
Concatenated codes can achieve list-decoding capacity∗

Venkatesan Guruswami†

Department of Computer Science and Engineering,
University of Washington,

Seattle, WA 98195.
venkat@cs.washington.edu

Atri Rudra‡

Department of Computer Science and Engineering,
University at Buffalo, The State University of New York,

Buffalo, NY 14260.
atri@cse.buffalo.edu

Abstract

We prove that binary linear concatenated codes with an outer algebraic code (specifically, a
folded Reed-Solomon code) and independently and randomly chosen linear inner codes achieve
the list-decoding capacity with high probability. In particular, for any 0 < ρ < 1/2 and ε > 0,
there exist concatenated codes of rate at least 1 − H(ρ) − ε that are (combinatorially) list-
decodable up to a ρ fraction of errors. (The best possible rate, aka list-decoding capacity, for
such codes is 1 − H(ρ), and is achieved by random codes.) A similar result, with better list
size guarantees, holds when the outer code is also randomly chosen. Our methods and results
extend to the case when the alphabet size is any fixed prime power q > 2.

Our result shows that despite the structural restriction imposed by code concatenation, the
family of concatenated codes is rich enough to include capacity achieving list-decodable codes.
This provides some encouraging news for tackling the problem of constructing explicit binary list-
decodable codes with optimal rate, since code concatenation has been the preeminent method
for constructing good codes over small alphabets.

∗A preliminary version of this paper appears in the Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA08).

†Research supported by Sloan and Packard Fellowships, and NSF Career Award CCF-0343672.
‡This work was done while the author was at the University of Washington and supported by NSF CCF-0343672.

1

Electronic Colloquium on Computational Complexity, Report No. 54 (2008)

ISSN 1433-8092

1 Introduction

Concatenated Codes. Ever since its discovery and initial use by Forney [3], code concatenation
has been a powerful tool for constructing error-correcting codes. At its core, the idea of code
concatenation is really simple and natural. A concatenated code over a small alphabet, say a
binary code for definiteness, is constructed in two steps. In the first step, the message is encoded
via an error-correcting code C1 over a large alphabet, say a large finite field F2m. C1 is referred
to as the outer code. Each of the symbols of the resulting codeword of C1 is then encoded via a
binary code C2 that has 2m codewords (corresponding to the 2m outer codeword symbols). The
code C2 is referred to as the inner code. The popularity of code concatenation arises due to the
fact that is often difficult to give a direct construction of good (long) binary codes. On the other
hand, over large alphabets, an array of powerful algebraic constructions (such as Reed-Solomon
and algebraic-geometric codes) with excellent parameters are available. While the concatenated
construction still requires an inner code that is binary, this is a small/short code with block length
O(m), which is typically logarithmic or smaller in the length of the outer code. A good choice for
the inner code can therefore be found efficiently by a brute-force search, leading to a polynomial
time construction of the final concatenated code.

This paradigm draws its power from the fact that a concatenated code, roughly speaking, inher-
its the good features of both the outer and inner codes. For example, the rate of the concatenated
code is the product of the rates of the outer and inner codes, and the minimum distance is at least
the product of the distances of the outer and inner codes. The alphabet of the concatenated code
equals that of the inner code. Above, we assumed that all the inner codes were identical. This
is not necessary and one can use different inner codes for encoding different symbols of the outer
codeword. One way to leverage this is to use an explicit ensemble of inner codes most of which
are “good.” This was the idea behind Justesen’s celebrated explicit construction of asymptotically
good binary codes [11]. In this work, we will use random, i.i.d. choices for the different inner codes,
and the independence of the inner encodings will be crucial in our analysis.

By concatenating an outer Reed-Solomon code of high rate with short inner codes achieving
Shannon capacity (known to exist by a random coding argument), Forney [3] gave a construction
of binary linear codes that achieve the capacity of the binary symmetric channel with a polynomial
time decoding complexity. By using as outer code a linear time encodable/decodable code, one
can make the encoding/decoding complexity linear in the block length [14]. In comparison, Shan-
non’s nonconstructive proof of his capacity theorem used an exponential time maximum likelihood
decoder.

The List Decoding Context. Our focus in this work is on the worst-case error model, with
the goal being to recover from an arbitrary fraction ρ of errors with the best possible rate. In
this setting, notions such as minimum distance and list decoding become central, and concatenated
codes have been the key tool in many developments concerning these notions. (All the basic coding
theory notions are formally defined in Sections 2.2-2.4.) In fact, for the longest time, till the
work on expander codes by Sipser and Spielman [13], code concatenation schemes gave the only
known explicit construction of a family of asymptotically good codes (i.e., with rate and relative
distance both bounded away from zero as the block length grew). Even today, the best trade-offs
between rate and distance for explicit codes are achieved by variants of concatenated codes; see [2]
for further details.

2

Let us consider the problem of constructing a family of binary codes for correcting a ρ fraction
of worst-case errors, for some 0 < ρ < 1/2. For large n, there are about 2H(ρ)n binary strings of
weight ρn, where H(ρ) = −ρ log2 ρ − (1 − ρ) log2(1 − ρ) is the binary entropy function. Therefore,
when up to a ρ fraction of symbols can be corrupted, a transmitted codeword c can get distorted
into any one of about 2H(ρ)n possible received words. Since the decoder must be able to associate
c with all such received words, it is easy to argue that there can be at most about 2(1−H(ρ))n

codewords. In other words, the rate of the code must be at most 1 − H(ρ).

Perhaps surprisingly, the above simplistic upper bound on rate is in fact accurate, and at
least non-constructively, a rate arbitrarily close to 1 − H(ρ) can be realized. In fact, with high
probability a completely random code of rate (1 − H(p) − ε), obtained by picking 2(1−H(p)−ε)n

codewords randomly and independently, has the property that every Hamming ball of radius ρn
has at most O(1/ε) codewords. One can thus use such a code to (list) decode from a ρ fraction
of errors, where in the worst-case the decoder may output a list of O(1/ε) answers. The trade-off
R = 1 − H(ρ) between the rate R and fraction of errors ρ is called the list-decoding capacity. The
choice of binary alphabet in this discussion is only for definiteness. Over an alphabet size q > 2,
the list-decoding capacity equals 1 − Hq(ρ), where Hq(·) is the q-ary entropy function.

Unfortunately, the above is a nonconstructive argument and the codes achieving list-decoding
capacity are shown to exist by a random coding argument, and are not even succinctly, let alone
explicitly, specified. It can also be shown that random linear codes achieve list-decoding capacity,
though the known proofs only achieve a list size of 2O(1/ε) when the rate is within ε of the list-
decoding capacity.1 The advantage with linear codes is that being subspaces they can be described
succinctly by a basis for the subspace (called generator matrix in coding parlance). Yet, a generic
linear code offers little in terms of algorithmically useful structure, and in general only brute-force
decoders running in exponential time are known for such a code.

Turning to constructive results for list decoding, recently explicit codes approaching list-decoding
capacity together with polynomial time list-decoding algorithms were constructed over large alpha-
bets [9]. Using these as outer codes in a concatenation scheme led to polynomial time constructions
of binary codes that achieved a rate vs. list-decoding radius trade-off called the Zyablov bound [9].
By using a multilevel generalization of code concatenation, the trade-off was recently improved to
the so-called Blokh-Zyablov bound [8]. Still, these explicit constructions fall well short of achieving
the list-decoding capacity for binary (and other small alphabet) codes, which remains a challenging
open problem.

Given the almost exclusive stronghold of concatenated codes on progress in explicit constructions
of list-decodable codes over small alphabets, the following natural question arises: Do there exist
concatenated codes that achieve list-decoding capacity, or does the stringent structural restriction
imposed on the code by concatenation preclude achieving list-decoding capacity?

