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Abstract. Higman showed1 that if A is any language then SUBSEQ(A) is regular, where SUBSEQ(A)
is the language of all subsequences of strings in A. Let s1, s2, s3, . . . be the standard lexicographic
enumeration of all strings over some finite alphabet. We consider the following inductive inference
problem: given A(s1), A(s2), A(s3), . . ., learn, in the limit, a DFA for SUBSEQ(A). We consider this
model of learning and the variants of it that are usually studied in inductive inference: anomalies,
mind-changes, teams, and combinations thereof.

This paper is a significant revision and expansion of an earlier conference version [6].

1 Introduction

In Inductive Inference [2, 4, 16] the basic model of learning is as follows.

Definition 1.1. A class A of decidable sets of strings2 is in EX if there is a Turing machine M

(the learner) such that if M is given A(ε), A(0), A(1), A(00), A(01), A(10), A(11), A(000), . . . ,
where A ∈ A, then M will output e1, e2, e3, . . . such that lims es = e and e is an index for a Turing
machine that decides A.

Note that the set A must be computable and the learner learns a Turing machine index for it.
There are variants [1, 12, 14] where the set need not be computable and the learner learns something
about the set (e.g., “Is it infinite?” or some other question).

Our work is based on a remarkable theorem of Higman’s, [17]3 given below as Theorem 1.4.

Convention: Σ is a finite alphabet.

Definition 1.2. Let x, y ∈ Σ
∗. We say that x is a subsequence of y if x = x1 · · ·xn and y ∈

Σ
∗x1Σ

∗x2 · · ·xn−1Σ
∗xnΣ

∗. We denote this by x # y.

Notation 1.3. If A is a set of strings, then SUBSEQ(A) is the set of subsequences of strings in A.

Higman [17] showed the following using well-quasi-order theory.
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Theorem 1.4 (Higman [17]). If A is any language over Σ
∗, then SUBSEQ(A) is regular. In

fact, for any language A there is a unique minimum (and finite) set S of strings such that

SUBSEQ(A) = {x ∈ Σ
∗ : (∀z ∈ S)[z $% x]}. (1)

Note that A is any language whatsoever. Hence we can investigate the following learning problem.

Notation 1.5. We let s1, s2, s3, . . . be the standard length-first lexicographic enumeration of Σ
∗.

We refer to Turing machines as TMs.

Definition 1.6. A class A of sets of strings in Σ
∗ is in SUBSEQ-EX if there is a TM M (the

learner) such that if M is given A(s1), A(s2), A(s3), . . . where A ∈ A, then M will output e1, e2, e3, . . .

such that lims es = e and e is an index for a DFA that recognizes SUBSEQ(A). It is easy to see
that we can take e to be the least index of the minimum-state DFA that recognizes SUBSEQ(A).
Formally, we will refer to A(s1)A(s2)A(s3) · · · as being on an auxiliary tape.

Notation 1.7. For any k we let Fk denote the DFA with index k. (See also Notation 2.8.)

We give examples of elements of SUBSEQ-EX. Additional examples are given in Section 4.

Definition 1.8. F is the set of all finite sets of strings.

Proposition 1.9. F ∈ SUBSEQ-EX.

Proof. Let M be a learner that, when A ∈ F is on the tape, outputs k1, k2, . . . , where each ki is
the index of a DFA that recognizes SUBSEQ(A ∩ Σ

≤i). Clearly, M learns SUBSEQ(A). '(

More generally, we have

Proposition 1.10. REG ∈ SUBSEQ-EX.

Proof. When A is on the tape, for n = 0, 1, 2, . . . , the learner M

1. finds the least k such that A ∩ Σ
<n = L(Fk) ∩ Σ

<n, then
2. outputs the least " such that L(F!) = SUBSEQ(L(Fk)) (see Proposition 2.7(1)).

If A is regular, then clearly M will converge to the least k such that A = L(Fk), whence M will
converge to the least " such that L(F!) = SUBSEQ(A). '(

This problem is part of a general theme of research: given a language A, rather than try to learn
a program for it (which is not possible if A is undecidable) learn some aspect of it. In this case we
learn SUBSEQ(A). Note that we learn SUBSEQ(A) in a very strong way in that we have a DFA
for it.

If A ∈ EX, then a TM can infer a Turing index for any A ∈ A. The index is useful if you want to
determine membership of particular strings, but not useful if you want most global properties (e.g.,
“Is A infinite?”). If A ∈ SUBSEQ-EX, then a TM can infer a DFA for SUBSEQ(A). The index
is useful if you want to determine virtually any property of SUBSEQ(A) (e.g., “Is SUBSEQ(A)
infinite?”) but not useful if you want to answer almost any question about A.

We look at anomalies, mind-changes, and teams, both alone and in combination. These are
standard variants of the usual model in inductive inference. See [4] and [21] for the definitions
within inductive inference; however, our definitions are similar.

We list definitions and our main results.

2



1. Let A ∈ SUBSEQ-EXa mean that the final DFA may be wrong on at most a strings (called
anomalies). Also let A ∈ SUBSEQ-EX∗ mean that the final DFA may be wrong on a finite
number of strings (i.e., a finite number of anomalies—the number perhaps varying with A). The
anomaly hierarchy collapses; that is,

SUBSEQ-EX = SUBSEQ-EX∗.

This contrasts sharply with the case of EXa, where it was proven in [4] that EXa ⊂ EXa+1.
2. Let A ∈ SUBSEQ-EXn mean that the TM makes at most n+1 conjectures (and hence changes

its mind at most n times). The mind-change hierarchy separates; that is, for all n,

SUBSEQ-EXn ⊂ SUBSEQ-EXn+1.

This is analogous to the result proved in [4].
3. The mind-change hierarchy also separates if you allow a transfinite number of mind-changes,

up to ω
CK
1 (see “Transfinite Mind Changes and Procrastination” in Section 3.3). This is also

analogous to the result in [9].
4. Let A ∈ [a, b]SUBSEQ-EX mean that there is a team of b TMs trying to learn the DFA, and we

demand that at least a of them succeed (it may be a different a machines for different A ∈ A).
(a) If 1 ≤ a ≤ b and q = %b/a&, then

[a, b]SUBSEQ-EX = [1, q]SUBSEQ-EX.

Hence we need only look at team learning classes of the form [1, n]SUBSEQ-EX.
(b) The team hierarchy separates. That is, for all b,

[1, b]SUBSEQ-EX ⊂ [1, b + 1]SUBSEQ-EX.

These are also analogous to results from [15].
5. The anomaly hierarchy collapses in the presence of teams. That is, for all 1 ≤ a ≤ b,

[a, b]SUBSEQ-EX∗ = [a, b]SUBSEQ-EX.

6. There are no trade-offs between bounded anomalies and mind-changes: for all a and c,

SUBSEQ-EXa

c = SUBSEQ-EXc.

However, SUBSEQ-EX∗
0 '⊆ SUBSEQ-EXc and SUBSEQ-EXc '⊆ SUBSEQ-EX∗

c−1 for any c > 0.
There are nontrivial trade-offs if we consider anomaly revisions (transfinite anomalies) versus
mind-changes.

7. There are several interesting trade-offs between mind-changes and teams. For all 1 ≤ a ≤ b and
c ≥ 0,

[a, b]SUBSEQ-EXc ⊆ [1, %b/a&]SUBSEQ-EXb(c+1)−1

and [1, q]SUBSEQ-EXc ⊆ [a, aq]SUBSEQ-EXc for q ≥ 1. Also,

SUBSEQ-EXb(c+1)−1 ⊆ [1, b]SUBSEQ-EXc '⊇ SUBSEQ-EXb(c+1).

Finally, if b > 1 and c ≥ 1, then

SUBSEQ-EX2b(c+1)−3 ⊇ [1, b]SUBSEQ-EXc '⊆ SUBSEQ-EX2b(c+1)−4.

Note 1.11. PEX [3, 4] is like EX except that the conjectures must be for total TMs. The class
SUBSEQ-EX is similar in that all the machines are total (in fact, DFAs) but different in that we
learn the subsequence language, and the input need not be computable. The anomaly hierarchy for
SUBSEQ-EX collapses just as it does for PEX; however, the team hierarchy for SUBSEQ-EX is
proper, unlike for PEX.
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2 Definitions

2.1 Definitions about subsequences

Notation 2.1. We let N = {0, 1, 2, . . .} and N
+ = {1, 2, 3, . . .}. We assume that Σ is some finite

alphabet, that 0, 1 ∈ Σ, and that all languages are subsets of Σ
∗. We identify a language with its

characteristic function.

Notation 2.2. For n ∈ N, we let Σ
=n denote the set of all strings over Σ of length n. We also

define Σ
≤n =

⋃
i≤n

Σ
=i and Σ

<n =
⋃

i<n
Σ

=i. Σ
≥n and Σ

>n are defined analogously.

Notation 2.3. Given a language A, we call the unique minimum set S satisfying (1) the obstruction

set of A and denote it by os(A). In this case, we also say that S obstructs A.

The following facts are obvious:

– The # relation is computable.
– For every string x there are finitely many y # x, and given x one can compute a canonical index

(see Notation 2.8) for the set of all such y.
– By various facts from automata theory, including the Myhill-Nerode minimization theorem:

given a DFA, NFA, or regular expression for a language A, one can effectively compute the
unique minimum state DFA recognizing A. (The minimum state DFA is given in some canonical
form.)

– Given DFAs F and G, one can effectively compute DFAs for L(F ), L(F )∪L(G), L(F )∩L(G),
L(F ) − L(G), and L(F )'L(G) (symmetric difference). One can also effectively determine
whether or not L(F ) = ∅ and whether or not L(F ) is finite. If L(F ) is finite, then one can
effectively find a canonical index for L(F ).

– For any language A, the set SUBSEQ(A) is completely determined by os(A), and in fact,
os(A) = os(SUBSEQ(A)).

– The strings in the obstruction set of a language must be pairwise #-incomparable (i.e., the
obstruction set is an #-antichain). Conversely, any #-antichain obstructs some language.
For any S ⊆ Σ

∗ define

ObsBy(S) = {x ∈ Σ
∗ : (∀z ∈ S)[z +# x]}.

The term ObsBy(S) is an abbreviation for ‘obstructed by S’. Note that os(ObsBy(S)) ⊆ S,
and equality holds iff S is an #-antichain.

Definition 2.4. A language A ⊆ Σ
∗ is #-closed if SUBSEQ(A) = A.

Observation 2.5. A language A is #-closed if and only if there exists a language B such that
A = SUBSEQ(B).

Observation 2.6. Any infinite #-closed set contains strings of every length.

The next proposition implies that finding os(A) is computationally equivalent to finding a DFA
for SUBSEQ(A).

Proposition 2.7. The following tasks are computable:
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1. Given a DFA F , find a DFA G such that L(G) = SUBSEQ(L(F )).
2. Given the canonical index of a finite language D ⊆ Σ

∗, compute a regular expression for (and
hence the minimum-state DFA recognizing) the language ObsBy(D) = {x ∈ Σ

∗ : (∀z ∈ D)[z %&

x]}.
3. Given a DFA F , decide whether or not L(F ) is &-closed.
4. Given a DFA F , compute the canonical index of os(L(F )).

