
Arithmetic circuits, syntactic multilinearity, and the

limitations of skew formulae

Meena Mahajan and B. V. Raghavendra Rao

The Institute of Mathematical Sciences, Chennai 600 113, India. {meena,bvrr}@imsc.res.in

Abstract. Functions in arithmetic NC1 are known to have equivalent constant width polynomial
degree circuits, but the converse containment is unknown. In a partial answer to this question, we
show that syntactic multilinear circuits of constant width and polynomial degree can be depth-reduced,
though the resulting circuits need not be syntactic multilinear. We then focus specifically on polynomial-
size syntactic multilinear circuits, and study relationships between classes of functions obtained by
imposing various resource (width, depth, degree) restrictions on these circuits. Along the way, we
obtain a characterisation of NC1 (and its arithmetic counterparts) in terms of log width restricted
planar branching programs. We also study the power of skew formulae, and show that even exponential
sums of these are unlikely to suffice to express the determinant function.

1 Introduction

Among the parallel complexity classes, the class NC1 of boolean functions computed by
logarithmic depth polynomial size circuits has several equivalent characterisations, in the
form of bounded width branching programs, polynomial size formulae and bounded width
circuits of polynomial size. Its subclass AC0, consisting of polynomial size constant depth
unbounded fan-in circuits, has also been characterised via restricted branching programs.
See Figure 1.

SkewF

��

BWBP=NC1 //

��

LWBP //

��

BP

��
SAC0

88ppppppppppp

AC0 = BWrGP

66mmmmmmmmmmmm

sSC0=SC0

OO

// sSC1 // SAC1

Fig. 1. Boolean complexity classes around NC1

However, when we consider the counting and arithmetic versions of those classes which
are equivalent to NC1, they seem to represent different classes of functions. In [12], it was
shown that counting the total weights of paths over Z in a bounded width branching program
is equivalent to the functions computable by log depth polynomial size arithmetic circuits
over Z, i.e. GapBWBP = GapNC1. In [14], this study was extended to bounded width circuits
of polynomial degree and size, i.e. sSC0, showing that GapNC1 ⊆ GapsSC0, but it left open
the question of equality of these classes.

The question of whether GapsSC0 is in GapNC1 can be seen as a depth reduction problem
for bounded width circuits. We do not have an answer for this general question. So it is
natural to ask if there are any restrictions on the circuit so that depth reduction is possible.

Electronic Colloquium on Computational Complexity, Report No. 48 (2008)

ISSN 1433-8092

Syntactic multilinearity is a restriction which has been studied in the literature. Syn-
tactic multilinear circuits are those in which every multiplication gate operates on disjoint
set of variables. Obviously, the polynomials computed by syntactic multilinear circuits are
multilinear. The syntactic multilinear restriction is very fruitful in the sense that there are
known unconditional separations and lower bounds for these classes (see [17–19]).

We show that depth reduction for small width circuits is possible if the circuit is syntactic
multilinear; however, the depth-reduced circuit may not be syntactic multilinear or even
multilinear. The setting we consider is more general than that of [12] and [14]; here the
input variables are allowed to take arbitrary values from the underlying ring K. The main
result is that polynomial size, constant width syntactic multilinear circuits can be simulated
(non-uniformly) by log depth bounded fan-in circuits of polynomial size, but this construction
need not preserve the syntactic multilinearity property.

Once we take up the restriction of syntactic multilinearity for these arithmetic circuits, it
is worthwhile to explore the relationships among the syntactic multilinear arithmetic circuit
classes close to arithmetic NC1.

In the model of branching programs, syntactic multilinearity is a well-studied notion and
it is referred to as read-once branching programs (see [8] for example). There are several
known lower bounds for syntactic multilinear branching programs. (see e.g. [7, 6]). For for-
mulae, syntactic multilinearity is defined exactly as for circuits. A careful observation of the
depth reduction for poly size arithmetic formula as given in [9] shows that it preserves syn-
tactic multilinearity. Also some of the constructions in [12–14], relating branching programs
and formulae, can be shown to preserve syntactic multilinearity.

In [3], the class of bounded depth arithmetic circuits is characterised in terms of a re-
stricted version of grid programs, rGP, of bounded width BWrGP. We observe that this
construction can be extended to show a new (non-uniform) characterisation of arithmetic
NC1 in terms of restricted planar branching programs of log width LWrGP. In addition, this
can be shown to preserve syntactic multilinearity, for arithmetic NC1 as well as arithmetic
AC0.

We also study the class of polynomial size skew formulas, denoted SkewF. The motivation
for this study arises from Valiant’s characterisations of the classes VP and VNP (see [22];
also, for more exposure on algebraic complexity theory, the reader is referred to [10, 11]).
Valiant proved that every polynomial p(X) ∈ VNPK (where K is an arbitrary ring), and
in particular every polynomial in VPK, can be written as p(X) =

∑

e∈{0,1}m φ(X, e), where
the polynomial φ has an arithmetic formula of polynomial size. We know that the class of
“Permanent” (see e.g. [10]) polynomials is complete for VNP. It is also known [21] that the
class “Determinant” is equivalent to skew circuits of polynomial size. The question we ask
is: can we prove a similar equivalence in the case of skew circuits? That is, can we write
polynomials computed by skew circuits as an exponential sum of polynomials computed by
skew formulae? We show that this is highly unlikely, by showing that any polynomial which
is expressible as an exponential sum of skew formulae belongs to the class VNC1.

The existing and new relationships amongst the arithmetic classes (prefix a-) can be seen
in Figure 2; Figure 3 shows the corresponding picture for the syntactic multilinear classes

2

(prefix sma-). Note that our main depth-reduction result straddles the two figures, and along
with [14] gives sma-sSC0 ⊆ a-NC1 ⊆ a-sSC0.

a-SkewF

��

a-LWrGP=
a-BWBP=a-NC1

//

��

a-LWBP //

��

a-BP

��
a-SAC0

88qqqqqqqqqqqqq

a-AC0=a-BWrGP

66mmmmmmmmmmmm

a-sSC0 //

(over Z or Q)

44iiiiiiiiiiiiiiiiiiiiiiiii
a-sSC1 // a-SAC1

Fig. 2. Arithmetic classes around NC1

sma-BWrGP=
sma-AC0

// sma-BWBP //

��

sma-LWrGP=
sma-NC1

// sma-LWBP //

��

sma-BP

��
sma-sSC0 // sma-sSC1 // sma-SAC1

Fig. 3. Relationship among syntactic multilinear classes

The rest of the paper is organised as follows. Section 2 introduces basic definitions. In
Section 3 we prove that small-width syntactic multilinear circuits can be depth-reduced. In
Section 4, we establish the containments among the syntactic multilinear classes and obtain
a new characterisation for NC1 in terms of a restricted class of grid branching programs. In
Section 5 we describe our results concerning skew formulae.

