkP and #·OptkP[log n] need to be confronted with the already
known counting hierarchy. We will present certain inclusions of the new classes with respect to
already known counting complexity classes and show that the inclusions are proper, unless the
polynomial hierarchy collapses.

Theorem 8 The following inclusions hold for each k ∈ N:

#·ΠkP ⊆ #·Optk+1P[log n] ⊆ #·Optk+1P ⊆ #·Πk+1P

Proof. The inclusion #·OptkP[log n] ⊆ #·OptkP is clear since any output that fits into logarithmic
space also fits into polynomial space.

[#·ΠkP ⊆ #·Optk+1P[log n]]: Let #·A be a counting problem in #·ΠkP. Since #·ΠkP =
#·PΣkP holds, there exists a nondeterministic polynomial-time Turing machine M with a ΣkP
oracle, such that #·A(x) corresponds to the number of accepting paths of M on x. We transform M
into a ΣkP-transducer M ′ by requesting M ′ to write the same output (say, the number 1) on every
accepting path y. Hence, every accepting path of M ′ trivially writes the optimal value. Then #·A
can indeed be considered as the #·Optk+1P[log n]-problem defined by M ′, i.e., #·A(x) corresponds
to the number of accepting paths of M ′ on x yielding the optimal value.

[#·Optk+1P ⊆ #·Πk+1P]: Let #·A ∈ #·Optk+1P. By Theorem 5, there exists a binary pred-
icate B decidable by a ∆k+1P algorithm and a polynomial p, such that for each pair (x, y) ∈ B
we have |y| ≤ p(|x|), together with a polynomial-time computable function f : Γ∗ → N, such that
A(x) = {y | (x, y) ∈ B ∧ f(y) = optBf (x)} and the length of f(y) is polynomially bounded with

respect to |x|. Without loss of generality, suppose that optBf (x) is defined as the maximum. Then
#·A can also be defined as the counting problem #·B′ corresponding to the following predicate B′,
where y ∈ B′(x) if and only if (x, y) ∈ B and for all strings y′ ∈ Γ∗ with (x, y′) ∈ B we have
f(y′) ≤ f(y). The latter condition can be tested in coNP∆k+1P. Since (x, y) ∈ B is decidable
in ∆k+1P and the equalities coNP∆k+1P = coNPΣkP = Πk+1P hold for each k, we have that
B′ ∈ Πk+1P. Hence, #·B′ is in #·Πk+1P. Moreover, the identity #·B′ = #·A holds, since the
equality A(x) = {y | (x, y) ∈ B ∧ f(y) = optBf (x)} = {y | y ∈ B′(x)} is satisfied. �

Finally we prove the robustness of the new classes.

Theorem 9 If #·Optk+1P[log n] or #·Optk+1P coincides with either #·ΠkP or #·Πk+1P for some
k ∈ N, then the polynomial hierarchy collapses to the k-th or (k + 1)-st level, respectively.

10

Proof. Obviously, it suffices to separate the classes #·ΠkP from #·Optk+1P[log n] and #·Optk+1P
from #·Πk+1P.

Suppose that #·ΠkP = #·Optk+1P[log n] holds. Consider a predicate A on ΠkSAT formulas ϕ
containing truth assignments I. We define I ∈ A(ϕ) if I is a cardinality-minimal model of ϕ. The
counting problem #·A is the familiar #Min-Card-ΠkSAT problem. Following Theorem 6, #Min-
Card-ΠkSAT and therefore also #·A belong to #·Optk+1P[log n]. From the equality #·ΠkP =
#·Optk+1P[log n] it follows that #·A is contained in #·ΠkP. Hence, it can be tested by a ΠkP
algorithm if I ∈ A(ϕ) holds for a given formula ϕ. But then we get the following ΠkP-decision
procedure for the Min-Card–ΠkSAT problem, a generalization of Min-Card-SAT where we
consider ΠkSAT formulas ∀Y1 · · ·QYk ψ(X,Y1, . . . , Yk) instead of propositional ones ψ(X). Let an
instance of Min-Card–ΠkSAT be given by a ΠkSAT formula ϕ(X) = ∀Y1 · · ·QYk ψ(X,Y1, . . . , Yk)
and a subset of variables X ′ ⊆ X. We guess an assignment I to X, check that all variables X ′ are
evaluated to true in I, and that I is a cardinality-minimal model of ϕ. The latter check is equivalent
to checking if I ∈ A(ϕ) holds, which can be done by a ΠkP algorithm. It can be easily proved
that Min-Card–ΠkSAT is Θk+1P-complete by a generalization of the Θ2P-completeness proof of
Max-Card-SAT in [6] along the lines presented in [16,22]. This implies that ΠkP = Θk+1P holds,
hence we have the inclusion ΣkP ⊆ PΣkP[1] ⊆ ∆k+1P[log n] = ΠkP, and therefore the polynomial
hierarchy collapses to the k-th level.

