
Derandomizing the Isolation Lemma and Lower Bounds for
Noncommutative Circuit Size

V. Arvind and Partha Mukhopadhyay
Institute of Mathematical Sciences

C.I.T Campus,Chennai 600 113, India
{arvind,partham}@imsc.res.in

Abstract

We give a randomized polynomial-time identity test for noncommutative circuits of polynomial de-
gree based on the isolation lemma. Using this result, we showthat derandomizing the isolation lemma
implies noncommutative circuit size lower bounds. More precisely, we consider two restricted versions
of the isolation lemma and show that derandomizing each of them implies nontrivial circuit size lower
bounds for noncommutative circuits. These restricted versions of the isolation lemma are natural and
would suffice for the standard applications of the isolationlemma.

1 Introduction

We recall the Isolation Lemma [MVV87]. Let[n] denote the set{1, 2, · · · , n}. Let U be a set of sizen
andF ⊆ 2U be any family of subsets ofU . Let w : U → Z+ be a weight function that assigns positive
integer weights to the elements ofU . For T ⊆ U , define its weightw(T) asw(T) =

∑

u∈T w(u). Then
Isolation Lemma guarantees that for any family of subsetsF of U and for any random weight assignment
w : U → [2n], with high probability there will be a unique minimum weightset inF .

Lemma 1.1 (Isolation Lemma) [MVV87] Let U be an universe of sizen andF be any family of subsets
of U . Let w : U → [2n] denote a weight assignment function to elements ofU . Then,

Probw[There exists a unique minimum weight set inF] ≥
1

2
,

where the weight functionw is picked uniformly at random.

In the seminal paper [MVV87] Mulmuley et al apply the isolation lemma to give a randomized NC
algorithm for computing maximum cardinality matchings forgeneral graphs (also see [ARZ99]). Since
then the isolation lemma has found several other applications. For example, it is crucially used in the
proof of the result that NL⊂ UL/poly [AR00] and in designing randomized NC algorithms for linear
representable matroid problems [NSV94]. It is also known that the isolation lemma can be used to prove the
Valiant-Vazirani lemma that SAT is many-one reducible via randomized reductions to USAT.

Whether the matching problem is in deterministic NC, and whether NL ⊆ UL are outstanding open
problems. Thus, the question whether the isolation lemma can be derandomized is clearly important.

As noted in [Agr07], it is easy to see by a counting argument that the isolation lemma can not be
derandomized, in general, because there are22n

set systemsF . More formally, the following is observed in
[Agr07].

1

Electronic Colloquium on Computational Complexity, Report No. 49 (2008)

ISSN 1433-8092

Observation 1.2 [Agr07] The Isolation Lemma can not be fully derandomized if we allowweight functions
w : U → [nc] for a constantc (i.e. weight functions with a polynomial range). More precisely, for any
polynomially bounded collection of weight assignments{wi}i∈[nc1] with weight range[nc], there exists a
familyF of [n] such that for allj ∈ [nc1], there exists two minimal weight subsets with respect towj.

However that does not rule out the derandomization of any special usage of the isolation lemma. In-
deed, for all applications of the isolation lemma (mentioned above, for instance) we are interested only in
exponentially many set systemsF ⊆ 2U .

We make the setting more precise by giving a general framework. Fix the universeU = [n] and consider
an n-input boolean circuitC wheresize(C) = m. The set2U of all subsets ofU is in a natural1-1
correspondence with the lengthn-binary strings{0, 1}n: each subsetS ⊆ U corresponds to its characteristic
binary stringχS ∈ {0, 1}n whoseith bit is 1 iff i ∈ S. Thus then-input boolean circuitC implicitly defines
the set system

FC = {S ⊆ [n] | C(χS) = 1}.

As an easy consequence of Lemma 1.1 we have the following.