2 Preliminaries

Boolean circuit classes: A boolean circuit is a directed acyclic graph, where nodes are labelled
by {0, 1,∧,∨, x1, . . . , xn,¬}, where nodes with label from {0, 1, x1, . . . , xn} are circuit inputs,
and designated nodes of zero out-degree are called the output gates. The fan-in (fan-out) of
a gate is its in-degree (out-degree). The size, width, depth and degree of a circuit are defined
in the standard sense (e.g. , see [14],[25]). Unless otherwise stated, fan-in is assumed to be
bounded. NC1 denotes the class of boolean functions fn : {0, 1}n → {0, 1} which can be
computed by boolean circuits of depth O(log n) and size poly(n). SCi denotes the class of
functions computed by polynomial size circuits of width O(logi n). sSCi is the class of boolean
functions computed by polynomial degree, polynomial size circuits of width O(logi n). SACi

denotes the class of boolean functions computed by polynomial circuits of size poly(n) and
depth O(logi n), where ∨ gates can have unbounded fan-in. AC0 denotes the class of boolean
functions which can be computed by unbounded fan-in constant depth boolean circuits of
size poly(n).

A formula is a circuit where every non-input gate has fan-out bounded by one. F denotes
the set of boolean functions which can be computed by polynomial size formulae. LWF

3

denotes the class of functions computed by boolean formulae of log width and polynomial
size. Without loss of generality, NC1, AC0 and SAC0 circuits can be assumed to be formulae.

Branching programs: A branching program (BP) is a directed acyclic graph (usually lay-
ered) with two designated nodes s and t. Edges in this graph are labelled by literals from
{x1, . . . , xn,¬x1, . . . ,¬xn, 0, 1}, where xi ∈ {0, 1} are the set of inputs. A BP is said to accept
its input if and only if there exists a s-t path, in which every edge label evaluates to 1. A
BP can also be viewed as a skew-circuit, i.e. a circuit where every ∧ gate has at most one
non-circuit input. Let BWBP and LWBP denote the functions computed by constant width
and log width branching programs of polynomial size respectively.

G-graphs are the graphs that have planar embeddings where vertices are embedded on a
rectangular grid, and all edges are between adjacent columns from left to right. Let BWGP

denote the class of boolean functions accepted by constant width polynomial size branching
programs which are G-graphs. In the above graph, the node s is fixed as the leftmost bottom
node and t is the rightmost top node. In [3], a restriction of G-graphs is considered where the
width of the grid is a constant, and only certain kinds of connections are allowed between
any two layers. Namely, for width 2k + 2, the connecting pattern at any layer is represented
by one of the graphs Gk,i (see figure 2) for 0 ≤ i ≤ 2k + 2. Let BWrGP denote the class
of boolean functions accepted by constant width polynomial size branching programs that
are restricted G-graphs, and LWrGP the class corresponding to log width polynomial size
programs that are restricted G-graphs. (see [3]).

G0,1(c)G0,0
G0,2

Gk−1,i

Gk,i Gk,2k+1 Gk,2k+2

c

Fig. 4. The possible patterns between two layers of rGPs

The following proposition summaries the known relationships among the boolean com-
plexity classes defined above; see for instance [25].

Proposition 1 ([3, 4, 20, 13, 24]). The following results are known.

AC0 = BWrGP

4

NC1 = BWBP = SC0 = sSC0 = F = LWF

SAC1 = Circuit Size, Deg(poly(n), poly(n))

Arithmetic and counting classes: An arithmetic circuit over a ring 〈K, +,−,×, 0, 1〉 is a
circuit where the nodes are labelled from {×, +} and constants from K along with input
variables x1, . . . , xn that take values in K. The constants {−1, 0, 1} are assumed to be the
only constants from K available free of cost. The degree of a node f is inductively defined as
follows: the degree of constants and circuit input variables is 1. If f = g × h then deg(f) =
deg(g)+deg(h), and if f = g+h then deg(f) = max{deg(g), deg(h)}. The degree of a circuit
is the degree of its output node. Note that the degree of the polynomial computed by an
arithmetic circuit is bounded by the degree of the circuit.

The arithmetic circuit classes corresponding to the above defined boolean classes consist
of functions f : K∗ → K, and are defined as follows.

BWBP[K] = {f : K∗ → K | f = sum of weights of all s ; t paths in a BWBP}

Here the weight of a path is the product of the labels of edges along the path.

NC1[K] =
{

f | f has a poly size, O(logn) depth, fan-in 2
circuit.

}

sSCi[K] =

{

f | f has a poly size, O(logi n) width, poly(n) degree
circuit.

}

For notational convenience we drop the K where understood from context to be any (or
a specific) ring. To distinguish from the boolean case, we write C[K] as a-C. The following
proposition summarises the known relationships among the arithmetic classes,

Proposition 2 ([3, 12, 14]).

a-BWrGP = a-AC0 ⊆ a-BWBP = a-NC1 ⊆ a-sSC0

Multilinearity and syntactic multilinearity: Multilinear and syntactic multilinear circuits are
as defined in [18]. Let C be an arithmetic circuit over the ring K, and let X = {x1, . . . , xn}
be its input variables. For a gate g in C, let Pg ∈ K[X] be the polynomial represented at g.
Let Xg ⊆ X denote the set of variables that occur in the sub circuit rooted at g. We call C
multilinear if for every gate g ∈ C, Pg is a multilinear polynomial. C is said to be syntactic
multilinear if for every multiplication gate g = h × f in C, Xh ∩ Xf = ∅.

In the case of formulae, the notion of multilinearity and syntactic multilinearity are (non-
uniformly) equivalent.

Viewing branching programs as skew-circuits, a multilinear branching program P is one
which computes multilinear polynomials at every node, and P is syntactic multilinear if in
every path of the program (not just s-to-t paths), no variable appears more than once; i.e.
the branching program is syntactic read-once.

For any arithmetic complexity class a-C, we denote by ma-C and sma-C respectively the
functions computed by multilinear and syntactic multilinear versions of the corresponding
circuits.

In [19] it is shown that the depth reduction of [23] preserves syntactic multilinearity; thus

5

Proposition 3 ([19]). Any function computed by a syntactic multilinear polynomial size
polynomial degree arithmetic circuit is in sma-SAC1.

3 Depth reduction in small width sm-circuits

This entire section is devoted to a proof of Theorem 1 below, which says that a circuit width
bound can be translated to a circuit depth bound, provided the given small-width circuit is
syntactic multilinear.

Theorem 1. Let C be a syntactic multilinear circuit of length l and width w and circuit degree
d, with X = {x1, . . . , xn} as the input variables, and constants {−1, 0, 1} from the ring K.
Then there is an equivalent circuit C ′ of depth O(w2 log l + log d) and size O(2w2+3wl25w +
4lwd).

An immediate corollary is,

Corollary 1. sma-sSC0 ⊆ a-NC1.

It can also be seen that if we apply Theorem 1 to a syntactic multilinear arithmetic circuit of
poly-logarithmic width and quasi-polynomial size and degree, then we get a poly-logarithmic
depth circuit of quasi-polynomial size. Thus

Corollary 2.

sma-Size, Width, Deg(2poly(log), poly(log), 2poly(log))

⊆ a-Size, Depth(2poly(log), poly(log))

We first give a brief outline of the technique used. The main idea is to first cut the
circuit C at length d l

2
e, to obtain circuits A (the upper part) and B (the lower part). Let

M = {h1, . . . , hw} be the gates of C at level d l
2
e. A is obtained from C by replacing the

gates in M by a set Z = {z1, . . . , zw} of new variables. Each gate g of A (or B) represents a
polynomial pg ∈ K[X, Z], and can also be viewed as a polynomial in K[Z], where K = K[X].
Since A and B are circuits of length bounded by d l

2
e, if we can prove inductively that the

coefficients of the polynomials at the output gates of A and B can be computed by small
depth circuits (say O(w log(l/2)), then, since pg has at most 2w monomials in variables from
Z, we can substitute for the zi’s by the value at the output gate gi of B (i.e. polynomials
in K[X]). This requires an additional depth of O(w). See Figure 3.

