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Abstract

Representations of Boolean functions by real polynomials play an im-
portant role in complexity theory. Typically, one is interested in the least
degree of a polynomialp(x1, . . . , xn) that approximates or sign-represents a
given Boolean functionf (x1, . . . , xn). This article surveys a new and grow-
ing body of work in communication complexity that centers around thedual
objects, i.e., polynomials that certify the difficulty of approximating or sign-
representing a given function. We provide a unified guide to the following
results, complete with all the key proofs:

• Sherstov’s Degree/Discrepancy Theorem,which translates lower
bounds on the threshold degree of a Boolean function into upper
bounds on the discrepancy of a related function;

• Two different methods for proving lower bounds on bounded-error
communication based on the approximate degree: Sherstov’spattern
matrix methodand Shi and Zhu’sblock composition method;

• Extension of the pattern matrix method to the multiparty model, ob-
tained by Lee and Shraibman and by Chattopadhyay and Ada, andthe
resulting improved lower bounds for;

• David and Pitassi’s separation ofNP andBPP in multiparty communi-
cation complexity fork 6 (1− ε) logn players.
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1 Introduction

Representations of Boolean functions by real polynomials are of considerable im-
portance in complexity theory. The ease or difficulty of representing a given
Boolean function by polynomials from a given set often yields valuable insights
into the structural complexity of that function.

We focus on two concrete representation schemes that involve polynomi-
als. The first of these corresponds to threshold computation. For a Boolean
function f : {0, 1}n → {0, 1}, its threshold degreedeg±( f ) is the minimum
degree of a polynomialp(x1, . . . , xn) such thatp(x) is positive if f (x) = 1
and negative otherwise. In other words, the threshold degree of f is the least
degree of a polynomial that representsf in sign. Several authors have ana-
lyzed the threshold degree of common Boolean functions [MP88, BRS95, OS03].
The results of these investigations have found numerous applications to circuit
complexity [ABFR94, BRS95, KP97, KP98] and computational learning the-
ory [KS04, KOS04, KS07b].

The other representation scheme that we consider is approximation in the
uniform norm. For a Boolean functionf : {0, 1}n → {0, 1} and a constant
ε ∈ (0, 1/2), the ε-approximate degree off is the least degree of a polynomial
p(x1, . . . , xn) with | f (x) − p(x)| 6 ε for all x ∈ {0, 1}n. Note that this repre-
sentation is strictly stronger than the first: no longer are we content with rep-
resenting f in sign, but rather we wish to closely approximatef on every in-
put. There is a considerable literature on the approximate degree of specific
Boolean functions [NS92, Pat92, KLS96, BCWZ99, AS04, She08, Wol08]. This
classical notion has been crucial to progress on a variety ofquestions, includ-
ing quantum query complexity [BCWZ99, BBC+01, AS04], communication com-
plexity [BW01, Raz03, BVW07] and computational learning theory [TT99, KS04,
KKMS05, KS07a].

The approximate degree and threshold degree can be conveniently analyzed by
means of a linear program. In particular, whenever a given function f cannot be ap-
proximated or sign-represented by polynomials of low degree, linear-programming
duality implies the existence of a certaindual object to witness that fact. This dual
object, which is a real function or a probability distribution, reveals useful new
information about the structural complexity off . The purpose of this article is to
survey a very recent and growing body of work in communication complexity that
revolves around the dual formulations of the approximate degree and threshold
degree. Our ambition here is to provide a unified view of thesediverse results,
complete with all the key proofs, and thereby to encourage further inquiry into the
potential of the dual approach.

In the remainder of this section, we give an intuitive overview of our survey.
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Degree/Discrepancy Theorem. The first result that we survey, in Section 3, is
the author’sDegree/Discrepancy Theorem[She07a]. This theorem and its proof
technique are the foundation for much of the subsequent worksurveyed in this
article [She07b, Cha07, LS07, CA08, DP08]. Fix a Boolean function f : {0, 1}n→
{0, 1} and letN be a given integer,N > n. In [She07a], we introduced the two-party
communication problem of computing

f (x|V),

where the Boolean stringx ∈ {0, 1}N is Alice’s input and the setV ⊂ {1, 2, . . . ,N}
of size |V| = n is Bob’s input. The symbolx|V stands for the projection ofx onto
the indices inV, in other words,x|V = (xi1, xi2, . . . , xin) ∈ {0, 1}n, wherei1 < i2 <
· · · < in are the elements ofV. Intuitively, this problem models a situation when
Alice and Bob’s joint computation depends on onlyn of the inputsx1, x2, . . . , xN.