Lemma 1.3 LetU be an universe of sizen andC be ann-input boolean circuit of sizem. LetFC ⊆ 2U be
the family of subsets ofU defined by circuitC. Letw : U → [2n] denote a weight assignment function to
elements ofU . Then,

Probw[There exists a unique minimum weight set inFC] ≥
1

2
,

where the weight functionw is picked uniformly at random. Furthermore, there is a collection of weight
functions{wi}1≤i≤p(m,n), wherep(m,n) is a fixed polynomial, such that for eachFC there is a weight
functionwi w.r.t. which there is a unique minimum weight set inFC .

Lemma 1.3 allows us to formulate two natural and reasonable derandomization hypotheses for the
isolation lemma.

Hypothesis 1. There is a deterministic algorithmA1 that takes as input(C,n), whereC is ann-input
boolean circuit, and outputs a collection of weight functionsw1, w2, · · · , wt such thatwi : [n] → [2n], with
the property that for somewi there is a unique minimum weight set in the set systemFC . Furthermore,A1

runs in time subexponential insize(C).
Hypothesis 2. There is a deterministic algorithmA2 that takes as input(m,n) in unary and outputs a
collection of weight functionsw1, w2, · · · , wt such thatwi : [n] → [2n], with the property that for each size
m boolean circuitC with n inputs there is some weight functionwi w.r.t. whichFC has a unique minimum
weight set. Furthermore,A2 runs in time polynomial inm.

Clearly, Hypothesis 2 is stronger than Hypothesis 1. It demands a “black-box” derandomization in the
sense thatA2 efficiently computes a collection of weight functions that will work for anyset system in2U

specified by a boolean circuit of sizem.
Notice that a random collectionw1, · · · , wt of weight functions will fulfil the required property of either

hypotheses with high probability. Thus, the derandomization hypotheses are plausible. Indeed, it is not hard
to see that suitable standard hardness assumptions that yield pseudorandom generators for derandomizing
BPP would imply these hypotheses. We do not elaborate on thishere.

In this paper we show the following two results.

2

1. Hypothesis 1 implies that eitherNEXP 6⊂ P/poly or the noncommutative Permanent does not have
polynomial size noncommutative circuits.

2. Hypothesis 2 implies that for eachn there is an explicit polynomialfn(x1, x2, · · · , xn) ∈
F{x1, x2, · · · , xn} in noncommuting variablesxi (where by explicit we mean that the coefficients
of the polynomialfn are computable by a uniform algorithm in time exponential inn) that does not
have noncommutative arithmetic circuits of size2o(n lg n) (where the fieldF is either the rationals or a
finite field).

These two results are a consequence of an identity testing algorithm for noncommutative circuits that
is based on the isolation lemma. This algorithm is based on ideas from [AMS08] where we used automata
theory to pick matrices from a suitable matrix ring and evaluate the given arithmetic circuit on these matrices.
In the next section, we describe the background and then givethe identity test in the following section.

Remark 1.4 Notice that derandomizing the isolation lemma in specific applications like theRNC algo-
rithm for matchings[MVV87] and the containmentNL ⊆ UL/poly [AR00] might still be possible without
implying such circuit size lower bounds.

Noncommutative polynomial identity testing has been the focus of recent research [RS05, BW05,
AMS08]. One reason to believe that it could be easier than thecommutative case to derandomize is because
lower bounds are somewhat easier to prove in the noncommutative setting as shown by Nisan [N91]. Using
a rank argument Nisan has shown exponential size lower bounds for noncommutative formulas (and non-
commutative algebraic branching programs) that compute the noncommutative permanent or determinant
polynomials in the ringF{x1, · · · , xn} wherexi are noncommuting variables. However, no superpolyno-
mial lower bounds are known for the size of noncommutative circuits for explicit polynomials.

Our result in this paper is similar in flavor to the Impagliazzo-Kabanets result [KI03], where forcommu-
tativepolynomial identity testing they show that derandomizing polynomial identity testing implies circuit
lower bounds. Specifically, it implies that eitherNEXP 6⊂ P/poly or the integer Permanent does not have
polynomial-size arithmetic circuits.

In [AMS08] we have observed that an analogous result also holds in the noncommutative setting. I.e.,
if noncommutative PIT has a deterministic polynomial-timealgorithm then eitherNEXP 6⊂ P/poly or the
noncommutativePermanent function does not have polynomial-size noncommutative circuits.