The natural way to analyze the list-decoding performance of concatenated codes suggests that
perhaps concatenation is too strong a structural bottleneck to yield optimal list-decodable codes.
Such an analysis proceeds by decoding the blocks of the received word corresponding to various
inner encodings, which results in a small set Si of possible symbols for each position i of the
outer code. One then argues that there cannot be too many outer codewords whose i’th symbol

1For the case of binary alphabet alone, it is shown in [5], that a list size of O(1/ε) suffices. But this result is not
known to hold with high probability.

3

belongs to Si for many positions i (this is called a “list recovery” bound).2 Even assuming optimal,
capacity-achieving bounds on the individual list-decodability of the outer and inner codes, the
above “two-stage” analysis bottlenecks at the Zyablov bound.3

The weakness of the two-stage analysis is that it treats the different inner decodings indepen-
dently, and fails to exploit the fact that the various inner blocks encode a structured set of symbols,
namely those arising in a codeword of the outer code. Exploiting this and arguing that the struc-
ture of the outer codewords prevents many “bad” inner blocks from occurring simultaneously, and
using this to get improved bounds, however, seems like an intricate task. In part this is because the
current understanding of “bad list-decoding configurations,” i.e., Hamming balls of small radius
containing many codewords, for codes is rather poor.

Our Results. In this work, we prove that there exist binary (and q-ary for any fixed prime
power q) linear concatenated codes that achieve list-decoding capacity for any desired rate. In
fact, we prove that a random concatenated code drawn from a certain ensemble achieves capacity
with overwhelming probability. This is encouraging news for the eventual goal of achieving list-
decoding capacity (or at least, going beyond the above-mentioned Blokh-Zyablov bottleneck) over
small alphabets with polynomial time decodable codes.

The outer codes in our construction are the folded Reed-Solomon codes which were shown in
[9] to have near-optimal list-recoverability properties.4 The inner codes for the various positions
are random linear codes (which can even have a rate of 1), with a completely independent random
choice for each outer codeword position. To get within ε of list decoding capacity, our result
guarantees an output list size bound that is a large polynomial (greater than N1/ε) in the block
length N . We also prove that one can achieve capacity when a random linear code is chosen for the
outer code; we get a better list size upper bound of a constant depending only on ε in this case. A
corollary of our result is that one can construct binary codes achieving list-decoding capacity with
a number of random bits that grows quasi-linearly in the block length, compared to the quadratic
bound (achieved by a random linear code) known earlier.

Our results are inspired by results of Blokh and Zyablov [1] and Thommesen [15] showing
the existence of binary concatenated codes whose rate vs. distance trade-off meets the Gilbert-
Varshamov (GV) bound. We recall that the GV bound is the best known trade-off between rate
and relative distance for binary (and q-ary for q < 49) codes and is achieved w.h.p. by random
linear codes. Blokh and Zyablov show the result for independent random choices for the outer code
and the various inner encodings. Thommesen establishes that one can fix the outer code to be a
Reed-Solomon code and only pick the inner codes randomly (and independently).

Organization of the paper. Section 2 establishes the necessary background needed for the sub-
sequent sections. We give a high level overview of our proof and how it compares with Thommesen’s

2When the outer code is algebraic such as Reed-Solomon or folded Reed-Solomon, the list recovery step admits
an efficient algorithm which leads to a polynomial time list-decoding algorithm for the concatenated code, such as in
[9, 8].

3One can squeeze out a little more out of the argument and achieve the Blokh-Zyablov bound, by exploiting the
fact that sub-codes of the inner codes, being of lower rate, can be list decoded to a larger radius [8].

4We note that the excellent list-recoverability of folded Reed-Solomon codes is crucial for our argument, and we
do not know how to prove a similar result using just Reed-Solomon codes as outer codes.

4

proof in Section 3. We present our results for concatenated codes with folded Reed-Solomon and
random linear codes as outer codes in Sections 4 and 5 respectively. We conclude with some open
questions in Section 6.

2 Preliminaries

For an integer m > 1, we will use [m] to denote the set {1, . . . ,m}.

2.1 q-ary Entropy and Related Functions

Let q > 2 be an integer. Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x) will denote the q-ary
entropy function. We will make use of the following property of this function.

Lemma 1 ([12]). For every 0 6 y 6 1 − 1/q and for every small enough ε > 0, we have H−1
q (y −

ε2/c′q) > H−1
q (y) − ε, where c′q > 1 is a constant that depends only on q.

For 0 6 z 6 1 define
αq(z) = 1 − Hq(1 − qz−1). (1)

We will need the following property of the function above.

Lemma 2. Let q > 2 be an integer. For every 0 6 z 6 1, αq(z) 6 z.

Proof. The proof follows from the subsequent sequence of relations:

αq(z) = 1 − Hq(1 − qz−1)

= 1 − (1 − qz−1) logq(q − 1) + (1 − qz−1) logq(1 − qz−1) + qz−1(z − 1)

= zqz−1 + (1 − qz−1)

(

1 − logq

(

q − 1

1 − qz−1

))

6 z,

where the last inequality follows from the facts that qz−1 6 1 and 1− qz−1 6 1−1/q, which implies

that logq

(

q−1
1−qz−1

)

> 1.

We will also consider the following function

fx,q(θ) = (1 − θ)−1 · H−1
q (1 − θx),

where 0 6 θ, x 6 1. We will need the following property of this function, which was proven in [15]
for the q = 2 case. The following is an easy extension of the result for general q. For the sake of
completeness, we provide a proof in Appendix A.

Lemma 3 ([15]). Let q > 2 be an integer. For any x > 0 and 0 6 y 6 αq(x)/x,

min
06θ6y

fx,q(θ) = (1 − y)−1H−1
q (1 − xy).

5

2.2 Basic Coding Definitions

A code of dimension k and block length n over an alphabet Σ is a subset of Σn of size |Σ|k. The
rate of such a code equals k/n. Each vector in C is called a codeword. In this paper, we will focus
on the case when Σ is a finite field. We will denote by Fq the field with q elements. A code C over
Fq is called a linear code if C is a subspace of F

n
q . In this case the dimension of the code coincides

with the dimension of C as a vector space over Fq. By abuse of notation we will also think of a code
C as a map from elements in F

k
q to their corresponding codeword in F

n
q . If C is linear, this map is

a linear transformation, mapping a row vector x ∈ F
k
q to a vector xG ∈ F

n
q for a k × n matrix G

over Fq called the generator matrix.

The Hamming distance between two vectors in Σn is the number of places they differ in. The
(minimum) distance of a code C is the minimum Hamming distance between any two pairs of
distinct codewords from C. The relative distance is the ratio of the distance to the block length.

2.3 Code Concatenation

Concatenated codes are constructed from two different kinds of codes that are defined over alphabets
of different sizes. Say we are interested in a code over Fq (in this paper, we will always think of
q > 2 as being a fixed constant). Then the outer code Cout is defined over FQ, where Q = qk for
some positive integer k and has block length N . The second type of code, called the inner codes,
which are denoted by C1

in, . . . , CN
in are defined over Fq and are each of dimension k (note that the

message space of Ci
in for all i and the alphabet of Cout have the same size). The concatenated code,

denoted by C = Cout ◦ (C1
in, . . . , CN

in), is defined as follows. Let the rate of Cout be R and let the
block lengths of Ci

in be n (for 1 6 i 6 N). Define K = RN and r = k/n. The input to C is a vector
m = 〈m1, . . . ,mK〉 ∈ (Fk

q)
K . Let Cout(m) = 〈x1, . . . , xN 〉. The codeword in C corresponding to m

is defined as follows
C(m) = 〈C1

in(x1), C
2
in(x2), . . . , C

N
in(xN)〉.