The first difficulty in the above argument can be seen even when w = O(1). Though C is
syntactic multilinear, the circuit A need not be multilinear in the new dummy variables from
Z. This is because there can be gates which compute large constants from K (i.e. without
involving any of the variables), and hence have large degree (bounded by the degree of the
circuit). This means that the polynomials in the new variables Z at the output gates of A can
have non-constant degree, and the number of monomials can be large. Thus the additional
depth needed to compute the monomials will be non-constant; hence the argument fails.

To overcome this difficulty, we first transform the circuit C into a new circuit C ′, where
no gates compute “large” constants in K. Let C be a syntactic multilinear circuit of length l

6

�
�
�
�
�
�
�
�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

New dummy variables

gw

C
g1

Circuit to compute [ph, T]

as coefficient of a polynomial ph

in K[U]

Coefficients [pg, R] of

pg as polynomials in K[U]

zwz1

. . .

A B

uwu1

d l
2
e

uwu1

h1 hw. . .

B

A pf as polynomials in K[Z]

Coefficients [pf , S] of

Fig. 5. Breaking up circuit C into A and B

and width w. Assume without loss of generality that every gate in C has a maximum fan-out
of 2. For a gate g ∈ C, define the sets

leaf(g) = {h ∈ C | h is a leaf node in C, and g is reachable from h in C}

G = {g ∈ C | leaf(g) ∩ X = ∅}

Thus G is exactly the nodes that syntactically compute constants. Now define C ′ as a new
circuit which is the same as C except that, for all g ∈ G, we replace the ith (i = 1, 2) outgoing
wire of g by a new variable ygi

. Note that the number of such new variables introduced is
at most 4lw. (The constants can appear anywhere in the circuit. So each gate can have two
new variables on its output wires and two new variables on its input wires.) Let Y = {ygi

|
g ∈ G, 1 ≤ i ≤ 2}. We show that C ′ is syntactic multilinear in the variables X ∪ Y .

Lemma 1. The circuit C ′ constructed above is syntactic multilinear in the variables X ∪Y .
Further, C ′ does not have any constants.

Proof. The circuit C ′ is clearly syntactic multilinear in the variables from X. For any gate
g in C ′, let Vg denote leaf(g) ∩ Y . Suppose ∃h ∈ C ′, h = g × f , such that h is not syntactic
multilinear. Then a variable y from Y must be used by f and g, so Vf ∩ Vg 6= ∅. Since each
variable from Y occurs on exactly one wire, this implies that there is a gate e ∈ C such
that e has a path to both f and g (e could be the head of the wire carrying y), and y ∈ Ve.
Choose the highest such e (closest to h); then the e − f and e − g paths are disjoint. Since
C is syntactic multilinear, it must be the case that e ∈ G. But by the construction above,
we have ye1 ∈ Vf and ye2 ∈ Vg, and due to these new variables ye1 and ye2, y is not in Vf and
Vg at all. (In fact, none of the variables in Ve are in Vf or Vg.) ut

7

We now show, in Lemma 2, how to achieve depth reduction for syntactic multilinear
bounded width circuits which have no constants. Then we complete the proof of Theorem 1
by explicitly computing the constants (i.e. the actual values represented by variables in Y)
computed by the circuit C.

Lemma 2. Let C be a width w, length l syntactic multilinear arithmetic circuit with leaves
labelled from X ∪ Y (no constants). Then there is an equivalent arithmetic circuit D of size
O(2w2+3wl25w) and depth O(w2 log l) which computes the same function as C.

To establish lemma 2, we use the intuitive idea sketched in the beginning of the section;
namely, slice the circuit horizontally, introduce dummy variables along the slice, and proceed
inductively on each part.

Now the top part has three types of variables: circuit inputs X, variables representing
constants Y as introduced in Lemma 1, and variables along the slice Z. The variables Z
appear only at the lowest level of this circuit. Note that this circuit for the top part is
syntactic multilinear in Z as well (because there are no constants at the leaves).

To complete an inductive proof for Lemma 2, we need to show depth-reduction for such
circuits. We use Lemma 3 below, which tells us that viewing each gate as computing a poly-
nomial in Z, with coefficients from K = K[X, Y], there are small-depth circuits representing
each of the coefficients. We then combine these circuits to evaluate the original circuit.

More formally, let C be a width w, length l, syntactic multilinear circuit, with all leaves
labelled from X ∪ Y ∪ Z (no constants), where variables from Z = {z1, . . . zw} appear only
at the lowest level of the circuit. Let h1, . . . , hw be the set of output gates of C i.e. gates
at level l. Let phi

∈ K[X, Y, Z] denote the multilinear polynomial computed at hi. Note that
phi

can also be viewed as a polynomial in K[Z], i.e. a multilinear polynomial with variables
from Z and polynomials from K[X, Y] as its coefficients; we use this viewpoint below. For
T ⊆ {1, . . . , w}, let [phi

, T] ∈ K[X, Y] denote the coefficient of the monomial mT =
∏

j∈T zj

in phi
. The following lemma tells us how to evaluate these coefficients [phi

, T].

Lemma 3. With circuit C as above, ∀h ∈ {h1, . . . , hw} and T ⊆ {1, . . . , w}, there is a
bounded fan-in arithmetic circuit Ch,T of size bounded by 2w2+2wl25w and depth O(w2 log l),
with leaves labelled from X ∪ Y ∪ {−1, 0, 1}, such that the value computed at its output gate
is exactly the coefficient [ph, T] evaluated at the input setting to X ∪ Y .

Proof. We proceed by induction on the length l of the circuit.
Basis : l = 1. The different possibilities are as follows. Here, a is an element of K[X, Y].

h = zizj : [ph, T] = 1 for T = {i, j} and 0 otherwise.
h = azi: [ph, T] = a for T = {i} and 0 otherwise.

h = a: [ph, T] = a for T = ∅ and 0 otherwise.
h = zi + zj : [ph, T] = 1 for T = {i} or T = {j} and 0 otherwise.
h = a + zi: [ph, ∅] = a, [ph, {i}] = 1, and [ph, T] = 0 otherwise.

Hypothesis: Assume that the lemma holds for all circuits D of length l′ < l and width w.
Induction Step: Let C be a circuit of length l, syntactic multilinear in X ∪ Y ∪Z, where

variables from Z appear only at the input level and C satisfies the conditions as in Lemma 1.
Let {h1, . . . , hw} be the output gates of C. Let {g1, . . . , gw} be the gates of C at level l′ = d l

2
e.