Alice knows the values of all the inputsx1, x2, . . . , xN but does not know whichn
of them are relevant. Bob, on the other hand, knows whichn inputs are relevant
but does not know their values.

We proved in [She07a] that the threshold degreed of f is a lower bound
on the communication requirements of this problem. More precisely, the De-
gree/Discrepancy Theorem shows that this communication problemhas discrep-
ancy exp(−Ω(d)) as soon asN > 11n2/d. This exponentially small discrepancy
immediately gives anΩ(d) lower bound on communication in a variety of models
(deterministic, nondeterministic, randomized, quantum with and without entangle-
ment). Moreover, the resulting lower bounds on communication hold even if the
desired error probability is vanishingly close to 1/2.

The proof of the Degree/Discrepancy Theorem introduces a novel technique
based on the dual formulation of the threshold degree. In fact, it appears to be the
first use of the threshold degree (in its primal or dual form) to prove communication
lower bounds. As an application, we exhibit in [She07a] the first AC0 circuit with
exponentially small discrepancy, thereby separatingAC0 from depth-2 majority
circuits and solving an open problem of Krause and Pudlák [KP97,§6]. Indepen-
dently of the author, Buhrman et al. [BVW07] exhibited anotherAC0 function with
exponentially small discrepancy, using much different techniques.

Bounded-Error Communication. Next, we present two recent results on
bounded-error communication complexity, due to Sherstov [She07b] and Shi and
Zhu [SZ07]. These papers use the notion of approximate degree to contribute
strong lower bounds for rather broad classes of functions, subsuming Razborov’s
breakthrough work on symmetric predicates [Raz03]. The lower bounds are valid
not only in the randomized model, but also in the quantum model with and without
prior entanglement.
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The setting in which to view these two works is thegeneralized discrepancy
method,a simple but very useful principle introduced by Klauck [Kla01] and refor-
mulated in its current form by Razborov [Raz03]. Letf (x, y) be a Boolean function
whose quantum communication complexity is of interest. Themethod asks for a
Boolean functionh(x, y) and a distributionµ on (x, y)-pairs such that:

(1) the functionsf andh are highly correlated underµ; and

(2) all low-cost protocols have negligible advantage in computingh underµ.

If suchh andµ indeed exist, it follows that no low-cost protocol can compute f to
high accuracy (or else it would be a good predictor for the hard functionh as well!).
This method is in no way restricted to the quantum model but, rather, applies to
any model of communication [She07b,§2.4]. The importance of the generalized
discrepancy method is that it makes it possible, in theory, to prove lower bounds
for functions such as, to which the traditional discrepancy method
does not apply. In Section 4, we provide detailed historicalbackground on the
generalized discrepancy method and compile its quantitative versions for several
models.

The hard part, of course, is findingh and µ. Except in rather restricted
cases [Kla01, Thm. 4], it was not known how to do it. As a result, the generalized
discrepancy method was of limited practical use. This difficulty was overcome
independently by Sherstov [She07b] and Shi and Zhu [SZ07], who used the dual
characterization of the approximate degree to obtainh andµ for a broad range of
problems. To our knowledge, the work in [She07b] and [SZ07] is the first use of
the dual characterization of the approximate degree to prove communication lower
bounds. The specifics of these two works are very different. The construction ofh
andµ in [She07b], which we called thepattern matrix methodfor lower bounds on
bounded-error communication, is built around a new matrix-analytic technique (the
pattern matrix) inspired by the author’s Degree/Discrepancy Theorem. The con-
struction in [SZ07], theblock-composition method,is based on the idea of hardness
amplification by composition. These two methods exhibit quite different behavior,
e.g., the pattern matrix method further extends to the multiparty model. We present
the two methods individually in Sections 5.1 and 5.2 and provide a detailed com-
parison of their strength and applicability in Section 5.3.