Proof. We prove the fourth item and leave the first three as exercises for the reader.
Given DFA F , first compute the DFA G of Item 1. Since os(A) = os(SUBSEQ(A)) for all

languages A, it suffices to find os(L(G)).
Suppose that G has n states.
We claim that every element of os(L(G)) has length less than n. Assume otherwise, i.e., that

there is some string w ∈ os(L(G)) with |w| ≥ n. Then w /∈ L(G), and as in the proof of the
Pumping Lemma, there are strings x, y, z ∈ Σ

∗ such that w = xyz, |y| > 0, and xyiz /∈ L(G) for
all i ≥ 0. In particular, xz /∈ L(G). But xz & w and xz %= w, which contradicts the assumption
that w was a &-minimal string in L(G). This establishes the claim.

By the claim, in order to find os(L(G)), we just need to check each string of length less than n
to see whether it is a &-minimal string rejected by G. ()

2.2 Classes of languages

We define classes of languages via the types of machines that recognize them.

Notation 2.8.

1. D1, D2, . . . is a standard enumeration of finite languages. (e is the canonical index of De.)
2. F1, F2, . . . is a standard enumeration of minimized DFAs, presented in some canonical form so

that for all i %= j we have L(Fi) %= L(Fj). Let REG = {L(F1), L(F2), . . .}.
3. P1, P2, . . . is a standard enumeration of {0, 1}-valued polynomial-time TMs. Let P = {L(P1), L(P2), . . .}.

Note that these are total.
4. M1,M2, . . . is a standard enumeration of Turing Machines. We let CE = {L(M1), L(M2), . . .},

where L(Mi) is the set of all x such that Mi(x) halts with output 1 (i.e., Mi(x) accepts). CE
stands for “computably enumerable.”4

5. We let DEC = {L(N) : N is a total TM}.

The notation below is mostly standard. For the notation that relates to computability theory,
our reference is [22].

For separation results, we will often construct tally sets, i.e., subsets of 0∗.

Notation 2.9.

1. The empty string is denoted by ε.
2. For m ∈ N, we define 0<m = {0i : i < m}.
3. If B ⊆ 0∗ is finite, we let m(B) denote the least m such that B ⊆ 0<m, and we observe that

SUBSEQ(B) = 0<m(B).
4. If A is a set then P(A) is the powerset of A.

4 These sets are also called, “recursively enumerable.”
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Notation 2.10. If B,C ⊆ 0∗ and B is finite, we define a “shifted join” of B and C as follows:

B ∪+C = {02n+1 : 0n ∈ B} ∪{ 02(m(B)+n) : 0n ∈ C}.

In B ∪+C, all the elements from B have odd length and are shorter than the elements from C,
which have even length. We define inverses to the ∪+ operator:

Notation 2.11. For every m ≥ 0 and language A, let

ξ(A) := {0n : n ≥ 0 ∧ 02n+1 ∈ A},

π(m;A) := {0n : n ≥ 0 ∧ 02(m+n) ∈ A}.

If B,C ⊆ 0∗ and B is finite, then we have B = ξ(B ∪+C) and C = π(m(B);B ∪+C).

Notation 2.12. For languages A,B ⊆ Σ∗, we write A ⊆∗ B to mean that A − B is finite.

The following family of languages will be used in several places:

Definition 2.13. For all i, let Ri be the language (0∗1∗)i.

Note that R1 ⊆ R2 ⊆ R3 ⊆ · · ·, but Ri+1 (⊆∗ Ri for any i ≥ 1. Also note that SUBSEQ(Ri) = Ri

for all i ≥ 1.

2.3 Variants on SUBSEQ-EX

In this section, we note some obvious inclusions among the variant notions of SUBSEQ-EX. We
also define relativized SUBSEQ-EX.

Obviously,

SUBSEQ-EX0 ⊆ SUBSEQ-EX1 ⊆ SUBSEQ-EX2 ⊆ · · · ⊆ SUBSEQ-EX. (2)

We will extend this definition into the transfinite later. Clearly,

SUBSEQ-EX = SUBSEQ-EX0 ⊆ SUBSEQ-EX1 ⊆ · · · ⊆ SUBSEQ-EX∗. (3)

Finally, it is evident that if a ≥ c and b ≤ d, then [a, b]SUBSEQ-EX ⊆ [c, d]SUBSEQ-EX.

Definition 2.14. If X ⊆ N, then SUBSEQ-EXX is the same as SUBSEQ-EX except that we allow
the learner to be an oracle TM using oracle X.

We may combine these variants in a large variety of ways.

3 Main results

3.1 Standard learning

We start with an example of something in SUBSEQ-EX that contains nonregular languages. We’ll
give more extreme examples in Section 4.
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Definition 3.1. For all i ∈ N, let

Si := {A ⊆ Σ
∗ : |os(A)| = i}.

Also let

S≤i := S0 ∪ S1 ∪ · · · ∪ Si = {A ⊆ Σ
∗ : |os(A)| ≤ i}.

Proposition 3.2. Si ∈ SUBSEQ-EX for all i ∈ N.

Proof. Given A on its tape, let M behave as follows, for n = 0, 1, 2, . . . :

1. Compute N = os(A ∩ Σ≤n) ∩ Σ≤n.

2. If |N | < i, then go on to the next n.

3. Let x1, . . . , xi be the i shortest strings in N . If there is a tie, i.e., if there is more than one set
of i shortest strings in N , then go on to the next n.

4. Output the least index k such that L(Fk) is '-closed and os(L(Fk)) = {x1, . . . , xi}.

()

It was essentially shown in [7] that DEC /∈ SUBSEQ-EX. The proof there can be tweaked to
show the stronger result that P /∈ SUBSEQ-EX. We include the stronger result here.

Theorem 3.3 ([7]). P *∈ SUBSEQ-EX. In fact, there is a computable function g such that for all

e, setting A = L(Pg(e)), we have A ⊆ 0∗ and SUBSEQ(A) is not learned by Me.

Proof. Assume, by way of contradiction, that P ∈ SUBSEQ-EX via Me. Then we effectively con-
struct a machine Ne that implements the following recursive polynomial-time algorithm for com-
puting A. Let j0 be the unique index such that L(Fj0) = 0∗.

On input x:

1. If x /∈ 0∗ then reject. (This will ensure that A ⊆ 0∗.)

2. Let x = 0n. Using no more than n computational steps, recursively run Ne on inputs ε, 0, 00, . . . , 0!n−1

to compute A(ε), A(0), A(00), . . . , A(0!n−1), where #n ≤ n is largest such that this can all be
done within n steps. Set Rn := A ∩ 0<!n .

3. Simulate Me for #n − 1 steps with Rn on its tape. If Me does not output anything within this
time, then reject. [Note that Me only has time to scan its tape on cell corresponding to inputs
ε, 0, 00, . . . , 0!n−1 (and perhaps some inputs not in 0∗).]

4. Let k be the most recent index output by Me within #n − 1 steps with Rn on its tape.

5. If k = j0 (i.e., if L(Fk) = 0∗), then reject; else accept.

This algorithm runs in polynomial time for each fixed e, and thus A = L(Ne) ∈ P. Further,
given e we can effectively compute an index i such that A = L(Pi). We let g(e) = i.

We note the following:

– It is clear that the sequence #0, #1, #2, . . . is monotone and unbounded.

– When Me is simulated in step 3, it behaves the same way with Rn on its tape as with A on its
tape, because it does not run long enough to examine any place on the tape where Rn and A
may differ.
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We now show that Me does not learn SUBSEQ(A). Assume otherwise, and let k1, k2, . . . be the
sequence of outputs of Me with A on the tape. By assumption, there is a k′ = limn→∞ kn such
that L(Fk′) = SUBSEQ(A). If L(Fk′) = 0∗, then for all large enough n, the algorithm rejects 0n

in Step 5, making A finite, which makes SUBSEQ(A) finite. If L(Fk′) "= 0∗, then the algorithm
accepts 0n in Step 5 for all large enough n, making A infinite, which makes SUBSEQ(A) = 0∗. In
either case, L(Fk′) "= SUBSEQ(A); a contradiction. #$

Corollary 3.4. P /∈ SUBSEQ-EX. In fact, P ∩ P(0∗) /∈ SUBSEQ-EX.

We can learn more with access to the halting problem.

Theorem 3.5. CE ∈ SUBSEQ-EX∅′, where ∅′ is the halting problem.

Proof. Consider a learner M for all c.e. languages that behaves as follows: When the characteristic
string of a c.e. language A is on the tape, M learns (with the help of ∅′) a c.e. index for A by
finding, for each n = 0, 1, 2, . . . , the least e such that We ∩ Σ

≤n = A ∩ Σ
≤n. Eventually M will

settle on a correct e, assuming A is c.e. Let en be the nth index found by M . Upon finding en, M
uses ∅′ to determine, for each w ∈ Σ

≤n, whether or not there is a z ∈ Wen
such that w ( z. M

collects the set D of all w ∈ Σ
≤n for which this is not the case, then outputs (an index for) the

corresponding minimum-state DFA as in Proposition 2.7(2).

For all large enough n we have A = Wen
, and all strings in os(A) will have length at most n.

Thus M eventually outputs a DFA for SUBSEQ(A). #$

3.2 Anomalies

The next theorem shows that the anomalies hierarchy of Equation (3) collapses completely. In other
words, allowing the DFA that is output to be wrong on (say) five places does not increase learning
power.

Theorem 3.6. SUBSEQ-EX = SUBSEQ-EX∗. In fact, there is a computable h such that for all
e and languages A, if Me learns SUBSEQ(A) with finitely many anomalies, then Mh(e) learns
SUBSEQ(A) (with zero anomalies).

Proof. Given e, we let Mh(e) learn SUBSEQ(A) by finding better and better approximations to
it: For increasing n, Mh(e) with A on its tape approximates SUBSEQ(A) by examining its tape
directly on strings in Σ

<n (where there could be anomalies) and relying on L(F ) for strings of
length ≥ n, where F is the most recent output of Me. Here is the algorithm for Mh(e):

When language A is on the tape:

1. Run Me with A. Wait for Me to output something.

2. Whenever Me outputs some index k, do the following:

(a) Let n be the number of times Me has output something thus far.

(b) Compute a DFA G recognizing the language SUBSEQ((A ∩ Σ
<n) ∪ (L(Fk) ∩ Σ

≥n)).

(c) Output the index of G.

If Me learns A with finite anomalies, then there is a DFA F such that, for all large enough n,
Me outputs an index for F as its nth output, and furthermore L(F )+SUBSEQ(A) ⊆ Σ

<n, that
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is, all anomalies are of length less than n. For any such n, let Gn be the DFA output by Mh(e) after
the nth output of Me. We have

L(Gn) = SUBSEQ((A ∩ Σ
<n) ∪ (L(F ) ∩ Σ

≥n))

= SUBSEQ((A ∩ Σ
<n) ∪ (SUBSEQ(A) ∩ Σ

≥n))

= SUBSEQ(A).

Thus Mh(e) learns SUBSEQ(A). #$

One could define a looser notion of learning with finite anomalies: The learner is only required
to eventually (i.e., cofinitely often) output indices for DFAs whose languages differ a finite amount
from SUBSEQ(A), but these languages need not all be the same.

Definition 3.7. For a learner M and language A, say that M weakly learns SUBSEQ(A) with
finite anomalies if, when A is on the tape, M outputs an infinite sequence k1, k2, . . . such that
SUBSEQ(A)%L(Fki

) is finite for all but finitely many i.
A class C of languages is in SUBSEQ-W-EX∗ if there is a learner M that, for every A ∈ C,

weakly learns SUBSEQ(A) with finite anomalies.

Clearly, SUBSEQ-EX∗ ⊆ SUBSEQ-W-EX∗.
We use Theorem 3.6 to get an even stronger collapse.

Proposition 3.8. SUBSEQ-EX = SUBSEQ-W-EX∗. In fact, there is a computable function b

such that for all e and A, if Me weakly learns A with finite anomalies, then Mb(e) learns A (without
anomalies).

