
On the OBDD complexity of the most significant

bit of integer multiplication

Beate Bollig

LS2 Informatik, TU Dortmund,
44221 Dortmund, Germany

Abstract. Integer multiplication as one of the basic arithmetic func-
tions has been in the focus of several complexity theoretical investiga-
tions. Ordered binary decision diagrams (OBDDs) are one of the most
common dynamic data structures for boolean functions. Among the many
areas of application are verification, model checking, computer-aided de-
sign, relational algebra, and symbolic graph algorithms. In this paper it
is shown that the OBDD complexity of the most significant bit of inte-
ger multiplication is exponential answering an open question posed by
Wegener (2000).

Keywords: Computational complexity, integer multiplication, lower bounds,
ordered binary decision diagrams

1 Introduction and Result

Integer multiplication is certainly one of the most important functions in com-
puter science and a lot of effort has been spent in designing good algorithms and
small circuits and in determining its complexity. For one of the latest results
see, e.g., [8]. Ordered binary decision diagrams (OBDDs) are the most com-
mon dynamic data structure for boolean functions. Although many exponential
lower bounds on the OBDD size of boolean functions are known and the lower
bound methods are simple, it is often a more difficult task to prove large lower
bounds for some predefiend and interesting functions. Despite the well-known
lower bounds on the OBDD size of the so-called middle bit of multiplication
([7], [17]), until now the OBDD complexity of the most significant bit of mul-
tiplication has been unknown and Wegener [16] has asked whether its OBDD
complexity is exponential. In the following we answer his question affirmatively.

1.1 Branching programs or binary decision diagrams

Besides boolean circuits and formulae, branching programs (BPs), sometimes
also called binary decision diagrams (BDDs), are one of the standard represen-
tations for boolean functions. (For a history of results on branching programs
see, e.g., the monograph of Wegener [16]).

Electronic Colloquium on Computational Complexity, Report No. 56 (2008)

ISSN 1433-8092

Definition 1. A branching program (BP) on the variable set Xn = {x1, . . . , xn}
is a directed acyclic graph with one source and two sinks labeled by the constants
0 and 1. Each non-sink node (or decision node) is labeled by a boolean variable
and has two outgoing edges, one labeled by 0 and the other by 1.

An input b ∈ {0, 1}n activates all edges consistent with b, i.e., the edges
labeled by bi which leave nodes labeled by xi. A computation path for an input b
in a BP G is a path of edges activated by the input b which leads from the source
to a sink. A computation path for an input b which leads to the 1-sink is called
accepting path for b.

Let Bn denote the set of all boolean functions f : {0, 1}n → {0, 1}. The BP
G represents a function f ∈ Bn for which f(b) = 1 iff there exists an accepting
path for the input b.

The size of a branching program G is the number of its nodes and is denoted
by |G|. The branching program size of a boolean function f is the size of the
smallest BP representing f . The length of a branching program is the maximum
length of a path.

It is well known that the logarithm of the branching program size is essentially
the same as the space complexity of the nonuniform variant of Turing machines.
Hence, it is a fundamental open problem to prove superpolynomial lower bounds
on the size of branching programs for explicitly defined boolean functions. In
order to develop and strengthen lower bound techniques one considers restricted
computation models. There are several possibilities to restrict BPs, among them
restrictions on the multiplicity of variable tests or the order in which variables
may be tested.

Definition 2. i) A branching program is called read-k-times (BPk) if each
variable is tested on each path at most k times.

ii) A branching program is called s-oblivious for a sequence of variables s =
(s1, . . . , sl), si ∈ Xn, or short oblivious, if the set of decision nodes can be
partitioned into disjoint sets Vi, 1 ≤ i ≤ l, such that all nodes from Vi are
labeled by si and the edges which leave Vi-nodes reach a sink or a Vj-node
where j > i. The length of an s-oblivious branching program is the length of
the sequence s.

Besides the complexity theoretical viewpoint people have used branching pro-
grams in applications. Representations of boolean functions that allow efficient
algorithms for many operations, in particular synthesis (combine two functions
by a binary operation) and equality test (do two representations represent the
same function?) are necessary. Bryant [6] introduced ordered binary decision dia-
grams (OBDDs) which have become the most popular data structure for boolean
functions. Among the many areas of application are verification, model checking,
computer-aided design, relational algebra, and symbolic graph algorithms.

Definition 3. An OBDD is a branching program with a variable order given by
a permutation π on the variable set. On each path from the source to the sinks,
the variables at the nodes have to appear in the order prescribed by π (where

2

some variables may be left out). A π-OBDD is an OBDD ordered according to
π. The π-OBDD size of f denoted by π-OBDD(f) is the size of the smallest
π-OBDD representing f . The OBDD size of f , sometimes also called OBDD
complexity of f , (denoted by OBDD(f)) is the minimum of all π-OBDD(f).

1.2 Integer multiplication and binary decision diagrams

Lower bounds for integer multiplication are motivated by the general interest in
the complexity of important arithmetic functions.

Definition 4. The boolean function MULi,n ∈ B2n maps two n-bit integers x =
xn−1 . . . x0 and y = yn−1 . . . y0 to the ith bit of their product, i.e., MULi,n(x, y) =
zi, where x · y = z2n−1 . . . z0.

