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Abstract

The isolation lemma of Mulmuley et al [MVV87] is an importaobl in the design of randomized
algorithms and has played an important role in several haatcomplexity upper bounds. On the other
hand, polynomial identity testing is a well-studied algiomic problem with efficient randomized algo-
rithms and the problem of obtaining efficiethtterministicidentity tests has received a lot of attention
recently. The goal of this note is to compare the isolatiome with polynomial identity testing:

1. We show that derandomizing reasonably restricted vesbthe isolation lemma implies circuit
size lower bounds. We derive the circuit lower bounds by érarg the connection between the
isolation lemma and polynomial identity testing. We giveaadomized polynomial-time identity
test for noncommutative circuits of polynomial degree base the isolation lemma. Using this
result, we show that derandomizing the isolation lemmaiespioncommutative circuit size lower
bounds. The restricted versions of the isolation lemma wisider are natural and would suffice
for the standard applications of the isolation lemma.

2. From the result of Klivans-Spielman [KS01] we observe thare is a randomized polynomial-
time identity test for commutative circuits of polynomiadgtee, also based on a more general
isolation lemma for linear forms. Consequently, derandatidon of (a suitable version of) this

isolation lemma implies that either NEXE P/poly or the Permanent ovét does not have
polynomial-size arithmetic circuits.

1 Introduction

We recall the Isolation Lemma [MVV87]. Lék]| denote the sefl,2,--- ,n}. LetU be a set of sizes
andF C 2V be any family of subsets df. Letw : U — Z% be a weight function that assigns positive
integer weights to the elements &t ForT C U, define its weightw(T) asw(T) = >, crw(u). Then
Isolation Lemma guarantees that for any family of subgetsf U and for any random weight assignment
w : U — [2n], with high probability there will be a uniqgue minimum weigsgt inF.

Lemma 1.1 (Isolation Lemma) [MVV87] Let U be an universe of size andF be any family of subsets
of U. Letw : U — [2n] denote a weight assignment function to elements oT hen,

. . . . 1
Proh, [ There exists a unique minimum weight setAi > 3
where the weight functiom is picked uniformly at random.
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In the seminal paper [MVV87] Mulmuley et al apply the isotetilemma to give a randomized NC
algorithm for computing maximum cardinality matchings fgneral graphs (also see [ARZ99]). Since
then the isolation lemma has found several other applicstioFor example, it is crucially used in the
proof of the result that NLC UL /poly [AROO] and in designing randomized NC algorithms farelar
representable matroid problems [NSV94]. Itis also knowvat the isolation lemma can be used to prove the
Valiant-Vazirani lemma that SAT is many-one reducible dadomized reductions to USAT.

Whether the matching problem is in deterministic NC, and ttvbeNL C UL are outstanding open
problems. Thus, the question whether the isolation lemméaealerandomized is clearly important.

As noted in [Agr07], it is easy to see by a counting argumeat the isolation lemma can not be
derandomized, in general, because ther@areset systemsF. More formally, the following is observed in
[Agr07].

Observation 1.2 [Agr07] The Isolation Lemma can not be fully derandomized if we all@ight functions
w : U — [n€] for a constante (i.e. weight functions with a polynomial range). More pesty, for any
polynomially bounded collection of weight assignmefnts}c(,,«1] with weight range[n ], there exists a
family F of [n] such that for allj € [n'], there exists two minimal weight subsets with respeat;to

However that does not rule out the derandomization of angigpasage of the isolation lemma. In-
deed, for all applications of the isolation lemma (mentobadove, for instance) we are interested only in
exponentially many set systensC 2V.

We make the setting more precise by giving a general framewx the universé/ = [n] and consider
an n-input boolean circuitC’ where size(C) = m. The set2V of all subsets ofU is in a naturall-1
correspondence with the lengthbinary strings{0, 1}": each subset C U corresponds to its characteristic
binary stringys € {0, 1} whosei*" bitis 1 iff i € S. Thus then-input boolean circuit” implicitly defines
the set system

Fo={SCnl | Clxs) = 1}.

As an easy consequence of Lemma 1.1 we have the following.