The outer code Cout will either be a random linear code over FQ or the folded Reed-Solomon code
from [9]. In the case when Cout is random, we will pick Cout by selecting K = RN vectors uniformly
at random from F

N
Q to form the rows of the generator matrix. For every position 1 6 i 6 N , we will

choose an inner code Ci
in to be a random linear code over Fq of block length n and rate r = k/n. In

particular, we will work with the corresponding generator matrices Gi, where every Gi is a random
k×n matrix over Fq. All the generator matrices Gi (as well as the generator matrix for Cout, when
we choose a random Cout) are chosen independently. This fact will be used crucially in our proofs.

Given the outer code Cout and the inner codes Ci
in, recall that for every codeword u =

(u1, . . . ,uN) ∈ Cout, the codeword uG
def
= (u1G1,u2G2, . . . ,uNGN) is in C = Cout◦(C1

in, . . . , CN
in),

where the operations are over Fq.

We will need the following notions of the weight of a vector. Given a vector v ∈ F
nN
q , its

Hamming weight is denoted by wt(v). Given a vector y = (y1, . . . , yN) ∈ (Fn
q)N and a subset

S ⊆ [N], we will use wtS(y) to denote the Hamming weight over Fq of the subvector (yi)i∈S . Note
that wt(y) = wt[N](y).

We will need the following simple lemma due to Thommesen, which is stated in a slightly
different form in [15]. For the sake of completeness we also present its proof.

6

Lemma 4 ([15]). Given a fixed outer code Cout of block length N and an ensemble of random inner
linear codes of block length n given by generator matrices G1, . . . ,GN the following is true. Let
y ∈ F

nN
q . For any codeword u ∈ Cout, any non-empty subset S ⊆ [N] such that ui 6= 0 for all i ∈ S

and any integer h 6 n|S| ·
(

1 − 1
q

)

:

Pr[wtS(uG − y) 6 h] 6 q
−n|S|

(

1−Hq

(

h
n|S|

))

,

where the probability is taken over the random choices of G1, . . . ,GN .

Proof. Let |S| = s and w.l.o.g. assume that S = [s]. As the choices for G1, . . . ,GN are made
independently, it is enough to show that the claimed probability holds for the random choices for
G1, . . . ,Gs. For any 1 6 i 6 s and any y ∈ F

n
q , since ui 6= 0, we have PrGi

[uiGi = y] = q−n.
Further, these probabilities are independent for every i. Thus, for any y = 〈y1, . . . , ys〉 ∈ (Fn

q)s,
PrG1,...,Gs [uiGi = yi for every 1 6 i 6 s] = q−ns. This implies that:

PrG1,...,Gs [wtS(uG− y) 6 h] = q−ns
h

∑

j=0

(

ns

j

)

(q − 1)j .

The claimed result follows from the following well known inequality for h/(ns) 6 1 − 1/q ([10]):

h
∑

j=0

(

ns

j

)

(q − 1)j 6 qnsHq(h
ns).

2.4 List Decoding and List Recovery

Definition 1 (List decodable code). For 0 < ρ < 1 and an integer L > 1, a code C ⊆ F
n
q is said to

be (ρ, L)-list decodable if for every y ∈ F
n
q , the number of codewords in C that are within Hamming

distance ρn from y is at most L.

We will also crucially use a generalization of list decoding called list recovery, a term first coined
in [6] even though the notion had existed before. List recovery has been extremely useful in list-
decoding concatenated codes. The input for list recovery is not a sequence of symbols but rather
a sequence of subsets of allowed codeword symbols, one for each codeword position.

Definition 2 (List recoverable code). A code C ⊆ F
n
q , is called (ρ, `, L)-list recoverable if for every

sequence of sets S1, S2, . . . , Sn, where Si ⊆ Fq and |Si| 6 ` for every 1 6 i 6 n, there are at most
L codewords (c1, . . . , cn) ∈ C such that ci ∈ Si for at least (1 − ρ)n positions i.

The classical family of Reed-Solomon (RS) codes over a field F are defined to be the evaluations
of low-degree polynomials at a sequence of distinct points of F. Folded Reed-Solomon codes are
obtained by viewing the RS code as a code over a larger alphabet F

s by bundling together consec-
utive s symbols for some folding parameter s. We will not need any specifics of folded RS codes
(in fact even its definition) beyond (i) the strong list recovery property guaranteed by the following

7

theorem from [9], and (ii) the fact that specifying any K + 1 positions in a dimension K folded
Reed-Solomon code suffices to identify the codeword (equivalently, a dimension K and length N
folded RS code has distance at least N − K).

Theorem 1 ([9]). For every integer ` > 1, for all constants ε > 0, for all 0 < R < 1, and for every
prime p, there is an explicit family of folded Reed-Solomon codes, over fields of characteristic p that
have rate at least R and which can be (1 − R − ε, `, L(N))-list recovered in polynomial time, where
for codes of block length N , L(N) = (N/ε2)O(ε−1 log(`/R)) and the code is defined over alphabet of
size (N/ε2)O(ε−2 log `/(1−R)).

3 Overview of the Proof

Our proofs are inspired by Thommesen’s proof [15] of the following result concerning the rate vs.
distance trade-off of concatenated codes: Binary linear concatenated codes with an outer Reed-
Solomon code and independently and randomly chosen inner codes meet the Gilbert-Varshamov
bound with high probability5, provided a moderate condition on the outer and inner rates is met.
Given that our proof builds on the proof of Thommesen, we start out by reviewing the main ideas
in his proof.

The outer code Cout in [15] is a Reed-Solomon code of length N and rate R (over FQ where
Q = qk for some integer k > 1). The inner linear codes (over Fq) are generated by N randomly
chosen k×n generator matrices G = (G1, . . . ,GN), where r = k/n. Note that since the final code
will be linear, to show that with high probability the concatenated code will have distance close
to H−1

q (1 − rR), it is enough to show that the probability of the Hamming weight of uG over Fq

being at most (H−1
q (1− rR)− ε)nN (for every non-zero Reed-Solomon codeword u = (u1, . . . ,uN)

and ε > 0), is small. Fix a codeword u ∈ Cout. Now note that if for some 1 6 i 6 N , ui = 0, then
for every choice of Gi, uiGi = 0. Thus, only the non-zero symbols of u contribute to wt(uG).
Further, for a non-zero ui, uiGi takes all the values in F

n
q with equal probability over the random

choices of Gi. Since the choice of the Gi’s are independent, this implies that uG takes each of the
possible qn·wt(u) values in F

nN
q with the same probability. Thus, the total probability that uG has

a Hamming weight of at most h is

h
∑

w=0

(

n · wt(u)

w

)

q−n·wt(u)
6 q

−n·wt(u)
(

1−Hq

(

h
n·wt(u)

))

(this is Lemma 4 for the case S = [N]). The rest of the argument follows by doing a careful union
bound of this probability for all non zero codewords in Cout, using the weight distribution of the
RS code. This step imposes an upper bound on the outer rate R (specifically, R 6 αq(r)/r), but
still offers enough flexibility to achieve any desired value in (0, 1) for the overall rate rR (even with
the choice r = 1, i.e., when the inner encodings don’t add any redundancy).

Let us now try to extend the idea above to show a similar result for list decoding. We want
to show that for any Hamming ball of radius at most h = (H−1

q (1 − rR) − ε)nN has at most L
codewords from the concatenated code C (assuming we want to show that L is the worst case
list size). To show this let us look at a set of L + 1 codewords from C and try to prove that the

5A q-ary code of rate R meets the Gilbert-Varshamov bound if it has relative distance at least H−1
q (1 −R).

8

probability that all of them lie within some fixed ball B of radius h is small. Let u1, . . . ,uL+1 be the
corresponding codewords in Cout. Extending Thommesen’s proof would be straightforward if the
events corresponding to ujG belonging to the ball B for various 1 6 j 6 L + 1 were independent.
In particular, if we can show that for every position 1 6 i 6 N , all the non-zero symbols in
{u1

i ,u
2
i , . . . ,u

L+1
i } are linearly independent over Fq then the generalization of Thommesen’s proof

is immediate.

