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Abstract

The isolation lemma of Mulmuley et al [MVV87] is an importaobl in the design of randomized
algorithms and has played an important role in several iagitcomplexity upper bounds. On the other
hand, polynomial identity testing is a well-studied algiomic problem with efficient randomized algo-
rithms and the problem of obtaining efficiesiéterministicidentity tests has received a lot of attention
recently. The goal of this note is to compare the isolatiome with polynomial identity testing:

1. We show that derandomizing reasonably restricted veswbthe isolation lemma implies circuit
size lower bounds. We derive the circuit lower bounds by érarg the connection between the
isolation lemma and polynomial identity testing. We giveaadomized polynomial-time identity
test for noncommutative circuits of polynomial degree base the isolation lemma. Using this
result, we show that derandomizing the isolation lemmaiespioncommutative circuit size lower
bounds. For the commutative case, a stronger derandoonizatpothesis allows us to construct
an explicit multilinear polynomial that does not have symnential size commutative circuits.
The restricted versions of the isolation lemma we considematural and would suffice for the
standard applications of the isolation lemma.

2. From the result of Klivans-Spielman [KS01] we observe thare is a randomized polynomial-
time identity test for commutative circuits of polynomiadgtee, also based on a more general
isolation lemma for linear forms. Consequently, derandatidon of (a suitable version of) this
isolation lemma implies that either NEXE P/poly or the Permanent ovét does not have
polynomial-size arithmetic circuits.

1 Introduction

We recall the Isolation Lemma [MVV87]. Lék]| denote the sefl,2,--- ,n}. LetU be a set of sizes
andF C 2V be any family of subsets df. Letw : U — Z% be a weight function that assigns positive
integer weights to the elements &t ForT C U, define its weightw(1') asw(T) = >, .y w(u). Then
Isolation Lemma guarantees that for any family of subgetsf U and for any random weight assignment
w : U — [2n], with high probability there will be a uniqgue minimum weigsgt inF.

Lemma 1.1 (Isolation Lemma) [MVV87] Let U be an universe of size andF be any family of subsets
of U. Letw : U — [2n] denote a weight assignment function to element§ of hen,

. . - . 1
Proh, [ There exists a unique minimum weight setAi > 3

where the weight functiow is picked uniformly at random.
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In the seminal paper [MVV87] Mulmuley et al apply the isotetilemma to give a randomized NC
algorithm for computing maximum cardinality matchings fgneral graphs (also see [ARZ99]). Since
then the isolation lemma has found several other applicstioFor example, it is crucially used in the
proof of the result that NLC UL /poly [AROO] and in designing randomized NC algorithms farelar
representable matroid problems [NSV94]. Itis also knowvat the isolation lemma can be used to prove the
Valiant-Vazirani lemma that SAT is many-one reducible dadomized reductions to USAT.

Whether the matching problem is in deterministic NC, and ttvbeNL C UL are outstanding open
problems. Thus, the question whether the isolation lemméaealerandomized is clearly important.

As noted in [Agr07], it is easy to see by a counting argumeat the isolation lemma can not be
derandomized, in general, because ther@areset systemsF. More formally, the following is observed in
[Agr07].

Observation 1.2 [Agr07] The Isolation Lemma can not be fully derandomized if we all@ight functions
w : U — [n€] for a constante (i.e. weight functions with a polynomial range). More pesty, for any
polynomially bounded collection of weight assignmefnts}c(,,«1] with weight range[n ], there exists a
family F of [n] such that for allj € [n'], there exists two minimal weight subsets with respeat;to

However that does not rule out the derandomization of angigpasage of the isolation lemma. In-
deed, for all applications of the isolation lemma (mentobadove, for instance) we are interested only in
exponentially many set systensC 2V.

We make the setting more precise by giving a general framewx the universé/ = [n] and consider
an n-input boolean circuitC’ where size(C) = m. The set2V of all subsets ofU is in a naturall-1
correspondence with the lengthbinary strings{0, 1}": each subset C U corresponds to its characteristic
binary stringys € {0, 1} whosei*" bitis 1 iff i € S. Thus then-input boolean circuit” implicitly defines
the set system

Fo={SCnl | Clxs) = 1}.

As an easy consequence of Lemma 1.1 we have the following.

