
Cryptographic Complexity of Multi-party Computation Problems:

Classifications and Separations

Manoj Prabhakaran

University of Illinois

Urbana-Champaign, IL

mmp@uiuc.edu

Mike Rosulek

University of Illinois

Urbana-Champaign, IL

rosulek@uiuc.edu

March 12, 2008

Abstract

We develop new tools to study the relative complexities of secure multi-party computation
tasks (functionalities) in the Universal Composition framework. When one task can be securely
realized using another task as a black-box, we interpret this as a qualitative, complexity-theoretic
reduction between the two tasks. Virtually all previous characterizations of MPC functionalities,
in the UC model or otherwise, focus exclusively on secure function evaluation. In comparison,
the tools we develop do not rely on any special internal structure of the functionality, thus
applying to functionalities with arbitrary behavior. Our tools additionally apply uniformly to
both the PPT and unbounded computation models.

Our first main tool is the notion of splittability, which is an exact characterization of realiz-
ability in the UC framework with respect to a large class of communication channel function-
alities. Using this characterization, we can rederive all previously-known impossibility results
as immediate and simple corollaries. We also complete the combinatorial characterization of
2-party secure function evaluation initiated by [12] and partially extend the combinatorial con-
ditions to the multi-party setting.

Our second main tool is the notion of deviation-revealing functionalities, which allows us
to translate complexity separations in simpler MPC settings (such as the honest-but-curious
corruption model) to the standard (malicious) setting. Applying this tool, we demonstrate
the existence of functionalities which are neither realizable nor complete, in the unbounded
computation model.

Electronic Colloquium on Computational Complexity, Report No. 50 (2008)

ISSN 1433-8092

Contents

1 Introduction 1
1.1 Related Work on Complexity of MPC Functionalities 2

2 Preliminaries 4

3 Structural Results 6
3.1 Splittability of (Regular) 2-Party Functionalities . 6
3.2 General Theory of Splittability . 10

3.2.1 Notational Conventions . 10
3.2.2 General Splittability Definition . 12
3.2.3 Theorems . 12
3.2.4 Relation to the simplified definition. 15

3.3 Deviation Revealing Functionalities . 16

4 Applications of the Theory 20
4.1 Simple Impossibility Results . 20
4.2 Combinatorial Characterization for 2-party SFE . 20
4.3 Results for Multi-party Functionalities . 22
4.4 A Strict Hierarchy of Intermediate Complexities . 25
4.5 Completeness for Uniform Corruption Schemes . 25

5 Open Problems and Future Directions 26

A Modeling Conventions 31

B Other Protocols for 3-party Functionalities 33

1 Introduction

In this work, we seek to investigate the intrinsic “cryptographic complexity” of secure multiparty
computation (MPC) functionalities. MPC functionalities can have a rich structure, being interac-
tive, often randomized, computations involving more than one party. Clearly not all functionalities
have equal cryptographic sophistication. For instance, one expects a task like oblivious transfer
to be much more sophisticated than the mere task of communication or local computation. One
could ask if the two-party task of commitment is any more complex than the task of two (mutually
distrusting) parties generating unbiased coin-flips. We present a complexity-theoretic approach to
asking and answering such questions.

At the heart of such an approach is identifying meaningful (or useful) notions of reductions be-
tween MPC functionalities, that would allow us to form “complexity classes” of functionalities with
similar cryptographic complexity. The most natural notion of reduction for MPC functionalities is
in terms of “secure realizability:” can one functionality F be securely realized given access to (a
secure realization of) another functionality G? Indeed, this notion of reduction has been extensively
used in literature. Yet, the way this “reduction” was traditionally defined, it was not transitive.
This severely restricted its usefulness as a reduction for studying cryptographic complexity. In the
recently developed framework of Universal Composition (UC) [8], however, the Universal Com-
position theorem guarantees that the reduction based on secure realizability in that framework is
indeed a transitive relation. It is in this framework that we ground our study.

Our results presented below can be viewed as relating to an abstract notion of complexity of
MPC functionalities. More concretely, these can be interpreted as results on secure realizability in
the UC framework.

Our Results. We introduce new techniques and tools to better understand and classify crypto-
graphic complexity classes (as defined using secure realizability in the UC framework). We focus
on tools that apply broadly to arbitrary functionalities; most previous work either focused on non-
reactive functionalities (secure function evaluation), or involved arguments specific to particular
functionalities. Further, the main tools we develop apply in the computationally bounded UC
model, as well as in the information theoretic (or computationally unbounded) variant.

We then apply our new tools to give more concrete results for specific functionalities and char-
acterizations for important subclasses of functionalities. Our main results mostly involve showing
separations in complexity among functionalities, as opposed to new protocol constructions. Our
main results fall into two categories based on the techniques used:

Classifying Functionalities Using Splittability. We define a very general aspect of crypto-
graphic complexity called splittability. We show that splittable functionalities are exactly the ones
that have secure protocols in the plain model, with respect to static corruptions, using an idealized
communication channel (Theorem 1). This is the first alternate characterization of realizability in
the UC model.

Superficially, the definition of splittability is similar to the definition of realizability in the UC
framework, and indeed, showing that a functionality is splittable is not much easier than directly
showing that it is realizable. However, the main utility of the splittability characterization is that it
is often extremely easily to show that a functionality is unsplittable. We rederive the impossibility of
zero-knowledge proofs [8], bit commitment, coin-tossing, and oblivious transfer [11] as simple and
easy consequences of this characterization. We also use splittability to complete the combinatorial
characterization of 2-party secure function evaluation (SFE) initiated in [12, 13] (Theorem 5).

1

We generalize the notion of splittability as a transitive binary relation on functionalities. Using
this definition, we identify a class that includes all natural communication channels, and which we
argue defines a natural class of “low cryptographic complexity.” Then we show that for all G in
this class, our exact characterization generalizes; that is, F is splittable with respect to G if and
only if F has a secure protocol on the channel G (Theorem 3), with respect to static corruptions.

Furthemore, if a functionality is unsplittable according to the simpler, less general definition,
then it has no secure protocol on any natural channel. Thus, splittability provides a powerful and
easy way to separate the cryptographic complexities of many functionalities.

Our main technical results hold for multi-party functionalities, although the definitions become
complicated and less intuitive for more than 2 parties. We derive some simple necessary combina-
torial conditions for multi-party realizability, which turn out to be sufficient for the 3-party case
(Theorem 7). We leave open the question of whether they are sufficient in general.

Passive Corruption and Deviation-Revealing Functionalities. A functionality’s realiz-
ability depends crucially on the model of the adversary’s corruption. For instance, in the unbounded
computation model, functionalities like coin-flipping and commitment become trivial if only pas-
sive (honest-but-curious) corruption is possible, while oblivious transfer remains unrealizable. This
motivates using alternate (and possibly unrealistic) corruption models to study the complexity of
functionalities. We develop an effective technique to “lift” realizability separations from restricted
corruption settings to the standard malicious corruption setting. While the techniques of split-
tability can give separations involving only relatively low-complexity functionalities, this second
technique can yield separations among higher-complexity functionalities.

Translating separations in the restricted corruption settings to the standard setting is possible
only for certain “well-behaved” functionalities. We identify such a well-behavedness property called
deviation revealing and formulate an appropriate translation recipe (Theorem 4). As in the case
of splittability, the deviation-revealing property is applicable to arbitrary functionalities (possibly
reactive, or randomized).

Combining this recipe with known separations in various corruption models (as well as some
easy observations), we show a sequence of four natural functionalities that form a hierarchy of
strictly increasing complexity, in the unbounded computation model (Theorem 8). This implies
that the two intermediate functionalities in this sequence are neither complete nor realizable (using
any natural communication channel), and that there is more than one distinct intermediate level of
complexity. Our result separating these two functionalities of intermediate complexity is perhaps
unique since previous works focused on only the extremes of complexity.

1.1 Related Work on Complexity of MPC Functionalities

Classification of functionalities in terms of realizability has been extensively studied in many dif-
ferent models of MPC. Here we highlight the results most relevant to ours, arranged by the details
of the particular model. Several other important results in somewhat different models are omit-
ted. Essentially all of this previous work focused on characterizing the extremes of complexity:
realizability and completeness, and further was mostly confined to SFE functionalities.

Against passively corrupting (honest-but-curious), computationally unbounded adver-
saries. Kilian, Kushilevitz, Micali, and Ostrovsky [33] (building on [31, 36]) showed that in the
setting of secure function evaluation (SFE) of boolean, symmetric functions (i.e., each party receives
the same single bit output), a functionality is complete if and only if it is unrealizable (when the
adversary is allowed to corrupt an unlimited number of parties). They also show an example of

2

a non-boolean function which is neither realizable nor complete. Their notion of completeness is
explicitly in terms of black-box reductions (i.e., the protocols implementing all other functionalities
used the complete functionality as a black-box, as in our definition of the v reduction).

Chor and Kushilevitz [17, 18] gave a combinatorial characterization of the set of realizable
functionalities for the above class (boolean, symmetric SFE). The realizable functions in this setting
are exactly those which are isomorphic to the distributed XOR function. Applying a result by Ben-
Or, Goldwasser, and Wigderson [6], they observe that all such functions either remain realizable
for an arbitrary number of corruptions or have secure protocols when the adversary can corrupt
only a strict minority of parties.

In the setting of two-party, symmetric SFE (multi-bit output), Kushilevitz [34, 35] gave a
complete combinatorial characterization of the realizable functionalities.

Kilian [31, 32] gave combinatorial characterizations for completeness of two-party, probabilistic,
asymmetric (only one party receives output) SFE and two-party, probabilistic, symmetric SFE.
The definition of completeness used here is explicitly black-box. In the asymmetric case, if the
functionality is not complete, then it in fact has a simple secure realization. In the symmetric case,
there are indeed functionalities with intermediate complexity: neither complete nor realizable, as
observed in [33].

In a more quantitative approach to classifying unrealizable functionalities, Beaver [3] showed
there is an infinite, dense hierarchy defined by the number of (black-box) invocations of the complete
AND functionality needed to securely realize incomplete functionalities. Building on this, Beimel
and Malkin [4] gave combinatorial characterizations for the minimal number of invocations of the
AND functionality needed to realize symmetric SFE functionalities via deterministic protocols.
They also demonstrated that randomized protocols can sometimes do exponentially better than
their bounds for deterministic protocols.

Against passively corrupting, computationally bounded adversaries. Yao [41] and Gol-
dreich, Micali, and Wigderson [22] constructed secure protocols for essentially every multi-party
functionality in this setting, under standard cryptographic assumptions. Thus realizability is a triv-
ial property of functionalities in this model. Consequently, little research has focused on relative
complexities of functionalities in this setting.

One exception is the work of Harnik, Naor, Reingold, and Rosen [26], who studied completeness
for two-party, asymmetric SFE in this setting. They give a computational analog of the combina-
torial characterization for completeness in the computationally unbounded setting.

Against actively corrupting adversaries, in the stand-alone model. Against computa-
tionally bounded adversaries, essentially every MPC functionality has a secure realization via the
protocols constructed by Goldreich, Micali, and Wigderson [22]. Ben-Or, Goldwasser, and Wigder-
son [6] and Chaum, Crépeau, and Damg̊ard [15] constructed protocols for essentially any MPC
functionality secure against unbounded adversaries that are allowed to corrupt a strict minority of
parties.

One of the first functionalities observed to be complete against malicious adversaries was oblivi-
ous transfer, by Kilian [30]. Later, Kilian [32] gave a combinatorial characterization of the two-party,
asymmetric, deterministic SFE functionalities that are complete in this setting against computa-
tionally unbounded adversaries. To show these functionalities complete, Kilian gave a secure real-
ization of oblivious transfer using black-box access to the (augmented) functionality. We note that
the protocol’s simulator is a straight-line black-box simulator, and thus these completeness results
also hold in the UC model.

