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Continuity Properties of Equilibria in Some
Fisher and Arrow-Debreu Market Models

Vyay V. Vazirani Leir Wang'

Abstract

Following up on the work of Megiddo and Vazirani [7], who determined continuity properties
of equilibrium prices and allocations for perhaps the simplest market model, Fisher’s linear case,
we do the same for:

e Fisher’s model with piecewise-linear, concave utilities
e Fisher’s model with spending constraint utilities
e Arrow-Debreu’s model with linear utilities

e Arrow-Debreu’s model with piecewise-linear, concave utilities

1 Introduction

Three basic properties that a desirable model of an economy should possess are existence, unique-
ness, and continuity of equilibria (see [3], Chapter 15, “Smooth preferences”). These lead to parity
between supply and demand, stability, and predictive value, respectively. In particular, without
continuity, small errors in the observation of parameters of an economy may lead to entirely different
predicted equilibria.

Although mathematical economists studied very extensively questions of existence and unique-
ness for several concrete and realistic market models, the question of continuity was studied only
in very abstract settings. For example, Debreu [3] (Chapter 19, “The application to economies of
differential topology and global analysis: regular differentiable economies”) assumed that demand
functions of agents are continuously differentiable and, using differential topology, showed that the
set of “bad” economies is of Lebesgue measure zero if the set of economies is finite-dimensional.

Megiddo and Vazirani [7] attempted to rectify this situation by starting with perhaps the

simplest market model — the linear case of Fisher’s model. An instance of this market is specified
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by giving the initial amounts of money held by the agents, m and their utility functions, U. They
showed that the mapping p(m,U) giving the unique vector of equilibrium prices is continuous.
They also showed that X (m,U), the correspondence giving the set of equilibrium allocations, is
upper hemicontinuous, but not lower hemicontinuous.

In this paper, we determine continuity properties of equilibrium prices and allocations for:
e Fisher’s model with piecewise-linear, concave utilities

e Fisher’s model with spending constraint utilities

e Arrow-Debreu’s model with linear utilities

e Arrow-Debreu’s model with piecewise-linear, concave utilities

Our results for these models are summarized in the following table. We note that among these
cases, only Fisher’s model with spending constraint utilities supports unique equilibrium prices. For
the remaining cases, we need to consider the correspondence giving the set of equilibirum prices,

and we need to establish its upper and lower hemicontinuity.

Price Allocation

Fisher+PL | not upper and not lower | not upper and not lower

Fisher+SC continuous(unique) upper but not lower

AD+L not upper and not lower upper but not lower

AD+PL | not upper and not lower | not upper and not lower

[7] crucially used the Eisenberg-Gale convex program [5] for proving their results. The optimal
solution to this program gives equilibrium allocations for Fisher’s linear model, and the optimal
values of the Lagrange variables give equilibirum prices. Naturally, their proofs were steeped in
polyhedral combinatorics. For the Arrow-Debreu model with linear utilities, we use a convex
program due to [6].

For the remaining three cases, such convex programs are not known, and instead, we use the
combinatorial structure of equilibria for proving our theorems. The groundwork for discovering such
structure was laid in [4] in the context of obtaining a polynomial time algorithm for computing the
equilibrium the linear case of Fisher’s model. Each of the remaining three cases is a generalization
of this case and the relevant structure is also a generalization of that for the Fisher’s linear case.
For Fisher’s model with piecewise-linear, concave utilities, we use structure found by [9] (and used
for proving that equilibrium prices and allocations are rational numbers). For Fisher’s model with
spending constraint utilities, we use structure found by [8] (and used for obtaining a polynomial
time algorithm for computing the equilibrium).

The recent surge in interest on obtaining efficient algorithms for computing market equilibria is

motivated in part by potential applications to electronic commerce on the Internet. In particular,



the spending constraint model has been shown to be applicable to Google’s AdWords market —
it provides rich expressivity while at the same time maintaining simplicity and polynomial time
solvability [8]. Clearly, a good understanding of continuity properties of various market models can
go a long way in such applications.