Lemma 1.3 LetU be an universe of sizeandC be ann-input boolean circuit of sizex. Let Fo C 2U pe
the family of subsets @f defined by circuiC'. Letw : U — [2n] denote a weight assignment function to
elements ot/. Then,

. . . . 1
Proh,[ There exists a unique minimum weight sefin > 3’

where the weight functiow is picked uniformly at random. Furthermore, there is a odilen of weight
functions{w; }1<i<p(m,n), Wherep(m,n) is a fixed polynomial, such that for eacf there is a weight
functionw; w.r.t. which there is a unique minimum weight sefAn.

Lemma 1.3 allows us to formulate two natural and reasonabtandlomization hypotheses for the
isolation lemma.

Hypothesis 1. There is a deterministic algorithmd; that takes as inputC, n), whereC' is ann-input
boolean circuit, and outputs a collection of weight funeia , ws, - - - , w; such thatw; : [n] — [2n], with
the property that for some; there is a unique minimum weight set in the set sysfém Furthermore, A,
runs in time subexponential ize(C').



Hypothesis 2. There is a deterministic algorithtds that takes as inputm,n) in unary and outputs a
collection of weight functionsvy, we, - - - , w; such thatw; : [n] — [2n], with the property that for each size
m boolean circuit”’ with n inputs there is some weight functian w.r.t. which F- has a uniqgue minimum
weight set. Furthermored, runs in time polynomial inn.

Clearly, Hypothesis 2 is stronger than Hypothesis 1. It detea “black-box” derandomization in the
sense thatd, efficiently computes a collection of weight functions thall work for anyset system iRV
specified by a boolean circuit of size.

Notice that a random collection,, - - - , w; of weight functions will fulfil the required property of eih
hypotheses with high probability. Thus, the derandonizratiypotheses are plausible. Indeed, it is not hard
to see that suitable standard hardness assumptions tlthpgEudorandom generators for derandomizing
BPP would imply these hypotheses. We do not elaborate oméhnes In this paper we show the following
conseguences of Hypotheses 1 and 2.

1. Hypothesis 1 implies that eith&EXP ¢ P/poly or the Permanent does not have polynomial size
noncommutative arithmetic circuits.

2. Hypothesis 2 implies that for almost all there is an explicit polynomiaf,,(z1,z2, -+ ,z,) €
Flzq,x2,- -+ ,x,] iIn commutingvariablesz; (where by explicit we mean that the coefficients of the
polynomial f,, are computable by a uniform algorithm in time exponentiak)jrthat does not have
commutative arithmetic circuits of siz€(™) (where the fieldF is either the rationals or a finite field).

The first result is a consequence of an identity testing dhgarfor noncommutative circuits that is based
on the isolation lemma. This algorithm is based on ideas fdkiS08] where we used automata theory to
pick matrices from a suitable matrix ring and evaluate themgiarithmetic circuit on these matrices. In the
next section, we describe the background and then give émitg test in the following section.

Remark 1.4 Notice that derandomizing the isolation lemma in specifipliaptions like theRNC algo-
rithm for matchinggMVV87] and the containmertiL C UL /poly [AROO] might still be possible without
implying such circuit size lower bounds.

Noncommutative polynomial identity testing has been theu$oof recent research [RS05, BWO5,
AMSO08]. One reason to believe that it could be easier thacdhemutative case to derandomize is because
lower bounds are somewhat easier to prove in the nhoncomireutatting as shown by Nisan [N91]. Using
a rank argument Nisan has shown exponential size lower Isolamchoncommutative formulas (and non-
commutative algebraic branching programs) that compwgenttincommutative permanent or determinant
polynomials in the ringf{x1, - - - , z,,} wherex; are noncommuting variables. However, no superpolyno-
mial lower bounds are known for the size of noncommutativeuis for explicit polynomials.

Our result in this paper is similar in flavor to the Impaglia#gabanets result [KIO3], where faommu-
tative polynomial identity testing they show that derandomizirdypomial identity testing implies circuit
lower bounds. Specifically, it implies that eitheEXP ¢ P/poly or the integer Permanent does not have
polynomial-size arithmetic circuits.

In [AMSO08] we have observed that an analogous result alsgshialthe noncommutative setting. l.e.,
if noncommutative PIT has a deterministic polynomial-tialgorithm then eitheNEXP ¢ P/poly or the
noncommutativ€®ermanent function does not have polynomial-size noncaative circuits.