3

Later, many oblivious transfer-like functionalities were studied. Damg̊ard, Kilian, and Sal-
vail [19] considered “information-leaking” variants of oblivious transfer (where both the sender
and receiver might learn the other party’s complete inputs with some probabilities), showing a
sharp threshold for which relaxations remain complete. They also considered variants where the
received bit may be flipped with some additional probability, and gave partial results for this case.
Cachin [7] studied a very broad generalization of oblivious transfer-like functionalities, and gave
information-theoretic classifications for those which remained complete. Though in the stand-alone
model, these two sets of completeness results can be seen to hold in the UC model as well.

Beimel, Malkin, and Micali [5] showed a combinatorial criterion for a two-party, asymmetric
SFE functionality to be complete. However, their definition of completeness is unique in not being
based on black-box reductions among functionalities.

In the UC model. Canetti [8, 9] (and independently Pfitzmann and Waidner [37]) introduced
the general framework of network-aware security known as UC security. Many modifications to
the original UC framework have been proposed, which allow for all MPC functionalities to have
secure realizations [14, 1, 39, 2, 28, 10], however, not all functionalities are realizable in the original
framework:

The first impossibility results in the framework were already given for coin-tossing, zero-
knowledge, and oblivious transfer by Canetti [8]. Later, commitment was shown to be unrealizable
in the framework by Canetti and Fischlin [11]. Canetti, Kushilevitz, and Lindell [12] showed several
broad impossibility results for many classes of two-party SFE in the framework. For single-input
functions, symmetric functions, and for asymmetric functions over finite domains, their results
provide a complete characterization of realizability.

The impossibility results developed in [12] were later extended by Kidron and Lindell [29] and
shown to hold even in the presence of certain “set-up” functionalities. They also showed that certain
related set-up functionalities would admit secure protocols for all functionalities. Our splittability
classification can be viewed as a generalization and extension of the techniques used in [12, 29] to
show impossibilities.

2 Preliminaries

Some of our conventions differ from the original UC model. We now overview the model, highlight-
ing these differences, which are motivated by our “complexity theoretic” view of MPC.

Modeling conventions. The network-aware security framework for MPC includes four kinds
of entities (modeled as interactive Turing Machines or IO-automata): an environment, multiple
parties, an adversary, and a functionality. The functionality’s program fully specifies an MPC
problem, and as such, is the primary object we classify in this paper. The specifics of how the
entities interact can be formalized in different ways; see Appendix A for one which aims to abstractly
capture a realistic execution of protocols in a network.

Emphasizing the generality of our theory, we do not specify any computational limitations on
these network entities, but instead consider abstract classes of admissible machines. We only require
that a machine that internally simulates several other admissible machines remains admissible
itself.1 Our main results (as well as the main universal composition theorem) apply uniformly for
any such system, the two most natural of which are computationally unbounded systems (which

1As such, our theory is not directly applicable to the network-aware security model introduced in [39, 38] and also
used in [2], where an adversary can sometimes access extra computational power that an environment cannot.

4

admit all probabilistic machines) and PPT systems (which admit all probabilistic, polynomial-time
machines).

Unlike the UC model, we model the communication among the environment, parties, and func-
tionalities as an ideal, private, tamper-proof channel. In the UC model, an adversary would be
able to tamper with and delay such communications. Instead, we assume that functionalities can
achieve the same effect by directly interacting with the adversary each time a party communicates
with the functionality. This difference is significant in considering non-trivial protocols, which we
address later in this section. Furthermore, there is no built-in communication mechanism among
the parties — all communication must be via a functionality. In this way, we are able to uniformly
consider protocols over arbitrary channels.

We require that a protocol interact only with a single instance of some functionality. This is
without loss of generality, since we can always consider a single “augmented” functionality that
provides an interface to multiple independent sessions of one or more simpler functionalities. This
convention maintains the strict binary nature of the complexity reduction. Also, for simplicity, we
assume that parties and communication ports of the functionality are numbered, and that a protocol
which uses F must have the ith party interact only as the ith party to F . Again, this is without loss
of generality, as an “augmented” variant of F could provide an interface to multiple different “port-
mappings” of F . To emphasize a qualitative measure of cryptographic complexity, we generally
(implicitly) consider reductions among such augmented functionalities. In the UC model, F and its
augmented version F+ can be realized in terms of one another, though not following our convention
of the v notation. Thus all of our results may be interchangeably interpreted as being in terms of
augmented or unaugmented functionalities, whichever is appropriate.

Notation. exec[Z,A, πG] denotes the distribution of the environment Z’s (single-bit) output
when it interacts with parties running the protocol πG (i.e., π using G as the sole medium for
interaction), in the presence of an adversary A. We denote the “dummy protocol” used to access
a functionality by ∂ (i.e., an ideal-world direct interaction with F will be denoted as running the
protocol ∂F). We say π is a secure realization of F with respect to G if if for all adversaries A,
there exists a simulator S such that for all environments Z, exec[Z,A, πG] ≈ exec[Z,S, ∂F].
(≈ can denote statistical, computational or perfect indistinguishability, depending on the system.)
When there is a secure realization of F with respect to G, we write F v G. We define the natural
complexity class realiz

G = {F | F v G}, the class of functionalities which have secure realizations
with respect to G. Our main results apply to both PPT and unbounded systems in a unified way,
so we often do not distinguish between the two systems in our notation. To explicitly refer to
realizability in PPT or unbounded systems, we write vp,realizp and vu,realizu, respectively.

Non-trivial protocols. In the standard UC model, where an adversary may delay communi-
cations between a functionality and parties, a protocol which does nothing is a secure realization
since the same effect can be achieved in the ideal world by an adversary who indefinitely blocks all
communication. Thus it is necessary to restrict attention to so-called non-trivial protocols [14, 12]
which are secure even when the ideal-world adversary eventually delivers all messages.

In our model, all communication between parties and functionality is on an idealized channel,
but we may consider functionalities that explicitly interact with the adversary, allowing it to block
or delay its communication with its honest parties. For such functionalities, we must also consider
a definition of non-triviality for our results to be meaningful.

Definition 2.1 Let wrap(F) be the functionality that runs F , except all outputs generated by F
are not immediately delivered, but entered in a queue. wrap(F) informs the adversary of each such

5

output (source, destination and length) and delivers it only if/when the adversary instructs it to.

It is often the case that one would consider wrap(Fpvt) (or similar) as one’s communication
channel, and would be willing to settle for the security of wrap(F), provided that some liveness
condition were guaranteed.

Definition 2.2 Let π be a secure realization of wrap(F) with respect to wrap(G). We say π is
non-trivial, and write wrap(F) vnt wrap(G), if π is also a realization of F with respect to G.

In other words, a secure realization is non-trivial if, in the optimistic case where the adversary
delivers all messages on wrap(G), the protocol realizes F (which may guarantee delivery of outputs,
for example).

The important implication of Definition 2.2 is that F 6v G implies wrap(F) 6vnt wrap(G). Thus
the complexity separations we obtain (between more simply defined functionalities) also imply
corresponding separations for the weaker, more realistic wrapped functionalities, with respect to
non-trivial protocols.

Comparison to existing definition. We note that our definition of non-triviality is slightly
stronger than the non-triviality condition in [14, 12]. Translated into our conventions, the original
definition insists that the protocol π (for wrap(F) v wrap(G)) also realize F v G, but only against
adversaries who corrupt no parties. While this is arguably sufficient for simple functionalities such
as secure function evaluation, we claim that it still leaves room for some pathological functionalities
with unsatisfactory non-trivial realizations.

Consider the following “pseudo oblivious transfer” functionality FpOT: It receives bits x0, x1

from Alice. Then Bob may send a bit b to the functionality and receive xb in return. Unlike normal
oblivious transfer, Bob may do this as many times as he likes, but each time he does, FpOT tells
Alice that Bob fetched a bit (though it does not tell Alice which bit he fetched). FpOT itself is
easily seen to be unsplittable, and thus has no secure protocol using private channels. But now
consider the protocol for wrap(FpOT) where Alice simply sends Bob both of her bits to Bob. Bob
only outputs the bit he desires to pick up. This protocol is secure because in the ideal world, a
malicious Bob can learn both of Alice’s inputs, but block the functionality’s second notification to
Alice. It is non-trivial according to the weaker non-triviality definition. Nevertheless it provides
none of the cryptographic properties FpOT has, and the simulator can be viewed as “exploiting”
the message delivery wrapper.

3 Structural Results

In this section we present our two new tools for studying the realizability of functionalities. These
tools apply to arbitrary functionalities and to both PPT and unbounded computational systems.
We call this set of results our “structural results” to emphasize their generality. Later, in Section 4,
we apply these structural results to specific settings and classes of functionalities to obtain concrete
results.

3.1 Splittability of (Regular) 2-Party Functionalities

The main tool we develop to characterize classes realiz
G is a theory of splittability. For expositional

clarity, first we present a special case of our splittability theory, which captures the essential intuition
and still has useful consequences in the more general setting. The simplification involves restricting

6

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.

7

ourselves to a class of functionalities called 2regular— the 2-party functionalities which do not
directly interact with the adversary when no parties are corrupted, and whose behavior does not
depend on which parties are corrupted. We also restrict attention to secure protocols which use an
idealized communication channel. We let Fpvt denote the completely private channel functionality,
which allows parties to send private messages to other parties of their choice, but does not interact
with the adversary at all — not even to notify it that a message was sent. In the next section we
shall remove these restrictions and present the general theory.

Definition 3.1 Let F be a 2-party functionality and T an admissible machine. Define FTsplit as
the compound functionality that does the following (See Figure 1):
FTsplit internally simulates an instance of T and two independent instances of F , which we call

FL and FR. The first party of FTsplit directly interacts with FL as its first party. The second party

of FTsplit directly interacts with FR as its second party. The machine T interacts only with FL and
FR, as the other parties to these functionalities.

We define splittability of F in terms of FTsplit.

Definition 3.2 F ∈ 2regular is splittable if there exists a machine T such that F is indistin-
guishable from FTsplit. That is, for all environments Z and the dummy adversary A that corrupts no

one, we have exec[Z,A, ∂F] ≈ exec[Z,A, ∂
FT

split], where ∂ denotes the dummy protocol. We define
2regsplit as the class of all splittable functionalities in 2regular.

At a very high level, F is splittable if there is a way to successfully mount an undetectable man-
in-the-middle “attack” in the ideal world, between two independent instances of the functionality.

Theorem 1 F ∈ 2regular is securely realizable (using Fpvt) if and only if F is splittable. That
is, 2regular ∩ realiz

Fpvt = 2regsplit.

The easier direction is to see that 2regsplit ⊆ realiz
Fpvt ∩2regular. If F is splittable, then

a protocol (π1, π2) can be derived as shown in Figure 2. Note that the protocol uses a perfectly
private channel for communication, which in our model is essentially the same kind of channel that
the network entities use to communicate. Interestingly, the protocol at each end simulates a copy
of the ideal functionality. Then the protocol’s simulator can faithfully simulate the honest party’s
protocol merely by accessing the functionality in the ideal world.

The more interesting direction is showing that every realizable functionality is splittable. It
generalizes the “split-adversary” technique used by Canetti, Kushilevitz, and Lindell [12], and also
has parallels with an impossibility proof by Dwork et al. [20].2 A visual overview is given in
Figure 3.

Proof: (If F is realizable, then F is splittable) Suppose F is securely realizable with protocol
π, where SX is the simulator for the dummy adversary which corrupts the parties indexed by
X = {1, 2} \X.

Take any environment Z and consider an ideal-world interaction where the players communicate
directly with F , and neither party is corrupted (box 1 in Figure 3). There is no need for an external
adversary since F does not communicate with the adversary when no parties are corrupted. By
the security of π, this is indistinguishable to the real-world execution where the parties engage in

2The common thread in these proofs is to construct two separate corruption scenarios and consider a man-in-the-
middle attack which pits the honest players in the two scenarios against each other.

8

protocol π on a completely private channel (box 2 in Figure 3). The channel does not leak any
information to the adversary.