Extensions to the Multiparty Model. Both the Degree/Discrepancy Theo-
rem [She07a] and the pattern matrix method [She07b] generalize to the multiparty
number-on-the-forehead model. In the case of [She07a], this extension was for-
malized by Chattopadhyay [Cha07]. As before, letf : {0, 1}n → {0, 1} be a given
function. Recall that in thetwo-partycase, there was a Boolean stringx ∈ {0, 1}N
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and asinglesetV ⊂ {1, 2, . . . ,N}. The k-party communication problem features
a Boolean stringx ∈ {0, 1}Nk−1

and setsV1, . . . ,Vk−1 ⊂ {1, 2, . . . ,N}. Thek inputs
x,V1, . . . ,Vk−1 are distributed among thek parties as usual. The goal is to compute

f (x|V1,...,Vk−1)
def
= f

(

xi11,...,i
k−1
1
, . . . , xi1n,...,i

k−1
n

)

, (1.1)

where i j
1 < i j

2 < · · · < i j
n are the elements ofV j (for j = 1, 2, . . . , k − 1). This

way, again no party knows at once the Boolean stringx and the relevant bits in
it. With this setup in place, it becomes relatively straightforward to bound the
discrepancy by traversing the same line of reasoning as in [She07a]. The extension
of the pattern matrix method [She07b] to the multiparty model uses a similar setup
and was done by Lee and Shraibman [LS07] and independently byChattopadhyay
and Ada [CA08]. We present the proofs of these extensions in Section 6, placing
them in close correspondence with the two-party case. Theseextensions do not
subsume the two-party results, however (see Section 6 for details).

The authors of [LS07] and [CA08] gave important applications of their work
to thek-party randomized communication complexity of, improving
it from Ω(1

k logn) to nΩ(1/k)2−O(2k). As a corollary, they separated the multiparty
communication classesNPcc

k andBPPcc
k for k = (1−o(1)) log2 log2 n parties. They

also obtained new results for Lovász-Schrijver proof systems, in light of the work
due to Beame, Pitassi, and Segerlind [BPS07].

Separation of NPcc
k and BPPcc

k . The separation of the classesNPcc
k andBPPcc

k
in [LS07, CA08] fork = (1− o(1)) log2 log2 n parties was followed by another ex-
citing development, due to David and Pitassi [DP08], who separated these classes
for k 6 (1− ε) log2 n parties. Hereε > 0 is an arbitrary constant. Since the current
barrier for explicit lower bounds on multiparty communication complexity is pre-
cisely k = log2 n, David and Pitassi’s separation matches the state of the art.We
present this work in Section 7. The powerful idea in this result was to redefine
the projection operatorx|V1,...,Vk−1 in (1.1). Specifically, David and Pitassi observed
that it suffices to define the projection operator at random, using the probabilistic
method. This insight removed the key technical obstacle present in [LS07, CA08].
In a follow-up work by David, Pitassi, and Viola [DPV08], theprobabilistic con-
struction was derandomized to yield anexplicit separation.

Other Related Work. For completeness, we will mention several duality-based
results in communication complexity that fall outside the scope of this survey. Re-
cent work has seen other applications of dual polynomials [She07c, RS08], which
are considerably more complicated and no longer correspondto the approximate
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degree or threshold degree. More broadly, several recent results feature other forms
of duality [LS07b, LŠS08], such as the duality of norms or semidefinite program-
ming duality.

2 Preliminaries

This section reviews our notation and provides relevant technical background.

2.1 General Background

A Boolean functionis a mappingX → {0, 1}, whereX is a finite set such asX =
{0, 1}n or X = {0, 1}n × {0, 1}n. The notation [n] stands for the set{1, 2, . . . , n}. For
integersN, n with N > n, the symbol

(
[N]
n

)

denotes the family of all size-n subsets
of {1, 2, . . . ,N}. For x ∈ {0, 1}n, we write |x| = x1 + · · · + xn. For x, y ∈ {0, 1}n, the
notationx∧ y refers as usual to the component-wise AND ofx andy. In particular,
|x∧ y| stands for the number of positions wherex andy both have a 1. Throughout
this manuscript, “log” refers to the logarithm to base 2.

For tensorsA, B : X1 × · · · × Xk → R (whereXi is a finite set,i = 1, 2, . . . , k),
define 〈A, B〉 =

∑

(x1,...,xk)∈X1×···×Xk
A(x1, . . . , xk)B(x1, . . . , xk). When A and B are

vectors or matrices, this is the standard definition of innerproduct. TheHadamard
product of A and B is the tensorA ◦ B : X1 × · · · × Xk → R given by
(A ◦ B)(x1, . . . , xk) = A(x1, . . . , xk)B(x1, . . . , xk).