The connection that we show here between derandomizing the isolation lemma and noncommutative
circuit size lower bounds is based on the above observation and our noncommutative polynomial identity
test based on the isolation lemma.

2 Automata Theory background

We recall some standard automata theory [HU78]. Fix a finite automatonA = (Q, δ, q0, qf) which takes
inputs in{0, 1}∗, Q is the set of states,δ : Q × {0, 1} → Q is the transition function, andq0 andqf are
the initial and final states respectively (we only consider automata with unique accepting states). For each
b ∈ {0, 1}, let δb : Q → Q be defined by:δb(q) = δ(q, b). These functions generate a submonoid of the
monoid of all functions fromQ to Q. This is the transition monoid of the automatonA and is well-studied
in automata theory [Str94, page 55]. We now define the0-1 matrixMb ∈ F|Q|×|Q| as follows:

Mb(q, q
′) =

{

1 if δb(q) = q′,
0 otherwise.

3

The matrixMb is the adjacency matrix of the graph ofδb. As Mb is a0-1 matrix, we can consider it as
a matrix over any fieldF.

For a stringw = w1w2 · · ·wk ∈ {0, 1}∗ we defineMw to be the matrix productMw1Mw2 · · ·Mwk
. If

w is the empty string, defineMw to be the identity matrix of dimension|Q|× |Q|. Let δw denote the natural
extension of the transition function tow; if w is the empty string,δw is simply the identity function. We
have

Mw(q, q′) =

{

1 if δw(q) = q′,
0 otherwise.

(1)

Thus,Mw is also a matrix of zeros and ones for any stringw. Also, Mw(q0, qf) = 1 if and only if w is
accepted by the automatonA.

2.1 Noncommutative arithmetic circuits and automata

This subsection is reproduced from [AMS08] to make this paper self-contained.
Consider the ringF{x1, · · · , xn} of polynomials with noncommuting variablesx1, · · · , xn over a field

F. Let C be a noncommutative arithmetic circuit computing a polynomial f ∈ F{x1, · · · , xn}. Let d be an
upper bound on the degree off . We can consider monomials overx1, · · · , xn as strings over an alphabet of
sizen. For our construction, it is more convenient to encode eachxi as a string over{0, 1}. We encode the
variablexi by the stringvi = 01i0. Clearly, each monomial over thexi’s of degree at mostd maps uniquely
to a binary string of length at mostd(n + 2).

Let A = (Q, δ, q0, qf) be a finite automaton over the alphabet{0, 1}. We have matricesMvi
∈ F|Q|×|Q|

as defined in Section 2, wherevi is the binary string that encodesxi. We are interested in the output matrix
obtained when the inputsxi to the circuitC are replaced by the matricesMvi

. This output matrix is defined
in the obvious way: the inputs are|Q| × |Q| matrices and we do matrix addition and matrix multiplication
at each addition gate (respectively, multiplication gate)of the circuitC. We define theoutput ofC on the
automatonA to be this output matrixMout. Clearly, given circuitC and automatonA, the matrixMout can
be computed in time poly(|C|, |A|, n).

We observe the following property: the matrix outputMout of C onA is determined completely by the
polynomialf computed byC; the structure of the circuitC is otherwise irrelevant. This is important for us,
since we are only interested inf . In particular, the output is always0 whenf ≡ 0.

More specifically, consider what happens whenC computes a polynomial with a single term, say
f(x1, · · · , xn) = cxj1 · · · xjk

, with a non-zero coefficientc ∈ F. In this case, the output matrixMout

is clearly the matrixcMvj1
· · ·Mvjk

= cMw, wherew = vj1 · · · vjk
is the binary string representing the

monomialxj1 · · · xjk
. Thus, by Equation 1 above, we see that the entryMout(q0, qf) is 0 whenA rejects

w, andc whenA acceptsw. In general, supposeC computes a polynomialf =
∑t

i=1 cimi with t nonzero
terms, whereci ∈ F \ {0} andmi =

∏di

j=1 xij , wheredi ≤ d. Let wi = vi1 · · · vidi
denote the binary string

representing monomialmi. Finally, letSf
A = {i ∈ {1, · · · , t} | A acceptswi}.