The bit z2n−1 is the most significant bit of integer multiplication in the
following sense. Let (z2n−1, . . . , z0) be the binary representation of the integer

z, i.e., z =
∑2n−1

i=0 zi · 2i. Since the bit z2n−1 has the highest value, for the
approximation of the value of the product of two n-bit numbers x and y it
is the most interesting one. On the other hand for space bounded models of
computation the most significant bit of integer multiplication is the easiest one
to compute in the sense that if it cannot be computed with size s(n), then any
other bit zi, 2n−1 > i ≥ n−1, cannot be computed with size s(n/2). Moreover, if
the bit zn−1 cannot be computed with size s(n/2), any other bit zi, n−1 > i ≥ 0,
cannot be computed in size s(i/2).

The middle bit of integer multiplication (the bit zn−1) is the hardest bit to
compute for space bounded models of computation in the sense that if it can be
computed with size s(n), then any other bit can be computed with size at most
s(2n). More precisely, any branching program for MUL2n−1,2n can be converted
into a branching program representing MULi,n, 0 ≤ i ≤ 2n − 1, by relabeling
the nodes and by replacing some inputs with the constant 0. Therefore, the first
exponential lower bounds have been proved for MULn−1,n. For OBDDs Bryant
[7] has presented an exponential lower bound of 2n/8 and Gergov has extended
the result for so-called nondeterministic linear-length oblivious branching pro-
grams [9]. Later Ponzio has shown that the complexity of this function is 2Ω(

√
n)

for read-once branching programs [12]. Progress in the analysis of MULn−1,n

has been achieved by a new approach using universal hashing. Woelfel [17] has
improved Bryant’s lower bound to Ω(2n/2) and Bollig and Woelfel [3] have pre-
sented a lower bound of Ω(2n/4) for read-once branching programs. Exponential
lower bounds have also been proved for more general read-once branching pro-
gram models that allow limited nondeterminism and for models where some but
not all variables may be tested multiple times (see, e.g., [2], [5], [18], [4]). Finally,
Sauerhoff and Woelfel [13] have presented exponential lower bounds on the size of
read-k-times branching programs representing the middle bit of multiplication.

Despite the well-known lower bounds for the middle bit of multiplication,
until now the OBDD complexity of the most significant bit of multiplication has
been unknown. Since the most significant bit is a monotone function it seems

3

to be easier to compute than the middle bit. The known upper bounds on the
OBDD size confirms this intuition. Amano and Maruoka [1] have presented an
upper bound of O(2n) on the OBDD size of the most significant bit of multi-
plication, whereas the best known upper bound for the middle bit is O(2(6/5)n).
Furthermore, in the lower bound proofs on the OBDD size for MULn−1,n it has
been shown that for an arbitrary variable order π there exists an assignment b to
one of the input vectors such that the π-OBDD size for the resulting subfunction
is exponential. In contrast it is not difficult to see that the π-OBDD size for any
subfunction of MUL2n−1,n where one of the input vectors is a constant is O(n2).

Computing the set of nodes that are reachable from some source s ∈ V in a
digraph G = (V, E) is an important problem in computer-aided design, hardware
verification, and model checking. Proving exponential lower bounds on the space
complexity of a common class of OBDD-based algorithms for the reachability
problem, Sawitzki [14] has presented the first exponential lower bound on the
size of π-OBDDs representing the most significant bit for the variable order
π where the variables are tested according to increasing significance, i.e. π =
(x0, y0, x1, y1, . . . , xn−1, yn−1). For the lower bounds on the space complexity of
the OBDD-based algorithms he has used the assumption that the output OBDDs
use the same variable order as the input OBDDs. But in contrast, practical
algorithms usually run variable reordering heuristics on intermediate OBDD
results in order to minimize their size. Therefore, it is interesting whether the
OBDD complexity of the most significant bit of multiplication is exponential.

In this paper we present the following result.

Theorem 1. OBDD(MUL2n−1,n) = Ω(2n/288).

As a by-product we improve Sawitzkis lower bound on the π-OBDD size for
the variable order π = (x0, y0, x1, y1, . . . , xn−1, yn−1) [14] up to Ω(2n/4) using a
much simpler proof.

2 Preliminaries

2.1 Notation

In the rest of the paper we use the following notation.
Let [x]lr, n − 1 ≥ l ≥ r ≥ 0, denote the bits xl . . . xr of a binary number

x = (xn−1, . . . , x0). For the ease of description we use the notation [x]lr = z if
(xl, . . . , xr) is the binary representation of the integer z ∈ {0, . . . , 2l−r+1 − 1}.
Sometimes, we identify [x]lr with z if the meaning is clear from the context.

Let ` ∈ {0, . . . , 2m − 1}, then ` denotes the number (2m − 1) − `.

2.2 Communication Complexity

In order to obtain lower bounds on the size of OBDDs one-way communication
complexity has become a standard technique (see Hromkovič [10] and Kushile-
vitz and Nisan [11] for the theory of communication complexity and the results
mentioned below).

4

The main subject is the analysis of the following (restricted) communication
game. Consider a boolean function f ∈ Bn which is defined on the variables in
Xn = {x1, . . . , xn}, and let Π = (XA, XB) be a partition of Xn. Assume that
Alice has only access to the input variables in XA and Bob has only access to the
input variables in XB. In a one-way communication protocol, upon a given input
x, Alice is allowed to send a single message (depending on the input variables
in XA) to Bob who must then be able to compute the answer f(x). The one-
way communication complexity of the function f denoted by C(f) is the worst
case number of bits of communication which need to be transmitted by such a
protocol that computes f . It is easy to see that an OBDD G with respect to
a variable order where the variables in XA are tested before the variables in
XB can be transformed into a communication protocol and C(f) ≤ dlog |G|e.
Therefore, linear lower bounds on the communication complexity of a function
f lead to exponential lower bounds on the OBDD complexity.