Lemma 1.3 LetU be an universe of sizeandC be ann-input boolean circuit of sizex. Let Fo C 2U pe
the family of subsets @f defined by circuiC'. Letw : U — [2n] denote a weight assignment function to
elements ot/. Then,

. . . . 1
Proh,[ There exists a unique minimum weight sefin > 3’

where the weight functiow is picked uniformly at random. Furthermore, there is a odilen of weight
functions{w; }1<i<p(m,n), Wherep(m,n) is a fixed polynomial, such that for eacf there is a weight
functionw; w.r.t. which there is a unique minimum weight sefAn.

Lemma 1.3 allows us to formulate two natural and reasonabtandlomization hypotheses for the
isolation lemma.

Hypothesis 1. There is a deterministic algorithmd; that takes as inputC, n), whereC' is ann-input
boolean circuit, and outputs a collection of weight funeia , ws, - - - , w; such thatw; : [n] — [2n], with
the property that for some; there is a unique minimum weight set in the set sysfém Furthermore, A,
runs in time subexponential ize(C').



Hypothesis 2. There is a deterministic algorithtds that takes as inputm,n) in unary and outputs a
collection of weight functionsvy, we, - - - , w; such thatw; : [n] — [2n], with the property that for each size
m boolean circuit”’ with n inputs there is some weight functian w.r.t. which F- has a uniqgue minimum
weight set. Furthermored, runs in time polynomial inn.

Clearly, Hypothesis 2 is stronger than Hypothesis 1. It detea “black-box” derandomization in the
sense thatd, efficiently computes a collection of weight functions thall work for anyset system iRV
specified by a boolean circuit of size.

Notice that a random collection,, - - - , w; of weight functions will fulfil the required property of eih
hypotheses with high probability. Thus, the derandonizratiypotheses are plausible. Indeed, it is not hard
to see that suitable standard hardness assumptions tlthpgEudorandom generators for derandomizing
BPP would imply these hypotheses. We do not elaborate oméhnes In this paper we show the following
conseguences of Hypotheses 1 and 2.

1. Hypothesis 1 implies that eith&EXP ¢ P/poly or the Permanent does not have polynomial size
noncommutative arithmetic circuits.

2. Hypothesis 2 implies that for each there is an explicit polynomialf,(z1,z2, -+ ,2,) €
F{xq,z9, -+ ,2z,} in noncommuting variables; (where by explicit we mean that the coefficients
of the polynomialf,, are computable by a uniform algorithm in time exponentiak)rihat does not
have noncommutative arithmetic circuits of s#&'2") (where the fieldF is either the rationals or a
finite field).

These two results are a consequence of an identity tes@agithim for noncommutative circuits that
is based on the isolation lemma. This algorithm is based easidrom [AMS08] where we used automata
theory to pick matrices from a suitable matrix ring and eagduthe given arithmetic circuit on these matrices.
In the next section, we describe the background and thertlygvielentity test in the following section.

Remark 1.4 Notice that derandomizing the isolation lemma in specifipliaptions like theRNC algo-
rithm for matchinggMVV87] and the containmertiL C UL /poly [AROO] might still be possible without
implying such circuit size lower bounds.

Noncommutative polynomial identity testing has been theusoof recent research [RS05, BWO5,
AMSO08]. One reason to believe that it could be easier thacdhemutative case to derandomize is because
lower bounds are somewhat easier to prove in the noncomireuggtting as shown by Nisan [N91]. Using
a rank argument Nisan has shown exponential size lower Isofamchoncommutative formulas (and non-
commutative algebraic branching programs) that compwgenincommutative permanent or determinant
polynomials in the ring#{z1, - - - ,z,,} wherex; are noncommuting variables. However, no superpolyno-
mial lower bounds are known for the size of noncommutativeudis for explicit polynomials.

Our result in this paper is similar in flavor to the Impagliazgabanets result [KIO3], where faommu-
tative polynomial identity testing they show that derandomizirdypomial identity testing implies circuit
lower bounds. Specifically, it implies that eitheEXP ¢ P/poly or the integer Permanent does not have
polynomial-size arithmetic circuits.