From this real-world interaction, consider letting the environment engulf the honest first party
(call this new environment Z ′). Then, add a dummy adversary A, which corrupts the first party
and simply relays the messages between the second party and the honest first party inside Z ′ (box
3 in Figure 3). By construction, both parties are are engaging in the prescribed protocol (though
with the dummy in between), so this interaction is identical from the previous ones.

By the security properties of π, this is indistinguishable from an ideal world interaction, where
the second party communicates directly with F , and the dummy adversary is replaced with its
simulator S2. S2 still interacts with the embedded first party inside the environment (simulating
the π protocol), and interacts with F as a corrupted first party (box 4 in Figure 3).

Now, embed F , the honest second party, and S2 inside the environment, and take the em-
bedded first party (still honestly running the π protocol) outside the environment. Call this new
environment Z ′′. Insert another dummy adversary A as a corrupted second party, which relays
messages between the honest first party (outside the environment) and S2 (now embedded inside
the environment) (box 5 in Figure 3). We have done nothing but insert honest message relaying
and moved things in and out of the environment, so the interaction is identical to the previous
ones.

This new interaction involves an honest first party running the π protocol with a corrupted
second. Similar to before, we apply π’s security guarantee to show that this is indistinguishable
from the ideal world where the first party now interacts directly with F (an instance of F separate
from the one embedded inside the environment), while the dummy adversary is replaced by its
simulator S1. S1 interacts with (the external) F as a corrupted second party, and simulates the π

protocol interaction with the S2 inside the environment (box 6 in Figure 3).
Finally, take out everything from the environment except for the original Z: the ideal second

party, the simulators S1 and S2, and the completely private channel on which they are still simu-
lating the π protocol to each other (box 7 in Figure 3). By composing S1, S2, and their channel,
we obtain the machine T as required by the splittability definition. By our construction, this split
functionality FTsplit is indistinguishable to the environment Z.

(If F is splittable, then F is realizable) Suppose F is splittable; then the following is a secure
protocol for F (see Figure 2): Party P1 simulates a local copy of FL and T , interacting as in
the splittability definition. He relays his inputs and outputs as the first party to FL. Party P2

simulates a local copy of FR, and relays his inputs and outputs as the second party to FR. The
messages sent across the completely private channel as the protocol are those messages between
T and FR. In FTsplit, the communication between T and FR is across a channel of the same kind.
Thus, the interaction between two parties honestly running this protocol is exactly that of two
parties accessing FTsplit using the dummy protocol. By the splittability condition, the interaction is
indistinguishable from an ideal interaction with F .

The simulators for this protocol are quite simple: For a dummy adversary that corrupts P1, the
simulator is also a dummy adversary; for one that corrupts P2, the simulator is T . �

As with all our structural results, Theorem 1 can be specialized as 2regularu ∩ realiz
Fpvt
u =

2regsplitu and 2regularp ∩ realiz
Fpvt
p = 2regsplitp, where the complexity classes are sub-

scripted to explicitly indicate unbounded and PPT systems.

9

3.2 General Theory of Splittability

Protocols in network-aware frameworks are generally modeled to use less idealized channels than
the one considered in the previous section (Fpvt). For instance, even the standard model of a
private channel reveals to the adversary the fact that a message was sent, and often its length. It
is also quite common to model functionalities which interact directly with the adversary, or whose
behavior depends on which parties are corrupted.

In this section, we generalize the theory to apply to realization of arbitrary functionalities, using
protocols which also use arbitrary functionalities as their “communication channels.” Furthermore,
our theory extends to multi-party (instead of only 2-party) functionalities.

3.2.1 Notational Conventions

In this section, we construct many “compound” functionalities which simulate the interactions of
several machines. The notation we use describes the complicated interactions between the many
components, and allows for some simple symbolic manipulation of equalities. Using this notation,
we can carry out the proof at a reasonably high level.

Let F be an m-party functionality. F may interact with an adversary even if no parties are cor-
rupted, and we consider such an adversary the (m+1)th party to the functionality. By convention,
we let X ⊆ {1, . . . ,m} represent the indices of uncorrupted parties, and X = {1, . . . ,m + 1} \X

the indices of the corresponding corrupted parties (always containing party m + 1).
The machines in our network model are interactive machines with “communication ports” that

allow them to interact with other machines. When one of the interacting machines is a functionality,
we can identify these ports by which parties they correspond to from the functionality’s point of
view. We take this approach in our notation, writing “←−

a
−→M←−

b
−→” to denote a machine M with

two distinguished “bundles” of ports, labeled by a and b. These labels may be of the form “: X”
or “X :”, where X ⊆ {1, . . . ,m + 1} denotes a set of indices for parties. These communication
ports are “duplex”, and thus the placement of the colon is significant; it determines the “parity”
of the ports. It is our convention to place the colon in the direction of a machine that acts as a
functionality. Thus, “←−

X:
−→M” denotes thatM is acting as a functionality for parties indexed by X,

while “←−
:X
−→M” denotes thatM is expecting to interact with a functionality as the parties indexed

by X.
The left-to-right ordering of in our notation is also significant, since for functionalities, the two

bundles of communication ports correspond to the corrupted and uncorrupted parties. Below we
describe our conventions for different kinds of machines in the interactions we consider, which can
conveniently be identified by the “parities” of their left and right communication ports:

• We write ←−
X:
−→F←−

:X
−→ to denote an interaction with a functionality F where the parties indexed

by X are uncorrupted and the parties indexed by X are corrupted (note that the behavior of
F may indeed depend on which parties are corrupted).

• We write ←−
i:
−→πi←−

i:
−→ to denote the ith party’s protocol program for π. On the left, it passes

inputs and outputs (presumably with the environment) as party i, and on the right it interacts
with its “channel” as party i.

• We write ←−
:X
−→S←−

:X
−→ to denote the simulator for a dummy adversary who corrupts the parties

indexed by X. On the left, it interacts with an ideal functionality as corrupt parties X .
On the right, it simulates a real-world view of the corrupt parties X to the adversary (or
generally, directly with the environment).

10

• Finally, we write ←−
:X
−→T ←−

X:
−→ to denote a “translator” machine T of the kind we will require for

our splittability definitions. It interacts on the left (presumably with some functionality) as
corrupt parties indexed by X, and on the right (presumably with some other functionality)
as uncorrupted parties indexed by X.

These notational conventions allow us to express compositions and complicated combinations of
several machines in the following ways:

• When we have two machines ←−
a
−→M1←−

b
−→ and ←−

b
−→M2←−

c
−→, where the labels b match completely

(their set of indices and their “parity” both match), we may write ←−
a
−→M1←−

b
−→M2←−

c
−→ to denote

the “compound” machine which internally simulates bothM1 andM2, and their interaction
together, while interacting externally according to the label a on the left and c on the right.

• Let X = {1, . . . , k} without loss of generality, and let b be any label in our notation. When
we have machines ←−

X:
−→M←−

b
−→ and ←−

i:
−→πi←−

i:
−→ for each i ∈ X, we may write:

←−
X:
−→

←−
1:
−→π1←−

1:
−→

...
←−

k:
−→πk←−

k:
−→

←−

X:
−→M←−

b
−→

to denote the compound machine which internally simulates the interactions among M and
each πi, with communication ports connected according to their indices.

It is important that the network model’s definition of admissible machines guarantees that such
compositions of machines are also admissible.

When a (compound) machine M has the form ←−
X:
−→M←−

:X
−→, we may view it as a functionality

itself. We say that two (compound) functionalities ←−
X:
−→F1←−

:X
−→ and ←−

X:
−→F2←−

:X
−→ are indistinguishable

if for all environments Z,
exec[Z,A, ∂F1] ≈ exec[Z,A, ∂F2]

where A is the dummy adversary which corrupts parties indexed by X , and ∂ is the dummy
protocol.

Under this interpretation, we can rephrase the UC security definition in terms of our notation.
π = (π1, . . . , πm) is a secure realization of F with respect to G if for all X = {x1, . . . , xk} ⊆
{1, . . . ,m}, there exists a simulator SX such that the following two compound functionalities are
indistinguishable:

←−
X:
−→

←−
x1:

−−→πx1
←−

x1:

−−→

...
←−

xk:

−−→πxk
←−

xk:

−−→

←−

X:
−→G←−

:X
−→ and ←−

X:
−→F←−

:X
−→SX←−

:X
−→

Note that we do not need to explicitly mention the dummy protocol.
Finally, we observe the following rewriting rule, which generalizes the technique used in the

proof of Theorem 1 of bringing components of the interaction into and out of the environment:

Lemma 1 If functionalities ←−
X:
−→M1←−

:X
−→ and ←−

X:
−→M2←−

:X
−→ are indistinguishable, then so are

←−
Y :
−→ML←−

X:
−→M1←−

:X
−→MR←−

:Y
−→ and ←−

Y :
−→ML←−

X:
−→M2←−

:X
−→MR←−

:Y
−→,

for any Y ⊆ {1, . . . ,m} and machines ML,MR.

11

Proof: Consider an arbitrary environment Z interacting with ←−
Y :
−→ML←−

X:
−→M1←−

:X
−→MR←−

:Y
−→. We

may subsumeML andMR into the environment,3 obtaining a new environment Z ′ in such a way
that the overall interaction is identical, but Z ′ interacts only with ←−

X:
−→M1←−

:X
−→. By their indistin-

guishability, we may replace the functionality withM2 accordingly, and then removeML,MR from
the environment. We end with the original environment Z interacting with←−

Y :
−→ML←−

X:
−→M2←−

:X
−→MR←−

:Y
−→,

and have not changed the outcome of the interaction by more than a negligible amount at each
step. �

3.2.2 General Splittability Definition

Definition 3.3 We say that an m-party functionality F is splittable with respect to another m-
party functionality G if there exist admissible machines {TX |X ⊆ {1, . . . ,m}} such that the following
two compound functionalities are indistinguishable for every X = {x1, . . . , xk} ⊆ {1, . . . ,m}:

←−
X:
−→F←−

:X
−→TX←−

X:
−→G←−

:X
−→ and ←−

X:
−→

←−
x1:

−−→F←−
:x1
−−→Tx1

←−
x1:

−−→

...

←−
xk:

−−→F←−
:xk
−−→Txk

←−
xk:

−−→

←−

X:
−→G←−

:X
−→

When this is the case, we write F ≺ G. We define split
G = {F |F ≺ G} and split

∗ =
⋃
G split

G.

Intuitively, a copy of F interacting honest parties indexed by X may be “split” into separate copies
of F , one for each of the honest parties. As in the previous section, our definitions (and results)
apply to both PPT and computationally unbounded systems. We write split

G
u or split

G
p , split

∗
u

or split
∗
p and F ≺u G or F ≺p G to explicitly specify the type of the systems.

Examples. For comparison to the simpler splittability definition for 2regular, we show the
general definition of splittability restricted to the two-party case.

Definition 3.4 Let F and G be 2-party functionalities. Then F is splittable with respect to G if
there exist machines T1,T2,T12 such that:

←−
1,2:
−−→F←−

:3
−→T12←−

1,2:
−−→G←−

:3
−→ ≈ ←−

1,2:
−−→

{
←−
1:
−→F←−

:2,3
−−→T1←−

1:
−→

←−
2:
−→F←−

:1,3
−−→T2←−

2:
−→

}
←−
1,2:
−−→G←−

:3
−→

See Figure 4 for a visual overview of the two-party case. The splittability definition for the two-
party case only involves the requirement for X = {1, 2}, since the indistinguishability conditions
for the other three subsets are tautologies. See also Figure 5 for one of the splittability conditions
(X = {1, 2, 3}) for 3-party functionalities.

3.2.3 Theorems

As in Section 3.1, we aim to establish a relationship between splittability and realizability. Our
main technical tools relating the two notions are given below:

Theorem 2 For any functionalities F , G and H, the following hold:
3According to the definition of admissible machines, the composition of these machines with the environment

machine is itself admissible.