One central notion of communication complexity are fooling sets which play
an important role for the lower bound proof used later on.

Definition 5. Let f : {0, 1}|XA| × {0, 1}|XB| → {0, 1}. A set S ⊆ {0, 1}|Xa| ×
{0, 1}|XB| is called fooling set for f if f(a, b) = c for all (a, b) ∈ S and some
c ∈ {0, 1} and if for different pairs (a1, b1), (a2, b2) ∈ S at least one of f(a1, b2)
and f(a2, b1) is unequal to c.

Theorem 2. If f : {0, 1}|XA| × {0, 1}|XB| → {0, 1} has a fooling set of size t,
the communication complexity of f is bounded below by dlog te.

Because of our considerations above, the size t of a fooling set for f is a
lower bound on the size of OBDDs representing f with respect to a variable
order where the variables XA are tested before the variables XB. Because of
the symmetric definition of fooling sets, t is also a lower bound on the size
of OBDDs representing f with respect to a variable order where the variables
XB are tested before the variables XA. The crucial thing to prove large lower
bounds on the OBDD complexity of a function is to obtain for all partitions of
the variables large lower bounds on the size of fooling sets for subfunctions of
the given function.

Now we take a look at known results about the communication complexity
of some functions. Let EQ: {0, 1}n×{0, 1}n → {0, 1} be defined by EQ(a, b) = 1
iff the vectors a = (a1, . . . , an) and b = (b1, . . . , bn) are equal. It is well-known
and easy to prove that C(EQ) = n. Similar results can be obtained for the

functions GT : {0, 1}n × {0, 1}n → {0, 1}, GT∗ : {0, 1}n × {0, 1}n → {0, 1},

and GT∗∗ : {0, 1}n × {0, 1}n → {0, 1}, where GT(a, b) = 1 iff [a]n1 ≤ [b]n1 ,

GT∗(a, b) = 1 iff α ≤ [b]n1 , where α is the integer with binary representation a,

and GT∗∗(a, b) = 1 iff [a]n1 ≤ β, where β is the integer with binary representation
b. Furthermore, obviously the same results can be obtained if Alice gets exactly
one of the variables ai and bi, 1 ≤ i ≤ n. (The reason is that for GT∗ and GT∗∗

the variables of the same significance are symmetric variables, i.e., variables that
can be exchanged without changing the considered functions. To be more precise

5

two variables zi and zj are symmetric variables for a Boolean function f when
f|zi=0,zj=1 = f|zi=1,zj=0. For GT we choose as fooling set all assignments where
the variables of the same significance are equal.)

The addition function ADDi,n ∈ B2n maps two n-bit integers x = xn−1 . . . x0

and y = yn−1 . . . y0 to the ith bit of their sum, i.e., ADDi,n(x, y) = si, where
x + y = sn . . . s0. It is easy to see that ADDn,n has a fooling set of size 2n if for
each i, 0 ≤ i ≤ n−1, Alice gets exactly one of the variables xi and yi. The idea of
Bryant’s lower bound proof on the OBDD size of MULn−1,n [7] is the following.
For each variable order, there is a subfunction of MULn−1,n which essentially
equals the computation of the output bit at position m of the addition of two
m-bit numbers x and y where m ≥ n/8. The variable order is bad in the sense
that among Alice’s m variables is exactly one of the variables xi and yi.

3 An exponential lower bound on the OBDD complexity

of the most significant bit of integer multiplication

In this section, we prove Theorem 1 and determine a lower bound of Ω(2n/288)
on the size of OBDDs for the representation of the most significant bit of mul-
tiplication mentioned above. We start to prove a lower bound of Ω(2n/432) and
present afterwards ideas how to improve this lower bound up to Ω(2n/288).

Besides Bryant’s lower bound proof on the size of OBDDs representing the
middle bit of multiplication we use the idea of the following reduction from
multiplication to squaring presented by Wegener [15] where squaring computes
the square of an n-bit input. For two n-bit numbers u and w the number z :=
u · 22(n+1) + w is defined. Then

z2 = u2 · 24(n+1) + uw22(n+1)+1 + w2.

Since w2 and uw are numbers of length 2n, the binary representation of the
product uw can be found in the binary representation of z2.

In the following for the sake of simplicity we do not apply floor or ceiling
functions to numbers even when they need to be integers whenever this is clear
from the context and has no bearing on the essence of the proof.

We start with a simplified presentation of our main proof ideas. Our aim is to
show for an arbitrary variable order π that a π-OBDD for MUL2n−1,n contains

in a certain way a π-OBDD for the function GT∗∗(w′, w′′), where the length of
the inputs w′ and w′′ is Θ(n) and the w′-variables are before the w′′-variables
in π. Therefore, there exists a large fooling set and as a consequence also the
size of the π-OBDD for MUL2n−1,n has to be large. The vectors w′ and w′′ are
subvectors of one of the inputs x and y for MUL2n−1,n, in the following w.l.o.g.
of x. The key observation is the following one.