In [AMSO08] we have observed that an analogous result alsgshialthe noncommutative setting. I.e.,
if noncommutative PIT has a deterministic polynomial-tialgorithm then eitheNEXP ¢ P/poly or the
noncommutativ®ermanent function does not have polynomial-size noncdiue circuits.



The connection that we show here between derandomizingsth&tion lemma and noncommutative
circuit size lower bounds is based on the above observatidroar noncommutative polynomial identity
test based on the isolation lemma.

Commutative circuits

Klivans and Spielman [KS01] apply a more general form of gmation lemma to obtain a polynomial
identity test (in the commutative) case. This lemma is dtatdow.

Lemma 1.5 [KSO01, Lemma 4]Let L be any collection of linear forms over variables, zo, - - - , z,, With
integer coefficients in the rand®, 1,--- , K'}. If eachz; is picked independently and uniformly at random
from {0, 1,--- ,2Kn} then with probability at least /2 there is a unique linear form fror@’ that attains
minimum value afz;, - - - , zp,).

We can formulate a restricted version of this lemma simddrémma 1.3 that will apply only to sets of
linear formsL accepted by a boolean circdit. More precisely, an integer vectOty, - - - , a,,) such that
a; € {0,--- ,K}isin Lifand only if (aq,-- - , ) is accepted by the boolean circdait

Thus, for this form of the isolation lemma we can formulatetaer derandomization hypothesis
analogous to Hypothesis 1 as follows.

Hypothesis 3. There is a deterministic algorithtd; that takes as inputC, n, K), whereC' is a boolean

circuit that takes as inputoy, - - - , o) such thate; € {0,---, K}, and outputs a collection of weight
functionswy, we, - - - ,wy such thatw; : [n] — [2Kn], with the property that for some weight vectoy
there is a unique linear fortavy, - - - , o) accepted by which attains the minimum valug’’,_; w;(j)c;.

Furthermore,A3 runs in time subexponential ifize(C').

2 Automata Theory background

We recall some standard automata theory [HU78]. Fix a finiteraatonA = (Q, d, g0, ) Which takes
inputs in{0,1}*, Q is the set of states), : @ x {0,1} — @ is the transition function, ang, andg are
the initial and final states respectively (we only considgomata with unigue accepting states). For each
b e {0,1}, letd, : Q@ — Q be defined byd,(¢) = d(q,b). These functions generate a submonoid of the
monoid of all functions fron() to Q. This is the transition monoid of the automatdrand is well-studied

in automata theory [Str94, page 55]. We now defineltiematrix M, € FIQXI@l as follows:

/ 1 ifd(q) =¢,
Mpla:4) = { 0 otr1(e2wise.
The matrixM, is the adjacency matrix of the graph&f As M, is a0-1 matrix, we can consider it as
a matrix over any field .
For a stringw = wyws - - - wy, € {0,1}* we defineM,, to be the matrix producd/,,, My, - - - My, . If
w is the empty string, defing/,, to be the identity matrix of dimensidd)| x |Q|. Let,, denote the natural
extension of the transition function to; if w is the empty stringy,, is simply the identity function. We

have ( !
N1 ifdu(e) =4,
Muy(q,q’) = { 0 otherwise. (1)

Thus, M,, is also a matrix of zeros and ones for any string Also, M,,(qo,qf) = 1 if and only if w is
accepted by the automateh



2.1 Noncommutative arithmetic circuits and automata

This subsection is reproduced from [AMS08] to make this pap#-contained.

Consider the rind{x1, - - - ,z,} of polynomials with noncommuting variables, - - - , z,, over a field
F. Let C be a noncommutative arithmetic circuit computing a polyi@nfi € F{z,--- ,z,}. Letd be an
upper bound on the degree HfWe can consider monomials over, - - - , x,, as strings over an alphabet of

sizen. For our construction, it is more convenient to encode eaas a string ovef0, 1}. We encode the
variablez; by the stringy; = 01°0. Clearly, each monomial over the’s of degree at most maps uniquely
to a binary string of length at mogtn + 2).