12

Figure 5: One of the conditions in required by the definition of F ≺ G, for 3-party functionalities,
and with X = {1, 2, 3}. Dotted lines indicate interactions as adversary and corrupted players.

1. If F ≺ G then F v G. [Splittability implies realizability]
2. If F v G ≺ H, then F ≺ H. [“Cross-transitivity” of splittability and realizability]
3. If F ≺ G ≺ H, then F ≺ H. [Transitivity of splittability]
4. If F v G v H, then F v H. [UC Theorem [8]]

Note that (3) is an immediate consequence of (1) and (2); (4) is simply a restatement of the
UC theorem in our notation.

We prove (1) and (2) in the following lemmas:

Lemma 2 If F ≺ G then F v G.

Proof: Suppose that F ≺ G, as witnessed by machines {T F≺GX }X . Then we claim that protocol

wherein party i executes ←−
i:
−→F←−

:i
−→T F≺Gi

←−
i:
−→ is a secure protocol for F with respect to G. To show the

security of this protocol, we must show that the UC security definition holds. For each subset of
parties X = {x1, . . . , xk}, we apply the splittability condition to obtain:

←−
X:
−→

←−
x1:

−−→[F←−
:x1
−−→T F≺Gx1

]←−
x1:

−−→

...

←−
xk:

−−→[F←−
:xk
−−→T F≺Gxk

]←−
xk:

−−→

←−

X:
−→G←−

:X
−→ ≈ ←−

X:
−→F←−

:X
−→[T F≺GX

←−
X:
−→G]←−

:X
−→

Thus, the machine ←−
:X
−→T F≺GX

←−
X:
−→G←−

:X
−→ satisfies the condition to be the simulator for the dummy

adversary who corrupts parties indexed by X . We conclude that the above protocol realizing F
with respect to G is secure. �

One interesting consequence of the above lemma is that without loss of generality, the protocol
for F treats F as a black box, and the simulator for the protocol simulates G as a black box as
well.

Lemma 3 If F v G ≺ H, then F ≺ H.

13

Proof: Suppose F v G as witnessed by a protocol π and simulators/transvisors {SFvGX }X , and
that G ≺ H as witnessed by {T G≺HX }X .

To show that F ≺ H, we must demonstrate suitable machines {T F≺HX }X . Applying the above
conditions, we have that for each subset of parties X = {x1, . . . , xk}:

←−
X:
−→F←−

:X
−→[SFvGX

←−
:X
−→T G≺HX]←−

X:
−→H←−

:X
−→ ≈ ←−

X:
−→

←−
x1:

−−→πx1
←−

x1:

−−→

...
←−

xk:

−−→πxk
←−

xk:

−−→

←−

X:
−→G←−

:X
−→T G≺HX

←−
X:
−→H←−

:X
−→

≈ ←−
X:
−→

←−
x1:

−−→πx1
←−

x1:

−−→

...
←−

xk:

−−→πxk
←−

xk:

−−→

←−

X:
−→

←−
x1:

−−→G←−
:x1
−−→T G≺Hx1

←−
x1:

−−→

...

←−
xk:

−−→G←−
:xk
−−→T G≺Hxk

←−
xk:

−−→

←−

X:
−→H←−

:X
−→

≡ ←−
X:
−→

←−
x1:

−−→πx1
←−

x1:

−−→G←−
:x1
−−→T G≺Hx1

←−
x1:

−−→

...

←−
xk:

−−→πxk
←−

xk:

−−→G←−
:xk
−−→T G≺Hxk

←−
xk:

−−→

←−

X:
−→H←−

:X
−→

≈ ←−
X:
−→

←−
x1:

−−→F←−
:x1
−−→[SFvGx1

←−
:x1
−−→T G≺Hx1

]←−
x1:

−−→

...

←−
xk:

−−→F←−
:xk
−−→[SFvGxk

←−
:xk
−−→T G≺Hxk

]←−
xk:

−−→

←−

X:
−→H←−

:X
−→

The steps in this derivation follow due to the security of the π protocol, splittability of G with
respect to H, simple rearranging/simplification, and the security of the π protocol again (applied
k times), respectively.

Thus, the set of machines ←−
:X
−→SFvGX

←−
:X
−→T G≺HX

←−
X:
−→ satisfies the requirements needed of T F≺HX to

show that F ≺ H. �

In the simplified exposition of Section 3.1, splittability provided an exact characterization of
realizability with respect to completely private channels; namely, realiz

Fpvt = split
∗. Ideally,

we would like this characterization to generalize as realiz
F = split

F for all F , but this is not
the case. For instance F ∈ realiz

F for all F , but F 6∈ split
F for several functionalities, e.g.,

commitment. However, the characterization does generalize for a certain class of functionalities.

Definition 3.5 F is called self-splittable if F ≺ F . We denote the class of all self-splittable
functionalities as simplechannels.

The class simplechannels can be viewed as a natural class of low cryptographic complexity
in our landscape of complexity theory. Intuitively, F ≺ F means that F does not carry out any
irreversible computation on its inputs. It can be easily seen that all typical communication channels
(e.g., authenticated or unauthenticated, public or private, multicast or point-to-point, completely
adversarially controlled), which are often implicitly incorporated into the network model, are in
simplechannels.

Theorem 3 split
F = realiz

F for all F ∈ simplechannels.

In other words, functionalities which are realizable using a simple communication channel F
are exactly those which are splittable with respect to F . In fact, we prove the stronger claim
that the simple communication channels are exactly those functionalities for which this character-
ization holds. That is, simplechannels = {F | splitF = realiz

F}. As before, this holds for

14

PPT systems and computationally unbounded systems. However, note that simplechannelsu

and simplechannelsp are different classes. For instance, a channel which applies a one-way per-
mutation to its input is in simplechannelsu but not in simplechannelsp.

Proof: (⇒) F ≺ G unconditionally implies F v G by part 1 of Theorem 2. When G is self-
splittable, substituting G = F into part 2 of Theorem 2 gives that F v G implies F ≺ G.

(⇐) Suppose ∀F : F ≺ G ⇐⇒ F v G. Then take F = G. Since it is always the case that
G v G (via the dummy protocol), we have that G is self-splittable. �

3.2.4 Relation to the simplified definition.

The simplified definition of splittability (Definition 3.2) was elegant and easy to apply. We would
still like to be able to use this simplified definition, as opposed to the more complicated general
definition, to say as much as possible about the complexity of functionalities. The following lemma
gives us a tool to do just that:

Lemma 4 split
∗ = split

Fpvt (= realiz
Fpvt).

Proof: The split
∗ ⊇ split

Fpvt direction is trivial by the definition of split
∗. For the other

direction, assume F ∈ split
G for some G, witnessed by machines {TX}X . We must demonstrate a

split of F with respect to Fpvt.

First, define Ĝ as the modification of G that does not interact on its “adversary port” (in our
convention, the communication port indexed by m + 1 in an m-party functionality).

Modify the machines TX to obtain machines T ′X as follows: Each TX is interacting (on the
right) with G, and through what is essentially a Fpvt kind of channel. For TX where 1 ∈ X, we

will subsume a copy of Ĝ into TX to obtain T ′X . Now consider TY for 1 6∈ Y . It is expecting to
interact on the right with G. Instead, it can interact on the right with Fpvt as follows: It sends
a message on Fpvt to party 1. Whenever T ′X receives an input for party 1 on the Fpvt (or when

TX outputs something for G), it gives this input to its local copy of Ĝ on behalf of the originating
party. Whenever the simulation of Ĝ outputs something for party i, T ′X sends it via Fpvt to party
i.

In this way, the entire splittability interaction is as before, except the functionality G is being
simulated by one of the T ′ machines, and they are actually communicating over a Fpvt functionality.
Thus, these machines witness of split of F with respect to Fpvt. �

In terms of splittability, we interpret this as indicating that Fpvt is the “easiest” functionality
to split with respect to. In terms of realizability, we interpret it as as indicating that Fpvt is the
most secure channel one can have. The special status of Fpvt is due to the fact that in our model,
the entities communicate with each other using essentially such a channel.

Most importantly, combining Lemma 4 with the characterization of Theorem 3, we see that if
F is unsplittable according to the simplified definition, then there is no secure Fpvt-protocol for
F , and hence no secure protocol using any natural communication channel. As we shall see in
Section 4, it is often very easy to show that a functionality is unsplittable according to the simpler
definition. Thus, splittability gives us a convenient tool to easily show impossibility results of this
kind.

15

3.3 Deviation Revealing Functionalities

Splittability provides a convenient way to give separations that involve the relatively low-complexity
functionalities of simplechannels. However, splittability is virtually useless in distinguishing
among higher complexity functionalities, which nevertheless exhibit a rich variety in their (intuitive)
cryptographic complexities. For instance, one may ask whether FOT (oblivious transfer) and Fcom

(commitment) have different cryptographic complexities or not. In this section we develop a tool
to answer many of these questions.

We introduce a notion called deviation revealing functionalities, which will allow us to lift
existing separations of functionalities derived in simpler settings (such as the honest-but-curious
model) to the standard UC setting.

Relating passive and active corruption. Consider the 2-party SFE functionality FOR that
evaluates the boolean OR of Alice and Bob’s input bits and outputs it to only Bob. FOR has
a secure protocol in which Alice sends her input bit to Bob, and Bob locally computes the OR
using that and his own input. This protocol is secure because if Bob wants to, he can learn Alice’s
bit even in the ideal world (by sending 0 to FOR). However, this is too much information for an
“honest-but-curious” Bob when his input is 1. In fact it is known [18] that there is no secure
protocol for FOR in the honest-but-curious, unbounded computation setting (where corruption in
the ideal world must also be passive).

As such, in general, we cannot expect results about realizability in restricted corruption scenarios
to imply anything about realizability in the unrestricted corruption model. However, several natural
and important functionalities do not share this odd nature of FOR. We formulate the deviation
revealing condition to capture such “nicely behaved” functionalities.

Corruption schemes. We need to generalize the corruption model, to allow regular (active)
corruption as well as the restricted passive (a.k.a honest-but-curious) corruption.4 A corruption
scheme for m-party functionalities is a set C ⊆ {active, passive, none}m. We say that a (static)
adversary A C-corrupts (in a protocol π) if the sequence of corruptions γ effected by A is in C.5

For example, the normal corruption setting corresponds to C = {active, none}m and the honest-
but-curious setting corresponds to C = {passive, none}m.

We will be interested in what we call uniform corruption schemes, wherein in each corruption
sequence the corrupt parties either are all actively corrupted or are all passively corrupted: i.e.,
C is a uniform corruption scheme if it is a subset of {none, passive}m ∪ {none, active}m. Note
that the normal and the honest-but-curious corruption schemes are indeed uniform. However, one
can (and will, later on) consider a uniform corruption scheme (for a 2-party functionality) like
{(none, passive), (active, none)} too.

For a corruption scheme C, we say that F vC G if there exists a protocol π such that for all
C-corrupting A, there exists a C-corrupting S such that for all environments Z, exec[Z,A, πG] ≈
exec[Z,S, ∂F].

Note that if A uses a corruption sequence γ ∈ C, then S must also use γ (because the en-
vironment receives the corruption sequence as an input). If C = {active, none}m, any corruption
is considered active. So even if A chooses not to alter the execution of a corrupt party, S is
free to actively control the party in the ideal-world. On the other hand if C has an element

4We say that an adversary passively corrupts a party Pi in a protocol π if it receives inputs for Pi from the
environment, and runs the protocol π honestly on behalf of Pi in the interaction. This definition is the same both in
the real-world (protocol) and the ideal-world interactions (where the protocol considered is the dummy protocol).

5The adversary is allowed to choose the corruption sequence γ ∈ C, but the environment receives γ as an input.

16

γ ∈ {passive, none}m, then when A uses γ making only passive corruptions, S must also make only
passive corruptions in the ideal world.