Claim 1. For a number 2n−1 + `2(1/2)n, ` ≤ 2n/6−1, the corresponding small-
est number such that the product of the two numbers is at least 22n−1 is 2n −
`2(1/2)n+1 + 4`2. (Figure 2 shows the corresponding x- and y-inputs.)

6

For the sake of completeness, we include the simple proof.

Proof. Let a be an integer 2n−1 + `2n/2, where 1 ≤ ` ≤ 2n/6−1. Then the
smallest number ba such that a · ba ≥ 22n−1 and therefore MUL2n−1,n(a, ba) = 1
is

⌈

22n−1

2n−1 + `2n/2

⌉

= 2n − `2n/2+1 + 4`2 −

⌊

4`3

2n/2−1 + `

⌋

.

Since ` is at most 2n/6−1 the last term is 0 and we are done. 2

For realizing our proof idea we have to make sure that if x represents a
number 2n−1 + `2n/2, 1 ≤ ` ≤ 2n/6−1, the upper half of y represents the number
2n/2 − 2`, i.e., [y]n−1

n/2 = 2n/2 − 2`. We will see that if we cannot guarantee this

requirement, the π-OBDD size for MUL2n−1,n is large.
In order to use Wegener’s observation on squaring mentioned above combined

with Bryant’s lower bound proof we only consider integers ` where ` = u22(m+1)+
w, u, w < 2m and m = n/18 − 1. (Later on we show that m can be enlarged up
to n/12 − 7/6 which leads to a larger lower bound.) For this reason we replace
the variables xn/2+m, . . . , xn/2+2m+1 by 0. Afterwards we replace some of the

x-variables by constants such that u · w is equal to the sum w′′22d+c + (w′′ +
w′)2d+c + w′2c, where w′ and w′′ are different parts of x. The length n′ of w′

and w′′ is at least m/8 = Θ(n) and d > n′ . Furthermore, as a simplification we
can assume that the w′-variables are before the w′′-variables in π.

The last step is to replace some of the y-variables such that the lower part
of y can be seen as a number of at least 4`2, where x = 2n−1 + `2n/2, iff the sum
of w′ and w′′ is at most 2n′

− 1.
Now we make these ideas more precise. We start our proof by the following

observation.

Lemma 1. A pair (xi, yi+1), n/2 + 1 ≤ i ≤ (3/4)n − 2, is called (x, y)-pair.
Let S be the set of the first |S| variables according to a variable order π. A
pair (xi, yi+1) is called separated with respect to S iff xi ∈ S and yi+1 /∈ S or
vice versa. If there exist a set S according to π such that there are at least m
separated (x, y)-pairs with respect to S, the π-OBDD size of the most significant
bit of integer multiplication is at least 2m.

Proof. In the following, we prove the existence of a fooling set with at least
2m elements. For this reason we choose a subfunction of MUL2n−1,n such that
the computation of this subfunction resembles the computation of the function
GT∗

m.
The key observation is the following one.

Claim 2. For a number 2n−1 + `2(1/2)n, ` < 2(1/4)n−1, the corresponding small-
est number divisible by 2(1/2)n such that the product of the two numbers is at
least 22n−1 is 2n − `2(1/2)n+1 + 2(1/2)n.

For the sake of completeness we include the simple proof.

7

Proof. From the proof of Claim 1 we know that ba = 2n − `2n/2+1 + 4`2 −

b 4`3

2n/2−1+`
c is the smallest number such that a · ba ≥ 22n−1 for a = 2n−1 + `2n/2.

Since 4`2 ≥ b 4`3

2n/2−1+`
c and 4`2 < 2(1/2)n we obtain the desired result. 2

We assume the existence of a set S according to π such that there are at
least m separated (x, y)-pairs.

Now we replace some of the variables in the following way.

- yn−1, . . . , y(3/4)n are replaced by 1,
- yn/2, yn/2+1 are replaced by 1,
- y0, . . . , yn/2−1 are replaced by 0,
- x0, . . . , xn/2−1 are replaced by 0,
- xn/2 is replaced by 1,
- xn−1 is replaced by 1,
- xn−2, . . . , x(3/4)n−1 are replaced by 0,
- xi is replaced by 1 and yi+1 is replaced by 0 if i ∈ {n/2 + 1, . . . , (3/4)n− 2}

and (xi, yi+1) is not separated with respect to S.

Figure 1 illustrates some of these replacements. The effect is the following
one. For each assignment to the separated x-variables the corresponding smallest
assignment to the separated y-variables such that the product of x and y is at
least 22n−1 has the property that yi+1 = xi ⊕ 1 (for all i where xi is a separated
variable).

...00...10

1 1 11** 0 0

l̄′

x

y... ...

l
′

...* 1* 0

...

n

2

3

4
n − 2n − 1 0

Fig. 1. The effect of the replacements in the proof of Lemma 1.

In the rest of the proof we show that all assignments to the separated x- and
y-variables in S together with the corresponding assignments to the remaining
separated x-and y-variables not in S are a fooling set of size at least 2m.

Let bS be an assignment to the separated x- and y-variables in S and br the
corresponding assignment to the remaining separated x- and y-variables. In the

8

following bS(xi) (bS(yj)) denotes the assignment of bS to the separated variable
xi (yj) in S. Together with the first replacements to constants bS and br can be
seen as numbers 2n−1 + `2n/2 and 2n − `2n/2+1 + 2n/2.