Let A = (Q, 9,90, q) be a finite automaton over the alphajet1}. We have matriced/,, € FIQIxI<!
as defined in Section 2, whergis the binary string that encodes. We are interested in the output matrix
obtained when the inputs to the circuitC' are replaced by the matricds,,. This output matrix is defined
in the obvious way: the inputs af€| x |Q| matrices and we do matrix addition and matrix multiplicatio
at each addition gate (respectively, multiplication gatiefhe circuitC'. We define theoutput ofC on the
automatonA to be this output matrix/,,;. Clearly, given circuitC and automatom, the matrixi/,,,; can
be computed in time polyC|, | A|, n).

We observe the following property: the matrix outgut,,; of C' on A is determined completely by the
polynomial f computed by the structure of the circuit’ is otherwise irrelevant. This is important for us,
since we are only interested jh In particular, the output is alwayswhen f = 0.

More specifically, consider what happens wh@&ncomputes a polynomial with a single term, say
f(x1, -+ ,xp) = cxj, --- x5, With @ non-zero coefficient € F. In this case, the output matrik/,,;
is clearly the matrix:M,, ---M,, = cM,, wherew = vj, ---vj, is the binary string representing the
monomialz;, ---x;.. Thus, by Equation 1 above, we see that the efdby,;(qo, ¢f) is 0 when A rejects
w, andc when A acceptaw. In general, suppos€ computes a polynomigf = Zﬁzl ¢;m; wWith ¢t nonzero
terms, where; € F\ {0} andm,; = ]"[;l;l xi;, whered; < d. Letw; = v;, - iy, denote the binary string

representing monomiah;. Finally, lets) = {ie{l,---,t}| Aacceptav;}.

Theorem 2.1 [AMSO08] Given any arithmetic circui€’ computing polynomiaf € F{z1,--- ,x,} and any
finite automatord = (Q, 6, qo, q¢), then the outpudl/,,, of C' on A is such thatM,,.(qo, ¢5) = ZieSj; Ci.
Proof. The proof is an easy consequence of the definitions and tpegres of the matriced/,, stated
in Section 2. Note thadl,,, = f(My,, -+, M,,). But f(My,, -+, M,,) = >.;_; ¢;iM,,, wherew; =

v;, - -+ v, IS the binary string representing monomiaj. By Equation 1, we know that/,,, (qo, g5) is 1 if

w; IS accépted bw, and0 otherwise. Adding up, we obtain the result. [

We now explain the role of the automatdnin testing if the polynomialf computed byC' is identically
zero. Our basic idea is to design an automatiotihat accepts exactly one word from among all the words
that correspond to the nonzero termg'inThis would ensure that/,.;(qo, ¢5) is the nonzero coefficient of
the monomial filtered out. More precisely, we will use thexabtheorem primarily in the following form,
which we state as a corollary.

Corallary 2.2 [AMS08] Given any arithmetic circuiC computing polynomialf € F{zy,--- ,z,} and
any finite automatoml = (@, 6, qo, ¢¢), then the outpub/,,; of C on A satisfies:

(1) If Arejects every string corresponding to a monomiafirthenM,;(qo, q¢) = 0.

(2) If A accepts exactly one string corresponding to a monomigl,ithen M, (qo, ¢f) is the nonzero
coefficient of that monomial ifi.



Moreover,M,,; can be computed in timgoly(|C|, |A|,n).

Proof. Both points {) and @) are immediate consequences of the above theorem. The exitypbf
computingM,,,; easily follows from its definition. [

Another interesting corollary to the above theorem is thieiong.

Corallary 2.3 [AMS08] Given any arithmetic circuiC' overF{z1,--- ,z,}, and any monomial: of de-
greed,,, we can compute the coefficientrafin C'in timepoly(|C|, d,,,, n).

Proof. Apply Corollary 2.2 withA being any standard automaton that accepts the string poriding to
monomialm and rejects every other string. Clearly/can be chosen so thdthas a unique accepting state
and|A| = O(nd,). ]

Remark 2.4 Corollary 2.3 is very unlikely to hold in the commutativegif[zy,- - - ,z,]. For, itis easy
to see that in the commutative case computing the coeffiofethie monomial ;" ; «; in even a product
of linear formsll;¢; is at least as hard as computing the permanent dvewhich is#P-complete when

F=Q.