Proof. Let c be a computable function such that for all e and A, Mc(e) with A on the tape simulates
Me with A on the tape, and (supposing Me outputs k1, k2, . . .) whenever Me outputs kn, Mc(e)

finds the least j ≤ n such that L(Fkj
)%L(Fkn

) is finite, and outputs kj instead. (Such a j can be
computed.)

Now suppose Me weakly learns SUBSEQ(A) with finite anomalies, and let k1, k2, . . . be the
outputs of Me with A on the tape. Let j be least such that L(Fkj

)%SUBSEQ(A) is finite. Then
for cofinitely many n, we have L(Fkn

)%SUBSEQ(A) is finite, and so L(Fkn
)%L(Fkj

) is also finite,
but L(Fkn

)%L(Fk!
) is infinite for all " < j. Thus Mc(e) outputs kj cofinitely often, and so Mc(e)

learns A with finite anomalies (not weakly!).
Now we let b = h ◦ c, where h is the function of Theorem 3.6. If Me weakly learns A with finite

anomalies, then Mc(e) learns A with finite anomalies, and so Mb(e) = Mh(c(e)) learns A. #$

3.3 Mind-changes

The next theorems show that the mind change hierarchy of Equation (2) separates. In other words,
if you allow more mind-changes then you give the learning device more power.

Definition 3.9. For every i > 0, define the class

Ci = {A ⊆ 0∗ : |A| ≤ i}.

Proposition 3.10. Ci ∈ SUBSEQ-EXi for all i ∈ N. In fact, there is a single learner M that for
each i learns SUBSEQ(A) for every A ∈ Ci with at most i mind-changes.
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Proof. Let M be as in the proof of Proposition 1.9. Clearly, M learns any A ∈ Ci with at most |A|
mind-changes. "#

Theorem 3.11. For each i > 0, Ci /∈ SUBSEQ-EXi−1. In fact, there is a computable function !

such that, for each e and i > 0, M!(e,i) is total and decides a unary language Ae,i = L(M!(e,i)) ⊆ 0∗

such that |Ae,i| ≤ i and Me does not learn SUBSEQ(Ae,i) with fewer than i mind-changes.

Proof. Given e and i > 0 we construct a machine N = M!(e,i) that implements the following
recursive algorithm to compute Ae,i:

Given input x,

1. If x /∈ 0∗, then reject. (This ensures that Ae,i ⊆ 0∗.) Otherwise, let x = 0n.
2. Recursively compute Rn = Ae,i ∩ 0<n.
3. Simulate Me for n − 1 steps with Rn on the tape. (Note that Me does not have time to read

any of the tape corresponding to inputs 0n′

for n′ ≥ n.) If Me does not output anything within
this time, then reject.

4. Let k be the most recent output of Me in the previous step, and let c be the number of mind-
changes that Me has made up to this point. If c < i and L(Fk) = SUBSEQ(Rn), then accept;
else reject.

In step 3 of the algorithm, Me behaves the same with Rn on its tape as it would with Ae,i on
its tape, given the limit on its running time.

Let Ae,i = {0z0 , 0z1 , . . .}, where z0 < z1 < · · · are natural numbers.

Claim 3.12. For 0 ≤ j, if zj exists, then Me (with Ae,i on its tape) must output a DFA for
SUBSEQ(Rzj

) within zj − 1 steps, having changed its mind at least j times when this occurs.

Proof (of the claim). We proceed by induction on j: For j = 0, the string 0z0 is accepted by N
only if within z0 − 1 steps Me outputs a k where L(Fk) = ∅ = SUBSEQ(Rz0

); no mind-changes
are required. Now assume that j ≥ 0 and zj+1 exists, and also (for the inductive hypothesis) that
within zj − 1 steps Me outputs a DFA for SUBSEQ(Rzj

) after at least j mind-changes. We have
Rzj

⊆ 0<zj but 0zj ∈ Rzj+1
, and so SUBSEQ(Rzj

) += SUBSEQ(Rzj+1
). Since N accepts 0zj+1 ,

it must be because Me has just output a DFA for SUBSEQ(Rzj+1
) within zj+1 − 1 steps, thus

having changed its mind at least once since the zjth step of its computation, making at least j + 1
mind-changes in all. So the claim holds for j + 1. End of Proof of Claim

First we show that Ae,i ∈ Ci. Indeed, by Claim 3.12, zi cannot exist, because the algorithm
would explicitly reject such a string 0zi if Me made at least i mind-changes in the first zi − 1 steps.
Thus we have |Ae,i| ≤ i, and so Ae,i ∈ Ci.

Next we show that Me cannot learn Ae,i with fewer than i mind-changes. Suppose that with Ae,i

on its tape, Me makes fewer than i mind-changes. Suppose also that there is a k output cofinitely
many times by Me. Let t be least such that t ≥ m(Ae,i) and Me outputs k within t− 1 steps. Then
L(Fk) += SUBSEQ(Ae,i), for otherwise the algorithm would accept 0t and so 0t ∈ Ae,i, contradicting
the choice of t. It follows that Me cannot learn Ae,i with fewer than i mind-changes. "#

Transfinite mind-changes and procrastination This section may be skipped on first reading.
We extend the results of this section into the transfinite. Freivalds & Smith defined EXα for all
constructive ordinals α [9]. When α < ω, the definition is the same as the finite mind-change case
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above. If α ≥ ω, then the learner may revise its bound on the number of mind changes during
the computation. The learner may be able to revise more than once, or even compute a bound on
the number of future revisions, and this bound itself could be revised, et cetera, depending on the
size of α. After giving some basic facts about constructive ordinals, we define SUBSEQ-EX

α
for all

constructive α, then show that this transfinite hierarchy separates. Our definition is slightly different
from, but equivalent to, the definition in [9]. For general background on constructive ordinals, see
[19, 20].

Church defined the constructive (computable) ordinals, and Kleene defined a partially ordered
set 〈O, <O〉 of notations for constructive ordinals, where O ⊆ N. 〈O, <O〉 may be defined as the
least partial order that satisfies the following closure properties:

– <O ⊆ O ×O, and <O is transitive.

– 0 ∈ O.

– If a ∈ O then 2a ∈ O and a <O 2a.

– If Me is total (with inputs in N) and

Me(0) <O Me(1) <O Me(2) <O · · · ,

then 3 · 5e ∈ O and Me(n) <O 3 · 5e for all n ∈ N.

〈O, <O〉 has the structure of a well-founded tree. For a ∈ O we let ‖a‖ be the ordinal rank of a

in the partial ordering.5 Then a is a notation for the ordinal ‖a‖. An ordinal α is constructive if it
has a notation in O. We let ωCK

1
be the set of all constructive ordinals, i.e., the height of the tree

〈O, <O〉. ωCK
1

is itself a countable ordinal—the least nonconstructive ordinal.

It can be shown that 〈O, <O〉 has individual branches of height ωCK
1

. If B ⊆ O is such a branch,
then every constructive ordinal has a unique notation in B. In keeping with [9], we fix a single such
branch ORD ⊆ N of unique notations once and for all, then identify (for computational purposes)
each constructive ordinal with its notation in ORD. (It is likely that the classes we define depend
on the actual system ORD chosen, but our results hold for any such branch that we fix.)

We note the following basic facts about constructive ordinals α < ωCK
1

:

– It is a computable task to determine whether α is zero, α is a successor, or α is a limit. (α = 0,
α = 2a for some a, or α = 3 · 5e for some e, respectively.)

– If α is a successor, then its predecessor (= log2 α) can be computed.

– If α = 3 · 5e is a limit, then we can compute Me(0),Me(1),Me(2), . . . , and this is a strictly
ascending sequence of ordinals with limit α.

– We can compute the unique ordinals λ and n such that λ is zero or a limit, n < ω, and λ+n = α.
We denote this n by N(α) and this λ by Λ(α).

– There is a computably enumerable set S such that for all b ∈ ORD and a ∈ N, (a, b) ∈ S iff
a ∈ ORD and ‖a‖ < ‖b‖. That is, given an ordinal α < ωCK

1
, we can effectively enumerate all

β < α, and this enumeration is uniform in α.

– Thanks to ORD being totally ordered, the previous item implies that we can effectively deter-
mine whether or not α < β for any α, β < ωCK

1
. That is, there is a partial computable predicate

that extends the ordinal less-than relation on ORD.

5 The usual expression for the rank of a is |a|, but we change the notation here to avoid confusion with set cardinality

and string length.
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Definition 3.13. A procrastinating learner is a learner M equipped with an additional ordinal

tape, whose contents is always a constructive ordinal. Given a language on its input tape, M runs
forever, producing infinitely many outputs as usual, except that just before M changes its mind,
if α is currently on its ordinal tape, M is required to compute some ordinal β < α and replace
the contents of the ordinal tape with β before proceeding to change its mind. (So if α = 0, no
mind-change may take place.) M may alter its ordinal tape at any other time, but the only allowed
change is replacement with a lesser ordinal.

Thus a procrastinating learner must decrease its ordinal tape before each mind-change.
We abuse notation and let M1,M2, . . . be a standard enumeration of procrastinating learners.

Such an effective enumeration exists because we can enforce the ordinal-decrease requirement for
a machine’s ordinal tape: if b ∈ ORD is the current contents of the ordinal tape, and the machine
wishes (or is required) to alter it—say, to some value a ∈ N—we first start to computably enumerate
the set of all c ∈ ORD such that ‖c‖ < ‖b‖ and allow the machine to proceed only when a shows
up in the enumeration.

Definition 3.14. Let M be a procrastinating learner, α a constructive ordinal, and A a language.
We say that M learns SUBSEQ(A) with α mind-changes if M learns SUBSEQ(A) with α initially
on its ordinal tape.

If C is a class of languages, we say that C ∈ SUBSEQ-EXα if there is a procrastinating learner
that learns every language in C with α mind-changes.

The following is straightforward and given without proof.

Proposition 3.15. If α < ω, then SUBSEQ-EXα is the same as the usual finite mind-change

version of SUBSEQ-EX.

Proposition 3.16. For all α < β < ωCK
1 ,

SUBSEQ-EXα ⊆ SUBSEQ-EXβ ⊆ SUBSEQ-EX.

Proof. The first containment follows from the fact that any procrastinating learner allowed α mind-
changes can be simulated by a procrastinating learner, allowed β mind-changes, that first decreases
its ordinal tape from β to α before the simulation. (α is hard-coded into the simulator.)

The second containment is trivial; any procrastinating learner is also a regular learner. $%

In [9], Freivalds and Smith defined EXα for constructive α and showed that this hierarchy
separates using classes of languages constructed entirely by diagonalization. We take a different
approach and define more “natural” (using the term loosely) classes of languages that separate the
SUBSEQ-EXα hierarchy.

Definition 3.17. For every α < ωCK
1 , we define the class Fα inductively as follows: Let n = N(α),

and let λ = Λ(α).

– If λ = 0, let
Fα = Fn = {B ∪+ ∅ : (B ⊆ 0∗) ∧ (|B| ≤ n)}.

– If λ > 0, then λ has notation 3 · 5e for some TM index e. Let

Fα = {B ∪+C : (B,C ⊆ 0∗) ∧ (|B| ≤ n + 1) ∧ (C ∈ FMe(m(B)))}.
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It is evident by induction on α that Fα consists only of finite unary languages and that ∅ ∈ Fα.
Note that in the case of finite α we have the condition |B| ≤ n, but in the case of α ≥ ω we have
the condition |B| ≤ n + 1. This is not a mistake.