(2n−1 + `2n/2) · (2n − `2n/2+1 + 2n/2)

= 22n−1 + 2(3/2)n` − 2(3/2)n` − 2n+1`2 + 2(3/2)n−1 + 2n`

= 22n−1 − 2n+1`2 + 2(3/2)n−1 + 2n`

> 22n−1.

Therefore, MUL2n−1,n(2n−1 + `2n/2, 2n − `2n/2+1 + 2n/2) = 1.
Let b′S and b′′S be two different assignments to the separated x- and y-

variables in S, b′r and b′′r the two corresponding assignments to the remaining
separated x- and y-variables. Let imax := max{i | b′S(xi) 6= b′′S(xi) or b′S(yi+1) 6=
b′′S(yi+1)}. W.l.o.g. let b′S(ximax) 6= b′′S(ximax) and b′S(ximax) > b′′S(ximax). Since
b′r(yimax+1) < b′′r (yimax+1), we can conclude that b′′S together with b′r and the
first replacements to constants can be seen as numbers 2n−1 + `12

n/2 and 2n −
`22

n/2+1 + 2n/2, where `2 > `1.
We get the following result.

(2n−1 + `12
n/2) · (2n − `22

n/2+1 + 2n/2)

= 22n−1 + 2(3/2)n`1 − 2(3/2)n`2 − 2n+1`1`2 + 2(3/2)n−1 + 2n`1

< 22n−1.

Therefore, MUL2n−1,n(2n−1 + `12
n/2, 2n − `22

n/2+1 + 2n/2) = 0. 2

Obviously, the same result can be shown if we change the roles of the x- and
y-variables.

In the following let π be an arbitrary variable order.

First, we take a closer look at the variables xn/2, . . . , xn/2+n/6−2. For the ease

of description we assume that (n/6−1) mod 3 = 2. We rename [x]
n/2+n/18−2
n/2 by

[w]m−1
0 and [x]

n/2+n/6−2
n/2+n/9 by [u]m−1

0 , where m := (n/6−3)/3. Figure 2 illustrates

the partition of the input x.
Let S be the set of the first |S| variables according to π where there are at least

m/2 variables from {w0, . . . , wm−1} for the first time. Let IS ⊆ {0, . . . , m − 1}
be the set of indices i for which wi ∈ S. Using simple counting arguments we can
prove that there exists a distance parameter d such that there exists a set of pairs
P = {(wi, wi+d)|i ∈ IS and (i + d) /∈ IS or i /∈ IS and (i + d) ∈ IS , where 0 ≤
i < m/2 ≤ i + d ≤ m− 1} and |P | ≥ m/8 (see [7] for a similar proof). Let I ′′ be
the set of indices i, 0 ≤ i < m/2, where wi belongs to a pair in P .

Case 1: There are at least m/24 separated (xn/2+i, yn/2+i+1)-pairs with
respect to S, where i ∈ I ′′ or i − d ∈ I ′′. Using Lemma 1 we can conclude that
the π-OBDD size of the most significant bit of integer multiplication is at least
2m/24.

9

...00...10 x

u w

0...0

1 ... 1 y0 ... 0

n

2

n

2
+

n

6
− 2n − 1

0

000

n

2
+

n

6
− 1

n

2
02

n

3
− 1

0

l

l
2

n − 1

l̄ + 1

Fig. 2. The partition of the inputs x and y.

Case 2: There are less than m/24 separated (xn/2+i, yn/2+i+1)-pairs with
respect to S, where i ∈ I ′′ or i − d ∈ I ′′. Let I ′ ⊆ I ′′ be the set of indices such
that (xn/2+i, yn/2+i+1) and (xn/2+i+d, yn/2+i+d+1), i ∈ I ′′, are not separated
with respect to S. Obviously, |I ′| ≥ (2/24)m.

Now we replace some of the variables in the following way.

- yn−1, . . . , yn/2+n/6 are replaced by 1,
- yn/2, . . . , yn/3, y1, and y0 are replaced by 0,

- xn−1 is replaced by 1,
- xn−2, . . . , xn/2+n/6−1 are replaced by 0,
- xn/2+n/9−1, . . . , xn/2+n/18−1 are replaced by 0,
- yn/2+n/9, . . . , yn/2+n/18 are replaced by 1,
- x0, . . . , xn/2−1 are replaced by 0.

Figure 2 illustrates these replacements. Furthermore, u0 and ud are set to 1,
all other u-variables are set to 0. The effect of these replacements is that [u]m−1

0 =
2d + 1 =: u. The corresponding y-variables yn/2+n/9+1 and yn/2+n/9+d+1 are
set to 0, all other variables yj , where n/2 + n/6 − 1 ≤ j ≤ n/2 + n/9 + 1
are replaced by 1. The variables y4m+6, y4m+d+7, and y4m+2d+6 are set to 1,
the other variables yj with 4m + 6 ≤ j ≤ 6m + 5 are set to 0. The effect of
these replacemenst is that [y]6m+5

4m+6 = u2 (Figure 4 shows these replacements).
The variables y4m+5, y2m+4, y2m+3 and y2m+2 are set to 0, and the variables
y2m+1, . . . , y2 are set to 1. The effect of the last replacements is that 22m >
[y]2m+1

2 > w2, where w is defined as the integer with binary representation
[w]m−1

0 . Figure 4 illustrates these replacements. Now we take a closer look at

10

the product u ·w, where u is equal to 2d +1. Figure 5 illustrates the composition
of the product u · w (under certain assumptions on the number w).

l
2

0000

w
2

u
2

2m − 1 04m + 2

u · w

4m + 46m + 3 2m + 3

Fig. 3. The bit composition of the number l2.