Suppose now that #·Optk+1P = #·Πk+1P holds. From [3] we know that the generic counting
problem #Πk+1SAT belongs to #·Πk+1P (in fact, the problem is #·Πk+1P-complete). From the
identity #·Optk+1P = #·Πk+1P it follows that the problem #Πk+1SAT also belongs to #·Optk+1P.
Hence, there exists a Σk+1P-transducer M , such that for every #Πk+1SAT-formula

ψ(X) = ∀Y1∃Y2 · · ·QYk+1 ϕ(X,Y1, . . . , Yk+1)

the number of satisfying assignments of ψ(X) corresponds to the number of accepting paths of M on
input ψ(X) yielding the optimal value. But then we get a Σk+1P-decision procedure for QSATk+2

as follows. Let χ = ∃Xψ(X) be an instance of QSATk+2, where ψ(X) is defined as before. Then χ
is satisfiable if and only if ψ(X) has at least one satisfying assignment if and only if the computation
of M on input ψ(X) has at least one accepting path. There exists an accepting path if and only if
there exists an accepting path yielding the optimal value. From Σk+2P-completeness of QSATk+2

it follows that Σk+1P = Σk+2P, collapsing the polynomial hierarchy to the (k + 1)-st level. �

4 Further Optimization Counting Problems

The most interesting optimization counting problems are of course those belonging to the classes
on the first level of the optimization counting hierarchy, namely #·OptP and #·OptP[log n]. In
this section we will focus on such problems of particular interest.

Gasarch et al. presented in [6] a plethora of optimization problems complete for OptP and
OptP[log n]. Either their lower bound is already proved by a parsimonious reduction or the pre-
sented reduction can be transformed into a parsimonious one similarly to Galil’s construction in [5].
The counting version of virtually all these problems can therefore be proved to be complete for
#·OptP or #·OptP[log n]. Likewise, Krentel presented in [12] several problems belonging to higher
levels of the optimization hierarchy. They give rise to counting problems complete for #·OptkP or
#·OptkP[log n] with k > 1.

11

Let us investigate the following optimization variant of the usual counting problem related to
satisfiability of propositional formulas.

Problem: #Min-Card-SAT
Input: A propositional formula ϕ in conjunctive normal form over the variables X.
Output: Number of models of ϕ with minimal Hamming weight.

The dual problem #Max-Card-SAT asks for the number of models with maximal Hamming
weight. The problems #Min-Weight-SAT and #Max-Weight-SAT are the corresponding
weighted versions of the aforementioned problems.

Following Theorem 6, both counting problems #Min-Card-SAT and #Max-Card-SAT are
#·OptP[log n]-complete, whereas #Min-Weight-SAT and #Max-Weight-SAT are #·OptP-
complete. We consider only the cardinality-minimal problems in the sequel.

It is also interesting to investigate special cases of the optimization counting problems involving
the following restrictions on the formula ϕ. As usual, a literal is a propositional variable (positive
literal) or its negation (negative literal), whereas a clause is a disjunction of literals, and a formula
in conjunctive normal form is a conjunction of clauses. We say that a clause c is

Horn if it contains at most one positive literal,
dual Horn if it contains at most one negative literal,
Krom if it contains at most two literals.

A formula ϕ = c1 ∧ · · · ∧ cn in conjunctive normal form is Horn, dual Horn, or Krom if all clauses ci
for i = 1, . . . , n satisfy the respective condition. Formulas restricted to conjunctions of Horn,
dual Horn, or Krom clauses are often investigated in computational problems related to artificial
intelligence, in particular to closed world reasoning [1]. We denote by the specification in brackets
the restriction of the counting problem #Min-Card-SAT to the respective class of formulas.

The models of Horn formulas are closed under conjunction, i.e., for two models m and m′ of a
Horn formula ϕ, also the Boolean vector m∧m′ = (m[1] ∧m′[1], . . . ,m[k]∧m′[k]) is a model of ϕ.
Hence there exists a unique model with minimal Hamming weight if and only if ϕ is satisfiable.
Therefore a Horn formula ϕ has either one cardinality-minimal model or none, depending on the
satisfiability of ϕ. A similar situation arises for #Min-Card-DNF, the problem of counting the
number of assignments with minimal Hamming weight to a propositional formula in disjunctive
normal form. These considerations imply the following results.

Proposition 10 #Min-Card-SAT[horn] and #Min-Card-DNF are in FP.

Vertex covers, cliques, and independent sets have a particular relationship. The set X is a
smallest vertex cover in G = (V,E) if and only if V r X is a largest independent set in G if and
only if V r X is a largest clique in the complement graph Ḡ = (V, V × V r E). The size of the
largest clique has been investigated by Krentel [11] and proved to be OptP[logn]-complete. (the
same proof is also given in [14]). Using this knowledge, we can determine the complexity of the
following problems.