Theorem 2.1 [AMS08] Given any arithmetic circuitC computing polynomialf ∈ F{x1, · · · , xn} and any
finite automatonA = (Q, δ, q0, qf), then the outputMout of C onA is such thatMout(q0, qf) =

∑

i∈S
f
A

ci.

Proof. The proof is an easy consequence of the definitions and the properties of the matricesMw stated
in Section 2. Note thatMout = f(Mv1 , · · · ,Mvn). But f(Mv1 , · · · ,Mvn) =

∑s
i=1 ciMwi

, wherewi =
vi1 · · · vidi

is the binary string representing monomialmi. By Equation 1, we know thatMwi
(q0, qf) is 1 if

wi is accepted byA, and0 otherwise. Adding up, we obtain the result.

4

We now explain the role of the automatonA in testing if the polynomialf computed byC is identically
zero. Our basic idea is to design an automatonA that accepts exactly one word from among all the words
that correspond to the nonzero terms inf . This would ensure thatMout(q0, qf) is the nonzero coefficient of
the monomial filtered out. More precisely, we will use the above theorem primarily in the following form,
which we state as a corollary.

Corollary 2.2 [AMS08] Given any arithmetic circuitC computing polynomialf ∈ F{x1, · · · , xn} and
any finite automatonA = (Q, δ, q0, qf), then the outputMout of C onA satisfies:

(1) If A rejects every string corresponding to a monomial inf , thenMout(q0, qf) = 0.

(2) If A accepts exactly one string corresponding to a monomial inf , thenMout(q0, qf) is the nonzero
coefficient of that monomial inf .

Moreover,Mout can be computed in timepoly(|C|, |A|, n).

Proof. Both points (1) and (2) are immediate consequences of the above theorem. The complexity of
computingMout easily follows from its definition. Another interesting corollary to the above theorem

is the following.

Corollary 2.3 [AMS08] Given any arithmetic circuitC overF{x1, · · · , xn}, and any monomialm of de-
greedm, we can compute the coefficient ofm in C in timepoly(|C|, dm, n).

Proof. Apply Corollary 2.2 withA being any standard automaton that accepts the string corresponding to
monomialm and rejects every other string. Clearly,A can be chosen so thatA has a unique accepting state
and|A| = O(ndm).

Remark 2.4 Corollary 2.3 is very unlikely to hold in the commutative ring F[x1, · · · , xn]. For, it is easy
to see that in the commutative case computing the coefficientof the monomial

∏n
i=1 xi in even a product

of linear formsΠi`i is at least as hard as computing the permanent overF, which is#P-complete when
F = Q.

3 Noncommutative identity test based on isolation lemma

We now describe a new identity test for noncommutative circuits based on the isolation lemma. It is directly
based on the results from [AMS08]. This is conceptually quite different from the randomized identity test
of Bogdanov and Wee [BW05].

Theorem 3.1 Let f ∈ F{x1, x2, · · · , xn} be a polynomial given by an arithmetic circuitC of sizem.
Let d be an upper bound on the degree off . Then there is a randomized algorithm which runs in time
poly(n,m, d) and can test whetherf ≡ 0.

Proof. Let [d] = {1, 2, · · · , d} and [n] = {1, 2, · · · , n}. Consider the set of tuplesU = [d] × [n]. Let
v = xi1xi2 · · · xit be a nonzero monomial off . Then the monomial can be identified with the following
subsetSv of U :

Sv = {(1, i1), (2, i2), · · · , (t, it)}

5

LetF denotes the family of subsets ofU corresponding to the nonzero monomials off i.e,