0000

u · w

1...u
2 1 y

22m + 5 2m + 16m + 5 4m + 44m + 6

Fig. 4. The effect of the replacements of some of the y-variables.

A pair (wi+d, y2m+5+2d+i), i ∈ I ′, is called (w, y)-pair. A (w, y)-pair is called
separated with respect to S iff wi+d ∈ S and y2m+5+2d+i /∈ S or vice versa.

Case 2.1:

In the following we prove the existence of a fooling set with at least 2m/24 ele-
ments. For this reason we choose a subfunction of MUL2n−1,n such that the com-
putation of this subfunction resembles the computation of the function GTm/24.

There are at least m/24 separated (w, y)-pairs with respect to S. Similar
to the proof of Lemma 1 we can show that there exists a fooling set of size at
least m/24. The separated w-variables and their corresponding y-variables are
called free. Furthermore, a variable yn/2+i+d+1 for which the variable wi+d is
free is also called free. Remember that the variable yn/2+i+d+1 is in S iff wi+d

is in S because of the definition of I ′. Let min I ′ be the minimal and max I ′ be
the maximal element of I ′. In the rest of the proof, we choose for each variable
yn/2+i+d+1, where wi+d is a free variable and i 6= min I ′, an assignment such
that yn/2+i+d+1 = wi+d ⊕ 1 without further mentioning it.

- The variables wmin I′+d, y2m+5+2d+min I′ , and yn/2+min I′+d+1 are set to 1.
- The variables wj and yn/2+j+1, 0 ≤ j < min I ′ + d, are set to 0.

11

- All other variables wi which are not free are set to 0, their corresponding
variables yn/2+i+1 are set to 1.

- The other y-variables which are not free are replaced in the following way.
The variable y2m+5+max I′+d+1 is set to 1, the remaining y-variables without
the free variables to 0.

What is the effect of these replacements? Remember that [w]m−1
0 = [x]

n/2+m−1
n/2 .

We only consider assignments to the variables for which the following holds. If

[x]
n/2+3m+1
n/2 = ` then [y]

n/2+3m+2
n/2+1 = ` + 1. Now iff [y]6m+3

2 represents a number

r, where r ≥ `2, the product x · y is greater than 22n−1. We take a closer look at
the variables y2, . . . , y6m+3. Figure 3 shows the composition of the number `2.
One effect of our replacements is that [y]6m+5

4m+6 = u2 and [y]2m+1
2 > w2. There-

fore, iff [y]4m+4
2m+5 represents a number r′, where r′ ≥ u · w, [y]6m+5

2 represents a
number r, where r ≥ `2. Figure 5 illustrates the composition of the number u ·w
which is the same as the sum of w and w ·2d. Since we have replaced the variable
y2m+5+max I′+d+1 by 1 and because of our other replacements, [y]6m+5

2 represents
a number r, where r ≥ `2, iff for each separated (w, y)-pair, the assignment to
the variable y2m+5+2d+i is at least as large as the assignment to the variable
wi+d. Therefore, the considered subfunction resembles the function GTm/24.

In the rest of the proof we show that all possible assignments bS to the free
variables in S together with all possible assignments br to the remaining free
variables, such that y2m+5+2d+i = wi+d for the free variables, are a fooling set
of size at least m/24.

Together with the replacements to constants an assignment to the free w-
variables and the corresponding assignment to the free y-variables can be seen
as numbers 2n−1 + `2n/2 and 2n − `2n/2+1 + c, where c > 4`2. Therefore, the
product of the two numbers is larger than 22n−1.

Let b′S and b′′S be two different assignments to the free w- and y-variables
in S, b′r and b′′r the two corresponding assignments to the remaining free w-
and y-variables. Let imax := max{i | b′S(wi+d) 6= b′′S(wi+d) or b′S(y2m+5+2d+i) 6=
b′′S(y2m+5+2d+i)}. W.l.o.g. let b′S(wimax+d) 6= b′′S(wimax+d) and b′S(wimax+d) >
b′′S(wimax+d). Since b′r(y2m+5+2d+imax) > b′′r (y2m+5+2d+imax), we can conclude
that b′S together with b′′r and the first replacements to constants can be seen as
numbers 2n−1 + `2n/2 and 2n − `2n/2+1 + c, where c′ < 4`2. Since

(2n−1 + `2n/2) · (2n − `2n/2+1 + c′) < 22n−1,

we are done.
Case 2.2: In the following we prove the existence of a fooling set with at

least 2m/24 elements. For this reason we choose a subfunction of MUL2n−1,n

such that the computation of this subfunction resembles the computation of the
function GT∗∗

m/24.
There are less than m/24 separated (w, y)-pairs with respect to S. Let I ⊆ I ′

be the set of indices such that (wi+d, y2m+5+2d+i), i ∈ I ′, are not separated with
respect to S. Obviously, |I| ≥ m/24. Let min I and max I be the minimal resp.
maximal element of I. For this reason we replace some of the variables in the
following way.