Unfortunately, the notion of independence discussed above does not hold for every L + 1 tuple
of codewords from Cout. The natural way to get independence when dealing with linear codes
is to look at messages that are linearly independent. It turns out that if Cout is also a random
linear code over FQ then we have a good approximation of the the notion of independence above.
Specifically, we show that with very high probability for a linearly independent (over FQ) set of
messages6 m1, . . . ,mL+1, the set of codewords u1 = Cout(m

1), . . . ,uL+1 = Cout(m
L+1) have the

following approximate independence property. For many positions 1 6 i 6 N , many non-zero
symbols in {u1

i , . . . ,u
L+1
i } are linearly independent over Fq. It turns out that this approximate

notion of independence is enough for Thommesen’s proof to go through.

We remark that the notion above crucially uses the fact that the outer code is a random linear
code. The argument gets more tricky when Cout is fixed to be (say) the Reed-Solomon code. Now
even if the messages m1, . . . ,mL+1 are linearly independent it is not clear that the corresponding
codewords will satisfy the notion of independence in the above paragraph. Interestingly, we can
show that this notion of independence is equivalent to showing good list recoverability properties
for Cout. Reed-Solomon codes are however not known to have optimal list recoverability (which
is what is required in our case). In fact, the results in [7] show that this is impossible for Reed-
Solomon codes in general. However, folded RS codes do have near-optimal list recoverability and
we exploit this in our proof.

4 Using Folded Reed-Solomon Code as Outer Code

In this section, we will prove that concatenated codes with the outer code being the folded Reed-
Solomon code from [9] and using random and independent inner codes can achieve list-decoding
capacity. The proof will make crucial use of the list recoverability of the outer code as stated in
Theorem 1.

4.1 Linear Independence from List Recoverability

Definition 3 (Independent tuples). Let C be a code of block length N and rate R defined over
Fqk . Let J > 1 and 0 6 d1, . . . , dJ 6 N be integers. Let d = 〈d1, . . . , dJ〉. An ordered tuple of

codewords (c1, . . . , cJ), cj ∈ C is said to be (d, Fq)-independent if the following holds. d1 = wt(c1)

and for every 1 < j 6 J , dj is the number of positions i such that cj
i is Fq-independent of the

vectors {c1
i , . . . , c

j−1
i }, where c` = (c`

1, . . . , c
`
N).

6Again any set of L + 1 messages need not be linearly independent. However, it is easy to see that some subset of
J = dlogQ(L + 1)e of messages are indeed linearly independent. Hence, we can continue the argument by replacing
L + 1 with J .

9

Note that for any tuple of codewords (c1, . . . , cJ) there exists a unique d such that it is (d, Fq)-
independent. The next result will be crucial in our proof.

Lemma 5. Let C be a folded Reed-Solomon code of block length N that is defined over FQ with
Q = qk as guaranteed by Theorem 1. For any L-tuple of codewords from C, where L > J ·

(N/ε2)O(ε−1J log(q/R)) (where ε > 0 is same as the one in Theorem 1), there exists a sub-tuple
of J codewords such that the J-tuple is (d, Fq)-independent, where d = 〈d1, . . . , dJ〉 with dj >

(1 − R − ε)N , for every 1 6 j 6 J .

Proof. The proof is constructive. In particular, given an L-tuple of codewords, we will construct
a J sub-tuple with the required property. The correctness of the procedure will hinge on the list
recoverability of the folded Reed-Solomon code as guaranteed by Theorem 1.

We will construct the final sub-tuple iteratively. In the first step, pick any non-zero codeword
in the L-tuple– call it c1. As C has distance at least (1 − R)N (and 0 ∈ C), c1 is non-zero in
at least d1 > (1 − R)N > (1 − R − ε)N many places. Note that c1 is vacuously independent of
the “previous” codewords in these positions. Now, say that the procedure has chosen codewords
c1, . . . , cs such that the tuple is (d′, Fq)-independent for d′ = 〈d1, . . . , ds〉, where for every 1 6 j 6 s,
dj > (1 − R − ε)N . For every 1 6 i 6 N , define Si to be the Fq-span of the vectors {c1

i , . . . , c
s
i} in

F
k
q . Note that |Si| 6 qs. Call c = (c1, . . . , cN) ∈ C to be a bad codeword, if there does not exist any

ds+1 > (1−R− ε)N such that (c1, . . . , cs, c) is (d, Fq)-independent for d = 〈d1, . . . , ds+1〉. In other
words, c is a bad codeword if and only if some T ⊂ [N] with |T | = (R + ε)N satisfies ci ∈ Si for
every i ∈ T . Put differently, c satisfies the condition of being in the output list for list recovering C
with input S1, . . . , SN and agreement fraction R+ ε. Thus, by Theorem 1, the number of such bad

codewords is U = (N/ε2)O(ε−1s log(q/R)) 6 (N/ε2)O(ε−1J log(q/R)), where J is the number of steps
for which this greedy procedure can be applied. Thus, as long as at each step there are strictly
more than U codewords from the original L-tuple of codewords left, we can continue this greedy
procedure. Note that we can continue this procedure J times, as long as J 6 L/U .

Finally, we will need the following bound on the number of independent tuples for folded Reed-
Solomon codes. Its proof follows from the fact that a codeword in a dimension K folded RS code
is completely determined once values at K + 1 of its positions are fixed.

Lemma 6. Let C be a folded Reed-Solomon code of block length N and rate 0 < R < 1 that
is defined over FQ, where Q = qk. Let J > 1 and 0 6 d1, . . . , dJ 6 N be integers and define
d = 〈d1, . . . , dJ 〉. Then the number of (d, Fq)-independent tuples in C is at most

qNJ(J+1)
J

∏

j=1

Qmax(dj−N(1−R)+1,0) .

Proof. Given a tuple (c1, . . . , cJ) that is (d, Fq)-independent, define Tj ⊆ [N] with |Tj | = dj , for

1 6 j 6 J to be the set of positions i, where cj
i is Fq-independent of {c1

i , . . . , c
j−1
i }. We will estimate

the number of (d, Fq)-independent tuples by first estimating a bound Uj on the number of choices
for the jth codeword in the tuple (given a fixed choice of the first j − 1 codewords). To complete
the proof, we will show that

Uj 6 qN(J+1) · Qmax(dj−N(1−R)+1,0).

10

A codeword c ∈ C can be the jth codeword in the tuple in the following way. For every position
in [N] \ Tj, c can take at most qj−1 6 qJ values (as in these position the value has to lie in the Fq

span of the values of the first j − 1 codewords in that position). Since C is folded Reed-Solomon,
once we fix the values at positions in [N]\Tj , the codeword will be completely determined once any
max(RN − (N − dj)+1, 0) = max(dj −N(1−R)+1, 0) positions in Tj are chosen (w.l.o.g. assume
that they are the “first” so many positions). The number of choices for Tj is

(

N
dj

)

6 2N 6 qN .

Thus, we have

Uj 6 qN · (qJ)N−dj · Qmax(dj−N(1−R)+1,0)

6 qN(J+1) · Qmax(dj−N(1−R)+1),0),

as desired.

4.2 The Main Result

Theorem 2 (Main). Let q be a prime power and let 0 < r 6 1 be an arbitrary rational. Let
0 < ε < αq(r) an arbitrary real, where αq(r) is as defined in (1), and 0 < R 6 (αq(r) − ε)/r
be a rational. Let k, n,K,N > 1 be large enough integers such that k = rn and K = RN .
Let Cout be a folded Reed-Solomon code over Fqk of block length N and rate R. Let C1

in, . . . , CN
in

be random linear codes over Fq, where Ci
in is generated by a random k × n matrix Gi over Fq

and the random choices for G1, . . . ,GN are all independent.7Then the concatenated code C =

Cout ◦ (C1
in, . . . , CN

in) is a

(

H−1
q (1 − Rr) − ε,

(

N
ε4

)O(r2ε−4(1−R)−2 log(1/R))
)

-list decodable code with

probability at least 1 − q−Ω(nN) over the choices of G1, . . . ,GN . Further, C has rate rR w.h.p.