Perhaps the most startling, and unsettling, finding of our work is that unlike the linear case
of Fisher’s model, the cases we have studied do not have good continuity properties. This raises
the question of determining whether equilibria in these very basic models are robust in some other

sense.

2 Market Models and Definitions

2.1 Fisher’s model

Fisher’s model [2] is the following: Consider a market consisting of a set B of buyers and a set A
of divisible goods. Assume |A| = n and |B| = n’. We are given for each buyer ¢ the amount e; of
money she possesses and for each good j the amount b; of this good. In addition, we are given
the utility functions of the buyers, which are assumed to be additively separable. Let u;; : R — R
specify the utility derived by ¢ as a function of the amount of good j she gets. If the latter is
denoted by z;;, the total utility derived by 4 is

Ui(z) = Y uij(wij)-

JEA
Given prices p1, ..., p, of the goods, one can compute baskets of goods (there could be many) that
maximize ¢’s utility, subject to her budget constraint of e;. We will say that p1,...,p, are market

clearing prices if after each buyer is assigned such a basket, there is no surplus or deficiency of any

of the goods. The problem is to compute such prices.

2.2 The Arrow-Debreu model

The Arrow-Debreu model [1] generalizes Fisher’s model in that there is no demarcation between
buyers and sellers. Suppose there are n agents A and m goods G (money may be one of them).
Each agent comes to the market with an initial endowment of these m goods. Once the prices of
the goods are fixed, each agent can compute the worth of her initial endowment and baskets of
goods she can obtain with it so as to maximize her utility. The problem again is to find prices so

that the market clears.

2.3 Spending constraint utilities

We will consider 3 utility functions in this paper. The first two are well known: w;;(z;;) is either a

(homogeneous) linear function or a piecewise-linear, concave function. Linear utilities have several



deficiencies: typically, a buyer may end up spending all her money on a single item, and they fail to
capture the important condition of buyers getting satiated with goods. Piecewise-linear, concave
functions rectify both these deficiencies; however, unlike the linear case, no efficient algorithms are
known for computing equilibria for such utilities.

The third utilities we consider are spending constraint utility functions, introduced in [8]. They
rectify some of the deficiencies of linear utility functions and at the same time are amenable to
efficient algorithms. We extend Fisher’s model via spending constraint utilities as follows. For
i€ Bandj€ A,let f} : [0,e;] = R be the rate function of buyer 7 for good j; it specifies the rate
at which ¢ derives utility per unit of j received, as a function of the amount of her budget spent
on j. If the price of j is fixed at p; per unit amount of j, then the function f; /pj gives the rate
at which ¢ derives utility per dollar spent, as a function of the amount of her budget spent on j.
Define g : [0,e;] = R as follows:

_ 7
0 Py

g(z) dy

This function gives the utility derived by 4 on spending x dollars on good j at price p;.
Observe that if f;: is a decreasing step function, g will be a piecewise-linear, concave function

(the linear version of Fisher’s problem is the special case in which each f; is the constant function).

2.4 Continuity of set-valued functions

The concept of continuity is generalized to set valued functions in the following way:

Definition 1 Suppose f : A — 2° is a set value function. f is said to be upper hemicontinuous, if
given any sequence {ak}kzl which has limit a® and for any sequence {xk}kzl such that z* € f(a),

there exists a convergent subsequence {z"i }j>1 such that lz'mj_moxkj =1z € f(a).

Definition 2 A set value function [ is said to be lower hemicontinuous, if given any sequence
{aF}k>1 which has limit a® and for each element z° € f(a°), there ezists a sequence {z¥}>1 such
that o* € f(a*) and z* — z°

In this paper, we will study these properties of the set of equilibrium prices and allocations

when they are not unique.