12

- The variables wmin I and yn/2+min I+1 are set to 1, the variable wmin I+d is
set to 0, the variable yn/2+min I+d+1 is set to 1,

- the variables wi, i < min I, are set to 0, the corresponding variables yn/2+i+1

are set to 0,
- the variables wi, min I < i < max I and i /∈ I are set to 1, the corresponding

variables yn/2+i+1 are set to 0,
- all other variables wj , j /∈ I and j − d /∈ I, are set to 0, the corresponding

variables yn/2+j+1 are set to 1.

Furthermore, the variables y2m+5+2d+i, i ∈ I ′ \ I, are replaced by 0. The
variables y2m+5+2d+i, yn/2+i+1, and yn/2+i+d+1, i ∈ I, are called free. The y-
variables which are not free are replaced in the following way.

- The variables yj , 2m + 5 + min I ≤ j ≤ 2m + 5 + max I, are set to 1,
- the variables yj , 2m + 5 + min I + d ≤ j ≤ 2m + 5 + max I + d, are set to 1,

and
- all other variables yj with 2m + 5 ≤ j ≤ 6m + 5 besides the free y-variables

are set to 0.

The free y-variables are not separated from their corresponding w-variables,
since we know that wi ∈ S and yn/2+i+1 ∈ S or wi 6∈ S and yn/2+i+1 6∈ S, where
i ∈ I, because of the definition of I. The same holds for wi+d, yn/2+i+d+1, and
y2m+5+2d+i, where i ∈ I. In the rest of the proof we only consider assignments
with the property that

- yn/2+i+1 = wi ⊕ 1,
- yn/2+i+d+1 = wi+d ⊕ 1, and
- y2m+5+2d+i = wi+d,

where i ∈ I, without further mentioning it.
In the following we prove that all possible assignments to the variables wi, i ∈

I, together with the assignments to the variables wi+d, i ∈ I, such that wi+d =
wi ⊕ 1 are a fooling set of size at least m/24. Together with the replacements to
constants our assignments to the variables wi, i ∈ I or i − d ∈ I, can be seen
as a number 2n−1 + `2n/2. The corresponding assignments to the y-variables
can be interpreted as number 2n − `2n/2+1 + c, where c > 4`2. Therefore, the
product of the two numbers is larger than 22n−1. To see this we decompose `
into u · 22m+2 + w, where u = [u]m−1

0 and w = [w]m−1
0 . The number c can be

decomposed into

[y]6m+5
4m+6 · 2

4m+6 + [y]4m+4
2m+5 · 2

2m+5 + [y]2m+1
2 · 22.

As mentioned before, [y]6m+5
4m+6 = u2 and w2 < [y]2m+1

2 < 22m (see Figure

2). The number [w]m−1
0 can be decomposed into [w]max I+d

min I+d · 2min I+d + [w]max I
min I ·

2min I . Let w′ := [w]max I
min I and w′′ := [w]max I+d

min I+d . Now the number [y]4m+4
2m+5 can

be decomposed into w′′ · 22m+5+2d+min I +(2max I−min I+1 − 1) · 22m+5+d+min I +
(2max I−min I+1 − 1) · 22m+5+min I . Iff w′ + w′′ ≤ 2max I−min I+1 − 1, the number

13

[y]4m+4
2m+5 is greater than u · w and altogether [y]6m+5

2 > `2. Therefore, we can
conclude c > 4`2.

If w′ + w′′ > 2max I−min I+1 − 1, the number [y]4m+4
2m+5 is less than u · w.

Therefore, x can be seen as number 2n−1 + `′2n/2 and y as 2n − `′2n/2+1 + c,
where c < 4`′2. Since

(2n−1 + `′2n/2) · (2n − `′2n/2+1 + c) < 22n−1

we are done.

Altogether we have shown that for an arbitrary variable order π the π-OBDD
size for the most significant bit of multiplication is at least 2m/24. Considering
the fact that m := (n/6−3)/3 = n/18−1 we obtain a lower bound of 2n/432−1 =
Ω(2n/432) on the OBDD complexity of MUL2n−1,n.

Now we present the ideas how to improve the lower bound on the OBDD
complexity of MUL2n−1,n up to Ω(2n/288). As we have seen in the proof of Claim
1 for a number 2n−1 + `2n/2, the corresponding smallest number such that the

product of the two numbers is at least 22n−1 is 2n − `2n/2+1 +4`2 −
⌊

4`3

2n/2−1+`

⌋

.

For ` ≤ 2n/4−3/2 and ` < 23m+2, the number
⌊

4`3

2n/2−1+`

⌋

is smaller than ` and

therefore smaller than 23m+2.
Our aim is to enlarge m to n/12 − 7/6. The idea is to choose u and w such

that u224m+6 + w(2m+5)+m−1 + (w′′ + 1)2(2m+5)+m−1−d > 4`2 −
⌊

4`3

2n/2−1+`

⌋

≥

u224m+6 + w(2m+5)+m−1 + w′′2(2m+5)+m−1−d, where ` = u22(m+1) + w. As a
result we can adapt our lower bound proof easily.

We choose u := 2m−1 + 2m−1−d instead of u = 2d + 1, set the variable w0

to 1, and adapt the settings to the corresponding variables, e.g., y(2m+5)+m−1

and y(2m+5)+m−2 are set to 1. The variables um−1 and um−1−d are set to 1 and

[y]6m+5
4m+6 = u2. The proof of Case 2 has to be adapted to pairs (wi+d, y3m+4+i+d),

i ∈ I ′.