The connection that we show here between derandomizingsth&tion lemma and noncommutative
circuit size lower bounds is based on the above observatidroar noncommutative polynomial identity
test based on the isolation lemma.



Commutative circuits

As a consequence of Hypothesis 2 we are able to that shownfmrsallln there is an explicit multilinear
polynomial f,,(x1, o, -+ ,x,) € Flz1, 22, - ,z,] in commutingvariablesz; (where by explicit we mean
that the coefficients of the polynomig), are computable by a uniform algorithm in time exponentiak)n
that does not have commutative arithmetic circuits of 8%& (where the fieldF is either the rationals or
a finite field). This is a fairly easy consequence of the umtarsubstitution idea and the observation that
for arithmetic circuits computing multilinear polynonsalwe can efficiently test if a monomial has nonzero
coefficient (Lemma 2.5).

Klivans and Spielman [KSO01] apply a more general form of Hwdtion lemma to obtain a polynomial
identity test (in the commutative) case. This lemma is dthidow.

Lemma 1.5 [KS01, Lemma 4]Let L be any collection of linear forms over variables, zo, - - - , z,, With
integer coefficients in the rand®, 1,--- , K'}. If eachz; is picked independently and uniformly at random
from {0, 1,--- ,2Kn} then with probability at least /2 there is a unique linear form fror@’ that attains
minimum value afz;, - - - , zp).

We can formulate a restricted version of this lemma simddrémma 1.3 that will apply only to sets of
linear formsL accepted by a boolean circdit. More precisely, an integer vectQty, - - - , a,,) such that
a; € {0,--- ,K}isin Lifand only if (aq,-- - , ) is accepted by the boolean circdit

Thus, for this form of the isolation lemma we can formulatetaer derandomization hypothesis
analogous to Hypothesis 2 as follows.

Hypothesis3. There is a deterministic algorithms that takes as inpytn, n, K') and outputs a collection of

weight functionswy, we, - - - , w; such thatw; : [n] — [2Kn], with the property that for any size boolean
circuit C that takes as inputo, - - - , o) With «; € {0, - -+ , K} there is some weight vectar; for which
there is auniquelinear form(as, - - - , o) accepted by which attains the minimum valug’’,_; w;(j)c;.

Furthermore,A3 runs in time subexponential ifize(C').
We show that Hypothesis 3 yields a lower bound consequemdbadaonteger permanent.

2 Automata Theory background

We recall some standard automata theory [HU78]. Fix a finiteraatonA = (Q, J, g0, ) Which takes
inputs in{0,1}*, Q is the set of states), : @ x {0,1} — @ is the transition function, ang, andg are
the initial and final states respectively (we only considgomata with unigue accepting states). For each
b e {0,1}, letd, : Q@ — Q be defined byd,(¢) = d(q,b). These functions generate a submonoid of the
monoid of all functions fron() to Q. This is the transition monoid of the automatdrand is well-studied

in automata theory [Str94, page 55]. We now defineltiematrix M;, € FIQIXI@l as follows:

N 1 if (g = ¢,
My(q,q) = { 0 otherwise.

The matrix M, is the adjacency matrix of the graph &t As M, is a0-1 matrix, we can consider it as
a matrix over any field.

For a stringw = wyws - - - wy, € {0,1}* we defineM,, to be the matrix producd/,,, My, - - - M, . If
w is the empty string, defin&/,, to be the identity matrix of dimensid®| x |Q|. Letd,, denote the natural



extension of the transition function to; if w is the empty stringy,, is simply the identity function. We

have ( !
N1 ifdue) = ¢,
Mu(q,q’) = { 0 otherwise. (1)

Thus, M,, is also a matrix of zeros and ones for any string Also, M,(qo,qf) = 1 if and only if w is
accepted by the automateh

2.1 Noncommutative arithmetic circuits and automata

This subsection is reproduced from [AMS08] to make this pap#-contained.