The next two theorems have proofs that are similar to the finite mind-change case in some ways,
but very different in others.

Theorem 3.18. For every constructive α, Fα ∈ SUBSEQ-EX
α
. In fact, there is a single procras-

tinating learner N such that for every α, N learns every language in Fα with α mind-changes.

Proof. With α initially on its ordinal tape and language A on its input tape, the machine N executes
the following recursive algorithm:

1. Compute n := N(α) and λ := Λ(α).
2. For i = 0, 1, 2, . . . in increasing order, do the following:

(a) Let ki be the index of a DFA recognizing SUBSEQ(A ∩ 0<i+1).
(b) If i = 0 or 0i /∈ A, then outputting ki does not require a mind-change; output ki, and proceed

to the next i.
(c) Else, we have i > 0 and 0i ∈ A, and so a mind-change is required before outputting ki.

i. If i is odd and n > 0, then (since α is a successor) replace α with its predecessor on the
ordinal tape, decrease n by one, output ki, and continue to the next i.

ii. (At this point, either i is even or n = 0.) If λ = 0, then halt. (This never happens if
A ∈ Fα.)

iii. We get e such that λ has notation 3 · 5e.
A. If i is even, then set B := ξ(A ∩ 0<i).
B. Otherwise, set B := ξ(A ∩ 0<i+1).

iv. Let C = π(m(B);A). Set γ := Me(m(B)).
v. If i is odd, then replace α with γ + 1 on the ordinal tape and output ki.
vi. Write γ on the ordinal tape. (This gives us license for the first output in the simulation

below; the simulated machine might make its first output without altering its ordinal
tape.)

vii. Simulate N from the beginning with C on its input tape and γ initially on its ordinal
tape:
– If the simulation ever halts, then halt. (This never happens if A ∈ Fα.)
– Whenever the simulation alters its ordinal tape, alter the ordinal tape in the same

way.
– Whenever the simulation outputs some k, and it is the case that L(Fk) = 0<s for

some s, then output the index of a DFA recognizing SUBSEQ(B ∪+0<s).
(We never get out of this step.)

We prove by induction on α that N correctly learns any A ∈ Fα.
If α < ω, then A = B ∪+ ∅ for some B ⊆ 0∗ such that |B| ≤ α. All strings in A have odd length,

and because |A| = |B| ≤ n = α, we have enough mind-changes available so that n > 0 whenever
we reach step 2(c)i. This means that we never go beyond this step. For all large enough i, we have
A ⊆ 0<i, and so we output a DFA for SUBSEQ(A) in step 2b.

Now suppose α ≥ ω. Let λ and n be as computed in step 1. Then λ has notation 3 · 5e for some
e, and A = B ∪+C, where B,C ⊆ 0∗, |B| ≤ n + 1, and C ∈ Fγ , where γ = Me(m(B)). When we
get to step 2(c)iii, then we have “seen” all strings in A coming from B, either because (1) i is even
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and so 0i is the shortest string coming from C, or (2) we have already seen n many strings from
B shorter than i (causing n mind-changes) and thus 0i is the longest string coming from B. In
either case, B is correctly computed in step 2(c)iiiA or step 2(c)iiiB, and thus C and γ are correct
in step 2(c)iv. We have the following situation after step 2(c)vi: N ’s most recent output is the
index of a DFA for B ∪+ ∅, and after that output, N ’s ordinal tape is decreased to γ. N is then run
recursively on C in step 2(c)vii. (The first output of the recursive call may constitute a mind-change
for the original call, but this is okay because of the ordinal decrease in step 2(c)vi, just before the
recursive call.) By the inductive hypothesis, the simulated N correctly learns SUBSEQ(C) with γ

mind-changes by cofinitely often outputting the least k such that L(Fk) = SUBSEQ(C) = 0<s for
some s > 0. Clearly,

SUBSEQ(A) = SUBSEQ(B ∪+C) = SUBSEQ(B ∪+SUBSEQ(C))

= SUBSEQ(B ∪+0<s).

Further, during the simulation, the original run of N will change its mind only when the simulated
N does. Thus the original run of N will output the index of a DFA recognizing SUBSEQ(A)
cofinitely often, using α mind-changes. #$

Theorem 3.19. For all β < α < ωCK
1 , Fα /∈ SUBSEQ-EXβ. In fact, there is a computable function

r such that, for each e and β < α < ωCK
1 , Mr(e,α,β) is total and decides a language Ae,α,β =

L(Mr(e,α,β)) ∈ Fα such that Me does not learn SUBSEQ(Ae,α,β) with β mind-changes.

Proof. This proof generalizes the proof of Theorem 3.11 to the transfinite case. We first define a
computable function v(e, c, t, b) such that for all e, c, t, b ∈ N, the procrastinating learner Mv(e,c,t,b)

with language C on its input tape and g ∈ N on its ordinal tape6 behaves as follows:

1. Without changing the ordinal tape or outputting anything, Mv(e,c,t,b) simulates Me for t steps
with (Dc ∩ 0∗)∪+(C ∩ 0∗) on Me’s input tape and b on Me’s ordinal tape.

2. Mv(e,c,t,b) continues to simulate Me as above beyond t steps, except that now:
– Whenever Me changes its ordinal tape to some value u, Mv(e,c,t,b) changes its ordinal tape

to the same value u (provided this is allowed).
– Whenever Me outputs a value k, Mv(e,c,t,b) outputs the index of a DFA recognizing the

language π(m(Dc);L(Fk)) (provided this is allowed).

The function v is defined so that if Me learns SUBSEQ(Dc ∪+C) (for some Dc, C ⊆ 0∗) with β

mind-changes and Me manages to decrease its ordinal tape to some δ within the first t steps of
its computation, then Mv(e,c,t,β) learns SUBSEQ(C) with γ mind-changes, for any γ ≥ δ. (Observe
that SUBSEQ(C) = π(m(Dc); SUBSEQ(Dc ∪+C)).) We will use the contrapositive of this fact in
the proof, below.

Given e and β < α < ωCK
1 we construct the set Ae,α,β ⊆ 0∗, which is decidable uniformly in

e,α, β. The rough idea is that we build Ae,α,β to be of the form B ∪+C, where B,C ⊆ 0∗ and
|B| ≤ N(α) + 1 (assuming α ≥ ω), while diagonalizing against Me with β on its ordinal tape. We
put strings into B to force mind-changes in Me until either Me runs out of mind-changes (and is
wrong) or it decreases its ordinal tape to some ordinal δ < Λ(α). If the latter happens, we then
put one more string into B to code some γ such that δ < γ < Λ(α), and then (recursively) make C
equal to Aê,γ,δ for some appropriate ê chosen using the function v, above. Here is the construction
of Ae,α,β:

6 For the purposes of defining the function v, we must take b and g to be arbitrary numbers, although they will

usually be notations for ordinals.
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1. Let λ = Λ(α).
2. Initialize B := ∅ and t := 0.
3. Repeat the following as necessary to construct B:

(a) Run Me with B ∪+ ∅ on its tape and β initially on its ordinal tape until it outputs some k

such that L(Fk) = SUBSEQ(B ∪+ ∅) after more than t steps. This may never happen, in
which case we define Ae,α,β := B ∪+ ∅ and we are done.

(b) Let t′ > t be the number of steps it took Me to output k, above. Let δ be the contents of
Me’s ordinal tape when k was output. [Note that Me did not have time to scan any strings
of the form 0s for s > t′.] Reset t := t′.

(c) If δ < λ, then go on to Step 4.
(d) Set B := B ∪ {0t+1} and continue the repeat-loop.

4. Now we have δ < λ, and so λ is a limit ordinal with notation 3 · 5u for some u. Let p be least
such that p > t and Mu(p + 1) is the notation for some ordinal γ > δ. [Note that γ < λ ≤ α.]

5. Set B := B ∪ {0p}. [This makes m(B) = p + 1.]
6. Let c be such that B = Dc. Set ê := v(e, c, t, β), and (recursively) define Ae,α,β := B ∪+Aê,γ,δ.

[The ordinal in the second subscript decreases from α to γ, so the recursion is well-founded.]

For all e and all β < α < ωCK
1 , we show by induction on α that Ae,α,β ∈ Fα and that Me cannot

learn SUBSEQ(Ae,α,β) with β initially on its ordinal tape. Let λ = Λ(α) (λ may be either 0 or a
limit), and let n = N(α). Consider Me running with Ae,α,β on its input tape and β initially on its
ordinal tape. In the repeat-loop, t bounds the running time of Me and strictly increases from one
complete iteration to the next, and the only strings added to B have length greater than t. This
implies two things: (1) that Me behaves the same in Step 3a with B ∪+ ∅ on its tape as it would
with Ae,α,β on its tape, and (2) the number of mind-changes Me must make to be correct increases
in each successive iteration of the loop.

We now consider two cases:

λ is the 0 ordinal. Then Me can change its mind at most n − 1 times (since β < α = n). This
means that the repeat-loop will run for at most n complete iterations, then hang in Step 3a on
the next iteration, because by then Me has run out of mind-changes and so cannot update its
answer to be correct. In this case, Ae,α,β = B ∪+ ∅, and we’ve added at most n strings to B.
Thus Ae,α,β ∈ Fα, and Me does not learn SUBSEQ(Ae,α,β) with β mind-changes.

λ is a limit ordinal with notation 3 · 5
u

for some u. Then Me can change its mind at most
n − 1 times before it must drop its ordinal to some δ < λ for its next mind-change. So again
there can be at most n complete iterations of the repeat-loop—putting at most n strings into
B—before we either hang in Step 3a (which is just fine) or go on to Step 4. In the latter case,
we put one more string into B in Step 5, making |B| ≤ n + 1. By the inductive hypothesis and
the choice of p and γ, we have Aê,γ,δ ∈ Fγ = FMu(m(B)), and so Ae,α,β ∈ Fα.
The index ê is chosen precisely so that if Me learns SUBSEQ(Ae,α,β) with β mind-changes then
Mê learns SUBSEQ(Aê,γ,δ) with δ mind-changes. By the inductive hypothesis, Mê cannot do
this. Thus in either case Me does not learn SUBSEQ(Ae,α,β) with β mind-changes.

It remains to show that Ae,α,β is decidable uniformly in e,α, β. The only tricky part is Step 3a,
which may run forever. It is not hard to see, however, that if Me runs for at least ( steps for some
(, then either 0% is already in B by this point or it will never get into B. Hence we can decide
whether or not 02%+1 is in Ae,α,β. Even-length strings in 0∗ can be handled similarly, possibly via
a recursive call to Aê,γ,δ. '(
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We end with an easy observation.

Corollary 3.20.

SUBSEQ-EX !⊆
⋃

α<ω
CK
1

SUBSEQ-EX
α
.

Proof. Let F ∈ SUBSEQ-EX be the class of Definition 1.8. For all α < ω
CK
1 , we clearly have

Fα+1 ⊆ F , and so F /∈ SUBSEQ-EX
α

by Theorem 3.19. $%

3.4 Teams

In this section, we show that [a, b]SUBSEQ-EX depends only on &b/a'. Recall that b ≤ c implies
[a, b]SUBSEQ-EX ⊆ [a, c]SUBSEQ-EX.

Lemma 3.21. For all 1 ≤ a ≤ b,

[a, b]SUBSEQ-EX = [1, &b/a']SUBSEQ-EX.