Remark 1. For any desired rate R∗ ∈ (0, 1 − ε) for the final concatenated code (here ε > 0 is
arbitrary), one can pick the outer and inner rates R, r such that Rr = R∗ while also satisfying
R 6 (αq(r) − ε)/r. In fact we can pick r = 1 and R = R∗ so that the inner encodings are linear
transformations specified by random k × k matrices and do not add any redundancy.

The rest of this section is devoted to proving Theorem 2.

Define Q = qk. Let L be the worst-case list size that we are shooting for (we will fix its value
at the end). By Lemma 5, any L + 1-tuple of Cout codewords (u0, . . . ,uL) ∈ (Cout)

L+1 contains at

least J =
⌊

(L + 1)/(N/γ2)O(γ−1J log(q/R))
⌋

codewords that form an (d, Fq)-independent tuple, for

some d = 〈d1, . . . , dJ〉, with dj > (1 − R − γ)N (we will specify γ, 0 < γ < 1 − R, later). Thus, to
prove the theorem it suffices to show that with high probability, no Hamming ball in F

nN
q of radius

(H−1
q (1 − rR) − ε)nN contains a J-tuple of codewords (u1G, . . . ,uJG), where (u1, . . . ,uJ) is a

J-tuple of folded Reed-Solomon codewords that is (d, Fq)-independent. For the rest of the proof,
we will call a J-tuple of Cout codewords (u1, . . . ,uJ) a good tuple if it is (d, Fq)-independent for
some d = 〈d1, . . . , dJ〉, where dj > (1 − R − γ)N for every 1 6 j 6 J .

Define ρ = H−1
q (1−Rr)−ε. For every good J-tuple of Cout codewords (u1, . . . ,uJ) and received

word y ∈ F
nN
q , define an indicator variable I(y,u1, . . . ,uJ) as follows. I(y,u1, . . . ,uJ) = 1 if and

7We stress that we do not require that the Gi’s have rank k.

11

only if for every 1 6 j 6 J , wt(ujG − y) 6 ρnN . That is, it captures the bad event that we want
to avoid. Define

XC =
∑

y∈FnN
q

∑

good (u1,...,uJ)∈(Cout)J

I(y,u1, . . . ,uJ).

We want to show that with high probability XC = 0. By Markov’s inequality, the theorem would
follow if we can show that:

E[XC] =
∑

y∈FnN
q

∑

good (u1,...,uJ)
∈(Cout)J

E[I(y,u1, . . . ,uJ)]

6 q−Ω(nN). (2)

Before we proceed, we need a final bit of notation. For a good tuple (u1, . . . ,uJ) and every
1 6 j 6 J , define Tj(u

1, . . . ,uJ) ⊆ [N] to be the set of positions i such that u
j
i is Fq-independent

of the set {u1
i , . . . ,u

j−1
i }. (A subset of FQ is linearly independent over Fq if its elements, when

viewed as vectors from F
k
q (recall that Fqk is isomorphic to F

k
q) are linearly independent over Fq.)

Note that since the tuple is good, |Tj(u
1, . . . ,uJ)| > (1 − R − γ)N .

Let h = ρnN . Consider the following sequence of inequalities (where below we have suppressed
the dependence of Tj on (u1, . . . ,uJ) for clarity):

E[XC] =
∑

y∈FnN
q

∑

good
(u1,..,uJ)
∈(Cout)J

Pr
G





J
∧

j=1

wt(ujG− y) 6 h



 (3)

6
∑

y∈FnN
q

∑

good
(u1,..,uJ)
∈(Cout)J

Pr
G





J
∧

j=1

wtTj
(ujG − y) 6 h



 (4)

=
∑

y∈FnN
q

∑

good
(u1,..,uJ)
∈(Cout)J

J
∏

j=1

Pr
G

[

wtTj
(uiG − y) 6 h

]

(5)

In the above (3) follows from the definition of the indicator variable. (4) follows from the simple
fact that for every vector u of length N and every T ⊆ [N], wtT (u) 6 wt(u). (5) follows from the

subsequent argument. By definition of conditional probability, PrG

[

∧J
j=1 wtTj

(ujG − y) 6 h
]

is

the same as PrG

[

wtTJ
(uJG − y) 6 h

∣

∣

∧J−1
j=1 wtTj

(ujG− y) 6 h
]

·PrG

[

∧J−1
j=1 wtTj

(ujG− y) 6 h
]

.

Now as all symbols corresponding to TJ are good symbols, for every i ∈ TJ , the value of uJ
i Gi is inde-

pendent of the values of {u1
i Gi, . . . ,u

J−1
i Gi}. Further since each of G1, . . . ,GN are chosen indepen-

dently (at random), the event wtTJ
(uJG−y) 6 h is independent of the event

∧J−1
j=1 wtTj

(ujG−y) 6

h. Thus,

Pr
G





J
∧

j=1

wtTj
(ujG − y) 6 h



 = Pr
G

[

wtTJ
(uJG− y) 6 h

]

Pr
G





J−1
∧

j=1

wtTj
(ujG − y) 6 h





12

Inductively applying the argument above gives (5). Further (where below we use D to denote
(1 − R − γ)N),

E[XC] 6
∑

y∈FnN
q

∑

good (u1,...,uJ)∈(Cout)J

J
∏

j=1

q
−n|Tj |

(

1−Hq

(

h
n|Tj |

))

(6)

=
∑

y∈FnN
q

∑

(d1,..,dJ)∈{D,..,N}J

∑

good (u1,..,uJ)∈(Cout)J ,
|T1|=d1,..,|TJ |=dJ

J
∏

j=1

q
−ndj+ndjHq

(

h
ndj

)

(7)

6
∑

(d1,...,dJ)

∈{D,...,N}J

qnN · qNJ(J+1) ·

J
∏

j=1

Qmax(dj−(1−R)N+1,0)
J

∏

j=1

q
−ndj

(

1−Hq

(

h
ndj

))

(8)

6
∑

(d1,...,dJ)

∈{D,...,N}J

qnN · qNJ(J+1) ·

J
∏

j=1

Qdj−(1−R−γ)N
J

∏

j=1

q
−ndj

(

1−Hq

(

h
ndj

))

(9)

=
∑

(d1,...,dJ)

∈{D,...,N}J

J
∏

j=1

q
−ndj

(

1−Hq

(

h
ndj

)

−r

(

1− (1−R−γ)N
dj

)

− N
Jdj

−N(J+1)
ndj

)

. (10)

(6) follows from (5) and Lemma 4. (7) follows from rearranging the summand and using the fact
that the tuple is good (and hence dj > (1−R− γ)N). (8) follows from the fact that there are qnN

choices for y and Lemma 6.8 (9) follows from the fact that dj − (1−R)N + 1 6 dj − (1−R− γ)N
(for N > 1/γ) and that dj > (1 − R − γ)N . (10) follows by rearranging the terms.

Note that as long as n > J(J + 1), we have N(J+1)
nd 6

N
Jd . Now (10) will imply (2) if we can

show that for every (1 − R − γ)N 6 d 6 N ,

h

nd
6 H−1

q

(

1 − r

(

1 −
(1 − R − γ)N

d

)

−
2N

Jd

)

− δ,

for δ = ε/3. By Lemma 7 (which is stated at the end of this section), as long as J > 4c′q/(δ
2(1−R))

(and the conditions on γ are satisfied), the above can be satisfied by picking

h/(nN) = H−1
q (1 − rR) − 3δ = ρ,

as required. We now verify that the conditions on γ in Lemma 7 are satisfied by picking γ = 4
Jr .