The symbolRm×n refers to the family of allm× n matrices with real entries.
The (i, j)th entry of a matrixA is denoted byAi j .We frequently use “generic-entry”
notation to specify a matrix succinctly: we writeA = [F(i, j)] i, j to mean that the
(i, j)th entry ofA is given by the expressionF(i, j). In most matrices that arise in
this work, the exact ordering of the columns (and rows) is irrelevant. In such cases
we describe a matrix by the notation [F(i, j)] i∈I , j∈J, whereI andJ are some index
sets.

Let A ∈ Rm×n. We use the following standard notation:‖A‖∞ = maxi, j |Ai j |
and ‖A‖1 =

∑

i, j |Ai j |. We denote the singular values ofA by σ1(A) > σ2(A) >
. . . > σmin{m,n}(A) > 0. Recall that the spectral norm ofA is given by ‖A‖ =
maxx∈Rn, ‖x‖=1 ‖Ax‖ = σ1(A). An excellent reference on matrix analysis is [HJ86].

We conclude with a review of the Fourier transform overZn
2. Consider the

vector space of functions{0, 1}n → R, equipped with the inner product〈 f , g〉 =
2−n ∑

x∈{0,1}n f (x)g(x). For S ⊆ [n], defineχS : {0, 1}n → {−1,+1} by χS(x) =
(−1)

∑

i∈S xi . Then {χS}S⊆[n] is an orthonormal basis for the inner product space in
question. As a result, every functionf : {0, 1}n→ R has a unique representation of
the form f (x) =

∑

S⊆[n] f̂ (S)χS(x),where f̂ (S) = 〈 f , χS〉. The realsf̂ (S) are called
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theFourier coefficients of f. The following fact is immediate from the definition of
f̂ (S):

Proposition 2.1. Fix f : {0, 1}n→ R. Then

max
S⊆[n]
| f̂ (S)| 6 2−n

∑

x∈{0,1}n
| f (x)|.

2.2 Communication Complexity

This survey features several standard models of communication. In the case of two
communicating parties, one considers a functionf : X × Y→ {0, 1}, whereX and
Y are some finite sets. Alice receives an inputx ∈ X, Bob receivesy ∈ Y, and their
objective is to predictf (x, y) with good accuracy. To this end, Alice and Bob share
a communication channel (classical or quantum, depending on the model). Alice
and Bob’s communication protocol is said to haveerror ε if it outputs the correct
answer f (x, y) with probability at least 1− ε on every input. Thecostof a given
protocol is the maximum number of bits exchanged on any input. The two-party
models of interest to us are the randomized model, the quantum model without
prior entanglement, and the quantum model with prior entanglement. The least cost
of anε-error protocol forf in these models is denoted byRε( f ), Qε( f ), andQ∗ε ( f ),
respectively. It is standard practice to omit the subscriptε when error parameter
is ε = 1/3. Recall that the error probability of a protocol can be decreased from
1/3 to any other constantε > 0 at the expense of increasing the communication
cost by a constant factor; we will use this fact in many proofsof this survey, often
without explicitly mentioning it. Excellent references onthese communication
models are [KN97] and [Wol01].

A generalization of two-party communication isnumber-on-the-forehead mul-
tiparty communication. Here one considers a functionf : X1 × · · · × Xk → {0, 1}
for some finite setsX1, . . . ,Xk. There arek players. A given input (x1, . . . , xk) ∈
X1×· · ·×Xk is distributed among the players by placingxi on the forehead of player
i (for i = 1, . . . , k). In other words, playeri knowsx1, . . . , xi−1, xi+1, . . . , xk but not
xi . The players can communicate by writing bits on a shared blackboard, visible to
all. They additionally have access to a shared source of random bits. Their goal is
to devise a communication protocol that will allow them to accurately predict the
value of f on every input. Analogous to the two-party case, therandomizedcom-
munication complexityRk

ε( f ) is the least cost of anε-error communication protocol
for f in this model. The final section of this paper also considers thenondetermin-
istic communication complexityNk( f ), which is the minimum cost of a protocol
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for f that always outputs the correct answer on the inputsf −1(0) and has error prob-
ability less than 1 on each of the inputsf −1(1). Analogous to computational com-
plexity, BPPcc

k (respectively,NPcc
k ) is the class of functionsf : ({0, 1}n)k → {0, 1}

with Rk( f ) 6 (logn)O(1) (respectively,Nk( f ) 6 (logn)O(1)). See [KN97] for further
details.