Consider the ring{x1, - - - ,z,} of polynomials with noncommuting variables, - - - , z,, over a field
F. Let C' be a noncommutative arithmetic circuit computing a polyi@nfi € F{z,--- ,z,}. Letd be an
upper bound on the degree fWe can consider monomials ovey, - - - , z,, as strings over an alphabet of

sizen. For our construction, it is more convenient to encode eads a string ovef0, 1}. We encode the
variablex; by the stringu; = 01?0. Clearly, each monomial over the’s of degree at most maps uniquely
to a binary string of length at mogtn + 2).

Let A = (Q, d, 0, qs) be a finite automaton over the alphatyet1}. We have matriced/,, € FI@/<|<|
as defined in Section 2, whetgis the binary string that encodes. We are interested in the output matrix
obtained when the inputs; to the circuitC' are replaced by the matricds,,. This output matrix is defined
in the obvious way: the inputs aft€| x |Q| matrices and we do matrix addition and matrix multiplicatio
at each addition gate (respectively, multiplication gatefhe circuitC'. We define theoutput ofC on the
automatonA to be this output matrix/,,;. Clearly, given circuitC and automatom, the matrixi/,,,; can
be computed in time polyC|, |A|, n).

We observe the following property: the matrix outgut,,; of C on A is determined completely by the
polynomial f computed byC; the structure of the circut’ is otherwise irrelevant. This is important for us,
since we are only interested fi In particular, the output is alwayswhen f = 0.

More specifically, consider what happens wh&ncomputes a polynomial with a single term, say
flz1,--+ ,2n) = cxj, - -z, With a non-zero coefficient € F. In this case, the output matrik/,,,,
is clearly the matrivaj1 o My, = cMy, wherew = vj, ---vj, is the binary string representing the
monomialzx;, ---x;,. Thus, by Equation 1 above, we see that the eftry;(qo, ¢) is 0 when A rejects
w, ande when A acceptaw. In general, suppos€ computes a polynomigl = 2321 ¢;m; wWith ¢ nonzero
terms, where; € F \ {0} andm,; = ]"[;li:1 x;;, whered; < d. Letw; = vy, - - Vi, denote the binary string
representing monomiak;. Finally, IetSf; ={ie{l,---,t} | Aacceptay}.

Theorem 2.1 [AMSO08] Given any arithmetic circui€’ computing polynomiaf € F{z1,--- ,x,} and any
finite automatord = (Q, 6, qo, g¢), then the outpufi/,,,, of C' on A is such thatM,,.(qo, ¢5) = Ziesj; ci.
Proof. The proof is an easy consequence of the definitions and tpegres of the matriced/,, stated
in Section 2. Note thablo,y = f(My,, -, M,,). But f(M,,,--- ,M,,) = > i, ciM,,, wherew; =

v;, - -+ v, is the binary string representing monomiaj. By Equation 1, we know that/,,, (qo, g5) is 1 if

w; IS accépted by, and0 otherwise. Adding up, we obtain the result. [

We now explain the role of the automatdnin testing if the polynomialf computed by is identically
zero. Our basic idea is to design an automatiotihat accepts exactly one word from among all the words
that correspond to the nonzero termginThis would ensure that/,.;(qo, ¢7) is the nonzero coefficient of



the monomial filtered out. More precisely, we will use theabtheorem primarily in the following form,
which we state as a corollary.

Corallary 2.2 [AMS08] Given any arithmetic circuiC computing polynomialf € F{z;,--- ,z,} and
any finite automato = (Q, 4, qo, ¢5), then the outpuf/,,,; of C' on A satisfies:

(1) If Arejects every string corresponding to a monomiafirthenM,(qo, q¢) = 0.

(2) If A accepts exactly one string corresponding to a monomigl,ithen M, (qo, ¢f) is the nonzero
coefficient of that monomial iffi.

Moreover,M,,; can be computed in timgoly(|C|, |A|,n).

Proof. Both points {) and @) are immediate consequences of the above theorem. The extypbf
computingM,,; easily follows from its definition. [

Another interesting corollary to the above theorem is thievong.

Corollary 2.3 [AMSO08] Given any arithmetic circuiC overF{z,--- ,z,}, and any monomiat: of de-
greed,,, we can compute the coefficientrafin C'in timepoly(|C|, d,,, n).