Problem: #max-card-independent set
Input: Graph G = (V,E).
Output: Number of independent sets inG with maximum cardinality, i.e., number of subsets V ′ ⊆ V
where |V ′| is maximal and for all u, v ∈ V ′ we have (u, v) /∈ E.

12

Problem: #max-card-clique
Input: Graph G = (V,E).
Output: Number of cliques in G with maximum cardinality, i.e., number of subsets V ′ ⊆ V where
|V ′| is maximal and (u, v) ∈ E holds for all u, v ∈ V ′ such that u 6= v.

Problem: #min-card-vertex cover
Input: Graph G = (V,E).
Output: Number of vertex covers of G with minimal cardinality, i.e., number of subsets V ′ ⊆ V
where |V ′| is minimal and (u, v) ∈ E implies u ∈ V ′ or v ∈ V ′.

Theorem 11 The problems #max-card-independent set, #max-card-clique, and #min-
card-vertex cover are #·OptP[log n]-complete. Their weighted versions are #·OptP-complete.

Proof. The membership in the appropriate classes is straightforward. The lower bound is proved by
the usual reduction to #max-card-independent set, from #Max-Card-SAT, as it is mentioned
in the proof of Theorem 17.6 in [14] or in [11]. This reduction is parsimonious and extends by the
usual construction to cliques. Hence, there exists a parsimonious reduction from #Min-Card-
SAT, using Proposition 3, to all three problems. The weighted version is a reduction from #Min-
Weight-SAT. �

We can easily transform the counting problem #min-card-vertex cover to both #min-
card-sat[dual Horn] and #min-card-sat[Krom]. Indeed, we can represent an edge (u, v) ∈ E
of a graph G = (V,E) by a clause (u∨ v) which is both Krom and dual Horn. Hence a cardinality-
minimal vertex cover of a graph G = (V,E) corresponds to a cardinality-minimal model of a
corresponding formula ϕG =

∧
(u,v)∈E(u ∨ v).

Corollary 12 The counting problems #min-card-sat[dual horn] and #min-card-sat[Krom]
are #·OptP[log n]-complete via parsimonious reductions.

The following problem is a classic in optimization theory. It is usually formulated as the maximal
number of clauses that can be satisfied. We can also ask for the number of truth assignments that
satisfy the maximal number of clauses.

Problem: #max2sat
Input: A propositional formula ϕ in conjunctive normal form over the variables X with at most
two variables per clause.
Output: Number of assignments to ϕ that satisfy the maximal number of clauses.

The optimization variant of the following counting problem is presented in [6] under the name
cheating sat. We can interpret it as a satisfiability problem in a 3-valued logic, where the
middle value τ is a “don’t-know”. In this setting it is interesting to investigate the minimal size
of uncertainty we need to satisfy a formula for the optimization variant, as well as the number of
satisfying assignments with the minimal size of uncertainty.

Problem: #min-size uncertainty sat
Input: A propositional formula ϕ in conjunctive normal form over the variables X.
Output: Number of satisfying assignments m : X → {0, τ, 1} of the formula ϕ, where m(x) = τ
satisfies both literals x and ¬x, with minimal cardinality of the set {x ∈ X | m(x) = τ}.

13

Theorem 13 #max2sat and #min-size uncertainty sat are #·OptP[log n]-complete.

Proof. The membership in #·OptP[log n] is clear for all three problems from the fact that witness
testing belongs to OptP[log n], since the corresponding optimization variants of the problems are
OptP[log n]-complete [6]. For the lower bound, the reductions presented in [6] are parsimonious,
therefore they also represent the appropriate reductions for the counting variants. �

Even though the complete problems for the classes #·OptP and #·OptP[log n] are the most
interesting ones, there also exist some interesting complete problems in the classes #·OptkP and
#·OptkP[log n] for k > 1. The following problem is an example of such a case.

Problem: #maximum k-quantified circuit
Input: A Boolean circuit C(~x, ~y1, . . . , ~yk) over variable vectors ~x, ~y1, . . . , ~yk.
Output: Number of maximum values ~x ∈ {0, 1}n in binary notation satisfying the quantified
expression ∀~y1∃~y2 · · ·Q~yk (C(~x, ~y1, . . . , ~yk) = 1), where Q is either ∀ or ∃ depending on the parity
of k.

Theorem 14 #maximum k-quantified circuit is #·OptkP-complete.

The proof of Theorem 14 follows that of Theorem 4.2 from [12].