Proof. Let q = &b/a'. To show that

[1, q]SUBSEQ-EX ⊆ [a, b]SUBSEQ-EX,

let C ∈ [1, q]SUBSEQ-EX. Then there are learners Q1, . . . , Qq such that for all A ∈ C there is
some Qi that learns SUBSEQ(A). For all 1 ≤ i ≤ q and 1 ≤ j ≤ a, let Ni,j = Qi. Then clearly,
C ∈ [a, qa]SUBSEQ-EX as witnessed by the Ni,j . Thus, C ∈ [a, b]SUBSEQ-EX, since b ≥ qa.

To show the reverse containment, suppose that D ∈ [a, b]SUBSEQ-EX. Let Q1, . . . , Qb be learn-
ers such that for each A ∈ D, at least a of the Qi’s learn SUBSEQ(A). We define learners N1, . . . , Nq

to behave as follows with A on their tapes.
Each Nj runs all of Q1, . . . , Qb. At any time t, let k1(t), . . . , kb(t) be the most recent outputs of

Q1, . . . , Qb, respectively, after running for t steps (if some machine Qi has not yet output anything
in t steps, let ki(t) = 0).

Define a consensus value at time t to be a value that shows up at least a times in the list
k1(t), . . . , kb(t). There can be at most q many different consensus values at any given time, so
we can make the machines Nj output these consensus values. If kcorrect is the index of the DFA
recognizing SUBSEQ(A), then kcorrect will be a consensus value at all sufficiently large times, and
so kcorrect will eventually always be output by one or another of the Nj . The only trick is to ensure
that kcorrect is eventually output by the same Nj each time. To make sure of this, the Nj will output
consensus values in order of seniority.

For 1 ≤ j ≤ q and t = 1, 2, 3, . . . , each machine Nj computes k1(t
′), . . . , kb(t

′) and all the
consensus values at time t′ for all t′ ≤ t. For each v ∈ N, we define the start time of v at time t to
be either t + 1, if v is not a consensus value at time t, or else the earliest time s ≤ t such that v
is a consensus value at all times t′ with s ≤ t′ ≤ t. As its t’th output, Nj outputs the value with
the j’th earliest start time at time t. If there is a tie, then we consider the smaller value to have
started earlier. This ends the description of the machines N1, . . . , Nq.

Let Y be the set of all consensus values that occur cofinitely often. Clearly, kcorrect ∈ Y , and
there is a time t0 such that all elements of Y are consensus values at all times t ≥ t0. Note that
the start times of the values in Y do not change from t0 onward, but the start time of any value
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not in Y increases monotonically without bound. Thus there is a time t1 ≥ t0 beyond which any
v /∈ Y has a start time later than that of any v′ ∈ Y . It follows that from time t1 onward, the start
time of kcorrect has a fixed rank amongst the start times of all the current consensus values, and so
kcorrect is output by the same machine Nj at all times t ≥ t1. #$

To prove a separation, we cannot use unary languages as we have before; it is easy to see (exercise
for the reader) that P(0∗) ∈ [1, 2]SUBSEQ-EX. To separate the team hierarchy beyond level 2, we
use an alphabet Σ that contains 0 and 1 (at least) and show that S≤n ∈ [1, n + 1]SUBSEQ-EX −

[1, n]SUBSEQ-EX for all n ≥ 1, where S≤n is given in Definition 3.1.

Lemma 3.22. For all n ≥ 1, S≤n ∈ [1, n + 1]SUBSEQ-EX and S≤n ∩ DEC /∈ [1, n]SUBSEQ-EX.

In fact, there is a computable function d(s) such that for all n ≥ 1 and all e1, . . . , en, the machine

Md([e1,...,en]) decides a language A[e1,...,en] ∈ S≤n that is not learned by any of Me1
, . . . ,Men

.7

Proof. Fix n ≥ 1. First, we have S≤n = S0 ∪ · · · ∪ Sn, and Si ∈ SUBSEQ-EX for each i ≤ n by
Proposition 3.2. It follows that S≤n ∈ [1, n + 1]SUBSEQ-EX.

Next, we show that S≤n /∈ [1, n]SUBSEQ-EX. Fix any n learners Q1, . . . , Qn. We build a set
A ⊆ Σ

∗ in stages n, n + 1, n + 2, . . . , ensuring that os(A) ≤ n (hence A ∈ S≤n) and that none of

the Qi learn SUBSEQ(A). At each stage j ≥ n, we define n strings yj
1, . . . , y

j
n ∈ {0, 1}∗ which are

candidates for membership in os(A). These strings satisfy

1. |yj
1| ≤ · · · ≤ |yj

n| ≤ j + 1, and

2. yj
i ∈ 0n−i1∗1 for all 1 ≤ i ≤ n.

Note that these two conditions imply that yj
1, . . . , y

j
n are pairwise +-incomparable. We then define

A on all strings of length j.

Stage n: For all 1 ≤ i ≤ n, set yn
i := 0n−i1i+1. Set An := Σ

≤n.
Stage j > n:

– Run each learner Qi for j steps and let ki be its most recent output (or let ki = 0 if there
is no output yet). Compute si := |os(L(Fki

))| for all 1 ≤ i ≤ n.
– Let mj be the least element of {0, . . . , n}−{ s1, . . . , sn}.

– Set yj
i := yj−1

i for all 1 ≤ i ≤ mj , and set yj
i := 0n−i1j+1−n+i for all mj < i ≤ n.

– Set Aj := Aj−1 ∪ {x ∈ Σ
=j : (∀i ≤ mj)y

j
i -+ x}.

Define A :=
⋃∞

j=n Aj . Also define m := lim infj→∞ mj , and let j0 > n be least such that mj ≥ m

for all j ≥ j0. For 1 ≤ i ≤ m, we then have yj0
i = yj0+1

i = yj0+2
i = · · ·, and we define yi to be this

string. It remains to show that os(A) = {y1 . . . , ym}, for if this is the case, then the obstruction set
size m = |os(A)| = |os(SUBSEQ(A))| is omitted infinitely often by all the learners, and so none of
the learners can converge on a language with an obstruction set of size m, and hence none of the
learners learn SUBSEQ(A).

To see that os(A) = {y1, . . . , ym}, consider an arbitrary string x ∈ Σ
∗. We need to show that

x ∈ SUBSEQ(A) iff (∀i)yi -+ x. By the construction, no z . yi ever enters A for any i ≤ m, so if
x + z and z ∈ A, then (∀i)yi -+ z and thus (∀i)yi -+ x. Conversely, if (∀i)yi -+ x, then (∀i)yi -+ x0t

for any t ≥ 0, because each yi ends with a 1. Fix the least j1 ≥ max(j0, |x|) such that mj1 = m,
and let t = j1 − |x|. Then |x0t| = j1, and x0t is added to A at Stage j1. So we have x + x0t ∈ A,
whence x ∈ SUBSEQ(A).

Finally, the whole construction of A above is effective uniformly in n and indices for Q1, . . . , Qn,
and uniformly decides A. Thus the computable function d of the Lemma exists. #$

7 [e1, e2, . . . , en] is a natural number encoding the finite sequence e1, e2, . . . , en.
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Remark. The foregoing proof can be easily generalized to show that Sj1 ∪ Sj2 ∪ · · · ∪ Sjk
∈

[1, k]SUBSEQ-EX − [1, k − 1]SUBSEQ-EX for all j1 < j2 < · · · < jk.
Lemmas 3.21 and 3.22 combine to show the following general theorem, which completely charac-

terizes the containment relationships between the various team learning classes [a, b]SUBSEQ-EX.

Theorem 3.23. For every 1 ≤ a ≤ b and 1 ≤ c ≤ d, [a, b]SUBSEQ-EX ⊆ [c, d]SUBSEQ-EX if and
only if &b/a' ≤ &d/c'.

Proof. Let p = &b/a' and let q = &d/c'.
By Lemma 3.21 we have

[a, b]SUBSEQ-EX = [1, p]SUBSEQ-EX,

and
[c, d]SUBSEQ-EX = [1, q]SUBSEQ-EX.

By Lemma 3.22 we have [1, p]SUBSEQ-EX ⊆ [1, q]SUBSEQ-EX if and only if p ≤ q. ()

3.5 Anomalies and teams

In this and the next few subsections we will discuss the effect that combining the variants discussed
previously have on the results of the previous subsections.

The next result shows that Theorem 3.6 is unaffected by teams. In fact, teams and anomalies
are completely orthogonal.

Theorem 3.24. The anomaly hierarchy collapses with teams. In other words, for all a and b,

[a, b]SUBSEQ-EX∗ = [a, b]SUBSEQ-EX.

Proof. Given a team Me1
, . . . ,Meb

of b Turing machines, we use the collapse strategy from The-
orem 3.6 on each of the machines. We replace each Mei

with the machine Mh(ei), where h is the
function of Theorem 3.6. If a of the b machines learn the subsequence language with finite anomalies
each, then their replacements will learn it with no anomalies. ()

3.6 Anomalies and mind-changes

Next, we consider machines which are allowed a finite number of anomalies, but have a bounded
number of mind changes.

In our proof that the anomaly hierarchy collapses (Theorem 3.6), the simulating learner Mh(e)

may have to make many more mind-changes than the learner Me being simulated. As the next
result shows, we cannot do better than this.

Proposition 3.25. SUBSEQ-EX∗
0 +⊆ SUBSEQ-EXc for any c ∈ N (or even SUBSEQ-EX

α
for any

α < ω
CK
1 ).

Proof. The class F of Definition 1.8 is in SUBSEQ-EX∗
0 (the learner always outputs the DFA for

∅). But F /∈ SUBSEQ-EXc by Theorem 3.11 (and F /∈ SUBSEQ-EX
α

by Corollary 3.20). ()

In light of Proposition 3.25, it may come as a surprise that a bounded number of anomalies may
be removed without any additional mind-changes.
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Theorem 3.26. SUBSEQ-EXa
c = SUBSEQ-EXc for all a, c ≥ 0. In fact, there is a computable h

such that, for all e, a and languages A, Mh(e,a) on A makes no more mind-changes than Me on A,
and if Me learns SUBSEQ(A) with at most a anomalies, then Mh(e,a) learns SUBSEQ(A) (with
zero anomalies).

Proof. The ⊇-containment is obvious. For the ⊆-containment, we modify the learner in the proof
of Theorem 3.6. Given e and a, we give the algorithm for the learner Mh(e,a) below. We will use
the word “default” as a verb to mean, “output the same DFA as we did last time, or, if there was
no last time, don’t output anything.” The opposite of defaulting is “acting.” Here’s how Mh(e,a)

works:
When language A is on the tape:

1. Run Me with A. Wait for Me to output something.
2. Whenever Me outputs some index k, do the following:

(a) Let n be the number of times Me has output something thus far. (k is the nth output.)
(b) If there was some time in the past when we acted and Me has not changed its mind since

then, then default.
(c) Else, if Fk has more than n states, then default.
(d) Else, if L(Fk) ∪ Σ

<n is not %-closed, then default.
(e) Else, if there are strings w ∈ os(L(F ) ∪ Σ

<n) and z ∈ A such that w % z and |z| < |w|+ a,
then default. [Note that w, if it exists, has length at least n.]

(f) Else, find a DFA G recognizing the language SUBSEQ((A ∩ Σ
<n) ∪ (L(Fk) ∩ Σ

≥n)), and
output the index of G. [This is where we act, i.e., not default.]

First, it is not too hard to see that Mh(e,a) does not change its mind any more than Me does:
After Me makes a new conjecture, Mh(e,a) will act at most once before Me makes a different
conjecture. This is ensured by Step 2b. Note that Mh(e,a) only makes a new conjecture when it
acts.