3 Piecewise-linear, Concave utilities for Fisher and Arrow-Debreu
Models

In this section, we provide examples to show:



Theorem 3 In Fisher’s model with piecewise-linear, concave utilities:
(1) The set of equilibrium prices is not upper or lower hemicontinuous;

(2)The set of equilibrium allocations is not upper or lower hemicontinuous.

Similar results for the Arrow-Debreu model follow since the latter is a generalization of Fisher’s

model.

3.1 Equilibrium prices

Suppose in the market, there is only one person with money m and there are two goods. There is
1 unit of good 1 and 1 unit of good 2. Suppose wu; is her utility function of good 1 and wy is her
utility function of good 2 (see the picture). The slopes are indicated in the picture. Suppose the
price for good 1 is p; and the price for good 2 is po. Then p = (p1,p2) is an equilibrium price if

and only if p; > 0,py > 0, p% > p% and p; + p2 = m.

U1 U2

1 I x9

Now we take p* = (%, m— %) Thus for each k, p* is an equilibrium price. However, p* — (0, m)
which is not an equilibrium price. Thus the set of equilibrium prices is not closed, hence not upper
hemicontinuous.

Next we provide an example to show that the set of equilibrium prices is not lower hemicontin-
uous. There is one buyer with money $1 and there are two goods in the market. Suppose {U*} is
a sequence of utilities and U* — UC. The picture of U* is the following:

—
—t

The slopes of the line segments are indicated in the picture. Now for each k, it is easy to see
p¥ = (p¥,pk) is an equilibrium price if and only if p§ > p¥ and p¥ + p§ = 1. However, p°® = (p?, p9)
is an equilibrium price for U? if and only if p9 +pY = 1 (i.e. p? > pJ is allowed). Thus we have some
price vector, for instance (0.9,0.1), that can not be the limit of a sequence of equilibrium prices for

U*. Hence the set of equilibrium prices is not lower hemicontinuous.



3.2 Equilibrium allocations

In [7], the authors showed that in Fisher’s model for linear utilities, the allocation is not lower hemi-
continuous. Because the piecewise-linear case is a generalization of the linear case, the allocation
is still not lower hemicontinuous. In this section, we provide an example to show the equilibrium
allocation is not upper hemicontinuous.

Consider the following example. There are two buyers and three goods in the market. Suppose
we have {(mF,U*)}y>0 where m* = (1,1 + 1) and the picture of U* is the following:

1
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The slopes of the line segments are indicated in the picture. It is easy to see p¥ = (%, 1,1) and
1 111 1 L1
zk = 2k 2 | are equilibrium price and allocation. However, z¥ — 20 = 2 2
o 141 1 o L 1)
2Tk 2 2 2

which is not an equilibrium allocation for (m° U%) = limy_,o(mF, U¥), because if buyer 1 will

prefer spending her money on good 3 to spending on more than 1/2 of good 1. under (m°,U?),
1

p:(%,%,l) and z = (i
2

allocation is not upper hemicontinuous.

) are equilibrium price and allocation. Therefore the equilibrium

N[ N[
NI N[

4 Linear case of Arrow-Debreu Model

We start by giving a nonconvex and a convex program from [6] that capture equilibrium allocations

for this model.

Vj H in,j = 1,
%

Vi,j:zij >0,
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Dpj Di

Vi:p; >0

Theorem 4 ([6]) The feasible region of the above nonconvexr program has all and only market

equilibria.

[6] also gives a convex program whose feasible solution gives all and only the equilibrium allo-

cations. For any given utilities, construct a directed graph G with n vertices to represent the n

people. Draw an edge from 7 to j if u;; > 0. Define w(i,j) = lgtiz:i’twi’t. Then consider the
following convex program:
Vj : in,j = 1,
i
V’i,j L 4,5 > 0,
For every cycle C of G : H w(i,j) > 1.

(i.4)eC

Theorem 5 ([6/) The feasible region of the above conver program has all and only equilibrium

allocations.
We will use these two theorems to prove the following:

Theorem 6 In the Arrow-Debreu model with linear utilities:
(1)The set of equilibrium allocations is upper but not lower hemicontinuous;

(2) The set of equilibrium prices is not upper or lower hemicontinuous.