A crucial tool for proving communication lower bounds is thediscrepancy
method. Given a function f : X × Y → {0, 1} and a distributionµ on X × Y,
thediscrepancy of f with respect toµ is defined as

discµ( f ) = max
S⊆X,
T⊆Y

∣
∣
∣
∣
∣
∣
∣
∣

∑

x∈S

∑

y∈T
(−1)f (x,y)µ(x, y)

∣
∣
∣
∣
∣
∣
∣
∣

.

This definition generalizes to the multiparty case as follows. Fix f : X1×· · ·×Xk→
{0, 1} and a distributionµ on X1 × · · · × Xk. Thediscrepancy of f with respect toµ
is defined as

discµ( f ) = max
φ1,...,φk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

(x1,...,xk)
∈X1×···×Xk

ψ(x1, . . . , xk)
k∏

i=1

φi(x1, . . . , xi−1, xi+1, . . . , xk)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

whereψ(x1, . . . , xk) = (−1)f (x1,...,xk)µ(x1, . . . , xk) and the maximum ranges over all
functionsφi : X1 × · · ·Xi−1 × Xi+1 × · · ·Xk → {0, 1}, for i = 1, 2, . . . , k. Note that
for k = 2, this definition is identical to the one given previously for the two-party
model. We put disc(f ) = minµ discµ( f ). We identify a functionf : X1× · · · ×Xk→
{0, 1} with its communication tensor M(x1, . . . , xk) = (−1)f (x1,...,xk) and speak of
the discrepancy ofM and f interchangeably (and likewise for other complexity
measures, such asRk( f )).

Discrepancy is difficult to analyze as defined. Typically, one uses the following
well-known estimate, derived by repeated applications of the Cauchy-Schwartz
inequality.

Theorem 2.2 ([BNS92, CT93, Raz00]).Fix f : X1 × · · · × Xk → {0, 1} and a
distributionµ on X1× · · · ×Xk. Putψ(x1, . . . , xk) = (−1)f (x1,...,xk)µ(x1, . . . , xk). Then

(
discµ( f )

|X1| · · · |Xk|

)2k−1

6 E
x0

1∈X1

x1
1∈X1

· · · E
x0

k−1∈Xk−1

x1
k−1∈Xk−1

∣
∣
∣
∣
∣
∣
∣
∣

E
xk∈Xk

∏

z∈{0,1}k−1

ψ(xz1
1 , . . . , x

zk−1
k−1, xk)

∣
∣
∣
∣
∣
∣
∣
∣

.
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In the case ofk = 2 parties, there are other ways to estimate the discrepancy,e.g.,
using the spectral norm of a matrix.

For a function f : X1 × · · · × Xk → {0, 1} and a distributionµ over X1 ×
· · · × Xk, let Dk,µ

ε ( f ) denote the least cost of a deterministic protocol forf whose
probability of error with respect toµ is at mostε. This quantity is known as the
µ-distributional complexityof f . Since a randomized protocol can be viewed as
a probability distribution over deterministic protocols,we immediately have that
Rk
ε ( f ) > maxµ Dk,µ

ε ( f ). We are now ready to state the discrepancy method.

Theorem 2.3 (Discrepancy method; see [KN97]).For every f : X1 × · · · × Xk→
{0, 1}, every distributionµ on X1 × · · · × Xk, and everyγ ∈ (0, 1],

Rk
1/2−γ/2 > Dk,µ

1/2−γ/2( f ) > log2
γ

discµ( f )
.

In other words, a function with small discrepancy is hard to compute to any non-
trivial advantage over random guessing (let alone compute it to high accuracy). In
the case ofk = 2 parties, discrepancy yields analogous lower bounds even in the
quantum model, regardless of prior entanglement [Kre95, Kla01, LS07b].

3 The Degree/Discrepancy Theorem

This section presents the author’s Degree/Discrepancy Theorem, whose proof tech-
nique is the foundation for much of the subsequent work surveyed in this arti-
cle [She07b, Cha07, LS07, CA08, DP08].

The original motivation behind this result came from circuit complexity. A nat-
ural and well-studied computational model is that of a polynomial-size circuit of
majority gates. Research has shown that majority circuits of depth 2 and 3 already
possess surprising computational power. Indeed, it is a long-standing open prob-
lem [KP97] to exhibit a Boolean function thatcannotbe computed by a depth-3
majority circuit of polynomial size.