3 Noncommutative identity test based on isolation lemma

We now describe a new identity test for noncommutative d@sduased on the isolation lemma. It is directly
based on the results from [AMSO08]. This is conceptually eydifferent from the randomized identity test
of Bogdanov and Wee [BWO05].

Theorem 3.1 Let f € F{xy,z2, - ,2,} be a polynomial given by an arithmetic circuit of sizem.
Let d be an upper bound on the degree fof Then there is a randomized algorithm which runs in time
poly(n,m, d) and can test whethef = 0.

Proof. Let[d] = {1,2,--- ,d} and[n] = {1,2,--- ,n}. Consider the set of tupld$ = [d] x [n]. Let
v = T, - - 5, be a nonzero monomial gf. Then the monomial can be identified with the following
subsets, of U :

Sy = {(17 il)? (27 i2)> ) (tv Zt)}
Let F denotes the family of subsets Gf corresponding to the nonzero monomialsfdfe,

F ={S, | vis a nonzero monomial i}

By the Isolation Lemma we know that if we assign random weidhdm [2dn] to the elements of/,
with probability at leastl/2, there is a unique minimum weight set . Our aim will be to construct
a family of small size automatons which are indexed by weightc [2nd?] andt € [d], such that the
automatad,, ; will precisely accept all the strings (corresponding tortt@nomials)v of lengtht, such that
the weight ofS,, is w. Then from the isolation lemma we will argue that the aut@ntatrresponding to the
minimum weight will precisely accept only one string (moriathh Now for w € [2nd?], andt € [d], we
describe the construction of the automatbn, = (Q, %, 6, qo, F') as follows:Q = [d] x [2nd?] U {(0,0)},
Y ={z1,22, -+ ,zp}, g = {(0,0)} andF' = {(t,w)}. We define the transition functioh: Q x ¥ — @,

(4, V),z;) = (i+1,V+W),
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whereWV is the random weight assign {0+ 1, j). Our automata familyd is simply,
A= {Ays|we 2nd?),t € [d]}.

Now for each of the automatod,,; € A, we mimic the run of the automaton,, ; on the circuitC'
as described in Section 2. If the output matrix correspanpdmany of the automaton is nonzero, our
algorithm declareg +# 0, otherwise declareg = 0.

The correctness of the algorithm follows easily from thedgon Lemma. By the Isolation Lemma
we know, on random assignment, a uniqueSéh F gets the minimum weight,,,;,, with probability at
leastl/2. Let.S corresponds to the monomia), z;, - - - z;,. Then the automatod,, ; , accepts the string
(monomial)z;, z;, - - - z;,. Furthermore, as no other setinget the same minimum weighd,,, . , rejects
all the other monomials. So thgo, ¢5) entry of the output matrix\/,, that we get in running,, . ,on
C'is nonzero. Hence with probability at least2, our algorithm correctly decide thgtis nonzero. The
success probability can be boosted to any constant by sthimdkependent repetition of the same algorithm.
Finally, it is trivial to see that the algorithm always dessdcorrectly iff = 0. [

4 Noncommutativeidentity testing and circuit lower bounds

For commutative circuits, Impagliazzo and Kabanets [KI@8}e shown that derandomizing PIT implies cir-
cuit lower bounds. It implies that eith8IEXP ¢ P/poly or the integer Permanent does not have polynomial-
size arithmetic circuits.

In [AMSO08] we have observed that this also holds in the noroomative setting. I.e., if noncommuta-
tive PIT has a deterministic polynomial-time algorithmribetherNEXP ¢ P/poly or thenoncommutative
Permanent function does not have polynomial-size noncdative circuits. We note here that noncommu-
tative circuit lower bounds are sometimes easier to proaa fbr commutative circuits. E.g. Nisan [N91]
has shown exponential-size lower bounds for noncommetdtikmula size and further results are known
for pure noncommutative circuits [N91, RS05]. However,vimg superpolynomial size lower bounds for
general noncommutative circuits computing the Permanantémained an open problem.

To keep this paper self contained, we briefly recall the disicun from [AMSO08].