Suppose Me learns SUBSEQ(A) with at most a anomalies. Let F be the final DFA output by
Me with A on its tape. We have |L(F )(SUBSEQ(A)| ≤ a. Let n0 be least such that Me always
outputs F starting with its n0th output onwards. It remains to show that

1. Mh(e,a) acts sometime after Me starts perpetually outputting F , i.e., after its n0th output, and
2. when this happens, the G output by Mh(e,a) is correct, i.e., L(G) = SUBSEQ(A). (Since Mh(e,a)

only defaults thereafter, it outputs G forever and thus learns SUBSEQ(A).)

For (1), we start by noting that there is a least n ≥ n0 such that

– F has at most n states, and
– all anomalies are of length less than n, i.e., L(F )(SUBSEQ(A) ⊆ Σ

<n.

We claim that Mh(e,a) acts sometime between Me’s n0th output and its nth output, inclusive.
Suppose we’ve reached Me’s nth output and we haven’t acted since the n0th output. Then we
don’t default in Step 2b. We don’t default in Step 2c because F has at most n states. Since all
anomalies are in Σ

<n, clearly, L(F ) ∪ Σ
<n = SUBSEQ(A) ∪ Σ

<n, which is %-closed, so we don’t
default in Step 2d. Finally, we won’t default in Step 2e: if w and z existed, then w would be an
anomaly of length ≥ n, but all anomalies are of length < n. Thus we act on Me’s nth output, which
proves (1).

For (2), we know from (1) that Mh(e,a) acts on Me’s nth output, for some n ≥ n0, at which
time Mh(e,a) outputs some DFA G. We claim that L(G) = SUBSEQ(A).

Since Mh(e,a) acts on Me’s nth output, we know that
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– F has at most n states,
– L(F ) ∪ Σ

<n is "-closed, and
– there are no strings w ∈ os(L(F ) ∪ Σ

<n) and z ∈ Σ
<|w|+a ∩ A such that w " z.

It suffices to show that there are no anomalies of length ≥ n, for then we have

L(G) = SUBSEQ((A ∩ Σ
<n) ∪ (L(F ) ∩ Σ

≥n))

= SUBSEQ((A ∩ Σ
<n) ∪ (SUBSEQ(A) ∩ Σ

≥n)) = SUBSEQ(A)

as in the proof of Theorem 3.6.
There are two kinds of anomalies—false positives (elements of L(F ) − SUBSEQ(A)) and false

negatives (elements of SUBSEQ(A) − L(F )).
First, there can be no false positives of length ≥ n: Suppose w is such a string. Then since w is

at least as long as the number of states of F , by the Pumping Lemma for regular languages there
are strings x, y, z with |y| > 0 such that the strings

w = xyz ≺ xy2z ≺ xy3z ≺ · · ·

are all in L(F ). But since w /∈ SUBSEQ(A), none of these other strings is in SUBSEQ(A) either.
This means there are infinitely many anomalies, which is false by assumption. Thus no such w
exists.

Finally, we prove that there are no false negatives in Σ
≥n. Suppose u is such a string. We have

u ∈ SUBSEQ(A), and so there is a string z ∈ A such that u " z. We also have u /∈ L(F ) ∪ Σ
<n,

and since L(F )∪Σ
<n is "-closed, there is some string w ∈ os(L(F ) ∪ Σ

<n) such that w " u. Now
w " z as well, so it must be that |z| ≥| w| + a by what we know above. Since w " z, there is also
an ascending chain of strings

w = w0 ≺ w1 ≺ · · · ≺ wk = z,

where |wi| = |w|+ i and so k ≥ a. All the wi are in SUBSEQ(A) because z ∈ A. Moreover, none of
the wi are in L(F )∪Σ

<n because w /∈ L(F )∪Σ
<n and L(F )∪Σ

<n is "-closed. Thus the wi are all
anomalies, and there are at least a + 1 of them, contradicting the fact that Me learns SUBSEQ(A)
with ≤ a anomalies. Thus no such u exists. )*

Proposition 3.10 and Theorems 3.11 and 3.26 together imply that we cannot replace a single
mind change by any fixed finite number of anomalies. A stronger statement is true.

Theorem 3.27. SUBSEQ-EXc +⊆ SUBSEQ-EX∗
c−1 for any c > 0.

Proof. Let Ri = (0∗1∗)i as in Definition 2.13, and define

Rc =







A ⊆ {0, 1}∗ :
A ⊆ Rc ∧

(A is "-closed) ∧
(∃j)[0 ≤ j ≤ c ∧ Rj ⊆ A ⊆∗ Rj ]







.

Recall (Notation 2.12) that A ⊆∗ B means that A − B is finite.
We claim that Rc ∈ SUBSEQ-EXc − SUBSEQ-EX∗

c−1 for all c > 0.
To see that Rc ∈ SUBSEQ-EXc, with A ∈ Rc on the tape the learner M first sets i := c and

may decrement i as the learning proceeds. For each i, the machine M proceeds on the assumption
that Ri ⊆ A. For n = 1, 2, 3, . . . , M waits until n ≥ 2i + 2 and there are no strings in A − Ri of
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length n. At this point, we know that A − Ri ⊆ Σ<n. (It is possible that (01)i+1 ∈ A − Ri but
no string of length 2i + 1 is in A − Ri, which is why we insisted that n ≥ 2i + 2. This is the only
exception.) M now starts outputting a DFA for Ri ∪ (A ∩ Σ<n). If M ever discovers a string in
Ri −A, then M resets i := i− 1 and starts over. Thus M can make at most c mind-changes before
finding the unique j such that Rj ⊆ A ⊆∗ Rj .

To show that Rc /∈ SUBSEQ-EX∗
c−1 we use a (by now) standard diagonalization. Given a learner

M , we build A such that A∩Σ<n = Rc ∩Σ<n for increasing n until M outputs some DFA F such
that L(F )(Rc is finite while only querying strings of length less than n. We then make A look
like Rc−1 on strings of length ≥ n until M outputs a DFA G such that L(G)(Rc−1 is finite. We
then make A look like Rc−2 above the queries made by M so far, et cetera. In the end, M clearly
must make at least c mind-changes to be right within a finite number of anomalies. We can make
A decidable uniformly in c and a Turing machine index for M . )*

Although we don’t get any trade-offs between anomalies and mind-changes, we do get trade-offs
between anomaly revisions and mind-changes. If a learner is allowed to revise its bound on allowed
anomalies from time to time, then we can trade these revisions for mind-changes. The proper setting
for considering anomaly revisions is that of transfinite anomalies, which we consider next.

Transfinite anomalies and mind-changes This section uses some of the concepts introduced
in the section on transfinite mind-changes, above. If you skipped that section, then you may skip
this one, too.

We get a trade-off between anomalies and mind-changes if we consider the notion of transfinite
anomalies, which we now describe informally. Suppose we have a learner M with a language A on
its tape and some constructive ordinal α < ωCK

1 initially on its ordinal tape, and suppose that M
can decrease its ordinal any time it wants to (it is not forced to by mind-changes). We say that
M learns SUBSEQ(A) with α anomalies if M ’s final DFA F and final ordinal β are such that
|L(F )(SUBSEQ(A)| ≤ N(β). For example, if M starts out with ω+ω on its ordinal tape, then at
some point after examining A and making conjectures, M may tentatively decide that it can find
SUBSEQ(A) with at most 17 anomalies. It then decreases its ordinal to ω + 17 (N(ω + 17) = 17).
Later, M may find that it really needs 500 anomalies. It can then decrease its ordinal a second
time from ω + 17 to 500. M is now committed to at most 500 anomalies, because it cannot further
increase its allowed anomalies by decreasing its ordinal.

More generally, if M starts with the ordinal ω · n + k for some n, k ∈ N, then M is allowed k
anomalies to start, and M can increase the number of allowed anomalies up to n many times.

There was no reason to introduce transfinite anomalies before, because the anomaly hierarchy
collapses completely. Transfinite anomalies are nontrivial, however, when combined with limited
mind-changes.

The next theorem generalizes Theorem 3.26 to the transfinite. It shows that a finite number of
extra anomalies makes no difference.

Theorem 3.28. Let k, c ∈ N and let λ <ω CK
1 be any limit ordinal. Then SUBSEQ-EXλ+k

c =
SUBSEQ-EXλ

c .

Proof. We show the c = 0 case; the general case is similar. Suppose M learns SUBSEQ(A) with
λ + k anomalies and no mind-changes. To learn SUBSEQ(A) with λ anomalies and no mind-
changes, we first run the algorithm of Theorem 3.26 with λ initially on our ordinal tape and
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assuming ≤ k anomalies (i.e., setting Me := M and a := k). If M never drops its ordinal below
λ, then this works fine. Otherwise, at some point, M drops its ordinal to some γ < λ. If this
happens before we act—i.e., before we output anything—then we abandon the algorithm, drop
our own ordinal to γ, and from now on simulate M directly. If the drop happens after we act,
then M has already outputted some final DFA F and we have outputted some G recognizing
L(G) = SUBSEQ((A ∩ Σn) ∪ (L(F ) ∩ Σ≥n)) for some n. Since L(F ) ∪ Σ<n is $-closed, it follows
that L(G)%L(F ) ⊆ Σ<n and hence is finite. So we compute d := |L(G)%L(F )|, drop our ordinal
from λ to γ + d, and keep outputting G forever. Whenever M drops its ordinal further to some δ,
then we drop ours to δ + d, etc. If % is the final number of anomalies allowed by M , then we have

|L(G)%SUBSEQ(A)| ≤ |L(G)%L(F )| + |L(F )%SUBSEQ(A)| ≤ d + %,

and so we have given ourselves enough anomalies. '(

We show next that ω anomalies can be traded for an extra mind-change.

Theorem 3.29. For all c ∈ N and λ <ω CK
1 , if λ is zero or a limit, then

SUBSEQ-EXλ+ω

c ⊆ SUBSEQ-EXλ

c+1.

Proof. Suppose M learns SUBSEQ(A) with λ + ω anomalies and c mind-changes. With ordinal λ

on our ordinal tape, we start out by simulating M exactly—outputting the same conjectures—until
M drops its ordinal to some γ. If γ < λ, then we drop our ordinal to γ and keep simulating M
forever. If γ = λ + k for some k ∈ N, then we immediately adopt the strategy in the proof of
Theorem 3.28, above. Our first action after this point may constitute an extra mind-change, but
that’s okay because we have c + 1 mind-changes available. '(

Corollary 3.30. SUBSEQ-EXω·n+k
c ⊆ SUBSEQ-EX0

c+n for all c, n, k ∈ N.

Proof. By Theorems 3.26, 3.28, and 3.29. '(

Next we show that the trade-off in Corollary 3.30 is tight.

Theorem 3.31. SUBSEQ-EXω·n
c *⊆ SUBSEQ-EXc+n−1 for any c and n > 0.

Proof. Consider the classes Ci of Definition 3.9. By Theorem 3.11, Cc+n /∈ SUBSEQ-EXc+n−1. We
check that Cc+n ∈ SUBSEQ-EXω·n

c . Given A ∈ Cc+n on the tape and ω · n initially on its ordinal
tape, the learner M outputs a DFA for SUBSEQ(A ∩ Σ≤i) as its ith output (as in Proposition 1.9)
until it runs out of mind-changes. M continues outputting the same DFA, but every time it finds
a new element 0j ∈ A it revises its anomaly count to j. It can do this n times. '(

This can be generalized to SUBSEQ-EXω·n
c *⊆ SUBSEQ-EX

ω·(n−x)
c+x−1 for any n ∈ N and 0 ≤ x ≤ n,

witnessed by the same class Cc+n.