Proof. Apply Corollary 2.2 withA being any standard automaton that accepts the string pomdsg to
monomialm and rejects every other string. Clearlycan be chosen so thdthas a unique accepting state
and|A| = O(ndy,). |

Remark 2.4 Corollary 2.3 is very unlikely to hold in the commutativegif[zy, - - - ,z,]. For, itis easy
to see that in the commutative case computing the coeffiofethie monomial ;" ; «; in even a product
of linear formsll;¢; is at least as hard as computing the permanent dvewhich is#P-complete when
F = Q. However, we can show the following for commutative cisca@mputing multilinear polynomials.

Corollary 2.5 Given a commutative arithmetic circuit overF[z1, - - - , z:,], with the promise that’ com-
putes amultilinear polynomial, and any monomiak = [],.q; whereS C [n], we can compute the

coefficient ofn in C' in timepoly(|C|, n).

Proof. Letm = [[,.qx; be the given monomial. The algorithm will simply substitatéor eachz; such

thati € S and0 for eachz; such that ¢ S and evaluate the circuit to find the coefficient of the monomial
m. [ ]

3 Noncommutative identity test based on isolation lemma

We now describe a new identity test for noncommutative d@sdaased on the isolation lemma. It is directly
based on the results from [AMSO08]. This is conceptually eydifferent from the randomized identity test
of Bogdanov and Wee [BWO05].

Theorem 3.1 Let f € F{xy,z2, - ,2,} be a polynomial given by an arithmetic circuit of sizem.
Let d be an upper bound on the degree fof Then there is a randomized algorithm which runs in time
poly(n,m, d) and can test whethef = 0.



Proof. Let[d] = {1,2,--- ,d} and[n] = {1,2,--- ,n}. Consider the set of tupld$ = [d] x [n]. Let
v = T, - - x5, be a nonzero monomial gf. Then the monomial can be identified with the following
subsets, of U :

Sy = {(17 il)? (27 i2)> ) (tv Zt)}
Let F denotes the family of subsets Gfcorresponding to the nonzero monomialsfafe,

F = {S, | vis anonzero monomial i}

By the Isolation Lemma we know that if we assign random weidhdm [2dn] to the elements of/,
with probability at leastl /2, there is a uniqgue minimum weight set A Our aim will be to construct
a family of small size automatons which are indexed by weightc [2nd?] andt € [d], such that the
automatad,, ; will precisely accept all the strings (corresponding tort@nomials)v of lengtht, such that
the weight ofS, is w. Then from the isolation lemma we will argue that the aut@tatrresponding to the
minimum weight will precisely accept only one string (moriah Now for w € [2nd?], andt € [d], we
describe the construction of the automatbn; = (Q, %, 6, qo, F') as follows:Q = [d] x [2nd?] U {(0,0)},
Y =A{z1,22,- - ,xn}, g0 = {(0,0)} and F' = {(¢, w)}. We define the transition functiah: Q x ¥ — @,

(4, V),z;) =+ 1,V+W),
whereW is the random weight assign {0+ 1, j). Our automata familyd is simply,
A= {Ays|we 2nd?),t € [d]}.

Now for each of the automaton,,; € A, we mimic the run of the automaton,, ; on the circuitC'
as described in Section 2. If the output matrix correspandmany of the automaton is nonzero, our
algorithm declareg # 0, otherwise declareg = 0.

The correctness of the algorithm follows easily from thddBon Lemma. By the Isolation Lemma
we know, on random assignment, a unique $@b F gets the minimum weight,,,;, with probability at
least1/2. Let.S corresponds to the monomia), z;, - - - z;,. Then the automatod,, . ,accepts the string
(monomial)z;, z;, - - - x;,. Furthermore, as no other setinget the same minimum weight,, ., rejects
all the other monomials. So th@o, ¢5) entry of the output matrix\/,, that we get in runningi,, . ,on
C'is nonzero. Hence with probability at least2, our algorithm correctly decide thgtis nonzero. The
success probability can be boosted to any constant by sthimdkependent repetition of the same algorithm.
Finally, it is trivial to see that the algorithm always dessdcorrectly iff = 0. [

4 Noncommutativeidentity testing and circuit lower bounds

For commutative circuits, Impagliazzo and Kabanets [KI@8je shown that derandomizing PIT implies cir-
cuit lower bounds. It implies that eith®iEXP ¢ P/poly or the integer Permanent does not have polynomial-
size arithmetic circuits.