8

Denote by A the circuit resulting from replacing gates gi with new variables z′i for 1 ≤ i ≤ w,
and removing all the gates below level l′, and denote by B the circuit with {g1, . . . , gw} as
output gates, i.e. gates above the gi’s are removed. We rename the output gates of A as
{f1, . . . , fw}. Both A and B are syntactic multilinear circuits of length bounded by l′ and
width w, and of a form where the inductive hypothesis is applicable. For i ∈ {1, . . . , w}, pfi

is a polynomial in K[Z ′] and pgi
is a polynomial in K[Z], where K = K[X, Y].

Applying induction on A and B, for all S, Q ⊆ {1, . . . , w}, [pfi
, S] and [pgi

, Q] have circuits
Afi,S and Bgi,R. Note that phi

(Z) = pf i(pg1(Z), . . . , pgw
(Z)). But due to multilinearity,

pfi
(Z ′) =

∑

S⊆[w]

(

[pfi
, S]
∏

j∈S

z′j

)

pgj
(Z) =

∑

Q⊆[w]

(

[pgj
, Q]

∏

s∈Q

zs

)

Using this expression for pfi
in the formulation for phi

, we have

phi
(Z) =

∑

S⊆[w]

(

[pfi
, S]
∏

j∈S

pgj
(Z)

)

Hence, we can extract coefficients of phi
as follows. The coefficient of the monomial mT , for

any T ⊆ [w] in phi
is given by

[phi
, T] =

∑

S⊆[w]

[pfi
, S]
(

coefficient of mT in
∏

j∈S pgj
(Z)

)

If S has t elements, then the monomial mT is built up in t disjoint parts (not necessarily non-
empty), where the kth part is contributed by the kth polynomial pg in the above expression.
So the coefficient of mT is the product of the corresponding coefficients. Hence

[phi
, T] =

∑

S={ji,...,jt}⊆[w]

[pfi
, S]

∑

Q1, . . . , Qt :
partition of T

t
∏

k=1

[pgjk
, Qk]

We use this expression to compute [phi
, T]. We first compute [pfi

, S] and [pgj
, Q] for all

i, j ∈ [w] and all S, Q ⊆ [w] using the inductively constructed sub circuits. Then a circuit on
top of these does the required combination. Since the number of partitions of T is bounded by
ww, while the number of sets S is 2w, this additional circuitry has size at most w22www ≤ 2w2

(for w ≥ 2) and depth w log w + w + log w = O(w2).
Let s(l, w) and d(l, w) denote the size and depth of the new circuit Cph,T . Then from the

construction above, we have the recurrences

s(l, w) ≤ 2w2ws(l′, w) + 2w2

≤ 22ws(dl/2e, w) + 2w2

d(l, w) ≤ d(dl/2e, w) + O(w2)

9

Note that l′ = dl/2e satisfies l′ ≤ 3l/4. By induction, s(l′, w) ≤ 2w2+2w(l′)cw for some constant
c to be chosen later. So

s(l, w) ≤ 22w2w2+2w(l′)cw + 2w2
≤ 2w2

24w(3l/4)cw + 2w2

≤ 2w2
[24w(3l/4)cw + 1] ≤ 2w2

[24w(3l/4)cw] 2

= 2w2+2wlcw [22w(3/4)cw2] ≤ 2w2+2wlcw

where the last inequality holds whenever 8(3/4)c ≤ 1, say c ≥ 25.
Similarly, solving the recurrence for d(l, w) gives d(l, w) = O(w2 log l). ut

Now, finally, we can establish Lemma 2.

Proof (of lemma 2). We first relabel all the nodes at the lowest level by new variables
z1, . . . , zw. Then, applying Lemma 3, we obtain circuits for [pg, T], where g is an output
gate of C and T ⊆ {1, . . . , w}. Now, to compute pg, we sum over all T the values [pg, T] ×
∏

j∈T val(zj), where val(zj) denotes the original variable for which zj was substituted. This
adds O(w) to the overall depth of the circuit, thus resulting an overall depth of O((w +
w2 log l)) = O(w2 log l). The resulting circuit size is bounded by O(s2w), where s is an
upper bound on the size of the circuits constructed in Lemma 3, and hence is bounded by
O(2w2+3wl25w) ut

And with lemma 2 established, we can now get the desired depth-reduction result.

Proof (of Theorem 1). Given circuit C, we construct C ′ as per Lemma 1, and then apply
Lemma 2 to obtain an equivalent circuit D of depth O(w2 log l) and size O(2w2+2wl25w), which
uses variables from X ∪ Y . To eliminate variables from Y , let val(ygi

) denote the value of
the gate g in the original circuit C. Since the degree of C is d and C uses only the constants
{−1, 0, 1}, we have −2d ≤ val(ygi

) ≤ 2d, ∀g ∈ G, i ∈ {1, 2}. These values require at most
d + 1 bits for their representation. For every r ∈ {−2d, . . . , 0, . . . , 2d}, there is an arithmetic
circuit of depth O(log d) and size O(d) which computes r. Now replace all occurrences of
variables ygi

∈ Y by the (hardwired) arithmetic circuit which computes val(ygi
). The new

circuit D′ thus constructed has size O(2w2+3wl25w + 4lwd) and depth O(w2 log l + log d). ut

Note that the last step in the construction above hardwires constants explicitly computed
by C. In this sense (and only because of this), the overall construction is not uniform.

Remark 1. If the constant-width circuit C we start with is multilinear but not syntactic
multilinear, then the circuit C ′ as in Lemma 1 need not be multilinear in the variables
X ∪Y . This is one place where the above construction crucially uses syntactic multilinearity,
and does not generalise to multilinear circuits. See Figure 6 for an example.

Remark 2. If the circuit is allowed to use arbitrary constants from K, then Lemma 1 is not
needed in the above construction.

Even so, the result does not generalise to multilinear C, because Lemma 3 requires
syntactic multilinearity in the slice variables Z.

10

N

L

??~~~~~~~
N

``@@@@@@@

N

??~~~~~~~
N

``@@@@@@@

??~~~~~~~
1

^^>>>>>>>>

−1

>>||||||||
x

``AAAAAAAA

>>}}}}}}}}
1

``AAAAAAAA

N

L

??~~~~~~~
N

``@@@@@@@

N

??~~~~~~~
N

``@@@@@@@

??~~~~~~~
y3

__????????

y2

>>}}}}}}}
x

``AAAAAAAA

>>}}}}}}}}
y1

``AAAAAAAA

Fig. 6. C′ is not multilinear after reduction as in Lemma 1

4 Relationships among syntactic multilinear classes

This section explores the relationships among the syntactic multilinear versions of the arith-
metic classes which are related to NC1.

A classical result from [9] shows that for every arithmetic formula F of size s, there is
an equivalent arithmetic formula F ′ which has depth O(log s) and size poly(s). A careful
observation of this proof shows that if we start with a syntactic multilinear formula F , then
the depth-reduced formula F ′ is also syntactic multilinear.

Theorem 2. Every syntactic multilinear formula with n leaves has an equivalent syntactic
multilinear circuit of depth O(logn) and size O(n).
In particular, sma-F ⊆ sma-NC1.

Proof. By simultaneous induction on the number of leaves in the formula, we can prove the
following statements. This is exactly the construction of [9], analysed carefully for syntactic
multilinearity.

(i) If F is a syntactic multilinear formula with n leaves, then there is an equivalent syntactic
multilinear circuit F ′ of depth d4 log ne and size 2n.