4.1 Equilibrium allocations

In this section, we prove the set of equilibrium allocations is upper but not lower hemicontinuous.
Given the utility functions, we write the u;;’s in a matrix U = (u; ;). From now on we view
the price as a vector and the allocation as a matrix. The equilibrium prices form a set P(U) and
the equilibrium allocations form a set X (U).
Suppose {U*F = (uf,j)}kzl is a sequence of utilities and U*¥ — U® when k approaches oo.
Suppose {mk}kzl is a sequence of allocations such that =¥ € X (U*) and 2% — 2. We want to show

0 is a feasible solution of the convex program.

2% € X(U?). By Theorem 5, we only need to prove z
Because z* € X(U¥), by Theorem 5, we have for every k, z* is a feasible solution to the convex
program. Therefore, for each k, we have a graph G* which is formed by all the edges (i,5) where

uf,j > 0. Thus we have:

Viy afi=1, (1)
i



Vi,j:ak; >0, (2)

For every cycle C of G : H wh(i,5) > 1. (3)
(i,5)eC
where w (i, j) = —————El“zz uictwict
Now for U°, considé,r] the graph G°. In G, there is an edge between a pair of vertices (4, j) if
and only if Ui(fj > 0. Because U¥ — UY, when k is large enough, for every (4,7) such that u?’j > 0,
we have uf’ ; > 0. Therefore if G° has an edge (i, ), then G* also has the edge (i,). This implies

if C is a cycle in G°, then C is also a cycle in G¥. Therefore z* satisfies a weaker condition than

(3):

For every cycle C of G°: H w(i,5) > 1. (4)
(i,j)eC

Now in (1),(2) and (4), let k go to oo, we have:

Vj: ZJ;?’]- =1,
i
Vi, j:a; >0,
For every cycle C of G°: H w(i,5) > 1.
(i.5)eC

0 ,0
Drcicn WoaT
uO

where w°(i,j) = . Thus by Theorem 5, we have z° € X(U?). Thus X (U) is upper

hemicontinuous. O v

The next example shows that the set of equilibrium allocations is not lower hemicontinuous.
Suppose there are two people, each of them has one unit of distinct good. Suppose the utility
1

U
When u < 1, there is only 1 equilibrium allocation: buyer 2 gets all the 1 unit of good 1 and buyer

matrix is ( ) where u < 1. It is easy to see the equilibrium price is (1,1) for each u < 1.

1 gets all the 1 unit of good 2. However, when u = 1 there are infinitely many allocations. Thus

the allocation is not lower hemicontinuous.

4.2 Equilibrium prices

If we scale an equilibrium price vector by a positive constant, we will still get an equilibrium price.
In this sense, we are only interested in the equilibrium price whose I; norm is 1. Such an equilibrium
price is called normalized. Now we provide examples to show that the set of normalized equilibrium
prices in this model is not upper or lower hemicontinuous.

Consider the following example: There are two people, each of them has one good. Suppose

1
—1 0

1
{U*}% | is a sequence of utilities where U* = ( o 1 ) For each k, let P(U*) be the

1
k



set of normalized equilibrium prices for utility U*. Let p* = (%, 1- %) Then p* is a normalized
10
vector. Now we show the fact that p¥ € P(U*). Here we let X* = ( 01 ) It is easy to

check that (p*, X*) satisfies all the restrictions in the nonconvex program. By Theorem 3, we have
10
pF € P(UF). Since U¥ — U° = ( 01 ) but pF — (0,1) ¢ P(UY), we conclude that P(U) is not

upper hemicontinuous.
The next example shows the set of equilibrium prices is not lower hemicontinuous. Suppose the
1
1 %
1

sequence of utilities is U¥ where U* = (
k

). It is easy to see p* is an equilibrium price for

10
U* if and only if p¥ = p. However, UF — U° = ( 0 1 ) For U°, p° = (p?,pY) is equilibrium if

and only if p) > 0 and p) > 0. Hence the set of equilibrium prices is not lower hemicontinuous.