The noncommutative Permanent functiBarm(z1,-- - ,z,) € R{z1,--- ,x,} is defined as
n
Perm($1>' o 7:L'n) = Z Hxi,cr(i)?
g€Sy i=1

where the coefficient ring is any commutative ring with unity. Specifically, for the néxeorem we choose

R=Q.
Let SUBEXP denot&).~.oDTIME(2"") and NSUBEXP denote.-.oNTIME(2%).

Theorem 4.1 [AMSO08] If PIT for noncommutative circuits of polynomial degré&xy,--- ,x,) €
Q{zx1,- -+ ,x,} is in SUBEXP, then eitherNEXP ¢ P/poly or the noncommutativePermanent function
does not have polynomial-size honcommutative circuits.

Proof. Suppose&NEXP C P/poly. Then, by the main result of [[IKW02] we haM&XP = MA. Furthermore,
by Toda’s theorem MAC PP¢"z where the oracle computes the integer permanent. Nowrasg®IT
for noncommutative circuits of polynomial degree is in detimistic polynomial-time we will show that the



(noncommutative) Permanent function does not have poljalesize nhoncommutative circuits. Suppose to
the contrary that it does have polynomial-size noncomrivataircuits. Clearly, we can use it to compute the
integer permanent as well. Furthermore, as in [KI03] weasothat the noncommutative x n Permanent

is also uniquely characterized by the identitigér) = x andp;(X) = 2321 z1;pi—1(X;) forl < i < n,
whereX is a matrix ofi> noncommuting variables an; is its j-th minor w.r.t. the first row. l.e. if arbitrary
polynomialsp;, 1 < i < n satisfies these identities ovemoncommutinyariablesz;;,1 < 7,5 < nif and
only if p; computes the x ¢ permanent of noncommuting variables. The rest of the pmekactly as in
Impagliazzo-Kabanets [KI03]. We can easily describe an Nehime to simulate a’P™ computation.
The NP machine guesses a polynomial-size noncommutatiwgtdior Perm onm x m matrices, wheren

is a polynomial bound on the matrix size of the queries madienThe NP verifies that the circuit computes
the permanent by checking the noncommutativédentities it must satisfy. This can be done in SUBEXP
by assumption. Finally, the NP machines uses the circuitsavar all the integer permanent queries. Putting
it together, we gellEXP = NSUBEXP which contradicts the nondeterministic time hielng theoremm

5 TheResults

We are now ready to prove our first result. Suppose the denaizdtion Hypothesis 1 holds (as stated in
the introduction): i.e. suppose there is a determinisgo@hm .4, that takes as inputC, n) whereC'is
ann-input boolean circuit and in subexponential time compategt of weight functions, wa, - - - , wy,
w; : [n] — [2n] such that the set systeff: defined by the circui€' has a unique minimum weight set w.r.t.
at least one of the weight functions.

LetC'(z1, 29, -+ ,x,) be a noncommutative arithmetic circuit of degreleounded by a polynomial in
size(C"). By Corollary 2.3, there is a deterministic polynomial-éralgorithm that takes as inpat' and
a monomialn of degree at mosf and accepts if and only if the monomiad has nonzero coefficient in
the polynomial computed bg’. Thus, we have a boolean circiit of size polynomial insize(C") that
accepts only the (binary encodings of) monomialse;, - - - z;, , k < d that have nonzero coefficients in the
polynomial computed by’. Now, as a consequence of Theorem 3.1 and its proof we hdegeaministic
subexponential algorithm for checkingaf = 0, assuming algorithrd; exists. Namely, we compute the
boolean circuitC from C” in polynomial time. Then, invoking algorithnd; with C' as input we compute
at most subexponentially many weight functians - - - , w;. Then, following the proof of Theorem 3.1 we
construct the automata corresponding to these weightitumscand evaluaté€” on the matrices that each of
these automata define in the prescribed manner. By assumgttaut algorithmd,, if C’ # 0 then one of
thesew; will give matrix inputs for the variables;, 1 < j < n on whichC’ evaluates to a nonzero matrix.
We can now show the following theorem.