Defining Deviation Revealing Functionalities. Informally, deviation revealing means that
an environment can detect, based solely on the functionality’s outputs (as reported by the parties),
whether the adversary is actively corrupting the parties. That is, the functionality’s outputs will
reflect any “deviation” by the adversary from a passive corruption strategy. A simple definition of
deviation would be to consider whether an adversary’s inputs to the functionality are the “correct”
ones, based one its inputs from the environment and the protocol. However, this definition is not
robust to slight syntactical changes in the functionality. For instance, the functionality may accept
an extra bit in its inputs, which it ignores. Then, deviating from the dummy protocol by changing
the last bit of an input is a benign deviation which we would like to not count as a deviation.

This motivates the following definition of deviation-revealing. It is in terms of a correctness
environment — namely, an environment that does not interact with the adversary at all, except by
interacting with parties (some of which are corrupt) to give inputs and receive outputs. Also we
refer to the dummy C-corrupting adversary, Ã that, for all the corrupt players acts passively, and
does not interact with the environment except through the input/output of the corrupt parties.

Definition 3.6 A functionality is C-deviation-revealing if for all adversaries A: either

• there exists a correctness environment Z such that exec[Z,A, ∂F] 6≈ exec[Z, Ã, ∂F], where
Ã is the dummy C-corrupting adversary;

• or, there exists a C-corrupting adversary A′ such that for all environments Z, exec[Z,A, ∂F] ≈
exec[Z,A′, ∂F].

In other words, a functionality F is C-deviation-revealing if for every adversary A (in the ideal
world with F), A is either “equivalent” to a C-corrupting adversary A′, or an environment which
simply checks the outputs of the interaction can detect that A is not a C-corrupting adversary.

As simple examples, 2-party functionalities FOT (oblivious transfer) and Fcom (commitment) are
C-deviation-revealing functionalities with C = {passive, none}2 (i.e., honest-but-curious corruption
model). In particular, with a corrupt sender and an honest receiver (either in FOT or Fcom),
if the sender deviates from what the environment instructs it to do, the outputs produced by the
receiver will reflect this, provided the environment picks the inputs randomly. That is, a correctness
environment can detect the deviation. For FOT, one should also consider a corrupt receiver: if the
receiver deviates, and sends the wrong index to the functionality, it will not be able to output the
correct value (with noticeable probability); so, again, an environment which chooses the inputs
randomly can detect this deviation.

Also note that for the same corruption scheme, FOR (with only Bob receiving the output) is
not deviation revealing, because a correctness environment cannot detect if a deviating Bob sends
0 to the functionality (and thereby learns more than what a non-deviating Bob could learn).

Following is our toolkit for lifting relations in a C-corruption setting to the standard corruption
setting:

Theorem 4 For any functionalities F , G and H, the following hold:

1. If F vC G vC H, then F vC H. [Universal Composition.]
2. If F is C-deviation revealing for a uniform C, then

a. F v G =⇒ F vC G [C-realizability from realizability.]
b. (F 6vC H ∧ G vC H) =⇒ F 6v G [Separation from C-separation.]

17

We prove the three statements in Theorem 4 as three lemmas below. We start with the tran-
sitivity of the vC relation. This is a generalization of the UC theorem to C-corruption schemes.6

This holds for all corruption schemes C (not just uniform corruption schemes).

Lemma 5 If F vC G vC H, then F vC H.

Proof: The proof mimics the proof of the plain UC theorem, but handling passive corruptions
differently. Let π be a protocol witnessing F vC G, and let ρ be a protocol witnessing G vC H. We
use πρ to denote the natural composition of the two protocols, which does the following: Maintain
a separate components for executing each protocol π and ρ. For each message sent out by π, feed
it as input to ρ, and for each output of ρ, feed it as a response to π. Let ρ run on H, and let π

exchange its inputs and outputs with the environment.
Consider any real-world, C-corrupting adversary A for the protocol πρ. Let M be the set of

parties which are only passively corrupted by A, and which A is not allowed to actively corrupt
according to the C corruption scheme. For each of these parties, A runs the protocol honestly on
their behalf, and then computes some information based on the views in the protocol to interact
with the environment. Without loss of generality, we can assume that A is the following kind of
dummy adversary: it receives inputs for parties M from the environment, runs the protocol on their
behalf, and returns their views in the protocol to the environment. For all other corrupted parties,
A acts as a total dummy adversary (the environment controls all messages sent and received by
the adversary on behalf of these parties).

Without loss of generality, A has the same two separate components for π and ρ, each of which
generate a view for their respective protocol. A receives and assembles the views from these two
components into a coherent view for πρ.

Now consider an interaction with this A and arbitrary environment Z. Subsume into the
environment the π components of all honest parties, and the components in A for π and for
assembling the two view into one. Call the adversary’s remaining external components A′. This
remaining adversary is C-corrupting for the ρ protocol, as it honestly runs the ρ protocol on behalf
of the M parties and returns their view, and acts as a dummy adversary for the other corrupt
parties. By the guarantee of ρ, there is a C-corrupting simulator S (for the dummy protocol)
which achieves the same effect interacting with G.

By the standard UC security guarantee, S corrupts the same set of parties as A′. S must only
passively corrupt each of the parties in M , by its definition. It is legal according to C for S to
actively corrupt the other parties. Now remove from the environment the components that were
subsumed previously. The adversary now runs the π protocol on behalf of parties in M , sends the
protocol messages to S, which runs the dummy protocol sending them to G. S returns a “view” of
the ρ protocol, and the adversary assembles the views of both protocols into a view for πρ. Because
the S component runs a dummy protocol, the entire adversary as a whole is honestly executing the
π protocol on behalf of the parties in M , and thus is C-corrupting for π. Thus, by the guarantee of
π, there is a C-corrupting S ′ for this adversary. Taking this to be our final simulator, we see that
any C-corrupting adversary for πρ has a C-corrupting simulator in the H ideal world, and thus
F vC H. �

6We remark that the UC theorem has one more implication other than the transitivity of the realizability: it links
realizability of F+ to that of F (namely, F v G =⇒ F+ v G+). However, this does not extend to C-corruption
schemes, if F+ is considered to provide multiple instances of Fwith different role assignments to the parties in the

different instances. This will not be important to us in our applications, as we will be able to directly consider
augmented functionalities when necessary. Note that a converse (namely, F+ v G+ =⇒ F v G+) does extend to
C-corruption schemes too.

18

Next we show that deviation-revealing property does indeed rule out the odd behavior of func-
tionalities like FOR which has a simple secure protocol in the normal (active corruption) setting,
which is not secure for the honest-but-curious setting (and indeed, has no secure protocol in that
setting). However, it is still necessary to restrict ourselves to uniform corruption schemes for this
to hold.7

Lemma 6 If F is C-deviation-revealing for a uniform corruption scheme C, and F v G, then
F vC G.

Proof: Suppose π is a secure realization of F with respect to G. For any adversary A with a
corruption sequence γ ∈ C, we need to show a good simulator S using γ. For γ ∈ {none, active}m,
we are already given simulators by the (normal) security of π. Since C is a uniform corruption
scheme, this leaves us with γ ∈ {none, passive}m.

Consider any adversary A effecting the corruption γ ∈ {none, passive}m, and let S be the
simulator for A guaranteed by the security of π. (That is, for all environments Z, exec[Z,A, πG] ≈
exec[Z,S, ∂F].) Also consider the adversaryA∗ corrupting no party at all (i.e., with γ∗ = {none}m)
and its corresponding simulator which is a dummy adversary corrupting no parties in the ideal-
world execution (called Ã in Definition 3.6). (That is, for all environments Z, exec[Z,A∗, πG] ≈
exec[Z, Ã, ∂F].)

We observe that a correctness environment cannot distinguish the real-world interaction involv-
ing A from one with the real-world dummy adversary A∗. That is, if Z is a correctness environment,
then exec[Z,A, πG] ≈ exec[Z,A∗, πG]. Hence, exec[Z,S, ∂F] ≈ exec[Z, Ã, ∂F].

Since F is C-deviation-revealing, this implies that S must satisfy the second condition of the
definition of C-deviation revealing. Thus there exists a C-deviation-revealing adversary S ′ which
is indistinguishable from Sfor all environments.

Putting everything together, for every C-corrupting A, there is a C-corrupting S ′ such that the
real-world interaction with A is indistinguishable from the ideal-world interaction with S ′. Thus
F vC G via the protocol π. �

Deviation-revealing functionalities allow us to leverage results in restricted settings to prove
statements about realizability in the malicious network-aware setting, via the following lemma:

Lemma 7 If F is C-deviation-revealing for a uniform corruption scheme C, and F 6vC H, G vC

H, then F 6v G.

Proof: This is an easy corollary of the preceding results. Suppose the lemma does not hold; i.e.,
the conditions in the hypothesis hold, but F v G. Then since F is C-deviation revealing, we must
have F vC G. Since also G vC H, and vC is transitive, we get F vC H, a contradiction. �

7As a simple counter-example where a secure protocol for the normal corruption scheme C = {none, active}m is
not secure in a different corruption scheme C′ consider the following. Let F be a 2-party protocol with no inputs,
and provides Alice with no output and always gives 0 to Bob. Clearly this is a deviation revealing functionality (and
indeed, any variation in the definition should still retain this deviation revealing).

Now consider a contrived protocol π for securely realizing F : Bob picks a random k-bit string r (and keeps it
locally); Alice sends Bob a string r′; If r = r′ Bob outputs 1, else it outputs 0. If C′ contains the corruption sequence
(active, passive) (i.e., malicious Alice and honest-but-curious Bob), then π is not a C′-secure realization of F .

19

4 Applications of the Theory

In this section, we apply the general theory developed in the previous section to specific settings
and classes of functionalities, to obtain several new, concrete results, as easy consequences.

4.1 Simple Impossibility Results

A compelling aspect of our splittability characterization is that all previous impossibility results
for the UC model can be obtained quite easily, because the splittability definition involves only
interactions with ideal functionalities.

For instance, the bit commitment functionality (Fcom) is unsplittable: Consider a simple envi-
ronment which asks Alice to commit to a random bit, waits for Bob to receive acknowledgement
of the commeitment, instructs Alice to reveal the bit, and finally checks whether Bob received the
correct bit. In any potential split of Fcom, T must at some point commit to a bit in one of the
instances of Fcom, but its view is by definition independent of the environment’s choice, and thus
the bit that Bob eventually receives will be wrong with probability 1/2.

Using similar arguments, it is a very easy exercise to check that several other important 2-
party functionalities, including coin-tossing (Fcoin), oblivious transfer (FOT) and, in PPT systems,
zero-knowledge proof for languages in NP \ BPP, are unsplittable.

Applying Theorem 3 and Lemma 4, we can further see that these functionalities are unrealiz-
able via protocols that use any simple communication channel (i.e., one from simplechannels).
These impossibility results also rule out the possibility of non-trivial protocols for variants of these
functionalities which allow the adversary to delay the honest parties’ outputs.

4.2 Combinatorial Characterization for 2-party SFE

We use the splittability characterization for 2regular to give an explicit, combinatorial character-
ization for 2-party secure function evaluation. This subsumes and completes the characterizations
initiated in [12, 13]. The impossibility results in [12, 13] were later extended in [29], to the setting
where certain “trusted setup” functionalities F are also available for protocols to use. These ex-
tensions can also be shown in our framework by observing that these particular functionalities F
are self-splittable, thus impossibility under Fpvt implies impossibility under F .

Definition 4.1 F is a 2-party secure function evaluation (SFE) functionality if it waits for inputs x

and y from the two parties, respectively, computes two deterministic functions f1(x, y) and f2(x, y),
and sends these values to the two parties, respectively. In this case, we write F = (f1, f2).

Note that SFE functionalities are in the class 2regular. We now define two properties of
2-party SFE functionalities which will be used in our characterization.

Definition 4.2 We say that F = (f1, f2) has unidirectional influence if one party’s output does
not depend on the other party’s input. That is, if f1(x, y) = f ′1(x) for some function f ′1, or
f2(x, y) = f ′2(y) for some function f ′2. Otherwise F has bidirectional influence.