F = {Sv | v is a nonzero monomial inf}

By the Isolation Lemma we know that if we assign random weights from [2dn] to the elements ofU ,
with probability at least1/2, there is a unique minimum weight set inF . Our aim will be to construct
a family of small size automatons which are indexed by weights w ∈ [2nd2] and t ∈ [d], such that the
automataAw,t will precisely accept all the strings (corresponding to themonomials)v of lengtht, such that
the weight ofSv is w. Then from the isolation lemma we will argue that the automata corresponding to the
minimum weight will precisely accept only one string (monomial). Now for w ∈ [2nd2], andt ∈ [d], we
describe the construction of the automatonAw,t = (Q,Σ, δ, q0, F) as follows:Q = [d]× [2nd2]∪ {(0, 0)},
Σ = {x1, x2, · · · , xn}, q0 = {(0, 0)} andF = {(t, w)}. We define the transition functionδ : Q × Σ → Q,

δ((i, V), xj) = (i + 1, V + W),

whereW is the random weight assign to(i + 1, j). Our automata familyA is simply,

A = {Aw,t | w ∈ [2nd2], t ∈ [d]}.

Now for each of the automatonAw,t ∈ A, we mimic the run of the automatonAw,t on the circuitC
as described in Section 2. If the output matrix corresponding to any of the automaton is nonzero, our
algorithm declaresf 6= 0, otherwise declaresf ≡ 0.

The correctness of the algorithm follows easily from the Isolation Lemma. By the Isolation Lemma
we know, on random assignment, a unique setS in F gets the minimum weightwmin with probability at
least1/2. Let S corresponds to the monomialxi1xi2 · · · xi` . Then the automatonA`,wmin

accepts the string
(monomial)xi1xi2 · · · xi` . Furthermore, as no other set inF get the same minimum weight,A`,wmin

rejects
all the other monomials. So the(q0, qf) entry of the output matrixMo, that we get in runningA`,wmin

on
C is nonzero. Hence with probability at least1/2, our algorithm correctly decide thatf is nonzero. The
success probability can be boosted to any constant by standard independent repetition of the same algorithm.
Finally, it is trivial to see that the algorithm always decides correctly iff ≡ 0.

4 Noncommutative identity testing and circuit lower bounds

For commutative circuits, Impagliazzo and Kabanets [KI03]have shown that derandomizing PIT implies cir-
cuit lower bounds. It implies that eitherNEXP 6⊂ P/poly or the integer Permanent does not have polynomial-
size arithmetic circuits.

In [AMS08] we have observed that this also holds in the noncommutative setting. I.e., if noncommuta-
tive PIT has a deterministic polynomial-time algorithm then eitherNEXP 6⊂ P/poly or thenoncommutative
Permanent function does not have polynomial-size noncommutative circuits. We note here that noncommu-
tative circuit lower bounds are sometimes easier to prove than for commutative circuits. E.g. Nisan [N91]
has shown exponential-size lower bounds for noncommutative formula size and further results are known
for pure noncommutative circuits [N91, RS05]. However, proving superpolynomial size lower bounds for
general noncommutative circuits computing the Permanent has remained an open problem.

To keep this paper self contained, we briefly recall the discussion from [AMS08].

6

The noncommutative Permanent functionPerm(x1, · · · , xn) ∈ R{x1, · · · , xn} is defined as

Perm(x1, · · · , xn) =
∑

σ∈Sn

n
∏

i=1

xi,σ(i),

where the coefficient ringR is any commutative ring with unity. Specifically, for the next theorem we choose
R = Q.

Let SUBEXP denote∩ε>0DTIME(2nε
) and NSUBEXP denote∩ε>0NTIME(2nε

).

Theorem 4.1 [AMS08] If PIT for noncommutative circuits of polynomial degreeC(x1, · · · , xn) ∈
Q{x1, · · · , xn} is in SUBEXP, then eitherNEXP 6⊂ P/poly or the noncommutativePermanent function
does not have polynomial-size noncommutative circuits.