Note that if we choose J = 4c′q/(δ
2(1 − R)), we will have γ = δ2(1−R)

c′qr . Now, as 0 < R < 1, we also

have γ 6 δ2/(rc′q). Finally, we show that γ 6 (1 − R)/2. Indeed

γ =
δ2(1 − R)

c′qr
=

ε2(1 − R)

9c′qr
6

ε(1 − R)

9r
<

αq(r)(1 − R)

9r
<

1 − R

2
,

8 As the final code C will be linear, it is sufficient to only look at received words that have Hamming weight at
most ρnN . However, this gives a negligible improvement to the final result and hence, we just bound the number of
choices for y by qnN .

13

where the first inequality follows from the facts that c′q > 1 and ε 6 1. The second inequality follows

from the assumption on ε. The third inequality follows from Lemma 2. As J is in Θ
(

1
ε2(1−R)

)

(and γ is in Θ(ε2(1 − R)/r)), we can choose L = (N/ε4)O(r2ε−4(1−R)−2 log(q/R)), as required.

We still need to argue that with high probability the rate of the code C = Cout ◦ (C1
in, . . . , CN

in)
is rR. One way to argue this would be to show that with high probability all of the generator
matrices have full rank. However, this is not the case: in fact, with some non-negligible probability
at least one of them will not have full rank. However, we claim that with high probability C has
distance > 0, and thus is a subspace of dimension rRnN . The proof above in fact implies that
with high probability C has distance (H−1

q (1 − rR) − δ)nN for any small enough δ > 0. It is easy
to see that to show that C has distance at least h, it is enough to show that with high probability
∑

m∈F
K
Q

I(0,m) = 0. Note that this is a special case of our proof, with J = 1 and y = 0 and hence,

with probability at least 1 − qΩ(nN), the code C has large distance.

The proof is thus complete, modulo the following lemma, which we prove next (following a
similar argument in [15]).

Lemma 7. Let q > 2 be an integer, and 1 6 n 6 N be integers. Let 0 < r,R 6 1 be rationals
and δ > 0 be a real such that R 6 (αq(r) − δ)/r and δ 6 αq(r), where αq(r) is as defined in (1).

Let γ > 0 be a real such that γ 6 min
(

1−R
2 , δ2

c′qr

)

, where c′q is the constant that depends only on q

from Lemma 1. Then for all integers J >
4c′q

δ2(1−R)
and h 6 (H−1

q (1 − rR)− 2δ)nN the following is

satisfied. For every integer (1 − R − γ)N 6 d 6 N ,

h

nd
6 H−1

q

(

1 − r

(

1 −
N(1 − R − γ)

d

)

−
2N

Jd

)

. (11)

Proof. Using the fact H−1
q is an increasing function, (11) is satisfied if for every d∗ 6 d 6 N (where

d∗ = (1 − R − γ)N):

h

nN
6

(

d

N

)

· H−1
q

(

1 − r

(

1 −
N(1 − R − γ)

d

)

−
2N

d∗J

)

.

Define a new variable θ = 1 − N(1 − R − γ)/d. Note that as d∗ = (1 − R − γ)N 6 d 6 N ,
0 6 θ 6 R + γ. Also d/N = (1 − R − γ)(1 − θ)−1. Thus, the above inequality would be satisfied if

h

nN
6 (1 − R − γ) min

06θ6R+γ

{

(1 − θ)−1H−1
q

(

1 − rθ −
2

(1 − R − γ)J

)}

.

Again using the fact that H−1
q is an increasing function along with the fact that γ 6 (1 − R)/2 ,

we get that the above is satisfied if

h

nN
6 (1 − R − γ) min

06θ6R+γ

{

(1 − θ)−1H−1
q

(

1 − rθ −
4

(1 − R)J

)}

.

By Lemma 1, if J >
4c′q

δ2(1−R)
, then9 H−1

q

(

1 − rθ − 4
(1−R)J

)

> H−1
q (1 − rθ) − δ. Since for every

0 6 θ 6 R + γ, (1 − R − γ)(1 − θ)−1δ 6 δ, the above equation would be satisfied if

h

nN
6 (1 − R − γ) min

0<θ6R+γ
fr,q(θ) − δ.

9We also use the fact that H−1
q is increasing.

14

Note that by the assumptions γ 6 δ2/(rc′q) 6 δ/r (as δ 6 1 and c′q > 1) and R 6 (αq(r) − δ)/r,
we have R + γ 6 αq(r)/r. Thus, by using Lemma 3 we get that (1 − R − γ)min0<θ6R+γ fr,q(θ) =
H−1

q (1 − rR − rγ). By Lemma 1, the facts that γ 6 δ2/(rc′q) and H−1
q is increasing, we have

H−1
q (1−rR−rγ) > H−1

q (1−rR)−δ. This implies that (11) is satisfied if h/(nN) 6 H−1
q (1−rR)−2δ,

as desired.

5 List Decodability of Random Concatenated Codes

In this section, we will look at the list decodability of concatenated codes when both the outer
code and the inner codes are (independent) random linear codes. The following is the main result
of this section.

Theorem 3. Let q be a prime power and let 0 < r 6 1 be an arbitrary rational. Let 0 < ε < αq(r)
be an arbitrary real, where αq(r) is as defined in (1), and 0 < R 6 (αq(r)− ε)/r be a rational. Let
k, n,K,N > 1 be large enough integers such that k = rn and K = RN . Let Cout be a random linear
code over Fqk that is generated by a random K × N matrix over Fqk . Let C1

in, . . . , CN
in be random

linear codes over Fq, where Ci
in is generated by a random k × n matrix Gi and the random choices

for Cout,G1, . . . ,GN are all independent. Then the concatenated code C = Cout ◦ (C1
in, . . . , CN

in) is

a

(

H−1
q (1 − Rr)− ε, q

O
(

rn

ε2(1−R)

))

-list decodable code with probability at least 1− q−Ω(nN) over the

choices of Cout,G1, . . . ,GN . Further, with high probability, C has rate rR.

The intuition behind Theorem 3 is the following. W.h.p., a random code has a weight distribu-
tion and list recoverability properties very similar to those of folded Reed-Solomon codes. That is,
Lemmas 5 and 6 hold whp for random Cout. However, we will prove Theorem 3 in a slightly different
manner than the proof of Theorem 2 as it gives a better bound on the list size (see Remark 2 for
a more quantitative comparison). In the rest of this section, we will prove Theorem 3.

Define Q = qk. Let L be the worst-case list size that we are shooting for (we will fix its value
at the end). The first observation is that any L + 1-tuple of messages (m1, . . . ,mL+1) ∈ (FK

Q)L+1

contains at least J = dlogQ(L+1)e many messages that are linearly independent over FQ. Thus, to

prove the theorem it suffices to show that with high probability, no Hamming ball over F
nN
q of radius

(H−1
q (1− rR)− ε)nN contains a J-tuple of codewords (C(m1), . . . , C(mJ)), where m1, . . . ,mJ are

linearly independent over FQ.

Define ρ = H−1
q (1−Rr)−ε. For every J-tuple of linearly independent messages (m1, . . . ,mJ) ∈

(FK
Q)J and received word y ∈ F

nN
q , define an indicator random variable I(y,m1, . . . ,mJ) as follows.