(ii) If x is any leaf in F , then we can express F as F ′ = Ax + B, where A, B are syntactic
multilinear, do not depend on x and and are of depth d4 log ne.

In the base case, there is either a single variable or a constant, and the claim holds
trivially.

11

Let X be a tree separator for F , with children L, R, so that X = L op R. Replace the
whole subtree under X by a new variable x. By inductive statement (ii), we have F” = Ax+B
where A, B are as above (i.e. they are both syntactic multilinear and do not depend on X).
Also by inductive statement (i), we have syntactic multilinear formula L′, R′ equivalent to
L, R of small depth. Thus we have F ′ = A.(L′

op R′) + B. Since A does not depend on any
variable below X, F ′ is syntactic multilinear. Also we can see that it has the required depth.

To prove the second half of the statement above, let x be any leaf in F . Now find a tree
separator X = L op R such that the subtree at one of its children, say L, contains x as a leaf
and is of size < n/2. Then, by inductive statement (ii) applied to L, L′ = Ax + B, where
A, B are independent of x, syntactic multilinear and of small depth. Now replace the subtree
at X by a new variable y. Applying inductive statement (ii), we have F ′ = Cy + D, where
C, D are syntactic multilinear small depth formulae which do not depend on y (i.e. L op R).
Applying inductive statement (i) to R, we have an equivalent small-depth R′.

Case 1: op = +. Then F ′ = C((Ax + B) + R′) + D = CAx + (CB + CR′ + D). This is
again syntactic multilinear since C does not depend on y, i.e. Ax + B + R.

Case 2: op = ×. Then F ′ = C(Ax + B)R′ + D = CAR′x + (CBR′ + D). Here again F ′ is
syntactic multilinear since C does not depend on A, B, R′, and also because A and B do
not share any variables with R′.

Since we are constructing a circuit and not a formula, we don’t need to replicate the circuits
for C and R′. For details about the size/depth, see the analysis in [9]. ut

It is easy to see that the path-preserving simulation of a constant width branching pro-
gram by a log depth circuit preserves syntactic multilinearity:

Lemma 4. For any syntactic multilinear branching program P of width w and size s over
ring K, there is an equivalent syntactic multilinear circuit C of depth O(log s) and size O(s)
with fan-in of + gate bounded by w (or alternatively, depth O(log w log s) and bounded fan-
in).
In particular, sma-BWBP ⊆ sma-NC1 and sma-BP ⊆ sma-SAC1.

Proof. Let l be the length of P (s = lw), and let ps,t denote the weighted sum of the directed
paths between nodes s and t. Let v1, . . . vw denote the nodes at the level l′ = dl/2e of P .
Then ps,t =

∑w

i=1 ps,vi
× pvi,t. Thus the depth and size of the inductively constructed circuit

satisfy the recurrences d(l) = 2 + d(l′) and s(l) = (3w)s(l′), giving the desired bounds. It is
clear that the circuit so constructed is syntactic multilinear; if it weren’t, the offending ×
gate would pinpoint a path in P that reads some variable twice. ut

It is also straightforward to see that the construction of [13], staggering a small-depth
formula into a small-width one, preserves syntactic multilinearity. Thus

Lemma 5. Let Φ be any sm-formula with depth d and size s. Then there is an equivalent
syntactic multilinear formula Φ′ of length 2s and width d.
In particular, sma-NC1 ⊆ sma-LWF.

12

Proof. For completeness we give a detailed proof here. The construction is by induction on
the structure of the formula Φ. The base case is when Φ is a single variable or a constant, in
which case the lemma holds trivially.

Suppose the lemma holds for any formula of depth at most d − 1. Consider the root
gate f of a formula Φ of depth d. Suppose f =

∑k

i=1 gi (respectively f =
∏k

i=1 gi). As the
depth of each formula gi is bounded by d − 1, by induction we have formulae g′

i of width
d − 1 and length bounded by si (the size of gi), computing the same function as gis. Place
the node corresponding to f with two children. At one child, place the formula g′

1; at the
other, place a series of no-op (i.e. ×1 or +0) gates till the last level of g′

1. Then give
the last no-op gate two children, place g′

2 at one child, and so on. The width of the new
formula Φ′ thus obtained is bounded by maxi width(g′

i) + 1, and its length is bounded by
∑

i length(g′
i)+1 ≤

∑

i si +1 ≤ s. Note that in this process, for any gate g in Φ the variables
it operates on are not changed in the new formula Φ′, that is, the only new gates which are
introduced in Φ′ are the no-op gates which are used for staggering, which only multiply by
the constant 1. Thus if Φ is syntactic multilinear then so is Φ. ut

From Lemma 5 and Theorem 2, we have the following equivalence.

Corollary 3. Over any ring K,
sma-F= sma-LWF= sma-NC1= sma-Formula-Depth,Size(log, poly).

A straightforward inductive construction of a branching program from a log depth formula
results in a log width BP and preserves syntactic multilinearity. But the reverse containment
may not hold. However, by restricting the branching program as in [3], we can obtain a
characterisation for a-NC1 which also preserves syntactic multilinearity. In [3] a character-
isation for bounded depth arithmetic circuits in terms of counting number of paths in a
restricted version of bounded width grid graphs is presented. We note that the characterisa-
tion given in [3] works for bounded depth arithmetic circuits over arbitrary rings, showing
that a-BWrGP = a-AC0. By closely examining the parameters in [3], we obtain a character-
isation for a-NC1 in terms of the restricted version of log width grid branching programs.
We also note that these constructions preserve syntactic multilinearity. In the statement and
proof below, we use the notion of alternation-depth: a circuit C has alternation depth a if
on every root-to-leaf path, the number of maximal segments of gates of the same type is at
most a. Also, for an rGP (and in fact any branching program) P , we denote by Var(P) the
set of variables that appear on some s-to-t path in P . For a formula F , Var(F) denotes the
variables appearing anywhere in the formula F ; if h is the root of F , then without loss of
generality Var(F) = Xh.

Lemma 6. Let Φ be an arithmetic formula of size s (i.e. number of wires) and alternation-
depth 2d over K and with input variables X ∈ Kn. Then there is a restricted grid program
P of length s2 + 2s (i.e. the number of edge layers) and width max{2, 2d}, where the edges
are labelled from Var(Φ) ∪ K, such that the weighted sum of s-to-t paths in P is equal to the
function computed by Φ.
Further, if Φ is syntactic multilinear, then so is P .

13

Proof. The construction here is exactly the same as in [3]; it is included here for completeness
in arguing, over more general parameters, that syntactic multilinearity is preserved. Without
loss of generality, assume that the formula Φ is such that all nodes in a particular layer
represent the same type of gate and two successive layers have different kind of gates. Also,
assume that Φ is height balanced, i.e. any root to leaf path in Φ is of length exactly 2d.
Further assume that the root is a × gate. If these conditions do not hold, then ensuring them
will blow up the size of Φ to at most s2, and increase the depth by at most 2. We assume
that s and a are the size and alternation depth of a formula already in this normal form.

We proceed by induction on the depth of the formula Φ. The base case is when d ≤ 1.
If the depth is 0, then Φ is either a variable or a constant in the underlying ring. In this
case the graph is G0,1(c) where Φ = c. If d = 1, then Φ is a product of linear factors, and a
suitable composition of G0,1(c) graphs and G0,2 represents it.