3.7 Mind-changes and teams

In this section we will consider teams of machines which have a bounded number of mind changes.
All of the machines have the same bound. Recall the definition of consensus value from Lemma 3.21
as a value that shows up at least a times in the list of outputs at time t.

We will start with generalizations of Lemma 3.21.
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Lemma 3.32. [1, q]SUBSEQ-EXc ⊆ [a, aq]SUBSEQ-EXc for every q, a ≥ 1 and c ≥ 0.

Proof. This follows exactly the first part of the proof of Lemma 3.21. The proof doesn’t involve
any additional mind changes. #$

Lemma 3.33. [a, b]SUBSEQ-EXc ⊆ [1, %b/a&]SUBSEQ-EXb(c+1)−1 for every 1 ≤ a ≤ b and c ≥ 0.

Proof. This follows from the second part of the proof of Lemma 3.21. Here it is easier to consider
counting conjectures rather than mind changes. Each of the machines N1, . . . , Nq might make a
new conjecture any time any one of the Qi does, but not at any other time. Since each Qi can make
c + 1 conjectures, each Nj can make b(c + 1) conjectures. Therefore it can make b(c + 1) − 1 mind
changes. #$

Notice that the previous two results do not give us that

[a, b]SUBSEQ-EXc = [1, %b/a&]SUBSEQ-EXc

as in Lemma 3.21.

Corollary 3.34. If a
b

> 1
2 then [a, b]SUBSEQ-EXc ⊆ SUBSEQ-EXb(c+1)−1.

Theorem 3.35. SUBSEQ-EXq(c+1)−1 ⊆ [a, aq]SUBSEQ-EXc for all a, q ≥ 1 and c ≥ 0.

Proof. Divide the aq team learners into q groups G1, . . . , Gq of a learners each. Suppose we are given
some learner M with some A on the tape. The first time M outputs a conjecture k1, the machines
in G1 (and no others) start outputting k1. The next time M changes its mind and outputs a new
conjecture k2 )= k1, only the machines in G2 start outputting k2, et cetera. This continues through
the groups cyclically. All the machines in some group will eventually output the final DFA output
by M . There are q groups, and so each team machine makes a 1/q fraction of the conjectures made
by M . If M makes at most q(c + 1) − 1 mind-changes, then it makes at most (c + 1)q conjectures,
and so each team machine makes at most c + 1 conjectures with at most c mind-changes. #$

From here on out, we will work with teams of the form [1, b]. The next two results complement
each other.

Corollary 3.36. SUBSEQ-EXb(c+1)−1 ⊆ [1, b]SUBSEQ-EXc for all b ≥ 1 and c ≥ 0.

Theorem 3.37. SUBSEQ-EXb(c+1) )⊆ [1, b]SUBSEQ-EXc for any b ≥ 1 and c ≥ 0.

Proof. We prove that Cb(c+1) /∈ [1, b]SUBSEQ-EXc by building a language A ∈ Cb(c+1) to diagonalize
against all b machines. We start by leaving A empty until one of the machines conjectures a DFA
for ∅. Then we add a string to A long enough so as not to disturb this conjecture. Whenever a
machine conjectures a DFA for a finite language, we add an appropriately long string to A that
is not in the conjectured language. After breaking the b(c + 1) conjectures, we will have added at
most b(c + 1) elements to A, so it is in Cb(c+1). #$

Theorem 3.38. For all b ≥ 1, [1, b]SUBSEQ-EX0 ⊆ SUBSEQ-EX2b−2 and [1, b]SUBSEQ-EXc ⊆
SUBSEQ-EX2b(c+1)−3 for all c ≥ 1.
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Proof. We are given b machines team-learning SUBSEQ(A) and outputting at most c+1 conjectures
each. For n = 1, 2, 3, . . . we output the DFA (if there is one) that recognizes the ⊆-minimum
language among the machines’ past outputs that are consistent with the data so far. That is, for
each n we output F iff

1. F is an output of one of the b machines running within n steps (not necessarily the most recent
output of that machine),

2. SUBSEQ(A ∩ Σ
≤n) ⊆ L(F ) (that is, F is consistent with the data), and

3. L(F ) ⊆ L(G) for any G satisfying items 1 and 2 above.

We’ll call such an F good (at time n). If a good F exists, it is clearly unique. If no good F exists,
then we default (in the same sense as in the proof of Theorem 3.26). We can assume for simplicity
that at most one of the b machines makes a new conjecture at a time.

Clearly, for all large enough n, the correct DFA will be good, and so we will eventually output
it forever. To count the number of mind-changes we make, suppose that at some point our current
conjecture is some good DFA F . We may change our mind away from F for one of two reasons:

finding an inconsistency: we’ve discovered that F is inconsistent with the data (violating item 2
above) and another good G exists, or

finding something better: F is still consistent, but a good G appears such that L(G) ⊂ L(F ).

Let V = {G1, . . . , Gm} be the set of all DFAs that we output. We only make conjectures that
the team machines make, so m ≤ b(c + 1). Whenever we change our mind from some Gi to some
Gj , we draw a directed edge Gi → Gj from Gi to Gj . We color this edge red if the mind-change
results from finding Gi to be inconsistent, and we color it blue if the mind-change occurs because
Gj is better than Gi. Note that L(Gj) ⊂ L(Gi) if the edge is blue and L(Gj) &⊆ L(Gi) if the edge
is red. Let R be the set of red edges and B the set of blue edges. We’ll say that the red degree of
a vertex Gi is the outdegree of Gi in the graph (V,R), and the blue degree of Gi is the indegree of
Gi in the graph (V,B). Our total number of mind-changes is clearly |R| + |B|.

If we find an inconsistency with some Gi, then we never output Gi again. Thus each vertex in
V has red degree at most 1. We never find an inconsistency with the correct team learner’s final
(correct) output, and so our last conjecture has red degree 0. We therefore have |R| ≤ m − 1.

Suppose that we conjecture some Gi, change our mind at least once, then conjecture Gi again
later. We claim that any conjecture Gj we make in the interim must satisfy L(Gj) ⊆ L(Gi). This is
because Gi is known and consistent with the data all during this time, so any good Gj must satisfy
L(Gj) ⊆ L(Gi) by the ⊆-minimality of L(Gj). It follows immediately from the claim that the
return to Gi can only come from following a red edge, i.e., finding an inconsistency, for otherwise
we would have L(Gi) ⊂ L(Gj) (and thus L(Gj) &⊆ L(Gi)) for the last Gj conjectured before the
return to Gi. From this it follows that each vertex in V has blue degree at most 1, and our very
first conjecture has blue degree 0. Thus |B| ≤ m − 1. Combining this with the bound on |R| gives
us at most 2m− 2 ≤ 2b(c + 1)− 2 mind-changes. This is enough for the c = 0 case of the theorem.

Now assuming c ≥ 1, we will shave off another mind-change. We are done if |R| < m − 1, so
suppose |R| = m− 1. This can happen only if there is a unique vertex Gfin—our final conjecture—
with red degree 0. Let Ginit be our initial conjecture. If Ginit &= Gfin, then Ginit has red degree 1,
and so at some point we follow a red edge from Ginit to some other H. Since L(H) &⊆ L(Ginit), the
claim implies that we have not conjectured H before, and so, also by the claim, H has blue degree
0 (because we first encounter H through a red edge). So we have two vertices (Ginit and H) with
blue degree 0, and thus |B| ≤ m − 2, and we have at most 2m − 3 ≤ 2b(c + 1) − 3 mind-changes.
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Now suppose Ginit = Gfin. Then it is possible that |R| + |B| = 2m − 2, but we will see that
in this case, m < b(c + 1), and thus our algorithm still uses at most 2b(c + 1) − 3 mind-changes.
Let M be one of the b team machines that eventually outputs the correct DFA, i.e., Gfin. If one
of the b machines other than M outputs Gfin, or if M outputs Gfin at some point before changing
its mind, then the b machines collectively make strictly fewer than b(c + 1) distinct conjectures,
and so m < b(c + 1). So we can assume that Gfin appears only as the final conjecture made by
M . We claim that V does not contain any other conjecture made by M except Gfin, which shows
that m < b(c + 1). If M makes a conjecture H "= Gfin, it does so before it outputs Gfin, and so
we know about H when we first output Ginit = Gfin. Assume that H is consistent at this time
(otherwise we never output H, hence H /∈ V ). Since Gfin is good, we must have L(Gfin) ⊆ L(H)
by the ⊆-minimality of Gfin. But if we ever output H later on, then we do so between outputting
Gfin initially and Gfin finally, and so it follows from the previous claim that L(H) ⊆ L(Gfin). Then
we have L(H) = L(Gfin), and so H = Gfin, a contradiction. Thus we never output H, which proves
the claim and the theorem. %&

Theorem 3.38 is tight.

Theorem 3.39. For all b > 1, [1, b]SUBSEQ-EX0 "⊆ SUBSEQ-EX2b−3 and [1, b]SUBSEQ-EXc "⊆

SUBSEQ-EX2b(c+1)−4 for all c ≥ 1.

Proof. We’ll only prove the case where c ≥ 1. The c = 0 case is easier and only slightly different.
Let f : N

+ → N be any map. For any j ∈ N, define a j-bump of f to be any nonempty, finite,
maximal interval [x, y] ⊆ N

+ such that f(t) > j for all x ≤ t ≤ y. Define the language

Af := {(0t1t)f(t) : t ∈ N
+}.

Observe that, if lim supt→∞
f(t) = ! < ∞, then f has finitely many !-bumps and R! ⊆ SUBSEQ(Af ) ⊆∗

R!, where R! = (0∗1∗)! as in Definition 2.13.
Now fix b > 1 and c ≥ 1. We say that f is good if

– f(1) = b and 0 ≤ f(t) ≤ b for all t ≥ 1,
– f has at most c many 0-bumps,
– f has at most c + 1 many !-bumps, where ! = lim supt f(t), and
– if (∃t)[f(t) = 0] then lim supt f(t) ≤ b − 1.

We define the class
Tb,c := {Af : f is good},

and show that Tb,c ∈ [1, b]SUBSEQ-EXc − SUBSEQ-EX2b(c+1)−4.
To see that Tb,c ∈ [1, b]SUBSEQ-EXc, we define learners Q1, . . . , Qb acting as follows with Af

on their tapes for some good f : Each learner examines its tape enough to determine f(1), f(2), . . . .
For 1 ≤ j ≤ b− 1, learner Qj goes on the assumption that lim supt f(t) = j. Each time it notices a
new j-bump [x, y] of f , it assumes that [x, y] is the last j-bump it will see and so starts outputting
a DFA for

Rj ∪ SUBSEQ(Af ∩ {(0t1t)k : t ≤ y ∧ k ≤ b}).

which captures all the elements of Af −Rj seen so far. Let ! = lim supt f(t). If 1 ≤ ! ≤ b− 1, then
Q! will see at most c + 1 many !-bumps of f and so make at most c + 1 conjectures, the last one
being correct.
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The learner Qb behaves a bit differently: It immediately starts outputting the DFA for Rb,
and does this until it (ever) finds a t with f(t) = 0. It then proceeds on the assumption that
lim supt f(t) = 0 and acts similarly to the other learners. Again, let ! = lim supt f(t). Since f is
good, if there is a t such that f(t) = 0, then ! ≤ b− 1 and so all possible values of ! are covered by
the learners. If ! = 0, then since there are only c many 0-bumps, Qb will be correct after at most
c + 1 conjectures. If ! = b, then SUBSEQ(Af ) = Rb, and since f is good, Qb will never revise its
initial conjecture of Rb. This establishes that Tb,c ∈ [1, b]SUBSEQ-EXc.