Definition 4.3 Let F = (f1, f2) be a 2-party SFE functionality with unidirectional influence; say,
the first party’s output does not depend on the second party’s input. We say that F is negligibly
hiding if there exists machines R1, R2 such that:

∀x, y : Pr
[
(y∗, s)← R1; f2

(
R2

(
s, f2(x, y∗)

)
, y

)
6= f2(x, y)

]
is negligible

The probability is over the randomness of R1 and R2.

20

For functionalities F with input domains of polynomial size (in the security parameter), negligibly
hiding is a simple combinatorial property: F is negligibly hiding if and only if there exists y such
that f2(x, y) = f2(x

′, y) =⇒ f2(x, ·) ≡ f2(x
′, ·) for all x, x′.

Note that negligible hiding is essentially a property of f2. It implies that it is possible to
generate an input y∗ for f2 in such a way that given f2(x, y∗), one can compute a value x∗ which
is “equivalent” to x (equivalent in that f2(x

∗, y) = f2(x, y) with high probability). This definition
succinctly incorporates both the completely revealing and efficiently invertible properties of [12].

Theorem 5 Let F = (f1, f2) be a 2-party SFE functionality. F is securely realizable (using Fpvt)
if and only if F has unidirectional influence and is negligibly hiding.

Proof: (⇐) Suppose F has unidirectional influence and is negligibly hiding. Without loss of
generality, suppose the first party’s output is not affected by the second party’s input. Then the
following protocol is secure: The first party gives its input to a local copy of F , and simulates the
interaction of F and R (from the definition of negligibly hiding) to compute a value x which is
equivalent to its own input. It then sends this value to the second party, and locally computes its
own output (as this does not depend on the second party’s input). The second party receives x

and simulates F on this input and its own, to obtain its output.
The simulator for a corrupt first party simply sends the value x from the protocol to the

functionality. By the correctness of R, this value x will induce the correct output for the other
party with overwhelming probability. The simulator for a corrupt second party is simply the
machine R from the definition of negligibly hiding. Because the sender in the prescribed protocol
generates the message x by interacting with a local copy of F , the output of the simulator is a
perfect simulation of the protocol.

(⇒) Suppose F is realizable. Then by Theorem 1, F is splittable. Let T be as in the definition
of splittable.

Suppose for contradiction that F has bidirectional influence. Then there exist x0, x1, x3 ∈ D1

and y0, y1, y2 ∈ D2 such that

f1(x0, y1) 6= f1(x0, y2) and f2(x1, y0) 6= f2(x2, y0)

Consider an environment Z which chooses random i, j ← {0, 1, 2}, sends xi and yj to the two
parties respectively, and outputs 1 if the parties respond with f1(xi, yj) and f2(xi, yj), respectively
(Z does not talk to any adversary). When interacting with the original functionality, it outputs 1
with probability 1. Consider what happens when it interacts with the split functionality in which
T interacts with two independent copies of F . Without loss of generality, suppose T sends an
input first to FL, the functionality which receives input from the first party. Call y∗ the input it
sends. Its choice of y∗ is independent of the environment’s choices of i and j, as the non-reactive
functionalities FL and FR give no output until they receive both inputs. The probability that the
environment outputs 0 is at least:

Pri,j[f1(xi, y
∗) 6= f1(xi, yj)] ≥ Prj←{1,2}[f1(x0, y

∗) 6= f1(x0, yj)] ·Pr[i = 0 ∧ j 6= 0] ≥
1

2
·
1

3
·
2

3
=

1

9

Thus, Z distinguishes between the split and unsplit functionalities, contradicting Theorem 1. We
conclude that F has unidirectional influence.

Without loss of generality, let the influence of F be from the first party to the second party.
Now suppose for contradiction that F is not negligibly hiding.

Consider a class of environments Zx,y which send x and y to the respective two parties and out-
put 1 if the parties respectively respond with f1(x, y) and f2(x, y) (and ignore the adversary). Each

21

of these environments outputs 1 with probability 1 when interacting with the unsplit functionality.
Again by Theorem 1, for each of these environments, F is indistinguishable from the equivalent
split functionality in which a machine T interacts with two independent copies of F .

We now consider the output of the second party. Without loss of generality, suppose that T
sends an input to FL before interacting with FR (if T interacts with FR first, the same output
can be achieved with respect to the second player’s output by an T which does interact with FL

first and ignores the result). Now T must be a machine as in the definition of negligibly hiding;
it computes an input y∗ for FL (independently of the environment Zx,y) and uses the resulting
output to compute a value x∗ (that it sends as input to FR) such that f2(x, y) = f2(x

∗, y). Since
F is not negligibly hiding, this condition fails with noticeable probability for some x, y, and the
corresponding environment Zx,y rejects with noticeable probability. Again, this contradicts our
assumption, so we conclude that F is negligibly hiding. �

Again, we reiterate that Theorem 5 also characterizes the existence of non-trivial protocols for
SFE functionalities in which the adversary can delay honest parties’ outputs from the functionality.

4.3 Results for Multi-party Functionalities

For multi-party functionalities involving more than two parties, where the splittability definition
is much more complicated, combinatorial characterizations like that of Theorem 5 seem difficult to
come by. Nonetheless, we can use 2-party results to obtain some strong necessary conditions for
the multi-party setting.

A well-known technique for studying m-party SFE functionalities is the partitioning argument:
consider 2-party SFE functionalities induced by partitioning of the m parties into two sets. If the
original functionality is realizable, then clearly so is each induced 2-party functionality.

To exploit the partitioning argument, first we extend the notion of influence from Definition 4.2
to multi-party SFE: If in F there is a fixed setting of inputs for parties other than i, such that
there exist two inputs for party i which induce different outputs for party j 6= i, then we say party

i influences party j, and write i
F

 j.

Corollary 6 (of Theorem 5) If F is an m-party SFE functionality securely realizable using com-

pletely private channels, then in the directed graph induced by
F

 , either all edges have a common
source, or all edges have a common destination.

Proof: Suppose the graph induced by
F

 has two edges ij and i′j′, where i 6= i′ and j 6= j′. Then
any bipartition of [m] which separates {i, j′} and {i′, j} induces a 2-party functionality which has
bidirectional influence. Thus F cannot be realizable. �

We see that there are only two simple kinds of securely realizable SFE functionalities. Let p be

the common vertex in the graph induced by
F

 . If all edges are directed towards p, then we say
that F is aggregated (via party p). If all edges are directed away from p, then we say that F is
disseminated via party p.

3-party characterization. We now give a partial characterization of realizable functionalities in
the class 3regular, the 3-party analog of 2regular (namely, 3-party functionalities which do not
interact with the adversary, and whose behavior does not depend on which parties are corrupted).
We restrict our attention to realizability with respect to completely private channels. We show

22

that for functionalities in 3regular that have a secure honest-majority protocol,8 the partitioning
argument along with our previous 2-party characterization suffices to characterize realizability.

Theorem 7 If F ∈ 3regular has an honest-majority protocol on Fpvt, then F is UC-realizable
using Fpvt if and only if all 2-party restrictions of F are UC-realizable using Fpvt.

In particular, this implies that realizable 3-party SFE functionalities have a simple combinatorial
characterization analogous to Theorem 5.

Figure 6: Steps in the proof of Theorem 7, when one party is corrupted.

Proof: The forward implication is trivially true. To show the other direction, assume each
2-party restriction is realizable (and therefore splittable according to the simplified definition
Definition 3.2). Let Ti be the machine guaranteed by splittability on the 2-party restriction in-
duced by the partition {i}, ({1, 2, 3} \ {i}). Let π be the honest-majority protocol for F .

Now the protocol π′ we construct is as follows: Party i simulates F , Ti, and πi. He feeds his
inputs to F (as party i), and simulates the interaction of F and Ti as in the splittability interaction

8Honest majority protocols are known to exist for essentially all SFE functionalities if modified to let corrupt
parties block outputs to other players. This follows by adapting the well-known information theoretically secure
(stand-alone) protocols [15, 6, 40] (see [8]), and replacing their use of broadcast channel by a UC-secure protocol
as suggested in [24]. Note that the modified functionalities, though no more SFEs (as the adversary may decide
on blocking, based on the outcome of the function), continue to be in 3regular, because the adversary can block
output delivery only by corrupting at least one party.

23

(Ti interacts with F as the other two parties). Whenever Ti would output something (it expects to
interact with another functionality as party i), we input it to πi running on a private channel with
other parties.

To show that the protocol π′ is secure, we must demonstrate a simulator for each (dummy)
adversary. The cases when the adversary corrupts all or no parties are trivial. We focus on the
case when the adversary corrupts 1 or 2 parties.

Suppose the adversary corrupts 2 parties (without loss of generality, parties 2 and 3). This
adversary is interacting on the private channel on behalf of parties 2 and 3, while the honest party
1 is running π′. Let us compose T1, π1, and the private channel in the same way that they interact
within the π′ protocol, and use that as the simulator. Then in the ideal world, party 1 interacts
directly with F ; T1 inside the simulator interacts with F as parties 2 and 3; T1’s additional outputs
are passed to π1. This is exactly the same interaction as the real-world, only with the individual
components bundled together differently. Thus the ideal-world interaction with this simulator is
indistinguishable from the real-world interaction.

Now suppose the adversary corrupts 1 party, without loss of generality, party 3 (see Figure 6).
In the real-world interaction, parties 1 and 2 are each simulating a (different) copy of F , as well
as their respective Ti and πi (box 1 in Figure 6). Consider subsuming both copies of F , and the
Ti’s into the environment (box 2 in Figure 6). What remains is an interaction wherein parties 1
and 2 are running π1 and π2, respectively, on the private channels. This is an honest majority,
and the security of π holds. Thus there is a simulator S for the adversary so that this interaction
is indistinguishable from an ideal-world interaction with F itself (box 3 in Figure 6). Now, take
party 1’s copy of F and T1 out of the environment, and place S inside the environment (box 4 in
Figure 6). Now all that is outside the environment is an interaction with two copies of F , with T1
coordinating between them. This is exactly the splitting of the 2-party restriction of F induced by
{1}, {2, 3}. Thus, this interaction is indistinguishable from the interaction with a single F alone
(box 5 in Figure 6).

Finally, take party 2’s copy of F and T2 out of the environment (box 6 in Figure 6). Again,
what remains is exactly the splitting of another 2-party restriction of F . We can similarly replace
this split version of F by a copy of F itself (box 7 in Figure 6). The last step is to remove the
simulator S from the environment. What remains is now the original environment, in an ideal-
world interaction with F and simulator S (box 8 in Figure 6). By construction, this interaction is
indistinguishable from the real-world interaction. �

Note that our protocol requires each player to indirectly simulate executions of another protocol
with a weaker/different security guarantee (in this case, the 2-party restrictions and the honest-
majority protocol). This is somewhat comparable to the “MPC in the head” approach recently
introduced and explored in [27, 25]. There, significant efficiency gains are achieved in the standard
corruption model by leveraging MPC protocols with security in the honest-majority settings. Our
constructions indicate the possibility of extending this approach by having the parties carry out
not a direct protocol execution, but a related simulation.

The same approach does not seem to apply for functionalities which interact with the adversary,
whose behavior depends on which parties are corrupt, or which involve more than three parties
(so that two parties do not form a strict majority). We leave it as an important open problem
whether the partitioning argument along with our previous 2-party characterizations suffice for
characterizing multi-party functionalities in general. Indeed, the analogous partitioning argument
has been studied for the honest-but-curious setting and shown to be insufficient in this regard [16].

As a result of independent interest, in Appendix B we present simpler direct protocols for certain
important non-trivial cases without using generic honest-majority protocols.

24

4.4 A Strict Hierarchy of Intermediate Complexities

Finally, we apply the main structural result of our deviation-revealing theory (Theorem 4) to iden-
tify a sequence of functionalities with strictly increasing complexities (in unbounded computation
systems).

Theorem 8 realiz
Fpvt
u (realiz

F+

simex
u (realiz

F+
com

u (realiz
F+

OT
u .