Suppose that for any (syntactic multilinear) formula F with alternation depth 2d′ < 2d
and size s′ (in the normal form described above), there is a (syntactic multilinear) restricted
grid program P of width 2d′ and length s′2 + 2s′, where P uses variables from Var(F).

Now let Φ be a normal form formula with alternation depth 2d. Consider the root gate
g of Φ. Let g1, . . . , gk be the children of g, where gi =

∑ti
j=1 gij . Let sij and 2dij = 2d − 2

respectively denote the size and alternation depth of the sub formula rooted at gij . Note
that s = k +

∑

i(ti +
∑

j sij). Applying induction on the sub-formula rooted at each gij ,
let Qij denote the resulting restricted grid program for the formula at gij . Now place the
Q′

ij
s (1 ≤ j ≤ ti) as in Figure 8 to get the program Pi, and connect the Pi’s as shown in

Figure 7 to get the desired program P . By the inductive hypothesis, length(Qij) ≤ s2
ij

+ 2sij

and width(Qij) ≤ 2dij . From the construction as above, we have length(Pi) = ti + 1 +
∑

j length(Qij) ≤ ti + 1 +
∑

j(s
2
ij

+ 2sij) and hence length(P) = k − 1 +
∑

i length(Pi) ≤

k − 1 +
∑

i((ti + 1) +
∑

j(s
2
ij

+ 2sij)) ≤ s2 + 2s. Note that the construction in Figure 8 adds
2 to the width and the construction in Figure 7 does not change the width. Hence the width
of P is bounded by 2 maxi,j dij + 2 = 2d.

If Φ is syntactic multilinear, then the formulae rooted at gij are all syntactic multilinear,
and for i 6= i′, Var(gi)∩ Var(gi′) = ∅. Thus, by the inductive hypothesis, the programs Qij are
syntactic multilinear, and only use variables from Var(gij), and hence the programs Pi (for
each i) only use variables from Var(gi). Thus for every i 6= i′, Var(Pi) ∩ Var(Pi′) = ∅. Since
each path in the final program goes through exactly one Qij for each i, it follows that P is
syntactic read-once. ut

We now establish the converse to Lemma 6. The proof of the converse as in [3] is uniform
and it produces a circuit rather than a formula. If we do not insist on uniformity of the
circuit, then we actually get a formula. Thus it can be shown that functions computed by
width 2w+2, length l restricted grid programs can be computed (non uniformly) by formulae
of depth 2w + 2 and size O(l).

Lemma 7. Let P be an arithmetic rGP of length l (number of edge layers) and of width
2w + 2 with variables from X ∈ K. Then there exists an equivalent arithmetic formula
Φ over K, with alternation depth at most 2w + 2, size (number of wires) at most 2l, and

14

. . .P1 P2 Pk

s2 sk

t1 t2

s = s1

t = tk

Fig. 7. Multiplication of rGP’s

. . .

s

t

si1 si2 sik

ti1 ti2 tik

Qi1 Qi2 Qik

Fig. 8. Addition of rGP’s

Var(Φ) = Var(P).
Further, if P is syntactic multilinear, then so is Φ.

Proof. Again, this construction the same as in [3]; it is presented here with the induction
unfolded to allow arguing, over more general parameters, that syntactic multilinearity is
preserved.

For a program B, let f(B) denote the the function computed by B. We proceed by
induction on w. The base case is when w = 0, i.e. we have a rGP P of width 2. Then f(P)
can be computed by a depth 2 circuit with one × gate as root and a number of + gates
as its inputs, where the + gates get input from X ∪ K. The total fan-in of the + gates is
bounded by the number of layers which contain the graph G0,1(c), for some c. The fan-in of
the × gate is one more than the number of layers which have the graph G0,2. (The layers
having G0,0 do not contribute to the formula.) Thus the total number of wires is bounded
by l + 1 ≤ 2l, and depth is 2. If P is syntactic multilinear, no path reads the same variable
twice, and so the blocks separated by G0,2 have disjoint sets of variables. Hence the top ×
gate operates on disjoint sets of variables.

Suppose that for any w′ < w the claim holds, i.e. for a (syntactic multilinear) rGP P ′

of width 2w′ + 2 and length l′, there is an equivalent (syntactic multilinear) formula Φ′ of
depth 2w′ + 2 and size 2l′ and using only variables from Var(P ′).

Now P is the given rGP of width 2w + 2, length l. Let P be composed as g1, . . . , gl. Let
i1 < i2 < . . . < im be the (uniquely defined) set of all indices where gi1 , . . . , gim are the graph
Gw,2w+2. Define i0 = 0, im+1 = l + 1.

For each 0 ≤ j ≤ m, let Pj denote the program gij+1, . . . , gij+1−1 sandwiched between
the jth and (j + 1)th incidence of Gw,2w+2. The nodes sj and tj for each Pj are defined
accordingly. Let lj denote the length of Pj; then l = m +

∑

lj . Note that these Pjs do not
have Gw,2w+2 at any layer, and f(P) =

∏

j f(Pj).
Consider Pj for some j. Let hj1, . . . hjrj

denote the layers of Pj which are the connecting
graph Gw,2w+1. Let Qj,k denote the part of the program between hjk

and hjk+1
, and Qj,0

denote the part between gij and hj1 and Qj,rj
denote the part between hjr

and gij+1
. Let Q′

j,k

15

denote the graph obtained from Qj,k be removing the top-most and bottom-most lines and
the edges connecting them. Then width(Q′

j,k) = width(Qj,k) − 2 = 2w. Let lj,k denote the

length of Q′
j,k; so lj ≤ rj +

∑rj−1
k=1 ll,k. The nodes s′j,k and t′j,k for Q′

j,k are defined accordingly.

Now f(Pj) =
∑rj−1

k=1 f(Q′
j,k). (Note that Qj,0 and Qj,rj

, even if non-trivial, play no role in
f(Pj) because there is no connection from sj to these blocks.)

By induction, for each Q′
j,k we obtain equivalent (syntactic multilinear) formula Φj,k with

variables from Var(Q′
j,k), size(Φj,k) = sj,k = 2lj,k and depth(Φj,k) = dj,k = 2w. Now define

Φ =
∏

j

∑rj−1
k=1 Φj,k. Then size(Φ) = s = m+

∑

j(rj−1+
∑

k 2lj,k) ≤ 2l and depth(Φ) = 2w+2
as desired. Clearly Var(Φ) = Var(P).

If P is syntactic multilinear, then inductively we have Φj =
∑rj

k=1 Φj,k operating on
Var(Pj), and each Φj,k is syntactic multilinear. Consider the root gate of Φ. If it is not
syntactic multilinear, then for some j < j′, and for some k, k′, Φj,k and Φj′,k′ use the same
variable x. Thus, by induction, Pj has an sj-to-tj path using x, and Pj′ also has an sj′-to-tj′

path using x. Combining these paths with (1) the s-to-sj path along the bottom-line, (2) the
tj-to-sj′ path using gij+1 and then the bottom line, and (3) the tj′-to-t path along the top
line, gives a path in P that reads x twice, contradicting the read-once property of P . ut

As an immediate consequence of the above two lemmas, we have:

Corollary 4. 1. sma-AC0 = sma-BWrGP
2. sma-NC1 = sma-LWrGP;
3. a-NC1 = a-LWrGP

Note that the above construction also holds in the case of boolean circuits. Hence we
have the following characterisation for NC1.