5 Fisher’s Model with Spending Constraint Utilities

In this paper, we will deal with the case that f]Z is a decreasing step function for each i,j5. We
first recall some definitions from [8]. We will call each step of [j a segment. The set of segments
defined in f} is denoted by seg(f;). Suppose s € seg(fj). If s ranges from a to b, then we define
good(s) = j, value(s) = b — a, rate(s) to be the value of f; at segment s and right(s) is the value
of the right end of the segment s. Define segments(i) = Unlzlseg(f]i).

Given nonzero prices p = (p1, ..., Py ), We characterize optimal baskets for each buyer relative
to p. Define the bang per buck relative to p for segment s € seg( f;) to be %. Sort all segments
s € segments(i) by decreasing bang per buck and partition by equality into classes: @1, Q2,.... For

a class @, define value(Q;) to be the sum of values of segments in it. Find k; such that

Y value(Q) <e < Y walue(Q;)

1<I<k;—1 1<I<k;

Thus buyer 4 will definitely want the goods corresponding to segments in Q1,...,Q,—1. We
call these segments the forced segments. The buyer will buy some of the goods corresponding to
segments in (), we call these segments the flexible segments. The buyer will not buy any goods
corresponding to segments in Qg, 11, ..., we call those segments the undesirable segments. By forced
allocations we mean allocating all goods in the forced segments to the buyers.

Consider forced allocations made at price p. For each good j, define a(j) to be the sum over all
the buyers of the money that they spend on good j. For each buyer i, we define spend(i) to be the
money she has spent on forced allocations. Define m; = e; — spend(i) to be her left over money.

For a given money vector e and price vector p, let a be forced allocations. We can set up a

network N (e, p, ) in the following way: There is a source s, a sink ¢, a set G of vertices representing



the goods and a set B of vertices representing the buyers. For each : € B and segment s € Qy;,
suppose good(s) = j, then add edge (j,7) into the graph and set its capacity to be value(s). For
each j € G, set the capacity of (s, j) to be p; — a(j). For each i € B, set the capacity of (¢,t) to be

my;.

For any set of buyers T C B, we define m(T) = Y m;. For any set S C G, we define
ie€T
p(S) = > pj and a(S) = Y a(j). Let I'(S) = {i € B : 3j € S,j is adjacent to i}. Then we
JES JES

define the "best value” of the set S to be best(S) = min{m(T) + ¢(S,I'(S) —T) : T CI'(S)} and
let bestT(S) be the optimal subset of I'(S). If p(S) — a(S) = best(S) then we say S is tight. If
p(S) — a(S) > best(S) then we say S is overtight.

Given a price p, after each buyer is assigned an optimal basket of goods, it is easy to see that

there is no good left if and only if in the network the cut (¢t U BUG, s) is a min cut.

Lemma 7 ([8]) In N(e,p, ), (tUBUG, s) is a min cut if and only if no subset of goods is overtight,
i.e. VS C G, p(S) — aS) < best(S).

This lemma gives us a characterization of when (tUBUG, s) is a min cut. Now by this network,

we can tell when the price is an equilibrium price.

Lemma 8 ([8]) A price p is an equilibrium price if and only if (tUBUG,s) and (t, BUGUs) are

both min cuts.

Then in [8], the author gives a polynomial time algorithm to compute the equilibrium price and

proves that the equilibrium price is unique

Theorem 9 ([8]) In Fisher’s model with decreasing step spending constraint utility, the equilibrium

price exists and is unique.

5.1 Continuity of equilibrium prices

Let p = p(m,U) be the equilibrium price as a function of money m and utility U in the spending

constraint model. We prove:

Theorem 10 p is a continuous function.