Proof. SupposeNEXP⊂ P/poly. Then, by the main result of [IKW02] we haveNEXP = MA. Furthermore,
by Toda’s theorem MA⊆ PPermZ , where the oracle computes the integer permanent. Now, assuming PIT
for noncommutative circuits of polynomial degree is in deterministic polynomial-time we will show that the
(noncommutative) Permanent function does not have polynomial-size noncommutative circuits. Suppose to
the contrary that it does have polynomial-size noncommutative circuits. Clearly, we can use it to compute the
integer permanent as well. Furthermore, as in [KI03] we notice that the noncommutativen × n Permanent
is also uniquely characterized by the identitiesp1(x) ≡ x andpi(X) =

∑i
j=1 x1jpi−1(Xj) for 1 < i ≤ n,

whereX is a matrix ofi2 noncommuting variables andXj is itsj-th minor w.r.t. the first row. I.e. if arbitrary
polynomialspi, 1 ≤ i ≤ n satisfies thesen identities overnoncommutingvariablesxij, 1 ≤ i, j ≤ n if and
only if pi computes thei × i permanent of noncommuting variables. The rest of the proof is exactly as in
Impagliazzo-Kabanets [KI03]. We can easily describe an NP machine to simulate a PPermZ computation.
The NP machine guesses a polynomial-size noncommutative circuit for Perm onm×m matrices, wherem
is a polynomial bound on the matrix size of the queries made. Then the NP verifies that the circuit computes
the permanent by checking them noncommutativeidentities it must satisfy. This can be done in SUBEXP
by assumption. Finally, the NP machines uses the circuit to answer all the integer permanent queries. Putting
it together, we getNEXP = NSUBEXP which contradicts the nondeterministic time hierarchy theorem.

5 The Results

We are now ready to prove our first result. Suppose the derandomization Hypothesis 1 holds (as stated in
the introduction): i.e. suppose there is a deterministic algorithmA1 that takes as input(C,n) whereC is
ann-input boolean circuit and in subexponential time computesa set of weight functionsw1, w2, · · · , wt,
wi : [n] → [2n] such that the set systemFC defined by the circuitC has a unique minimum weight set w.r.t.
at least one of the weight functionswi.

Let C ′(x1, x2, · · · , xn) be a noncommutative arithmetic circuit of degreed bounded by a polynomial in
size(C ′). By Corollary 2.3, there is a deterministic polynomial-time algorithm that takes as inputC ′ and
a monomialm of degree at mostd and accepts if and only if the monomialm has nonzero coefficient in
the polynomial computed byC ′. Thus, we have a boolean circuitC of size polynomial insize(C ′) that
accepts only the (binary encodings of) monomialsxi1xi2 · · · xik , k ≤ d that have nonzero coefficients in the
polynomial computed byC ′. Now, as a consequence of Theorem 3.1 and its proof we have adeterministic
subexponential algorithm for checking ifC ′ ≡ 0, assuming algorithmA1 exists. Namely, we compute the
boolean circuitC from C ′ in polynomial time. Then, invoking algorithmA1 with C as input we compute

7

at most subexponentially many weight functionsw1, · · · , wt. Then, following the proof of Theorem 3.1 we
construct the automata corresponding to these weight functions and evaluateC ′ on the matrices that each of
these automata define in the prescribed manner. By assumption about algorithmA1, if C ′ 6≡ 0 then one of
thesewi will give matrix inputs for the variablesxj, 1 ≤ j ≤ n on whichC ′ evaluates to a nonzero matrix.
We can now show the following theorem.

Theorem 5.1 If the subexponential time algorithmA1 satisfying Hypothesis 1 exists then noncommutative
identity testing is inSUBEXPwhich implies that eitherNEXP 6⊂ P/poly or the Permanent does not have
polynomial size noncommutative circuits.

Proof. The result is a direct consequence of the discussion preceding the theorem statement and Theo-
rem 4.1.

We now turn to the second consequence result under thestrongerderandomization Hypothesis 2 (stated
in the introduction). More precisely, suppose there is a deterministic algorithmA2 that takes as input
(m,n) and in time polynomial inm computes a set of weight functionsw1, w2, · · · , wt, wi : [n] → [2n]
such that foreachn-input boolean circuitC of sizem, the set systemFC defined by the circuitC has
a unique minimum weight set w.r.t. at least one of the weight functionswi. We show that there is an
explicit polynomial1 f(x1, · · · , xn) in noncommuting variablesxi that does not have subexponential size
noncommutative circuits.