In [AMSO08] we have observed that this also holds in the nonoamative setting. I.e., if noncommuta-
tive PIT has a deterministic polynomial-time algorithmriretherNEXP ¢ P/poly or thenoncommutative
Permanent function does not have polynomial-size noncaative circuits. We note here that noncommu-
tative circuit lower bounds are sometimes easier to proaa fbr commutative circuits. E.g. Nisan [N91]
has shown exponential-size lower bounds for noncommetdtikmula size and further results are known



for pure noncommutative circuits [N91, RS05]. However,vimg superpolynomial size lower bounds for
general noncommutative circuits computing the Permanantémained an open problem.
To keep this paper self contained, we briefly recall the discun from [AMSO08].

The noncommutative Permanent functiBarm(z,-- - ,zy,) € R{z1,--- ,x,} is defined as
n
Perm($1>' o 7:L'n) = Z Hxi,cr(i)?
g€Sy i=1

where the coefficient ring is any commutative ring with unity. Specifically, for the néxeorem we choose
R =0Q.
Let SUBEXP denot&).~.oDTIME(2"") and NSUBEXP denote.-oNTIME(2%).

Theorem 4.1 [AMSO08] If PIT for noncommutative circuits of polynomial degré&x,--- ,x,) €
Q{x1, -+ ,x,} is in SUBEXP, then eitherNEXP ¢ P/poly or the noncommutativdPermanent function
does not have polynomial-size honcommutative circulits.

Proof. Suppose&NEXP C P/poly. Then, by the main result of [[IKW02] we haM&XP = MA. Furthermore,
by Toda’s theorem MAC PPz where the oracle computes the integer permanent. Nowasg®!T

for noncommutative circuits of polynomial degree is in detmistic polynomial-time we will show that the
(noncommutative) Permanent function does not have poljalesize noncommutative circuits. Suppose to
the contrary that it does have polynomial-size noncomnvataircuits. Clearly, we can use it to compute the
integer permanent as well. Furthermore, as in [KI03] weasothat the noncommutative x n Permanent

is also uniquely characterized by the identitigéx) = x andp;(X) = Z§:1 x1;pi—1(X;) forl <i < mn,
whereX is a matrix ofi> noncommuting variables ang; is its j-th minor w.r.t. the first row. I.e. if arbitrary
polynomialsp;, 1 <7 < n satisfies these identities ovemoncommutingariablesz;;, 1 < 7,5 < n if and
only if p; computes the x i permanent of noncommuting variables. The rest of the pmekactly as in
Impagliazzo-Kabanets [KI03]. We can easily describe an Nfehime to simulate a’®"™ computation.
The NP machine guesses a polynomial-size noncommutativgtdior Perm onm x m matrices, wheren

is a polynomial bound on the matrix size of the queries madienThe NP verifies that the circuit computes
the permanent by checking the noncommutativédentities it must satisfy. This can be done in SUBEXP
by assumption. Finally, the NP machines uses the circutisavar all the integer permanent queries. Putting
it together, we gellEXP = NSUBEXP which contradicts the nondeterministic time hielng theoremm

5 TheResults

We are now ready to prove our first result. Suppose the demaizdtion Hypothesis 1 holds (as stated in
the introduction): i.e. suppose there is a determinisgoi@hm .4, that takes as inputC, n) whereC'is
ann-input boolean circuit and in subexponential time compuategt of weight functionss, ws, - - - , wy,
w; : [n] — [2n] such that the set systefft: defined by the circui€' has a unique minimum weight set w.r.t.
at least one of the weight functions.

LetC'(z1, 29, -+ ,x,) be a noncommutative arithmetic circuit of degreleounded by a polynomial in
size(C"). By Corollary 2.3, there is a deterministic polynomial-tiralgorithm that takes as inpat’ and
a monomialm of degree at mosf and accepts if and only if the monomied has nonzero coefficient in
the polynomial computed bg’. Thus, we have a boolean circuit of size polynomial insize(C’) that
accepts only the (binary encodings of) monomialse;, - - - z;,, £ < d that have nonzero coefficients in the

8



polynomial computed by’. Now, as a consequence of Theorem 3.1 and its proof we hdegeaministic
subexponential algorithm for checkingaf = 0, assuming algorithrd; exists. Namely, we compute the
boolean circuit” from C” in polynomial time. Then, invoking algorithnd; with C' as input we compute
at most subexponentially many weight functians - - - , w;. Then, following the proof of Theorem 3.1 we
construct the automata corresponding to these weightitumscand evaluaté€” on the matrices that each of
these automata define in the prescribed manner. By assumgttaut algorithmd,, if C’ # 0 then one of
thesew; will give matrix inputs for the variables;, 1 < j < n on whichC’ evaluates to a nonzero matrix.
We can now show the following theorem.