10



In order to prove this, we only need to show that when the change of the money and the utility
is small enough, the change of equilibrium price is also very small. We can view the change in
the following point of view: We change the money of buyers one by one and after these changes,
we change the utility of goods one by one. So we only need to consider two changes: (1) fix the
utilities and change of buyer 1’s money; (2) fix the money and change one of buyer 1’s segments.

First of all, we fix the utility and consider raising the money of buyer 1 slightly. Now suppose
el =ei(1+¢€) and e = ¢; for every i = 2,3,...,n. Suppose p is the original equilibrium price and
« is the original forced allocation. Suppose N(e,p, @) is the original network.

There are two cases: The first case is
Z value(Q)) < e1 < Z value(Q)
1<I<ki—1 1<I<ky
In this case, we can choose € small enough such that
Z value(Q;) < €| < Z value(Q)
1<I<k;—1 1<I<k;

Therefore the forced allocation does not change. Now consider the network: The only change is the
capacity of the edge (1,t) changes from m; to m} = mj1 +ee;. Now (¢, BUGU ) is not a minimum
cut, however, (tUBUG, s) is still a minimum cut. We say that a cut C = (tUBy UGy, By UG Us)

is a maximal min cut if the number of vertices in the s-part is maximal.

By G
. -
t& — M\ 's
./
> C

In the network, do the following:

e Step 1: Find a maximal min cut C = (tUB2 UGy, By UG Us) in N(¢, p, @) and goto Step 2.

e Step 2: First observe that any edge e = (4,7) from G2 to B; cannot carry any flow in a
max-flow, since it goes from the t-side of the min-cut to the s-side. Next, suppose there is an
edge e = (j,1) from G to Bs, corresponding to segment s € Qi, with good(s) = j. Because
C is a min cut, the edge is saturated in a maximal flow, therefore buyer i must be able to
afford the whole segment s of good j after she got all her forced goods. We update «(j) to
be a(j) — value(s) and we update m’(i) to m’(i) — value(s). Then we delete this edge from

the graph.

11



After doing the above two steps, we have: For i = 1,2, each buyer in B; is only adjacent to
goods in G;. We use N(€',p,a) to denote the network at this time.

Lemma 11 No subset S of Gy is tight in N(€',p, ).

Proof: If S C G5 and S is tight. By the property of N(¢',p,a), we have I'(S) C By. Suppose
bestT(S) = T. Then p(S) —a(S) = m/(T) +¢(S,T'(S) —T). Now if we move S and T' to the s-part,

the change of the value of the cut is
—(p(S) — a(S)) +m(T) + (S, =T)=0

Therefore we get a minimum cut of larger s-part, contradiction. O

Now let § = p(fgl2). For each g; € Ga, let p); = (1 + §)p; and for each good which is not in G,

keep its price unchange. In this way, we get a new price vector p'. If € is small, then p' is close to

p. We can choose € small enough such that every subset of Gy is still not tight under the price p'.
Because p is our original equilibrium price, under the price p every good can be sold out, no subset
of G is overtight. Now we didn’t change the prices of goods in G, therefore no subset of G is

overtight under p'. Therefore (t U BU G, s) is a minimum cut in the network N(e',p’,d/).

Lemma 12 p' is the equilibrium price for the money vector €.

Proof: Because § = %, we can see the value of the cut (¢, B U G U s) equals the value of the
cut ((tUBUG,s) in N(¢,p',a'). Therefore by the argument above, they are both minimum cuts.
Therefore p’ is the equilibrium price. O

The second case is

Z value(Qq) < ep = Z value(Q)

1<I<k;—1 1<I<k;
Because p is the equilibrium price, buyer 1 must be able to use up all her money under the price
p. Therefore all her flexible segments in @), are fully allocated. Allocate these goods to her and
delete the corresponding edges from the network. Now if we raise e; to €] = e; + ¢, then all the
segments in Qg, become forced and some new segments become flexible. Suppose o' is the new
forced allocation, then consider the network N(e',p,a’). Because all the goods can be sold out
under price p, now buyer 1 has even more money, all the goods can still be sold out under price p.
Therefore (tUB UG, s) is a minimum cut in N(¢’, p, o). Then just use the same argument in case
1, we can show that the change of the price is very small.