Theorem 5.1 If the subexponential time algorithm; satisfying Hypothesis 1 exists then noncommutative
identity testing is iISUBEXPwhich implies that eitheNEXP ¢ P/poly or the Permanent does not have
polynomial size noncommutative circuits.

Proof. The result is a direct consequence of the discussion pregdce theorem statement and Theo-
rem4.1. [ |

We now turn to the result under tiserongerderandomization Hypothesis 2 (stated in the introduction)
More precisely, suppose there is a deterministic algoridthat takes as inputn, n) and in time poly-
nomial inm computes a set of weight functions, ws, - - - , w, w; : [n] — [2n] such that foreachn-input
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boolean circuitC' of sizem, the set systenf defined by the circuiC'’ has a unique minimum weight set
w.r.t. at least one of the weight functions. We show that there is axplicit polynomiat f(z1,--- ,z,)
in noncommuting variables; that does not have subexponential size noncommutativeitsirc

Theorem 5.2 Suppose there is a polynomial-time algoritbfya satisfying Hypothesis 2. Then for all but
finitely manyn there is an explicit polynomiaf (x1,- - ,x,) € F{x1, 22, -+ ,z,} (Where the fieldF is
either rationals or any finite field) in noncommuting variebl; that is computable i’ time (by a
uniform algorithm) and does not have noncommutative astfarcircuits of size2o("187)

Proof. LetT,, denote the set of all sequenc@s, iz, - ,i,), fori; € [n], 1 < j < n. For each such
sequencer = (iy,i2,- - ,in) € T, letm, denote the monomial;, z;, - - - z;,. Now, we write

f(:El)xQ?"' 75L'n) = Z CaMe,

QETn

where we will pick the scalarg, appropriately so that the polynomiélhas the claimed property. Suppose
As runs in timem¢ for constant > 0, wherem denotes the size bound of the boolean cir€udefining set
systemF. Notice that the numberof weight functions is bounded by.©. As explained in Theorem 3.1,
each weight function will give rise to a collection 2f* automatad,,, each of which will prescribe matrices
of dimension at most = poly(n) to be assigned for the input variables 1 < j < n. Call these matrices

MiE’;). For each weight function); write down linear equations for eaéhe [2n?].

Fr® ™ )

) » T n

) =0.

This will actually give us a system of at mast*r? linear equations in the unknown scalags Since
there aret < m* weight functions in all, all the linear constraints put ttgr give us a system of at
most 2n%r?m¢ linear equations. Now, the number of distinct (noncomng)timonomialsm,, is n” =
2nlgn which asymptotically exceed®sr2m¢ for m = 2°(*18") sincer is polynomially bounded. Thus,
the system of linear equations has a nontrivial solutiorhgd,’s that can be computed using Gaussian
elimination in time exponential in.

Notice that the polynomiaf(z1,--- ,x,), defined by the solution to the,’s, is a nonzero polyno-
mial. We claim thatf cannot have a noncommutative circuit of s#&'18™). Assume to the contrary that
C'(x1,- -+ ,z,) is @ noncommutative circuit of size = 20(n1gn) for . Then, by Corollary 2.3 there is
ann’-input boolean circuiC' of sizem = s?1) = 20("127) that accepts precisely the (binary encodings)
of those monomials that are nonzeroGh Letwq,--- ,w; be the weight functions output by, for input
(m,n’). By Hypothesis 2, for some weight functies; and some: € [2n*] the circuitC’ must be nonzero

on matricesMi(’;). However,f evaluates to zero, by construction, on the matrix inputsgileed by all the
weight functionswy, - - - ,w;. This is a contradiction to the assumption and it compldieptoof. m

Remark 5.3 We can formulate both Hypothesis 1 and Hypothesis 2 moragbnby letting the running
time of algorithmsA4; and .4 be a functiont(m, n). We will then obtain suitably quantified circuit lower
bound results as consequence.

By explicit we mean that the coefficients ffare computable in time exponentiahin



Commutative circuits

We now show that under the derandomization Hypothesis Be(kia the introduction) we can obtain a
stronger consequence than Theorem 5.1.