Here, F+

simex, F
+
com, and F+

OT denote “augmented” versions of simultaneous exchange,9 bit com-
mitment, and oblivious transfer, respectively, in which the functionality provides multiple “sessions”
instead of just one.

Proof: We note that Fpvt vu F
+

simex vu F
+
com vu F

+

OT (these hold due to straight-forward or
well-known protocols, omitted here for brevity), which, along with the UC theorem, implies that

realiz
Fpvt
u ⊆ realiz

F+

simex
u ⊆ realiz

F+
com

u ⊆ realiz
F+

OT
u .

To see that realiz
Fpvt
u 6= realiz

F+

simex
u we note that Fsimex has bidirectional influence and hence

Fsimex 6∈ realiz
Fpvt
u (but Fsimex ∈ realiz

F+

simex
u).

It remains to show realiz
F+

simex
u 6= realiz

F+
com

u 6= realiz
F+

OT
u . For this we will show that Fcom 6vu

F+

simex and FOT 6vu F
+
com.

FOT 6vu F
+
com follows by applying Theorem 4 with C = {passive, none} × {passive, none}. There

is a trivial protocol that C-realizes Fcom using Fpvt (the sender sends the string “commit”, then
later reveals the committed bit), while FOT does not have a C-realization on Fpvt for unbounded
systems [32] Also, it is easily shown that FOT is C-deviation-revealing, by considering an environ-
ment which chooses random inputs for FOT. Whenever an ideal-world adversary does not send the
correct inputs to FOT (i.e., deviates from being C-corrupting), with constant probability, its view
will be independent of the correct outputs.
Fcom 6vu F

+

simex follows by a similar argument, considering C = ({active, none}×{passive, none})∪
({none, active} × {none, passive}). Under this corruption scheme, at most one party may be cor-
rupted (either actively or passively) For unbounded systems, there is no Fcom protocol using Fpvt

in this corruption scheme: this follows from the information-theoretic impossibility of a commit-
ment scheme which is both statistically binding and statistically hiding. However, there is a F+

simex

protocol when one of the parties is guaranteed to be only passively corrupted (because this party
can receive the other party’s input and then honestly send its own input to the other party), so
Theorem 4 applies. �

The significance of Theorem 8 is to establish several distinct levels of intermediate complexity
(i.e., distinct degrees of the v reduction). That is, Fsimex and Fcom are neither realizable nor
complete for computationally unbounded systems. Incidentally, both of these functionalities are
complete for PPT systems [14]. We leave it as an open problem in the complexity of functionalities,
whether there is a zero-one law (i.e., whether all functionalities not in realiz

Fpvt are complete).

4.5 Completeness for Uniform Corruption Schemes

The deviation revealing property of FOT has an interesting consequence, because FOT is a com-
plete functionality. Note that FOT was already known to be a complete functionality for passive

9The simulataneous exchange functionality Fsimex takes two inputs bits x and y from the two parties, respectively,
and outputs (x, y) to both. It is called simultaneous exchange because x must be chosen without knowledge of y, and
vice-versa.

25

corruption schemes [23] before it was shown to be complete (for asymmetric SFE functionalities)
for active corruption as well [30]. But we observe that the security of the protocol in [30] extends
to the passive setting as well. (This follows from the nature of the simulator described in [30]: it
sends the correct inputs to the functionality, when the players are passively corrupted.) Then, in
fact, the completeness result in [30] extends to all uniform corruption schemes C (using the same
protocol, and choosing a simulator for each corruption sequence γ ∈ C depending on whether γ

involves only passive corruptions or only active corruptions).
By Theorem 4 (2a), and the fact that FOT is C-deviation revealing for any uniform corruption

scheme C (and the universal composition theorems), we have the following result.

Theorem 9 F is complete if and only if F is complete for all uniform corruption schemes.

Note that “completeness” refers to completeness in the sense of [30], wherein only active corruptions
are considered.

5 Open Problems and Future Directions

Using the notion of splittability we addressed what is perhaps the most basic and important com-
plexity class, namely realiz

Fpvt . However, to understand the nature of cryptographic complexity,
several other (higher complexity) classes need to be understood. We collect several important
problems below.

Completeness. After the class of functionalities realizable with standard communication chan-
nels, perhaps the next important class is the class of all complete functionalities. Oblivious transfer
and several related functionalities have been shown to belong to this class [30, 7, 19].10 However
there is no known structural characterization for arbitrary complete MPC functionalities.11 Such a
characterization based on black-box structural properties will be delicate, as completeness is quite
different between the computationally unbounded and PPT systems. (For instance, coin-tossing is
complete for PPT systems [14], but not for unbounded systems (Theorem 8).)

Zero-One Law for PPT Systems. We ask whether there is a zero-one law of complexity for
PPT systems; namely, that all unsplittable (with respect to private channels) functionalities are
in fact complete. The archetypal unsplittable functionalities of oblivious transfer (not negligibly
hiding) and simultaneous exchange (bidirectional influence) are both complete for PPT systems.
Indeed, even the arguably simplest (randomized) unsplittable functionality of coin-tossing is com-
plete for PPT systems. However some other unsplittable SFE functionalities (such as symmetric
boolean-OR) do not immediately seem to yield coin-tossing. Resolving the zero-one question re-
quires determining the complexity of these functionalities.

Incomparable Classes. While the major classes we considered in this work formed a hierarchy,
it is likely that there are incomparable degrees of cryptographic complexity (that is, functionalities
F and G such that F 6v G and G 6v F). An important problem is to understand if such distinct
cryptographic qualities exist, and if so, can they all be characterized.

10These results were not derived in the UC framework. However the reductions are often easily verified to carry
over to the UC framework.

11For the computationally unbounded setting, one of the broadest results about completeness is by Kilian [32],
which considers only 2-party SFE functionalities which give output to one party.

26

Multi-Party functionalities. Even for SFE functionalities, our understanding of splittability is
not complete when it comes to functionalities involving more than two parties. Indeed, our results
already significantly narrow down the uncertainty, but we leave it as an open problem to give a
complete combinatorial characterization of which SFE functionalities (wrapped to allow adversarial
blocking) are realizable in general.

Identifying new classes and techniques guided by specific MPC problems. Understand-
ing qualitative cryptographic properties is guided by considering several primitives (like oblivious
transfer, commitment and coin-tossing) that have proven important over the years. We do not
however know how realizability classes of some other functionalities relate to the ones we have
studied. Symmetric OR functionality (which gives the output to both Alice and Bob) is an impor-
tant example. Another question is to identify structural properties that can generalize separations
between specific functionalities. For instance an ad hoc argument can be used to show that (in
computationally unbounded systems) coin-tossing (augmented with a private channel) cannot be
used to achieve simultaneous exchange. However the tools we presented in this work cannot be
used to derive this separation.

Complexity as revealed in other corruption settings. The standard corruption setting of
the UC framework (which we also adopt in this work) is not the most general corruption notion.
Indeed we already used more general corruption schemes involving passive corruption for deriving
some separations. Nevertheless, there is more to be learned about complexity of functionalities
by studying their realizability in different corruption settings. New techniques and notions of
reductions will be required to derive structural results in such settings, and to translate these to
other corruption settings.

A complete map of all interesting cryptographic properties. All the above problems are
aimed at mapping out different cryptographic properties of various functionalities. The ambitious
goal is to understand all atomic cryptographic properties that can be combined to explain the
complexity of any functionality. Needless to say, our techniques and results can only be considered
a small part of such a project.

Quantitative Complexity. In furthering a theory of cryptographic complexity it is necessary
that qualitative complexity notions are refined using quantitative measures. There are at least two
aspects to this: firstly, when the cryptographic complexity of a functionality is quantitatively diluted
beyond a threshold, it may change its qualitative behavior. (For instance, results in [19] show this
for a generalization of Rabin-OT with error, and a threshold on the error.) Another aspect is to
understand the optimality of various protocols: for instance one could ask about the “capacity” of
one functionality G for another functionality F (F-capacity of G): i.e., how many “units” of F are
needed to realize one “unit” of G (possibly in terms of an asymptotic rate). (Here F and G may
be composite functionalities, with possibly a vector unit, rather than a scalar.) For some pairs of
functionalities this problem has already been looked into in recent literature (though not posed in
such generality as we do here).

Acknowledgements

We would like to thank Ran Canetti, Cynthia Dwork, Yuval Ishai and Tal Malkin for useful dis-
cussions.

27

References

[1] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols with
relaxed set-up assumptions. In FOCS, pages 186–195. IEEE, 2004.

[2] B. Barak and A. Sahai. How to play almost any mental game over the net - concurrent
composition using super-polynomial simulation. In Proc. 46th FOCS. IEEE, 2005.

[3] D. Beaver. Correlated pseudorandomness and the complexity of private computations. In
Proc. 28th STOC, pages 479–488. ACM, 1996.

[4] A. Beimel and T. Malkin. A quantitative approach to reductions in secure computation. In
M. Naor, editor, TCC, volume 2951 of Lecture Notes in Computer Science, pages 238–257.
Springer, 2004.

[5] A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure computa-
tion. In M. J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science,
pages 80–97. Springer, 1999.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. 20th STOC, pages 1–10. ACM, 1988.

[7] C. Cachin. On the foundations of oblivious transfer. In K. Nyberg, editor, EUROCRYPT,
volume 1403 of Lecture Notes in Computer Science, pages 361–374. Springer, 1998.

[8] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Electronic Colloquium on Computational Complexity (ECCC) TR01-016, 2001. Previous ver-
sion “A unified framework for analyzing security of protocols” availabe at the ECCC archive
TR01-016. Extended abstract in FOCS 2001.

[9] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2005. Revised version of [8].

[10] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global
setup. In TCC, 2007.

[11] R. Canetti and M. Fischlin. Universally composable commitments. Report 2001/055, Cryp-
tology ePrint Archive, July 2001. Extended abstract appeared in CRYPTO 2001.

[12] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. In E. Biham, editor, EUROCRYPT, volume
2656 of Lecture Notes in Computer Science. Springer, 2003.

[13] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally composable
two-party computation without set-up assumptions. J. Cryptology, 19(2):135–167, 2006.

[14] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party com-
putation. In Proc. 34th STOC, pages 494–503. ACM, 2002.

[15] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols. In
Proc. 20th STOC, pages 11–19. ACM, 1988.

[16] B. Chor and Y. Ishai. On privacy and partition arguments. Information and Computation,
167(1):2–9, 2001.

28

[17] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy (extended abstract). In STOC,
pages 62–72. ACM, 1989.

[18] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM J. Discrete Math.,
4(1):36–47, 1991.

[19] I. Damg̊ard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious transfer and
bit commitment on weakened security assumptions. In J. Stern, editor, EUROCRYPT, volume
1592 of Lecture Notes in Computer Science, pages 56–73. Springer, 1999.

[20] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the presence of partial synchrony.
J. ACM, 35(2):288–323, 1988.

[21] O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University Press,
2004.

[22] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In ACM, editor,
Proc. 19th STOC, pages 218–229. ACM, 1987. See [21, Chap. 7] for more details.

[23] O. Goldreich and R. Vainish. How to solve any protocol problem - an efficiency improvement.
In C. Pomerance, editor, CRYPTO, volume 293 of Lecture Notes in Computer Science, pages
73–86. Springer, 1987.

[24] S. Goldwasser and Y. Lindell. Secure computation without agreement. In DISC, volume 2508
of Lecture Notes in Computer Science, pages 17–32. Springer, 2002.

[25] D. Harnik, Y. Ishai, E. Kushilevitz, and J. B. Nielsen. Ot-combiners via secure computation.
To appear in TCC 2008, 2008.

[26] D. Harnik, M. Naor, O. Reingold, and A. Rosen. Completeness in two-party secure computa-
tion: A computational view. J. Cryptology, 19(4):521–552, 2006.

[27] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty
computation. In STOC, pages 21–30. ACM, 2007.