Theorem 5.2 Suppose there is a polynomial-time algorithmA2 satisfying Hypothesis 2. Then for all but
finitely manyn there is an explicit polynomialf(x1, · · · , xn) ∈ F{x1, x2, · · · , xn} (where the fieldF is
either rationals or any finite field) in noncommuting variablesxi that is computable in2nO(1)

time (by a
uniform algorithm) and does not have noncommutative arithmetic circuits of size2o(n lg n).

Proof. Let Tn denote the set of all sequences(i1, i2, · · · , in), for ij ∈ [n], 1 ≤ j ≤ n. For each such
sequenceα = (i1, i2, · · · , in) ∈ Tn let mα denote the monomialxi1xi2 · · · xin . Now, we write

f(x1, x2, · · · , xn) =
∑

α∈Tn

cαmα,

where we will pick the scalarscα appropriately so that the polynomialf has the claimed property. Suppose
A2 runs in timemc for constantc > 0, wherem denotes the size bound of the boolean circuitC defining set
systemFC . Notice that the numbert of weight functions is bounded bymc. As explained in Theorem 3.1,
each weight function will give rise to a collection of2n4 automataAk, each of which will prescribe matrices
of dimension at mostr = poly(n) to be assigned for the input variablesxj , 1 ≤ j ≤ n. Call these matrices

M
(k)
i,j . For each weight functionwi write down linear equations for eachk ∈ [2n4].

f(M
(k)
i,1 ,M

(k)
i,2 , · · · ,M

(k)
i,n) = 0.

This will actually give us a system of at most2n4r2 linear equations in the unknown scalarscα. Since
there aret ≤ mc weight functions in all, all the linear constraints put together give us a system of at
most2n4r2mc linear equations. Now, the number of distinct (noncommuting) monomialsmα is nn =
2n lg n which asymptotically exceeds2n4r2mc for m = 2o(n lg n), sincer is polynomially bounded. Thus,

1By explicit we mean that the coefficients off are computable in time exponential inn.

8

the system of linear equations has a nontrivial solution in the cα’s that can be computed using Gaussian
elimination in time exponential inn.

Notice that the polynomialf(x1, · · · , xn), defined by the solution to thecα’s, is a nonzero polyno-
mial. We claim thatf cannot have a noncommutative circuit of size2o(n lg n). Assume to the contrary that
C ′(x1, · · · , xn) is a noncommutative circuit of sizes = 2o(n lg n) for f . Then, by Corollary 2.3 there is
ann′-input boolean circuitC of sizem = sO(1) = 2o(n lg n) that accepts precisely the (binary encodings)
of those monomials that are nonzero inC ′. Let w1, · · · , wt be the weight functions output byA2 for input
(m,n′). By Hypothesis 2, for some weight functionwi and somek ∈ [2n4] the circuitC ′ must be nonzero

on matricesM (k)
i,j . However,f evaluates to zero, by construction, on the matrix inputs prescribed by all the

weight functionsw1, · · · , wt. This is a contradiction to the assumption and it completes the proof.

Remark 5.3 We can formulate both Hypothesis 1 and Hypothesis 2 more generally by letting the running
time of algorithmsA1 andA2 be a functiont(m,n). We will then obtain suitably quantified circuit lower
bound results as consequence.

6 Discussion

An interesting open question is whether derandomizing similar restricted versions of the Valiant-Vazirani
lemma also implies circuit lower bounds. We recall the Valiant-Vazirani lemma as stated in the original
paper [VV86].

Lemma 6.1 LetS ⊆ {0, 1}t. Supposewi, 1 ≤ i ≤ t are picked uniformly at random from{0, 1}t. For each
i, let Si = {v ∈ S | v.wj = 0, 1 ≤ j ≤ i} and letpt(S) be the probability that|Si| = 1 for somei. Then
pt(S) ≥ 1/4.

Analogous to our discussion in Section 1, here too we can consider the restricted version where we
considerSC ⊆ {0, 1}n to be the set ofn-bit vectors accepted by a boolean circuitC of sizem. We can
similarly formulate derandomization hypotheses similar to Hypotheses 1 and 2.