Theorem 5.1 If the subexponential time algorithm; satisfying Hypothesis 1 exists then noncommutative
identity testing is iISUBEXPwhich implies that eitheNEXP ¢ P/poly or the Permanent does not have
polynomial size noncommutative circuits.

Proof. The result is a direct consequence of the discussion pregdce theorem statement and Theo-
rem4.1. [

Commutative circuits

We now turn to the result under terongerderandomization Hypothesis 2 (stated in the introductitdgre
precisely, suppose there is a deterministic algorithrthat takes as inputn, n) and in time polynomial in
m computes a set of weight functions , wo, - - - , w, w; : [n] — [2n] such that foreachn-input boolean
circuit C' of sizem, the set systenfFo defined by the circuiC has a uniqgue minimum weight set w.r.t.
at least one of the weight functions;. We show that there is aexplicit polynomial f(zy,--- ,z,) in
commuting variables; that does not have subexponential sisenmutativecircuits.

Theorem 5.2 Suppose there is a polynomial-time algoritbfa satisfying Hypothesis 2. Then for all but
finitely manyn there is an explicit multilinear polynomial (where by exfiliwe mean that the coefficients
of the polynomialf,, are computable by a uniform algorithm in time exponentiah)nf(z1,--- ,x,) €
Flz1, s, - , 7, (WhereF is eitherQ or a finite field) that is computable 2" time (by a uniform
algorithm) and does not have arithmetic circuits of st?&").

Proof. We will pick an appropriate multilinear polynomidle F|xy, xo, - - - , x,] where:
f(l'l,ﬂi'Q,"‘,l'n): chnmh
SCln] €S

where the coefficientss € F will be determined appropriately so that the polynomnjiahas the claimed
property.

SupposeAs runs in timem¢ for constant: > 0, wherem denotes the size bound of the boolean circuit
C defining set systenf. Notice that the numberof weight functions output byls is bounded byn©.

The total number of coefficients; of f is 2". For each weight functiow; let (w; 1, -- ,w;,) be the
assignments to the variables. For each weight functiom;,1 < i < t we write down the following
equations

f(ywiJ’ywi,Q’ e 7ywi’n) =0.

By explicit we mean that the coefficients ffare computable in time exponentiahin




Sincef is of degree at most, and the weightsv; ; are bounded bgn, f(y“ot,y*2, - ,y¥n)is a
univariate polynomial of degree at ma@st? in 3. Thus, each of the above equations will give rise to at most
2n? linear equations in the unknowas.

In all, this will actually give us a system of at mast?>m¢ linear equations ovéf in the unknown scalars
¢s. Since the total number of distinct monomial€fs and2™ asymptotically exceeds® for m = 2°(") | the
system of linear equations hasantrivial solution in thecg providedm = 2°(™), Furthermore, a nontrivial
solution forcg can be computed using Gaussian elimination in time expaientn.

We claim thatf does not have commutative circuits of sZ&™ overF. Assume to the contrary that
C(x1,--- ,x,) is a circuit for f(zy,--- ,x,) of size2°(™. By Lemma 2.5 notice that we can construct a
boolean circuitC' of sizem = 2°™ that will take as input a monomigl; ; z; (encoded as an-bit boolean
string representing as a subset df]) and test if it is nonzero i’ and hence inf(z1, -+, xn,).

Assuming Hypothesis 2, lety, - - - , w; be the weight functions output by, for input (m,n). By Hy-
pothesis 2, for some weight functian there is a unique monomigl; ¢ z; such that _; s w; ; takes the
minimum value. Clearly, the commutative circditmust be nonzero on substituting’-i for x; (the coef-
ficient ofyzfes a7 will be nonzero). Howeverf evaluates to zero on the integer assignments prescribed

by all the weight functionsvy, - - - , w. This is a contradiction to the assumption and it compldiestoof.
[ ]

Remark 5.3 We note that Hypothesis 2 also implies the existence of diciexmlynomial in noncommut-
ing variables that does not have noncommutative circuitsibExponential size (we can obtain it as an easy
consequence of the above proof).