[28] Y. T. Kalai, Y. Lindell, and M. Prabhakaran. Concurrent general composition of secure
protocols in the timing model. In STOC, pages 644–653. ACM, 2005.

[29] D. Kidron and Y. Lindell. Impossibility results for universal composability in public-
key models and with fixed inputs. Cryptology ePrint Archive, Report 2007/478, 2007.
http://eprint.iacr.org/2007/478.

[30] J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31. ACM, 1988.

[31] J. Kilian. A general completeness theorem for two-party games. In STOC, pages 553–560.
ACM, 1991.

[32] J. Kilian. More general completeness theorems for secure two-party computation. In Proc.
32th STOC, pages 316–324. ACM, 2000.

[33] J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in private
computations. SIAM J. Comput., 29(4):1189–1208, 2000.

[34] E. Kushilevitz. Privacy and communication complexity. In FOCS, pages 416–421. IEEE, 1989.

29

http://eprint.iacr.org/2007/478

[35] E. Kushilevitz. Privacy and communication complexity. SIAM J. Discrete Math., 5(2):273–284,
1992.

[36] E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in multi-party
private computations. In FOCS, pages 478–489. IEEE, 1994.

[37] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive
systems. In ACM Conference on Computer and Communications Security, pages 245–254,
2000.

[38] M. Prabhakaran. New Notions of Security. PhD thesis, Department of Computer Science,
Princeton University, 2005.

[39] M. Prabhakaran and A. Sahai. New notions of security: achieving universal composability
without trusted setup. In STOC, pages 242–251. ACM, 2004.

[40] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proc. 21st STOC, pages 73–85. ACM, 1989.

[41] A. C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pages 162–167. IEEE,
1986.

30

A Modeling Conventions

Some of the conventions in our model of network-aware security slightly differ from definitions in
previous literature. We believe these conventions add clarity to out discussion of the complexity of
functionalities. Below we explain the important differences.

Here we briefly summarize one formalization of the system model used for network-aware se-
curity. For a more detailed description we refer the reader to [38]. However, much of the specific
modeling details are not important for the theory and the results we have presented here.

By the Network, we refer to the entire system of computation and communication. There are
four kinds of entities in a Network: the parties (programs or protocols), the environment, the
adversary and the functionalities. Each entity is modeled as a computable function which operates
on its inputs (incoming messages) and internal state, and produces outputs (outgoing messages)
and a new modified state. The input and output ports of the entities are statically connected up.
The environment is connected to all the parties and the adversary. In addition the parties and the
adversaries can be connected to functionalities.12

Formally a program ℘ is a collection of variables. This includes internal℘, which is the “internal
state” of the program (hidden from A, Z and other programs in the Network). It communicates
with Z and functionalities through input/output messages, which (for the purposes of this section)
are denoted by variables mesgZ→℘, mesg℘→G, etc.

Behavior of a party ℘ is determined by its program (also denoted by ℘, abusing the notation), its
inputs and internal state. The execution of the program is modeled as applying the (computable)
function ℘ to its input variables input℘ (which includes messages it receives, like mesgZ→℘) and
internal state variables internal℘ (including the internal randomness). It produces new values for
the internal state variables internal℘ and for the output variables output℘ (which includes messages
it sends, like mesg℘→Z). We write it as follows.

(internal℘, output℘)← ℘(input℘, internal℘).

Since a program would typically read its inputs multiple times and produce output (or communica-
tions) more than once, we allow the the above updating to be invoked multiple times. As explained
below, each of these invocations will be scheduled by the environment as a two-step process. An
(instance of) m-party protocol π is defined by (instances of) its constituent programs (π1, . . . , πm).
The environment, adversary and functionalities have their own programs. In addition, the adver-
sary includes programs for each of the corrupted parties (in case of malicious corruption), and
the internal variables of the adversary includes the variables belonging to the corrupted parties as
well. (We consider the special case of passive corruption as well, wherein the the program of the
corrupted is the same as the one prescribed by the protocol, and the adversary does not update
the program’s variables by itself.)

The system execution is best described in terms of the environment’s actions: Z repeatedly reads
its variables (the ones it is allowed to read) and updates its internal variables and communication
variables (the ones it is allowed to update), until it terminates with an output.13 In addition,
at each step it can invoke the computation of a program ℘ (existing or new), by outputting one
of the two “commands”: startrun℘, when the (input℘, internal℘) are read in, and finisrun℘ when
(internal℘, output℘) are updated (according to the output of the function ℘ applied to the inputs
read in the last time startrun℘ was issued). The duration between the two corresponds to the time
the program runs. For simplicity we restrict that at each step Z is allowed to issue at most one

12Communication channels that are traditionally built into the network model are also modeled as functionalities.
13For the purpose of defining security, we can consider the final output from the environment to be a single bit.

31

startrun or finisrun command. However, to have the effect of parallel execution, Z can issue multiple
startrun commands (for different programs) before invoking the corresponding finisrun commands.14

Unlike the protocol programs, the functionalities and the adversary are not explicitly scheduled
by Z, but independently invoked as follows: whenever an entity outputs a message for a virtual
entity, the function corresponding to latter is applied immediately, and its outputs and internal
state are immediately updated with the results. (If there are messages to more than one virtual
entity in a single output, all of them are invoked simultaneously and after that all their outputs
and internal states are updated simultaneously.) 15

Emphasizing the generality of our theory, we do not specify any computational limitations
on the functions defining the programs of the machines, but allow abstract classes of admissible
machines. An important requirement of a class of admissible machines is that it should be closed
under composition: that is a machine internally composed of multiple admissible machines remains
admissible.16 The two main types of systems we consider are unbounded systems, which admit
all probabilistic, resource unbounded machines; and PPT systems, which admit all probabilistic,
polynomial-time bounded machines. We note that our results hold for both network systems, when
the various definitions are understood to refer to admissible machines for the particular system.

Secure Realization. In an interaction among environment Z, adversaryA, and parties executing
a protocol π that uses functionality F , we use exec[Z,A, πF] to denote the distribution of the
environment’s (single-bit) output. We say that π is a secure realization of F with respect to G, if
for all adversaries A, there exists a simulator S such that for all environments Z, exec[Z,A, πG] ≈
exec[Z,S, ∂F] (that is, the distributions differ only negligibly), where ∂ denotes the “dummy
protocol” that simply relays messages between the functionality and environment. Using more
prevalent terminology, π is a secure realization of F in the G-hybrid world. We view G as the
“channel” over which the protocol executes. Instead of an arbitrary external adversary in real-
world interactions, it suffices (by incorporating the adversary machine into the environment itself)
to consider a “dummy” adversary that simply relays messages into and out of the environment.
We also only consider adversaries which corrupt parties non-adaptively.

When there is a secure realization of F with respect to G, we write F v G. We denote by realiz
G

the class of functionalities which have secure realizations with respect to G. Our main results apply
to both PPT and unbounded systems in a unified way. To explicitly refer to realizability in PPT
or unbounded systems, we write vp,realizp and vu,realizu, respectively.

14This follows the model used in [38]. In other models of network-aware security that appeared in the literature,
the executions of the programs were explicitly sequentialized. In our vocabulary, this translates to the restricting
that after a program ℘ is started by issuing a scheduling directive startrun℘, the next scheduling directive must be
finisrun℘. That is to say, the same program ℘ must be finished before another program can be started. Clearly, the
new approach here models the real-life scenario more directly, by allowing different program runs to overlap with
each other.

15The immediate invocation of virtual entities has the effect that two or more virtual entities – say A and a
functionality – can in principle go into an infinite loop of invoking each other, without ever letting the environment
to continue. For simplicity we shall consider only adversaries which have a finite bound (possibly growing with the
security parameter) on the number of interactions with functionalities at one time.

16To be fully formal, we consider families of machines instead of machines. In each family, the machines are indexed
by the security parameter. A composition as used in the description of closure property here takes a finite number
of families, and produces a new family of machines. For brevity, we omit explicit references to machine families.

32

B Other Protocols for 3-party Functionalities

Recall that two kinds of multi-party SFE functionalities are realizable (w.r.t private channels):
aggregated and disseminated. As simple non-trivial examples which are realizable, one may think of
broadcast (which is a disseminated functionality) and aggregated XOR (or sum, in a small group).
Broadcast17 was shown to be possible in [24] using a simple protocol, and it is easily seen that
aggregated XOR is realized by a protocol (over private channels) in which every sending party
additively shares its inputs with everyone else (including the receiver and oneself), then in a second
phase sends the XOR of the shares they received to the receiver.

However, not all aggregated or supervised functionalities are that simple, even for the 3-party
case. In this section we investigate two of them and give non-trivial protocols for both.

Disseminated OR. The disseminated OR functionality has two output parties (parties #1 and
#2) and a supervisor (party #3). It expects two bits b1 and b2 from the supervisor, respectively.
Then it sends (bi, b1 ∨ b2) to party i. This could be considered a non-trivial generalization of
broadcast (to two receivers), as both output parties will agree on the second component of their
outputs. Furthermore, using disseminated OR, any (small domain) disseminated functionality can
be realized: for each forbidden pair of outputs, the two parties will use an instance of disseminated
OR to ensure that at least one of them has an output which is different from that in the forbidden
pair.

We give a protocol for disseminated OR in the private channels model. If b1 = b2 = 0, the
supervisor sends zero to both output parties; on receiving zero, an output party sends zero to the
other output party, and expects back the same. If it does not receive back zero, it aborts. Else
output (0, 0).

Otherwise, if b1 ∨ b2 = 1, we proceed as follows: First, the supervisor sends (bi, b1 ∨ b2) to party
i. Then the parties attempt to convince each other that at least one of the parties received bi = 1,
in a secure way, as follows:

The supervisor generates random strings r1, r2 ∈ {0, 1}
k , where k is the security parameter. For

each i ∈ {1, 2}, if bi = 1, the supervisor sends to party i the value ri, otherwise it sends r3−i.
Party 1 receives r1 only if b1 = 1, and party 2 receives r1 only if b2 = 0. Thus, if party 1 has

b1 = 1, broadcasting the value of r1 acts as a proof that he holds 1, which party 2 will only be able
to verify if has b2 = 0.

More formally, if party i received bi = 1, then it broadcasts ri to the other parties. If party i

received bi = 0, then instead it broadcasts a randomly chosen si ← {0, 1}
k as a “fake” proof. After

this broadcasting phase, the supervisor checks that for each i such that bi = 1, the proof string
broadcast by party i matches ri. If so, it sends continue to both parties, else it sends abort.

If party i receives abort, it aborts the protocol at this point. Else, if it receives continue, it
continues as follows:
• If bi = 0, then it verifies the other party’s proof by comparing the broadcast value to r3−i

which it received from the supervisor. If the values do not match, it will abort, else it outputs
(0, 1).
• If bi = 1 it outputs (1, 1).

Aggregated OR. The aggregated OR functionality is one which takes bits b1 and b2 from input
parties 1 and 2, respectively, and outputs b1 ∨ b2 to the output party 3. There is a simple protocol
for aggregated OR that uses the aggregated XOR functionality described above. The parties simply

17More precisely it is wrap(Broadcast) that is realizable, a distinction we keep implicit in this section.

33

compute the aggregated XOR of strings s1 and s2, where si = 0k if bi = 0, and si is a random k-bit
string if bi = 1. The output party receives s1⊕ s2, which is 0k if both parties received input 0, and
is randomly distributed otherwise.

34

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Related Work on Complexity of MPC Functionalities

	Preliminaries
	Structural Results
	Splittability of (Regular) 2-Party Functionalities
	General Theory of Splittability
	Notational Conventions
	General Splittability Definition
	Theorems
	Relation to the simplified definition.

	Deviation Revealing Functionalities

	Applications of the Theory
	Simple Impossibility Results
	Combinatorial Characterization for 2-party SFE
	Results for Multi-party Functionalities
	A Strict Hierarchy of Intermediate Complexities
	Completeness for Uniform Corruption Schemes

	Open Problems and Future Directions
	Modeling Conventions
	Other Protocols for 3-party Functionalities