We do not know if there is another randomized polynomial identity test for noncommutative arithmetic
circuits based on the Valiant-Vazirani lemma. The automata-theoretic technique of Section 3 does not
appear to work. Specifically, given a matrixh : Fn

2 → Fk
2 , there is no deterministic finite automaton of size

poly(n, k) that acceptsx ∈ Fn
2 if and only if h(x) = 0.

Acknowledgements. We are grateful to Manindra Agrawal for suggesting that Theorem 5.2 can be obtained
from the stronger hypothesis.

References

[Agr07] M. AGRAWAL. Rings and Integer Lattices in Computer Science.Barbados Workshop on Compu-
tational Complexity,Lecture no 9, 2007.

[AR00] KLAUS REINHARDT AND ERIC ALLENDER. Making Nondeterminism Unambiguous.SIAM J.
Comput.29(4): 1118-1131 (2000).

[ARZ99] ERIC ALLENDER, KLAUS REINHARDT, AND SHIYU ZHOU. Isolation, matching and counting
uniform and nonuniform upper bounds.Journal of Computer and System Sciences, 59(2):164–181, 1999.

9

[AMS08] V. A RVIND , P. MUKHOPADHYAY, S. SRINIVASAN New results on Noncommutative and Com-
mutative Polynomial Identity Testing.In Proceedings of the 23rd IEEE Conference on Computational
Complexity,June 2008, to appear. Technical report version inECCC report TR08-025,2008.

[BW05] A. BOGDANOV AND H. WEE More on Noncommutative Polynomial Identity Testing .In Proc. of
the 20th Annual Conference on Computational Complexity,pp. 92-99, 2005.

[HU78] J.E. HOPCROFT ANDJ.D. ULLMAN Introduction to Automata Theory, Languages and Computa-
tion, Addison-Wesley, 1979.

[IKW02] R. IMPAGLIAZZO , V. KABANETS AND A. W IGDERSON. In search of an easy witness: Expo-
nential time vs. probabilistic polynomial time.Journal of Computer and System Sciences 65(4).,pages
672-694, 2002.

[KI03] V. K ABANETS AND R. IMPAGLIAZZO . Derandomization of polynomial identity tests means prov-
ing circuit lower bounds.In Proc. of the thirty-fifth annual ACM Sym. on Theory of computing., pages
355-364, 2003.

[MVV87] K. M ULMULEY, U. VAZIRANI AND V. VAZIRANI . Matching is as easy as matrix inversion.In
Proc. of the nineteenth annual ACM conference on Theory of Computing.,pages 345-354. ACM Press,
1987.

[N91] N. NISAN. Lower bounds for non-commutative computation.In Proc. of the 23rd annual ACM Sym.
on Theory of computing.,pages 410-418, 1991.

[NSV94] H. NARAYANAN , HUZUR SARAN , V. V. VAZIRANI . Randomized Parallel Algorithms for Ma-
troid Union and Intersection, With Applications to Arboresences and Edge-Disjoint Spanning Trees.
SIAM J. Comput.23(2): 387-397 (1994).

[RS05] R. RAZ AND A. SHPILKA . Deterministic polynomial identity testing in non commutative models.
Computational Complexity.,14(1):1-19, 2005.

[Sch80] JACOB T. SCHWARTZ. Fast Probabilistic algorithm for verification of polynomial identities.J.
ACM., 27(4), pages 701-717, 1980.

[Str94] HOWARD STRAUBING. Finite automata, formal logic, and circuit complexity.Progress in Theoret-
ical Computer Science.Birkhuser Boston Inc., Boston, MA, 1994.

[VV86] L. G. VALIANT AND V. V. VAZIRANI . NP is as Easy as Detecting Unique Solutions.Theor.
Comput. Sci.47(3): 85-93 (1986).

[Zip79] R. ZIPPEL. Probabilistic algorithms for sparse polynomials.In Proc. of the Int. Sym. on Symbolic
and Algebraic Computation.,pages 216-226, 1979.

10

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