Using techniques from analytical number theory Sawitzki [14] has presented a
lower bound of Ω(2n/6) on the size of π-OBDDs representing the most significant
bit of integer multiplication for the variable order π where the variables are tested
according to increasing significance, i.e. π = (x0, y0, x1, y1, . . . , xn−1, yn−1). A
larger lower bound can be proved in an easier way and without analytical number
theory using the fact that for a number 2n−1 + `2(1/2)n, ` ≤ 2(1/4)n−1, the
corresponding smallest number such that the product of the two numbers is at

least 22n−1 is 2n − `2n/2+1 + 4`2 −
⌊

4`3

2n/2−1+`

⌋

. Since

4`2 −

⌊

4`3

2n/2−1 + `

⌋

> 4(` − 1)2

for ` ≤ 2(1/4)n−1, it is not difficult to construct a fooling set of size 2(1/4)n−1.

14

Furthermore, we only want to mention here that similar to Gergov’s [9] gen-
eralization of Bryant’s lower bound on the size of OBDDs for the middle bit of
multiplication to arbitrary oblivious programs of linear length the result for the
most significant bit of multiplication can be analogously extended.

� � � � � �� � � � � �
� � � � �� � � � � � � � � �� � � � �

� � � � �� � � � �

� � � � � �� � � � � �� � � � � �
� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �
	 	 	 	 	 		 	 	 	 	 	

� � � � �� � � � �

� � � � � �� � � � � �

����� � � � �� � � � �

� � � � �� � � � �

� � � � � �� � � � � �
� � � � � �� � � � � �

��
�
��
�

...0 0

...0 0

...0 0

...0 0

...0 0

...0 0

a)

c)

b)

w′′ w′

0 w00 ...

× u110 0 0 0

d

+
w · 2d

(max I + d) max I

min Imax I(max I + d)(max I + 2d)

w
′

w
′ + w

′′
w

′′

w

maxI(max I + d) min I

0 0...

0 ... 0

0 ... 0 0 ... 0 0 ... 0

(min I + d)

min I

(min I + d)

(min I + 2d) (min I + d)

Fig. 5. The product u · w (under the assumption that w′ + w′′ < 2max I−min I+1).

Acknowledgement

The author would like to thank Martin Sauerhoff for careful reading the first
version of the paper and for valuable suggestions which helped to improve the
paper.

15

References

1. Amano, K. and Maruoka, A. (2007). Better upper bounds on the QOBDD size of
integer multiplication. Discrete Applied Mathematics 155, 1224–1232.

2. Bollig, B. (2001). Restricted nondeterministic read-once branching programs and an
exponential lower bound for integer multiplication. RAIRO Theoretical Informatics
and Applications, 35:149–162.

3. Bollig, B. and Woelfel, P. (2001). A read-once branching program lower bound of
Ω(2n/4) for integer multiplication using universal hashing. Proc. of 33rd STOC, 419–
424.

4. Bollig, B., Waack, St., and Woelfel, P. (2006). Parity graph-driven read-once branch-
ing programs and an exponential lower bound for integer multiplication. Theoretical
Computer Science 362, 86–99.

5. Bollig, B. and Woelfel, P. (2005). A lower bound technique for nondeterministic
graph-driven read-once branching programs and its applications. Theory of Comput-
ing Systems 38, 671–685.

6. Bryant, R. E. (1986). Graph-based algorithms for Boolean manipulation. IEEE
Trans. on Computers 35, 677–691.

7. Bryant, R. E. (1991). On the complexity of VLSI implementations and graph rep-
resentations of Boolean functions with application to integer multiplication. IEEE
Trans. on Computers 40, 205–213.

8. Führer, M. (2007). Faster integer multiplication. Proc. of 39th STOC, 57–66.
9. Gergov, J. (1994). Time-space trade-offs for integer multiplication on various types

of input oblivious sequential machines. Information Processing Letters 51, 265–269.
10. Hromkovič, J. (1997). Communication Complexity and Parallel Computing.

Springer.
11. Kushilevitz, E. and Nisan, N. (1997). Communication Complexity. Cambridge Uni-

versity Press.
12. Ponzio, S. (1998). A lower bound for integer multiplication with read-once branch-

ing programs. SIAM Journal on Computing 28, 798–815.
13. Sauerhoff, M. and Woelfel, P. (2003). Time-space trade-off lower bounds for integer

multiplication and graphs of arithmetic functions. Proc. of 33rd STOC, 186–195.
14. Sawitzki, D. (2006). Exponential lower bounds on the space complexity of OBDD-

based graph algorithms. Proc. of LATIN, LNCS 3831, 471-482.
15. Wegener, I. (1993). Optimal lower bounds on the depth of polynomial-size thresh-

old circuits for some arithmetic functions. Information Processing Letters 46/2, 85–
87.

16. Wegener, I. (2000). Branching Programs and Binary Decision Diagrams - Theory

and Applications. SIAM Monographs on Discrete Mathematics and Applications.
17. Woelfel, P. (2005). New bounds on the OBDD-size of integer multiplication via

universal hashing. Journal of Computer and System Science 71/4, 520–534.
18. Woelfel, P. (2002). On the complexity of integer multiplication in branching pro-

grams with multiple tests and in read-once branching programs with limited nonde-
terminism. Proc. of 17th Computational Complexity, 80–89.

16

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