I(y,m1, . . . ,mJ) = 1 if and only if for every 1 6 j 6 J , wt(C(mj)−y) 6 ρnN . That is, it captures
the bad event that we want to avoid. Define

XC =
∑

y∈FnN
q

∑

(m1,...,mJ)∈Ind(Q,K,J)

I(y,m1, . . . ,mJ)

where Ind(Q,K, J) denotes the collection of subsets of FQ-linearly independent vectors from F
K
Q of

size J . We want to show that with high probability XC = 0. By Markov’s inequality, the theorem

15

would follow if we can show that:

E[XC] =
∑

y∈FnN
q

∑

(m1,...,mJ)∈Ind(Q,K,J)

E[I(y,m1, . . . ,mJ)] is at most q−Ω(nN). (12)

Note that the number of distinct possibilities for y,m1, . . . ,mJ is upper bounded by qnN ·QRNJ =
qnN(1+rRJ). Fix some arbitrary choice of y,m1, . . . ,mJ . To prove (12), we will show that

qnN(1+rRJ) · E[I(y,m1, . . . ,mJ)] 6 q−Ω(nN). (13)

Before we proceed, we need some more notation. Given vectors u1, . . . ,uJ ∈ F
N
Q , we define

Z(u1, . . . ,uJ) = (Z1, . . . , ZN) as follows. For every 1 6 i 6 N , Zi ⊆ [J] denotes the largest subset
such that the elements (uj

i)j∈Zi
are linearly independent over Fq (in case of a tie choose the lexically

first such set), where uj = (uj
1, . . . , u

j
N). If uj

i ∈ Zi then we will call uj
i a good symbol. Note that

a good symbol is always non-zero. We will also define another partition of all the good symbols,
T(u1, . . . ,uJ) = (T1, . . . , TJ) by setting Tj = {i|j ∈ Zi} for 1 6 j 6 J .

Since m1, . . . ,mJ are linearly independent over FQ, the corresponding codewords in Cout are
distributed uniformly and independently in F

N
Q . In other words, for any fixed (u1, . . . ,uJ) ∈ (FN

Q)J ,

PrCout





J
∧

j=1

Cout(m
j) = uj



 = Q−NJ = q−rnNJ . (14)

Recall that we denote the (random) generator matrices for the inner code Ci
in by Gi for every

1 6 i 6 N . Also note that every (u1, . . . ,uJ) ∈ (FN
Q)J has a unique Z(u1, . . . ,uJ). In other words,

the 2NJ choices of Z partition the tuples in (FN
Q)J .

Let h = ρnN . Consider the following calculation (where the dependence of Z and T on
u1, . . . ,uJ have been suppressed for clarity):

E[I(y,m1, . . . ,mJ)] =
∑

(u1,...,uJ)∈(FN
Q

)J

PrG=(G1,...,GN)





J
∧

j=1

wt(ujG− y) 6 h



 (15)

· PrCout





J
∧

j=1

Cout(m
j) = uj





= q−rnNJ
∑

(u1,...,uJ)∈(FN
Q

)J

PrG=(G1,...,GN)





J
∧

j=1

wt(ujG − y) 6 h



 (16)

6 q−rnNJ
∑

(u1,...,uJ)∈(FN
Q

)J

PrG=(G1,...,GN)





J
∧

j=1

wtTj
(ujG− y) 6 h



 (17)

= q−rnNJ
∑

(u1,...,uJ)∈(FN
Q

)J

J
∏

j=1

PrG
[

wtTj
(ujG − y) 6 h

]

(18)

16

In the above (15) follows from the fact that the (random) choices for Cout and G = (G1, . . . ,GN)
are all independent. (16) follows from (14). (17) follows from the simple fact that for every
y ∈ (Fn

q)N and T ⊆ [N], wtT (y) 6 wt(y). (18) follows from the same argument used to prove (5).

Further,

E[I(y,m1, . . . ,mJ)] =
∑

(u1,...,uJ)∈(FN
Q

)J

J
∏

j=1

q−rnN · PrG
[

wtTj
(ujG− y) 6 h

]

(19)

=
∑

(d1,...,dJ)∈{0,...,N}J

∑

(u1,...,uJ)∈(FN
Q)J ,

(|T1|=d1,...,|TJ |=dJ)

J
∏

j=1

PrG
[

wtTj
(ujG − y) 6 h

]

qrnN
(20)

6
∑

(d1,...,dJ)
∈{0,...,N}J

qJN+(rn+J)
∑J

j=1 dj

J
∏

j=1,
|Tj |=dj

PrG
[

wtTj
(ujG− y) 6 h

]

qrnN
(21)

=
∑

(d1,...,dJ)∈{0,...,N}J

J
∏

j=1,
|Tj |=dj

PrG
[

wtTj
(ujG − y) 6 h

]

q
n
(

−r(dj−N)−
Jdj
n

−N
n

) (22)

In the above (19), (20), (22) follow from rearranging and grouping the summands. (21) uses
the following argument. Given a fixed Z = (Z1, . . . , ZN), the number of tuples (u1, . . . ,uJ) such
that Z(u1, . . . ,uJ) = Z is at most U =

∏N
i=1 q|Zi|k · q|Zi|(J−|Zi|), where the q|Zi|k is an upper bound

on the number of |Zi| linearly independent vectors from F
k
q and q|Zi|(J−|Zi|) follows from the fact

that every bad symbol {uj
i}j 6∈Zi

has to take a value that is a linear combination of the symbols

{uj
i}j∈Zi

. Now U 6
∏N

i=1 q|Zi|(k+J) = q(k+J)
∑N

i=1 |Zi| = q(k+J)
∑J

j=1 |Tj |. Finally, recall that there are
2JN 6 qJN distinct choices for Z.

(22) implies the following

qnN(1+rRJ) · E[I(y,m1, . . . ,mJ)] 6
∑

(d1,...,dJ)∈{0,...,N}J

J
∏

j=1

Ej

where

Ej = q
−n

(

−r(dj−N(1−R))−N
J
−

Jdj
n

−N
n

)

· PrG
[

wtTj
(ujG− y) 6 h

]

.

We now proceed to upper bound Ej by q−Ω(nN/J) for every 1 6 j 6 J . Note that this will
imply the claimed result as there are at most (N + 1)J = qo(nN) choices for different values of dj ’s.

We first start with the case when dj < d∗, where

d∗ = N(1 − R − γ),

for some parameter 0 < γ < 1 −R to be defined later (note that we did not have to deal with this
case in the proof of Theorem 2). In this case we use the fact that PrG

[

wtTj
(ujG− y) 6 h

]

6 1.

17

Thus, we would be done if we can show that

1

N

(

r (dj − N(1 − R)) +
N

J
+

Jdi

n
+

N

n

)

6 −δ′ < 0,

for some δ′ > 0 that we will choose soon. The above would be satisfied if

dj

N
< (1 − R) −

1

r

(

1

J
+

Jdj

nN
+

1

n

)

−
δ′

r
,

which is satisfied if we choose γ > 2
r

(

1
J +

Jdj

nN + 1
n

)

+ δ′

r as dj < d∗. Note that if n > J
(

Jdj

N + 1
)

and if we set δ′ = 1
J , it is enough to choose γ = 4

Jr .

We now turn our attention to the case when dj > d∗. The arguments are very similar to those
employed in the proof of Theorem 2. In this case, by Lemma 4 we have

Ej 6 q
−ndj

(

1−Hq

(

h
ndj

)

−r

(

1−N(1−R)
dj

)

− N
djJ

−J
n
− N

ndj

)

.

The above implies that we can show that Ej is q−Ω(nN(1−R−γ)) provided we show that for every
d∗ 6 d 6 N ,

h

nd
6 H−1

q

(

1 − r

(

1 −
N(1 − R)

d

)

−
N

dJ
−

J

n
−

N

nd

)

− δ,

for δ = ε/3. Now if n > 2J2, then both J
n 6

N
2Jd and N

nd 6
N

2Jd . In other words, J
n + N

nd 6
N
Jd .

Using the fact that H−1
q is increasing, the above is satisfied if

h

nd
6 H−1

q

(

1 − r

(

1 −
N(1 − R − γ)

d

)

−
2N

dJ

)

− δ,

As in the proof of Theorem 2, as long as J > 4c′q/(δ
2(1 − R)), by Lemma 7 the above can be

satisfied by picking
h

nN
= H−1

q (1 − rR) − 3δ = ρ,

as required.