We now show that under the derandomization Hypothesis 8yialdifferent consequence (about the
integer permanent rather than some explicit function).

Theorem 5.4 If a subexponential-time algorithnal; satisfying Hypothesis 3 exists then identity testing
over Q is in SUBEXPwhich implies that eitheNEXP ¢ P/poly or the integer Permanent does not have
polynomial size arithmetic circuits.

Proof. Using Lemma 1.5 it is shown in [KS01, Theorem 5] that thera mndomized identity test for
small degree polynomials iQ[x1, - - ,xz,]|, where the polynomial is given by an arithmetic circGitof
polynomially bounded degreé The idea is to pick a random weight vector: [n] — [2nd] and replace
the indeterminater; by (), whered is the total degree of the input polynomial. As the ciratiithas
small degree, after this univariate substitution the dircan be evaluated in deterministic polynomial time
to explicitly find the polynomial iny. By Lemma 1.5 it will be nonzero with probability/2 if C computes
a nonzero polynomial.

Coming to the proof of this theorem,NMEXP ¢ P/poly then we are done. So, suppd&exP C P/poly.
Notice that given any monomialcf1 ...z of total degree bounded by we can test if it is a nonzero
monomial ofC' in exponential time ( explicitly listing down the monomiaiéthe polynomial computed by
C). Therefore, sinc&lEXP C P/poly there is a polynomial-size boolean circdlitthat accepts the vector
(di,- - ,dy) iff xfl ---z% is a nonzero monomial in the given polynomial (as requiredafaplication of
Hypothesis 3).

Now, we invoke the derandomization Hypothesis 3. We canyagh@ Klivans-Spielman polynomial
identity test, explained above, to the arithmetic circtiitor each of the weight vectorauy, - - - , w; gener-
ated by algorithm4; to obtain a subexponential deterministic identity testfiercircuitC by the properties
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of As. Now, following the argument of Impagliazzo-Kabanets [BJl@t is easy to derive that the integer
Permanent does not have polynomial size arithmetic cgcuit [

Remark 5.5 Although the permanent is a multilinear polynomial, notilkat Hypothesis 2 does not seem
strong enough to prove the above theorem. The reason idtdairithmetic circuit for the permanent that is
nondeterministically guessed may not be multilinear amithdehe application of Lemma 2.5 is not possible.
There does not appear any easy way of testing if the guesseit computes a multilinear polynomial.

Remark 5.6 We can formulate both Hypothesis 1 and Hypothesis 2 moraggnby letting the running
time of algorithmsA; and .4, be a functiont(m,n). We will then obtain suitably quantified circuit lower
bound results as consequence.

6 Discussion

An interesting open question is whether derandomizinglamnestricted versions of the Valiant-Vazirani
lemma also implies circuit lower bounds. We recall the \falisazirani lemma as stated in the original
paper [VV86].

Lemma6.1 LetS C {0,1}. Supposev;, 1 < i < t are picked uniformly at random frof0, 1}!. For each
i,letS; = {v e S |vw; =0,1 < j < i} and letp,(S) be the probability thatS;| = 1 for somei. Then
p(S) = 1/4.

Analogous to our discussion in Section 1, here too we canidenthe restricted version where we
considerSc C {0,1}" to be the set of-bit vectors accepted by a boolean ciratiitof sizem. We can
similarly formulate derandomization hypotheses simitaHipotheses 1 and 2.

We do not know if there is another randomized polynomial iiemest for noncommutative arithmetic
circuits based on the Valiant-Vazirani lemma. The autorttagaretic technique of Section 3 does not
appear to work. Specifically, given a matfix 5 — IE"; there is no deterministic finite automaton of size
poly(n, k) that accepts: € F7 if and only if h(x) = 0.

Acknowledgements. We are grateful to Manindra Agrawal for interesting disomss and his suggestion
that Theorem 5.2 can be obtained from the stronger hypathaske also thank Srikanth Srinivasan for
discussions.
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