Now we drop the money of buyer 1. Suppose e] = (1 —€)e;. We can choose e small enough such
that Y0 <k, 1 value(Qq) < €] < Yi<j<k, value(Qq). Therefore the forced and flexible segments
will not Eh_ange. o

€e

Let po = min{p; : 1 < j <n'} and §' = HL. For each good j, let P = (1—3)p;j.

Lemma 13 In the network N(e',p', ), (t UBUG,s) is a minimum cut.

12



Proof: We only need to prove that no subset of G is overtight in the network. For any S C G, let
best'(S) be the new best value of S under e’. Therefore best'(S) > best(S) — ee;. Because p is the
equilibrium price, we have p(S) — a(S) < best(S). Therefore we have:

best'(S)

> best(S) — eeq

> p(S) — a(S) — eeq

> p(S) — a(S) — d'p(S)
=p'(S)—a(S) O

Now we can play the same trick to show the change of the price is small.

Next we fix the money and change buyer 1’s utility. Suppose s is one of the segments. If s is
her forced or undesirable segment, then if we change rate(s) or right(s) slightly, the network will
not change so the equilibrium price will not change. Now we suppose s is her flexible segment and
without loss of generality we may assume good(s) = 1. Let S = {j € G : j # 1,5 is adjacent to
buyer 1}. Now we increase rate(s) to be (1 + €)rate(s). In the network, all the edges from S to
buyer 1 are deleted.

Suppose in the original network N, f is a maximal flow. Now we delete the edges between S
and buyer 1, we just decrease the flow values of f to 0 at these edges and keep the balance condition
to get a flow f’. So we can view f’ as a flow in our new network N'. Because f is a maximal flow
in N, there is no path from s to ¢ in N’s residue graph N;. Therefore there is no path from s to ¢
in Ny, Thus f'is a maximal flow.

Now in N’, find a maximal min cut C = (t U Bo U G2, B; U Gy U s). We may assume buyer
1 is in By. Because f’ is a maximal flow, edges from G5 to By and from G to By are saturated
by f’ in N’, hence they are also saturated by f is N. Therefore we can arrange the corresponding
segments to forced allocation, then delete the edges from the network. Therefore we may assume
in N’ the edges always go from G; to B;, i = 1,2. We may assume good 1 is in Gbs.

By lemma 8, every subset of G2 is not tight at this time. Now for each j € Go, let p'(j) =
(1462)p(j); for each j € Gy, let p'(5) = p(j)(1—01). Here 61 and &2 satisfy the following equations:

01P(G1) = 02P(G2) (5)
1 _ 1+e€ (6)
1-61 1+

If 61 and d; satisfy (6) then every edge from S N Gy to buyer 1 will come back. If §; and do satisfy
(5) then the cut value of (¢N B NG, s) will be equal to the cut value of (¢, BNGNs). If we choose
€ small enough, every subset of G5 is still not tight. Because all the edges from S N G; to buyer
1 come back, no subset of G will be overtight, therefore (¢t BN G,s) and (¢, BN G N s) will be
min cuts hence the price p' is the equilibrium price. Since € is small, the change of the price is also

small.
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Now if we decrease rate(s), we can use a totally analogous argument to prove that the change
of the price will be small.

At last, we fix the money, fix the rates of segments but change the right end right(s) of one
of buyer 1’s segments s. Again, if the segment is her forced segment or undesirable segment, then
we can make the change small enough such that everything keeps the same so the equilibrium
price keeps the same. Now we suppose s is her flexible segment. If in the original equilibrium, the
segment s is not fully allocated, then we can also make the change small such that the equilibrium
price keeps unchange. Now we suppose s is fully allocated. We may assume good(s) = 1. If right(s)
increases slightly, we don’t need to make any change, the equilibrium price will not change. So the
only case remaining is to decrease right(s) slightly.