Note that J = O
(

1
(1−R)ε2

)

, which implies L = QO(1/((1−R)ε2) as claimed in the statement of

the theorem. Again using the same argument used in the proof of Theorem 2, it can be shown that
with high probability the rate of the code C = Cout ◦ (C1

in, . . . , CN
in) is rR. The proof is complete.

Remark 2. The proof of Theorem 3 does not use the list recoverability property of the outer
code directly. The idea of using list recoverability to argue independence can also be used to prove
Theorem 3. That is, first show that with good probability, a random linear outer code will have
good list recoverability. Then the argument in previous section can be used to prove Theorem 3.
However, this gives worse parameters than the proof above. In particular, by a straightforward
application of the probabilistic method, one can show that a random linear code of rate R over
FQ is (R + γ, `,Q`/γ)-list recoverable [4, Sec 9.3.2]. In proof of Theorem 2, ` is roughly qJ , where
J is roughly 1/ε2. Thus, if we used the arguments in the proof of Theorem 2, we would be able

to prove Theorem 3 but with lists of size of Qq
O(ε−2(1−R)−1)

, which is worse than the list size of

QO(ε−2(1−R)−1) guaranteed by Theorem 3.

18

Remark 3. In a typical use of concatenated codes, the block lengths of the inner and outer codes
satisfy n = Θ(log N), in which case the concatenated code of Theorem 3 is list decodable with lists

of size NO(ε−2(1−R)−1). However, the proof of Theorem 3 also works with smaller n. In particular
as long as n is at least 3J2, the proof of Theorem 3 goes through. Thus, with n in Θ(J2), one can
get concatenated codes that are list decodable up to the list-decoding capacity with lists of size

qO(ε−6(1−R)−3).

6 Open Questions

In this work, we have shown that the family of concatenated codes is rich enough to contain codes
that achieve the list-decoding capacity. But realizing the full potential of concatenated codes and
achieving capacity (or even substantially improving upon the Blokh-Zyablov bound [8]) with explicit
codes and polynomial time decoding remains a huge challenge. Achieving an explicit construction
even without the requirement of an efficient list-decoding algorithm (but only good combinatorial
list-decodability properties) is itself wide open.

The difficulty with explicit constructions is that we do not have any handle on the structure
of inner codes that lead to concatenated codes with the required properties. In fact, we do not
know of any efficient algorithm to even verify that a given set of inner codes will work, so even
a Las Vegas construction appears difficult (a similar situation holds for binary codes meeting the
Gilbert-Varshamov trade-off between rate and relative distance).

References

[1] E. L. Blokh and Victor V. Zyablov. Existence of linear concatenated binary codes with optimal
correcting properties. Prob. Peredachi Inform., 9:3–10, 1973.

[2] Ilya I. Dumer. Concatenated codes and their multilevel generalizations. In V. S. Pless and
W. C. Huffman, editors, Handbook of Coding Theory, volume 2, pages 1911–1988. North Hol-
land, 1998.

[3] G. David Forney. Concatenated Codes. MIT Press, Cambridge, MA, 1966.

[4] Venkatesan Guruswami. List decoding of error-correcting codes. Number 3282 in Lecture Notes
in Computer Science. Springer, 2004. (Winning Thesis of the 2002 ACM Doctoral Dissertation
Competition).

[5] Venkatesan Guruswami, Johan Hastad, Madhu Sudan, and David Zuckerman. Combinatorial
bounds for list decoding. IEEE Transactions on Information Theory, 48(5):1021–1035, 2002.

[6] Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently decodable
codes. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science, pages 658–667, 2001.

[7] Venkatesan Guruswami and Atri Rudra. Limits to list decoding Reed-Solomon codes. IEEE
Transactions on Information Theory, 52(8):3642–3649, August 2006.

19

[8] Venkatesan Guruswami and Atri Rudra. Better binary list-decodable codes via multilevel
concatenation. In Proceedings of the 11th International Workshop on Randomization and
Computation (RANDOM), pages 554–568, 2007.

[9] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on Information Theory, 54(1):135–
150, January 2008.

[10] F. J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes.
Elsevier/North-Holland, Amsterdam, 1981.

[11] Jørn Justesen. A class of constructive asymptotically good algebraic codes. IEEE Transactions
on Information Theory, 18:652–656, 1972.

[12] Atri Rudra. List Decoding and Property Testing of Error Correcting Codes. PhD thesis,
University of Washington, 2007.

[13] Michael Sipser and Daniel Spielman. Expander codes. IEEE Transactions on Information
Theory, 42(6):1710–1722, 1996.

[14] Daniel Spielman. The complexity of error-correcting codes. In Proceedings of the 11th Inter-
national Symposium on Fundamentals of Computation Theory, LNCS #1279, pages 67–84,
1997.

[15] Christian Thommesen. The existence of binary linear concatenated codes with Reed-Solomon
outer codes which asymptotically meet the Gilbert-Varshamov bound. IEEE Transactions on
Information Theory, 29(6):850–853, November 1983.

A Proof of Lemma 3

Proof. The proof follows from the subsequent geometric interpretations of fx,q(·) and αq(·). See
Figure 1 for a pictorial illustration of the arguments used in this proof (for q = 2).

First, we claim that for any 0 6 z0 6 1, αq(z0) satisfies the following property: the line segment
between (αq(z0),H

−1
q (1 − αq(z0))) and (z0, 0) is tangent to the curve H−1

q (1 − z) at αq(z0).

Thus, we need to show that

−H−1
q (1 − αq(z0))

z0 − αq(z0)
= (H−1

q)′(1 − αq(z0)). (23)

One can check that (H−1
q)′(1− x) = −1

H′
q(H−1

q (1−x))
= −1

logq(q−1)−logq(H−1
q (1−x))+logq(1−H−1

q (1−x))
. Now,

z0 − αq(z0) = z0 − 1 + (1 − qz0−1) logq(q − 1) − (1 − qz0−1) logq(1 − qz0−1) − qz0−1(z0 − 1)

= (1 − qz0−1) ·
(

logq(q − 1) − logq(1 − qz0−1) + z0 − 1
)

= H−1
q (1 − αq(z0)) ·

(

logq(q − 1) − logq(H
−1
q (1 − αq(z0))) + logq(1 − H−1

q (1 − αq(z0)))
)

=
−H−1

q (1 − αq(z0))

(H−1
q)′(1 − αq(z0))

,

20

z
xα2(x)θx

H−1(1 − z)

fx(θ)

H−1(1 − α2(x))

H−1(1 − θx)

0

0.5

0 1

Figure 1: Geometric interpretations of functions α2(·) and fx,2(·).

which proves (23) (where we have used the expression for αq(z) and (H−1
q)′(1 − z) and the fact

that 1 − qz−1 = H−1
q (1 − αq(z))).

We now claim that fx,q(θ) is the intercept of the line segment through (x, 0) and
(θx,H−1

q (1 − θx)) on the “y-axis.” Indeed, the “y-coordinate” increases by H−1
q (1 − θx) in the

line segment from x to θx. Thus, when the line segment crosses the “y-axis,” it would cross at an
intercept of 1/(1 − θ) times the gain going from x to θx. The lemma follows from the fact that
the function H−1

q (1 − r) is a decreasing (strictly) convex function of r and thus, the minimum of
fx,q(θ) would occur at θ = y provided yx 6 αq(x).

21

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Preliminaries
	q-ary Entropy and Related Functions
	Basic Coding Definitions
	Code Concatenation
	List Decoding and List Recovery

	Overview of the Proof
	Using Folded Reed-Solomon Code as Outer Code
	Linear Independence from List Recoverability
	The Main Result

	List Decodability of Random Concatenated Codes
	Open Questions
	Proof of Lemma 3