Corollary 5. NC1 = LWrGP.

Thus we get a characterisation for NC1 and a-NC1 in terms of a restricted class of log width
polynomial size planar branching programs.

In [5] it is shown that any O(logn) depth polynomial size formula has an equivalent
3-register straight line program. This proves that any arithmetic NC1 circuit has polynomial
size constant width arithmetic branching programs i.e. a-NC1 ⊆ a-BWBP. Can the same be
stated for sma-NC1 and sma-BWBP? That is, if the given formula is syntactic multilinear,
then does the resulting branching program have the syntactic multilinear property? It turns
out that this is not the case. In fact the resulting program need not even be multilinear.
Figure 9 illustrates a simple example where the formula is syntactic multilinear, but the
resulting branching program is not even multilinear.

From the example in Figure 9, it can be seen that any nested multiplication in the
formula leads to violation of multilinearity at some of the nodes (node u in Figure 9 computes
p(u) = xy2z).

5 Skew formulae

In this section, we consider a question motivated by the setting of Valiant’s algebraic com-
plexity classes defined in [22]. VP is the class of polynomials of polynomial degree, computable

16

N

N

??~~~~~~~
z

^^>>>>>>>>

x

??��������
y

``AAAAAAAA

s• //

x

 A
AA

AA
AA

A • // • //

−x

��?
??

??
??

• // • // • //

−x

��?
??

??
??

• // • //

x

 A
AA

AA
AA

A • // • // •

• // • //

y

��?
??

??
??

• // • //

−y

��?
??

??
??

• // • // • //

y

 A
AA

AA
AA

A • // • //

−y

��?
??

??
??

• // •t

• // • // • // • // • //

z

??�������
• // • // u• // • // • //

−z

>>~~~~~~~
•

Fig. 9. An example where the Ben-Or and Cleve construction does not preserve multilinearity as p(u) = xy2z

by polynomial-sized circuits. Similarly one can define VF, VNC1, and so on. VNP is the class
of polynomials expressible as

p(x1, . . . , xn) =
∑

e∈{0,1}m

g(X, e)

where m ∈ O(poly(n)) and the polynomial g is in VP. Thus, loosely speaking, VNP equals
∑

·VP. See [10, 11] for more details; see also [15, 16].

It is well known that the complexity class NP is equivalent to ∃ · P and in fact even to
∃ · F. A similar result holds in the case of Valiant’s algebraic complexity classes too. Valiant
has shown that VNP =

∑

·VF, and thus the polynomial g in the expression above can be
assumed to be computable by a formula of polynomial size and polynomial degree.

Noting that VNP is the class of polynomials which are projection equivalent to the “per-
manent” polynomial, a natural question arises about the polynomials which are equivalent
to determinant. Since the determinant exactly characterises the class of polynomials which
are computable by skew arithmetic circuits ([21]), the question one could ask is: can the
determinant be written as an exponential sum of partial instantiations of a polynomial that
can be computed by skew formula of poly size, SkewF? Recall that a circuit is said to be
skew if every × (or ∧) gate has at most one child that is not a circuit input. Skew circuits
are essentially equivalent to branching programs. Thus one could ask the related question:
since VP ⊆

∑

·VP =
∑

·VF, can we show that VSkew ⊆
∑

·VSkewF?

We show that this is highly unlikely. We first give an equivalent characterisation of
a-SkewF (Lemma 8) placing it inside a-AC0 (see [1, 2]), and then use it to show that

∑

·VSkewF

is in fact contained in VNC1 (Theorem 3). Thus placing VSkew in
∑

·VSkewF is analogous
to the statement that GapL equals GapNC1, which we believe is quite unlikely.

17

5.1 A characterisation of VSkewF

Lemma 8. Let f ∈ Z[X] be a polynomial computed by a skew formula (with constants from
{−1, 0, 1}) of size s. Then the degree of f , the number of non-zero monomials in f , and the
absolute value of each coefficient are all bounded by s.
Conversely, let f ∈ Z[X] be a polynomial of degree d, where m monomials have non-zero
coefficients and the absolute value of each coefficient is bounded by c. Then f can be computed
by a skew formula of size O(mdc) with constants from {−1, 0, 1}.

Proof. Let F be a skew formula of size s. Consider a proving subtree T of F . Since F is skew,
T looks like a path, with edges hanging out at nodes labelled ×. But in a tree, the number of
root to leaf paths is bounded by the number of leaves in the tree. Thus the number of proving
subtrees of F is at most s. Let pF ∈ Z[X] be the polynomial computed by the formula F ,
where X is the set of input variables of F . Since a proving subtree in F corresponds to a
monomial in pF , we have that the number of non-zero monomials in pF is bounded by s.
Since the degree of the monomial contributed by such a path is at most the length of the
path, the degree of pF is at most s.

Further, each leaf-to-root path contributes a monomial with coefficient in {−1, 0, 1}. This
is because we only allow constants −1, 0, 1 at leaves, and the circuit is skew. Thus, the overall
coefficient of a monomial is at most the number of paths, and so is bounded (in absolute
value) by s.

On the other hand, if a polynomial p ∈ Z[X] has t non-zero monomials m1, . . . , mt, and
the coefficient ci of each mi is bounded in absolute value by c, then we can construct a skew
formula which explicitly makes ci copies of mi for each i and adds them up. This formula
computes p in size O(mdc). ut

Corollary 6. a-SAC0 ⊂ a-SkewF ⊂ a-AC0.

Proof. The containments follow directly from Lemma 8. To see why they are proper: (1) Even
over the Boolean setting, the function ⊕log n

i=1 xi is in SkewF but not in SAC0. Any Boolean
function sensitive to only O(log n) of its n inputs is in SkewF. Functions computed by a
a-SAC0 circuit have O(1) degree, and so cannot equal the class of poly-degree poly-support
polynomials a-SkewF. (2) The function

∏

i(xi + yi) is in a-AC0 but not in a-SkewF because
it has too many monomials. ut

5.2 An upper bound for
∑

.VSkewF

Theorem 3. Let f ∈ Z[X] be expressible as f(X) =
∑

e∈{0,1}m φ(X, e), where φ has a poly

size skew formula. Then f ∈ VNC1.
In other words,

∑

·VSkewF ⊆ VNC1.

Proof. Since φ(X, Y) (where X = X1, . . . , Xn and Y = Y1, . . . , Ym) has a poly size skew
formula, by Lemma 8 we know that the number of non-zero monomials in φ is bounded by
some polynomial q(n, m). Hence the number of non-zero monomials in φ(X, Y)|X (i.e. ,
monomials in X with coefficients from Z[Y]) and hence in f(X), is also bounded by q(n, m).