To show that Tb,c /∈ SUBSEQ-EX2b(c+1)−4, let M be a learner that correctly learns SUBSEQ(Af )
for every good f . We now describe a particular good f that forces M to make at least 2b(c+1)− 3
mind-changes.

For t = 1, 2, 3, . . . , we first let f(t) = b until M outputs a DFA for Rb. Then we make f(t) = b−1
until M outputs a DFA F such that Rb−1 ⊆ L(F ) ⊆∗ Rb−1, at which point we start making f(t) = b
again, et cetera. The value of f(t) alternates between b and b− 1, forcing a mind-change each time,
until f(t) = b− 1 and there are c + 1 many (b− 1)-bumps of f . Then f starts alternating between
b − 1 and b − 2 in a similar fashion until there are c + 1 many (b − 2)-bumps, et cetera. These
alternations continue until f(t) = 0 and there are c many 0-bumps of f included in the interval
[1, t]. Thus far, M has needed to make 2c + 1 many conjectures for each of the first b − 1 many
alternations, plus 2c conjectures for the 1, 0 alternation, for a total of (b−1)(2c+1)+2c = 2bc+b−1
many conjectures.

Now we let f(t) slowly increase from 0 through to b−1, forcing a new conjecture with each step,
until we settle on b−1. This adds b−1 more conjectures for a grand total of 2bc+2(b−1) = 2b(c+1)−2
conjectures, or 2b(c + 1) − 3 mind-changes. &'

3.8 All three modifications

Finally, we consider teams of machines which are allowed to have anomalies, but have a bounded
number of mind changes.

Theorem 3.40. [a, b]SUBSEQ-EXk
c ⊆ [a, b]SUBSEQ-EXc for all c, k ≥ 0 and 1 ≤ a ≤ b.

Proof. This follows from the proof of Theorem 3.26. We apply the algorithm there to each of the
b machines. &'

4 Rich classes

Are there classes in SUBSEQ-EX containing languages of arbitrary complexity? Yes, trivially.

Proposition 4.1. There is a C ∈ SUBSEQ-EX0 such that for all A ⊆ N, there is a B ∈ C with

B ≡T A.

Proof. Let
C = {A ⊆ Σ

∗ : |A| = ∞∧ (∀x, y ∈ Σ
∗)[x ∈ A ∧ |x| = |y| → y ∈ A]}.

That is, C is the class of all infinite languages, membership in whom depends only on a string’s
length.

For any A ⊆ N, define

LA =

{

Σ
∗ if A is finite,

⋃

n∈A Σ
=n otherwise.
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Clearly, LA ∈ C and A ≡T LA. Furthermore, SUBSEQ(LA) = Σ
∗, and so C ∈ SUBSEQ-EX0

witnessed by a learner that always outputs a DFA for Σ
∗. $%

In Proposition 1.10 we showed that REG ∈ SUBSEQ-EX. Note that the A ∈ REG are trivial
in terms of computability, but the languages in SUBSEQ(REG) can be rather complex (large
obstruction sets, arbitrary &-closed sets). By contrast, in Proposition 4.1, we show that there can
be A ∈ SUBSEQ-EX of arbitrarily high Turing degree but SUBSEQ(A) is trivial. Can we obtain
classes A ∈ SUBSEQ-EX where A ∈ A has arbitrary Turing degree and SUBSEQ(A) has arbitrary
&-closed sets independently? Of course, if SUBSEQ(A) is finite, then A must be finite and hence
computable. Aside from this obvious restriction, the answer to the above question is yes.

Definition 4.2. A class C of languages is rich if for every A ⊆ N and &-closed S ⊆ Σ
∗, there is a

B ∈ C such that SUBSEQ(B) = S and, provided A is computable or S is infinite, B ≡T A.

Definition 4.3. Let G be the class of all languages A ⊆ Σ
∗ for which there exists a length

c = c(A) ∈ N (necessarily unique) such that

1. A ∩ Σ
=c = ∅,

2. A ∩ Σ
=n *= ∅ for all n < c, and

3. os(A) = os(A ∩ Σ
≤c+1) ∩ Σ

≤c.

We’ll show that G ∈ SUBSEQ-EX0 and that G is rich.

Proposition 4.4. G ∈ SUBSEQ-EX0.

Proof. Consider a learner M acting as follows with a language A on its tape:

1. Let c be least such that A ∩ Σ
=c = ∅ (assuming c exists).

2. Compute O = os(A ∩ Σ
≤c+1) ∩ Σ

≤c. (If A ∈ G, then O = os(A) by definition.)

3. Use O to compute the least index k such that L(Fk) is &-closed and os(L(Fk)) = O. (If A ∈ G,
then we have L(Fk) = SUBSEQ(A), because O = os(A) = os(SUBSEQ(A)).)

4. Output k repeatedly forever.

It is evident that M learns every language in G with no mind-changes. $%

The next few propositions show that G is big enough.

Definition 4.5. Let S ⊆ Σ
∗ be any &-closed set.

1. Say that a string x is S-special if x ∈ S and S ∩ {y ∈ Σ
∗ : x & y} is finite.

2. Say that a number n ∈ N is an S-coding length if n > |y| for all S-special y and n ≥ |z| for all
z ∈ os(S).

The next proposition implies that S-coding lengths exist for any S.

Proposition 4.6. Any &-closed S contains only finitely many S-special strings.

Proof. This follows from the fact, first proved by Higman [17], that (Σ∗,&) is a well-quasi-order
(wqo). That is, for any infinite sequence x1, x2, . . . of strings, there is some i < j such that xi & xj .
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A standard result of well-quasi-order theory, proved using techniques from Ramsey theory, gives a
stronger fact: Every infinite sequence x1, x2, . . . of strings contains an infinite monotone subsequence

xi1 ! xi2 ! · · · ,

where i1 < i2 < · · ·.

Suppose that some S has infinitely many S-special strings s1, s2, . . . with all the si distinct.
Then S includes an infinite monotone subsequence si1 ≺ si2 ≺ · · · of S-special strings, but then si1

clearly cannot be S-special. Contradiction. #$

Corollary 4.7. S-coding lengths exist for any !-closed S.

Definition 4.8. Let G′ be the class of all A ⊆ Σ
∗ that have the following properties (setting

S = SUBSEQ(A)):

1. A contains all S-special strings, and

2. there exists a (necessarily unique) S-coding length c for which the following hold:

(a) A ∩ Σ
=c = ∅,

(b) A ∩ Σ
=n )= ∅ for all n < c, and

(c) A ∩ Σ
=c+1 = S ∩ Σ

=c+1.

Proposition 4.9. {S ⊆ Σ
∗ : S is !-closed and finite } ⊆ G′ ⊆ G.

Proof. For the first inclusion, it is easy to check that the criteria of Definition 4.8 hold for any finite
!-closed S if we let c be least such that S ⊆ Σ

<c.

For the second inclusion, suppose A ∈ G′, and let c satisfy the conditions of Definition 4.8 for
A. It remains to show that

os(A) = os(A ∩ Σ
≤c+1) ∩ Σ

≤c. (4)

Set S = SUBSEQ(A). Since c is an S-coding length, we have os(A) = os(S) ⊆ Σ
≤c.

Let x be some string in os(A). Then x /∈ S, but y ∈ S for every y ≺ x. Consider any y ≺ x.

– If y is S-special, then y ∈ A (since A contains all S-special strings), and since |y| < |x| ≤ c, we
have y ∈ A ∩ Σ

≤c+1.

– If y is not S-special, then there are arbitrarily long z ∈ S with y ! z. In particular there is
a z ∈ S ∩ Σ

=c+1 such that y ! z. But then z ∈ A ∩ Σ
=c+1 (because A ∈ G′), which implies

y ∈ SUBSEQ(A ∩ Σ
≤c+1).

In either case, we have shown that x /∈ SUBSEQ(A ∩ Σ
≤c+1), but y ∈ SUBSEQ(A ∩ Σ

≤c+1) for
every y ≺ x. This means exactly that x ∈ os(A ∩ Σ

≤c+1), and since |x| ≤ c, we have the forward
containment in (4).

Conversely, suppose that |x| ≤ c and x ∈ os(A ∩ Σ
≤c+1). Then x /∈ A ∩ Σ

≤c+1 but (∀y ≺

x)(∃z ∈ A ∩ Σ
≤c+1)[y ! z]. Thus, x /∈ A but (∀y ≺ x)(∃z ∈ A)[y ! z]. That is, x ∈ os(A). #$

Theorem 4.10. G′ is rich. In fact, there is a learner M such that M learns every language in G′

without mind-changes, and for every A and infinite S, M learns some B ∈ G′ satisfying Defini-

tion 4.2 while also writing the characteristic function of A on a separate one-way write-only output

tape.
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Proof. Given A and S as in Definition 4.2, we define

L(A,S) := S ∩

(

Σ
<c ∪

⋃

n∈N

Σ
=c+2n+1 ∪

⋃

n∈A

Σ
=c+2n+2

)

, (5)

where c is the least S-coding length.
Set B = L(A,S), and let c be the least S-coding length.
We must first show that S = SUBSEQ(B), from which it will follow easily that B ∈ G′. We

have two cases: S is finite or S is infinite. First suppose that S is finite. Then every string in S

is S-special, and so by the definition of S-coding length, we have S ⊆ Σ
<c. Thus we clearly have

B = S = SUBSEQ(B) ∈ G′ by Proposition 4.9. Now suppose S is infinite. Since B ⊆ S and S is
%-closed, it suffices to show that S ⊆ SUBSEQ(B). Let x be any string in S.

– If x is S-special, then x ∈ Σ
<c, by the definition of S-coding length. It follows that x ∈ B, and

so x ∈ SUBSEQ(B).
– If x is not S-special, then there is a string z ∈ S such that x % z and |z| ≥ c + 2|x| + 1. By

removing letters one at a time from z to obtain x, we see that at some point there must be a
string y such that x % y % z and |y| = c + 2|x|+ 1. Thus y ∈ S, and, owing to its length, y ∈ B

as well. Therefore we have x ∈ SUBSEQ(B).

Now that we know that S = SUBSEQ(B), it is straightforward to verify that B ∈ G′. We’ve
already shown this when S is finite. Suppose S is infinite. We showed above that B contains all
S-special strings. The value c clearly satisfies the rest of Definition 4.8. For example, because S has
strings of every length, we have B ∩ Σ

=n = S ∩ Σ
=n '= ∅ for all n < c.

It is immediate by the definition that B ≤T A, because S is regular. We now describe the
learner M , which will witness that A ≤T B as well, provided S is infinite. M behaves exactly as in
the proof of Proposition 4.4, except that for n = 0, 1, 2, . . . in order, M appends a 1 to the string
on its special output tape if B ∩ Σ

=c+2n+2 '= ∅, and it appends a 0 otherwise. If S is infinite, then
S contains strings of every length, and so M will append a 1 for n if and only if n ∈ A. (If S is
finite, then M will write all zeros.) *+

Corollary 4.11. G is rich.

5 Open questions

We have far from fully explored the different ways we can combine teams, mind-changes, and
anomalies. For example, for which a, b, c, d, e, f, g is [a, b]SUBSEQ-EXd

c ⊆ [e, f ]SUBSEQ-EXh
g? This

problem has been difficult in the standard case of EX, though there have been some very interesting
results [10, 5]. The setting of SUBSEQ-EX may be easier since all the machines that are output are
total and their languages have easily discernible properties.

One could also combine the two notions of queries with SUBSEQ-EX and its variants. The two
notions are allowing queries about the set [15, 13, 11] and allowing queries to an undecidable set [8,
18].
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