5 Concluding Remarks

In the scope of the result from [18] showing that all classes between #P and #PH, the counting
equivalent of the polynomial hierarchy, collapse to #P under 1-Turing reductions, it is necessary
(1) to find suitable reductions strong enough to prove completeness of well-known counting prob-
lems, but tame enough to preserve at least some counting classes, (2) to identify counting classes
with interesting complete problems preserved under the aforementioned reduction. The first prob-
lem was mainly addressed in [3], whereas in this paper we focused on the second point. We intro-
duced a new hierarchy of optimization counting complexity classes #·OptkP and #·OptkP[log n].
These classes allowed us to pinpoint the complexity of many natural optimization counting prob-
lems which had previously resisted a precise classification. Moreover, we have shown that these
new complexity classes have several desirable properties and they interact well with the counting
hierarchy defined by Hemaspaandra and Vollmer in [7]. Nevertheless, the Hemaspaandra-Vollmer
counting hierarchy does not seem to be sufficiently detailed to capture all interesting counting
problems. Therefore an even more fine-grained stratification of the counting complexity classes is
necessary, which started with the contribution of Pagourtzis and Zachos [13] and has been pursued
in this paper.

Finally, further decision problems in ∆kP (respectively ΘkP) with k ∈ N and corresponding
counting problems should be inspected. It should be investigated if the complexity of the latter can
be precisely identified now that we have the new counting complexity classes #·OptkP (respectively
#·OptkP[log n]) at hand. Moreover, we would also like to find out more about the nature of the
problems that are complete for these new counting complexity classes. In particular, it would
be very interesting to find out if there also exist “easy to decide, hard to count” problems, i.e.,
problems whose counting variant is complete for #·OptkP (respectively #·OptkP[log n]) while the
corresponding decision problem is below ∆kP (respectively ΘkP). Clearly, such a phenomenon can

14

only exist if we consider completeness with respect to reductions stronger than the parsimonious
ones. Hence, the closure of our new counting classes under subtractive reductions (rather than just
under parsimonious reductions) in Theorem 7 is an indispensable prerequisite for further research
in this direction.

Acknowledgment: We thank Arnaud Durand and Yann Strozecki for their remarks and for the
discussion on the proof of Theorem 9.

References

[1] M. Cadoli and M. Lenzerini. The complexity of propositional closed world reasoning and
circumscription. Journal of Computer and System Sciences, 48(2):255–310, 1994.

[2] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems.
Information and Computation, 125(1):1–12, 1996.

[3] A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions and complete problems
for counting complexity classes. Theoretical Computer Science, 340(3):496–513, 2005.

[4] L. Fortnow. Counting complexity. In L. A. Hemaspaandra and A. L. Selman, editors, Com-
plexity theory retrospective II, pages 81–107. Springer-Verlag, 1997.

[5] Z. Galil. On some direct encodings of nondeterministic Turing machines operating in polyno-
mial time into P-complete problems. SIGACT News, 6(1):19–24, January 1974.

[6] W. I. Gasarch, M. W. Krentel, and K. J. Rappoport. OptP as the normal behavior of NP-
complete problems. Mathematical Systems Theory, 28(6):487–514, 1995.

[7] L. A. Hemaspaandra and H. Vollmer. The satanic notations: Counting classes beyond #P
and other definitional adventures. SIGACT News, Complexity Theory Column 8, 26(1):2–13,
March 1995.

[8] B. Jenner and J. Torán. Computing functions with parallel queries to NP. Theoretical Com-
puter Science, 141(1-2):175–193, 1995.

[9] J. Köbler, U. Schöning, and J. Torán. On counting and approximation. Acta Informatica,
26(4):363–379, 1989.

[10] D. C. Kozen. The design and analysis of algorithms, chapter 26: Counting problems and #P,
pages 138–143. Springer-Verlag, 1992.

[11] M. W. Krentel. The complexity of optimization problems. Journal of Computer and System
Sciences, 36(3):490–509, 1988.

[12] M. W. Krentel. Generalizations of OptP to the polynomial hierarchy. Theoretical Computer
Science, 97(2):183–198, 1992.

15

[13] A. Pagourtzis and S. Zachos. The complexity of counting functions with easy decision version.
In R. Královič and P. Urzyczyn, editors, Proceedings 31st International Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2006), Stará Lesná (Slovakia), volume 4162
of Lecture Notes in Computer Science, pages 741–752. Springer-Verlag, 2006.

[14] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[15] A. Selman, X. Mei-Rui, and R. Book. Positive relativizations of complexity classes. SIAM
Journal on Computing, 12(3):565–579, 1983.

[16] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976.

[17] S. Toda and M. Ogiwara. Counting classes are at least as hard as the polynomial-time hierarchy.
SIAM Journal on Computing, 21(2):316–328, 1992.

[18] S. Toda and O. Watanabe. Polynomial-time 1-Turing reductions from #PH to #P. Theoretical
Computer Science, 100(1):205–221, 1992.

[19] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979.

[20] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

[21] K. Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833–846, 1990.

[22] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science,
3(1):23–33, 1976.

16

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