In the original network before we change right(s), allocate all the fully allocated segments in
the maximal flow and delete the corresponding edges in the network. Suppose now we decrease
the right(s) by e, therefore good 1 will have surplus value € and buyer 1 will spend her money to
some other goods. In the new network, suppose edges (ji,1), (j2,1), ..., (jk,1) are added into the
graph. Pick a j among {41, ..., jx }. Now we get a new price p’ by decreasing the price of p; by € and
increasing the price of j by e. If there is an edge (4,%) in the graph, since we have already allocated
all the fully allocated edges, the edge (j,%) is not saturated in the original maximal flow, which
means the corresponding segment is not fully allocated in the original equilibrium. Therefore we can
choose € small enough such that all these segments are not fully allocated in the new equilibrium.
Therefore p’ is the equilibrium price. Therefore the change of the equilibrium price is also very
small.

By the above argument, the equilibrium price is continuous.

5.2 Equilibrium allocations

In this section, we prove the following theorem:
Theorem 14 The set of equilibrium allocations X (m,U) is upper but not lower hemicontinuous.

Proof: First of all, we prove that the set of equilibrium allocations is upper hemicontinuous. Given
a sequence of money vectors {e*} utilities {U*}, let {p*} be the corresponding equilibrium prices
and {.’Ek} be a corresponding equilibrium allocations. Suppose e¥ — €0, U¥ — U9, p¥ — p® and
zF — 20, Here U¥ — U? means for each segment s* in U¥, there is a segment s® in U° such that
rate(s*) — rate(s®) and right(s*) — right(s?). We want to show z° € X (e°,U°). Let N* be the
corresponding networks for (e¥, U*) and N° be the network for (¢, U°). We have the following two

lemmas:

Lemma 15 If s° is a forced segment of buyer i under (e, U°, p%), then for large enough k, s* is a
forced segment under (ek, U, p*).
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Lemma 16 If (j,4) is not in the edge set of N°, then when k is large enough, (j,i) is not in the
edge set of N.

Now for fixed i and j, suppose s9, ..., s are all the segments for good j of buyer i. Suppose s?c

is the last forced segment.
Lemma 17 x?j > right(s?).

Proof: If x?j < right(s(}), then for k large enough, a:fj < rz'ght(s’fc). Because 35’@ is forced, by lemma,

k

15, 3’} is forced. However, z* is equilibrium, so wfj > right(s’;), contradiction.

Definition 18 We use force®(j) to denote the right end of buyer i’s last forced segment for good
§ under (ek,U*, pk), k =0,1,2,....

Now we have two cases:

Case 1: (j,4) is not in the edge set of N°. Therefore buyer i does not have any flexible
segment for good j. By Lemma 16, when k is large, (j,4) is not in the edge set of N*. Therefore
xfj = force®(j) and s’} is the last forced segment for each k. Thus rz'ght(s’}) = forcek(j) = :vfj
Therefore force®(j) = right(s%) =lim m’ght(s’}) =lim :vf] = m?j. So in this case, we just allocate
value acgj of good j to buyer 3.

Case 2: (j,4) is in the edge set of NC. In this case, 39‘+1 is buyer ’s flexible segment for good
j. If x?j > Tight(89+1), then for & large enough, we have xfj > m’ght(sl}ﬂ). Therefore s’}H is

forced. Since s?c 41 1s flexible, the only possibility is s’} 41 18 forced for each k and e? = > 0

1<I<k;
where @Y, ..., ngl are sets of forced segments and Qgi is the set of flexible segment. Thus we have

xfj—right(sljcﬂ) — 0, hence z;; = right(sgﬂ), contradiction. Therefore we have m?j < right(sgﬂ),
then we can allocate value mgj of good j to buyer i. The above implies that 20 € X (e?, U?).
Because the linear utility is a special case of the spending constraint utility(see [8]), the set of

equilibrium allocations is not lower hemicontinuous.
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