18

For any α ∈ Nn, consider the monomial Xα =
∏

αi
Xαi

i , and define the set Sα as

Sα = {β ∈ {0, 1}m | XαY β has a non-zero coefficient aα,β in φ}

Clearly, for each α, we have |Sα| ≤ q(n, m).
Since φ(X, Y) is evaluated only at Boolean settings of Y , we can assume, without loss of

generality, that it is multilinear in Y . So it can be written as

φ(X, Y) =
∑

α∈N
n

∑

β∈{0,1}m

aα,βXαY β

Hence we have the following:

f(X) =
∑

e∈{0,1}m

∑

α∈N
n

∑

β∈{0,1}m

aα,βXαeβ

=
∑

α∈N
n

Xα
∑

β∈Sα

aα,β

∑

e∈{0,1}m

eβ

=
∑

α∈N
n

(

Xα
∑

β∈Sα

aα,β2m−lβ

)

where lβ = number of 1’s in the bit vector β ∈ {0, 1}m.

Then the coefficient cα of Xα in f(X) is given by
∑

β∈Sα
aα,β2m−lβ . Since |Sα| and the

values |aα,β| for each β ∈ Sα are bounded by a polynomial in |φ|, cα can be computed by a
VNC1 circuit. Since there are only a polynomially many non-zero monomials in f(X), with
an additional log depth we can compute f(X). ut

Thus, if the Determinant polynomial is expressible as
∑

.VSkewF then it belongs to VNC1.

5.3 Multilinear Versions

Here we consider the multilinear versions of the skew formulae. From Lemma 8, we know that
a-SkewF is characterised by polynomials with polynomial many coefficients. The construction
yields, for any multilinear polynomial computed by a skew formula, an equivalent skew
formula which is syntactic multilinear. Hence the notion of multilinearity and syntactic
multilinearity are the same for skew formulae.

Since any multilinear polynomial that can be computed by an a-SAC0 circuit has a small
number of monomials, the containments of corollary 6 hold in the syntactic multilinear case
too. Also, note that the polynomial

∏

i(xi + yi) is multilinear, and can be computed by a
sma-AC0 circuit.

Corollary 7. sma-SAC0 ⊂ sma-SkewF = ma-SkewF ⊂ sma-AC0

19

6 Conclusion

This work came out of an attempt to close the gap in a-NC1 ⊆ a-sSC0. We have not been able
to do this; we can only show that sma-sSC0 ⊆ a-NC1. Can the depth-reduction be pushed
to all of a-sSC0? At least ma-sSC0? Alternatively, can the depth-reduced circuit be made
multilinear?

Another unsettled question is to understand the Boolean containments NC1 = LWrGP ⊆
LWGP ⊆ LWBP ⊆ sSC1 ⊆ SC1 = L. Where exactly does the power of the classes actually
jump from NC1 to L?

It would also be interesting see if the constructions described here can be made uniform.
A very interesting problem arising from [18, 19] and left open even after this study is

whether the proper separation between sma-NC1 and sma-SAC1 can be improved. Note that
SAC1 and BP in the Boolean setting equal LogCFL and NL respectively; thus, Raz’s result
separates NC1 from LogCFL in the syntactic multilinear setting. And LogCFL and NL are
very close; all known structural results for one hold for the other too. So an obvious question
is whether the proper separation can be pushed to the syntactic multilinear version of NL,
namely sma-BP. Neither of the separating functions from [18, 19] seems to be in sma-BP.
However, the interpolation between NC1 and SAC1 is via fan-in of + gates in log-depth
circuits, whereas that between NC1 and NL is via width of branching programs. So perhaps
the correct question to ask is whether sma-BWBP (which is contained in, but not yet known
to equal, sma-NC1) is separate from sma-BP. It would be very interesting to show such a
separation, and it also seems accessible with current techniques, given the wealth of results
about syntactic read-once branching programs.

References

1. M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits. Journal of Computer and System
Sciences, 60(2):395–421, 2000.

2. E. Allender. Arithmetic circuits and counting complexity classes. In J. Krajicek, editor, Complexity of Computa-
tions and Proofs, Quaderni di Matematica Vol. 13, pages 33–72. Seconda Universita di Napoli, 2004. An earlier
version appeared in the Complexity Theory Column, SIGACT News 28, 4 (Dec. 1997) pp. 2-15.

3. E. Allender, A. Ambainis, D. A. Barrington, S. Datta, and H. LêThanh. Bounded depth arithmetic cir-
cuits: Counting and closure. In International Colloquium on Automata, Languages, and Programming ICALP,
ICALP’99, pages 149–158, 1999.

4. D. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in NC1.
Journal of Computer and System Sciences, 38(1):150–164, 1989.

5. M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of registers. SIAM J. Comput.,
21(1):54–58, 1992.

6. B. Bollig, S. Waack, and P. Woelfel. Parity graph-driven read-once branching programs and an exponential lower
bound for integer multiplication. Theor. Comput. Sci., 362(1-3):86–99, 2006.

7. B. Bollig and P. Woelfel. A lower bound technique for nondeterministic graph-driven read-once-branching pro-
grams and its applications. Theory Comput. Syst., 38(6):671–685, 2005.

8. A. Borodin, A. A. Razborov, and R. Smolensky. On lower bounds for read-k-times branching programs. Com-
putational Complexity, 3:1–18, 1993.

9. R. P. Brent. The parallel evaluation of arithmetic expressions in logarithmic time. In Complexity of sequential
and parallel numerical algorithms (Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1973), pages 83–102.
Academic Press, New York, 1973.

10. P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in
Mathematics. Springer-Verlag, 2000.

20

11. P. Bürgisser, M. Clausen, and M. Shokrollahi. Algebraic Complexity Theory. Springer-Verlag, 1997.
12. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 computation. Journal of Com-

puter and System Sciences, 57:200–212, 1998.
13. S. Istrail and D. Zivkovic. Bounded width polynomial size Boolean formulas compute exactly those functions in

AC0. Information Processing Letters, 50:211–216, 1994.

14. N. Limaye, M. Mahajan, and B. V. R. Rao. Arithmetizing classes around NC1 and L. Technical Report 087,
Electronic Colloquium on Computational Complexity (ECCC), 2007. Preliminary version Appeared in STACS
2007.

15. G. Malod. The complexity of polynomials and their coefficient functions. In IEEE Conference on Computational
Complexity, pages 193–204, 2007.

16. G. Malod and N. Portier. Characterizing valiant’s algebraic complexity classes. In MFCS, pages 704–716, 2006.
17. R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. In STOC, pages

633–641, 2004.
18. R. Raz. Multilinear-NC1 6= multilinear-NC2. In FOCS, pages 344–351, 2004.
19. R. Raz and A. Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Computational Complexity,

to appear.
20. P. M. Spira. On time hardware complexity tradeoffs for boolean functions. In Fourth Hawaii International

Symposium on System Sciences, pages 525–527, 1971.
21. S.Toda. Counting problems computationally equivalent to the determinant. Technical Report CSIM 91-07, Dept.

Comp. Sci. and Inf. Math., Univ. of Electro-Communications, Tokyo, 1991.
22. L. G. Valiant. Completeness classes in algebra. In Symposium on Theory of Computing STOC, pages 249–261,

1979.
23. L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of polynomials using few

processors. SIAM J. Comput., 12(4):641–644, 1983.
24. H. Venkateswaran. Circuit definitions of nondeterministic complexity classes. SIAM Journal on Computing,

21:655–670, 1992.
25. H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New York Inc., 1999.

21