Theorem 5.4 If a subexponential-time algorithnal; satisfying Hypothesis 3 exists then identity testing
over Q is in SUBEXPwhich implies that eitheNEXP ¢ P/poly or the integer Permanent does not have
polynomial size arithmetic circuits.

Proof. Using Lemma 1.5 it is shown in [KS01, Theorem 5] that thera mndomized identity test for
small degree polynomials iQ[x1, - - ,xz,]|, where the polynomial is given by an arithmetic circGitof
polynomially bounded degreé The idea is to pick a random weight vector: [n] — [2nd] and replace
the indeterminater; by v, whered is the total degree of the input polynomial. As the ciratiithas
small degree, after this univariate substitution the dircan be evaluated in deterministic polynomial time
to explicitly find the polynomial iny. By Lemma 1.5 it will be nonzero with probability/2 if C computes
a nonzero polynomial.

Coming to the proof of this theorem,NMEXP ¢ P/poly then we are done. So, suppd&exP C P/poly.
Notice that given any monomialcf1 ...z of total degree bounded by we can test if it is a nonzero
monomial ofC' in exponential time ( explicitly listing down the monomiaifthe polynomial computed by
C). Therefore, Sinc&IEXP C P/poly there is a polynomial-size boolean circdltthat accepts the vector
(di,- - ,dy) iff xfl ... z% is a nonzero monomial in the given polynomial (as requiredafiplication of
Hypothesis 3).

Now, we invoke the derandomization Hypothesis 3. We canyagh@ Klivans-Spielman polynomial
identity test, explained above, to the arithmetic circtiitor each of the weight vectorauy, - - - , w; gener-
ated by algorithm4; to obtain a subexponential deterministic identity testfiercircuitC by the properties
of As. Now, following the argument of Impagliazzo-Kabanets [B]l@t is easy to derive that the integer
Permanent does not have polynomial size arithmetic cgcuit [

Remark 5.5 We formulate a stronger version of Hypothesis 3 to obtainrelusion similar to Theorem 5.2
for commutative circuits. For example we can formulate thgdthesis:

There is a deterministic algorithmd, that takes as inpugm, n, K') and outputs a collection of weight
functionswy, wo, - - - , wy such thatw; : [n] — [2n], with the property that for each size, n-input oracle
boolean circuitC4 (whereA is EXP-complete) that takes as ingut;, - - - , ov,,) such thaty; € {0,--- , K},
there is some weight vectar; for which there is a unique linear forifav, - - - , o, ) accepted by># which
attains the minimum valuE;?zl w;(j)a;. Furthermore, 44 runs in time polynomial imn.

It is easy to see that, similar to Theorem 5.2, as a conseguefthis hypothesis there is some explicit
polynomial f (x1,--- ,x,) (i.e. computable in EXP) which does not have commutativeiiter of subexpo-
nential size.

6 Discussion
An interesting open question is whether derandomizinglamnestricted versions of the Valiant-Vazirani

lemma also implies circuit lower bounds. We recall the \falisazirani lemma as stated in the original
paper [VV86].
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Lemma6.1 LetS C {0,1}. Supposev;, 1 < i < t are picked uniformly at random frof0, 1}!. For each
i,letS; = {v e S |vw; =0,1 < j < i} and letp,(S) be the probability thatS;| = 1 for somei. Then
pe(S) > 1/4.

Analogous to our discussion in Section 1, here too we canidenthe restricted version where we
considerSc C {0,1}" to be the set ofi-bit vectors accepted by a boolean ciratiitof sizem. We can
similarly formulate derandomization hypotheses simitaHiypotheses 1 and 2.

We do not know if there is another randomized polynomial iiemest for noncommutative arithmetic
circuits based on the Valiant-Vazirani lemma. The autorttagaretic technique of Section 3 does not
appear to work. Specifically, given a matfix 5 — IF’; there is no deterministic finite automaton of size
poly(n, k) that accepts: € F7 if and only if h(x) = 0.

Acknowledgements. We are grateful to Manindra Agrawal for interesting disooss and his suggestion
that Theorem 5.2 can be obtained from the stronger hypathaske also thank Srikanth Srinivasan for
discussions.
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