Another extensively studied model is that of polynomial-size constant-depth
circuits with, ,  gates, denoted byAC0. Allender’s classic result [All89]
states that every function inAC0 can be computed by a depth-3 majority circuit of
quasipolynomial size. Krause and Pudlák [KP97,§6] ask whether this simulation
can be improved, i.e., whether every function inAC0 can be computed by a depth-
2 majority circuit of quasipolynomial size. We recently gave a strong negative
answer to this question:
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Theorem 3.1 ([She07a]).There is a function F: {0, 1}n → {0, 1}, explicitly given
and computable by anAC0 circuit of depth3, whose computation requires a ma-
jority vote ofexp(Ω(n1/5)) threshold gates.

We proved Theorem 3.1 by exhibiting anAC0 function with exponentially small
discrepancy. All previously known functions with exponentially small discrep-
ancy (e.g., [GHR92, Nis93]) contained or  as a subfunction and
therefore could not be computed inAC0. Buhrman et al. [BVW07] obtained, inde-
pendently of the author and with much different techniques, anotherAC0 function
with exponentially small discrepancy, thereby also answering Krause and Pudlák’s
question.

3.1 Bounding the Discrepancy via the Threshold Degree

To construct anAC0 function with small discrepancy, we developed in [She07a] a
novel technique for generating low-discrepancy functions, which we now describe.
This technique is not specialized in any way toAC0 but, rather, is based on the
abstract notion of threshold degree.

For a Boolean functionf : {0, 1}n → {0, 1}, recall from Section 1 that its
threshold degreedeg±( f ) is the minimum degree of a polynomialp(x1, . . . , xn)
with p(x) > 0 ⇔ f (x) = 1 and p(x) < 0 ⇔ f (x) = 0. In many cases [MP88],
it is straightforward to obtain strong lower bounds on the threshold degree. Since
the threshold degree is a measure of the complexity of a givenBoolean function,
it is natural to wonder whether it can yield lower bounds on communication in a
suitable setting. As we prove in [She07a], this intuition turns out to be correct for
every f .

More precisely, fix a Boolean functionf : {0, 1}n → {0, 1} with threshold
degreed. Let N be a given integer,N > n. In [She07a], we introduced the two-
party communication problem of computing

f (x|V),

where the Boolean stringx ∈ {0, 1}N is Alice’s input and the setV ⊂ {1, 2, . . . ,N}
of size |V| = n is Bob’s input. The symbolx|V stands for the projection ofx onto
the indices inV, in other words,x|V = (xi1, xi2, . . . , xin) ∈ {0, 1}n, wherei1 < i2 <
· · · < in are the elements ofV. Intuitively, this problem models a situation when
Alice and Bob’s joint computation depends on onlyn of the inputsx1, x2, . . . , xN.

Alice knows the values of all the inputsx1, x2, . . . , xN but does not know whichn
of them are relevant. Bob, on the other hand, knows whichn inputs are relevant
but does not know their values. As one would hope, it turns outthatd is a lower
bound on the communication requirements of this problem:
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Theorem 3.2 (Degree/Discrepancy Theorem [She07a]).Let f : {0, 1}n → {0, 1}
be given with threshold degree d> 1. Let N be a given integer, N> n. Define F=
[ f (x|V)]x,V, where the rows are indexed by x∈ {0, 1}N and columns by V∈

(
[N]
n

)

.

Then

disc(F) 6

(

4en2

Nd

)d/2

.

To our knowledge, Theorem 3.2 is the first use of the thresholddegree to prove
communication lower bounds. Given a functionf with threshold degreed, The-
orem 3.2 generates a communication problem with discrepancy at most 2−d (by
settingN > 16en2/d). This exponentially small discrepancy immediately givesan
Ω(d) lower bound on communication in a variety of models (deterministic, nonde-
terministic, randomized, quantum with and without entanglement; see Section 2.2).
Moreover, the resulting lower bounds on communication remain valid when Alice
and Bob merely seek to predict the answer with nonnegligibleadvantage, a critical
aspect for lower bounds against threshold circuits.

We will give a detailed proof of the Degree/Discrepancy Theorem in the next
subsection. For now we will briefly sketch how we used it in [She07a] to prove the
main result of that paper, Theorem 3.1 above, on the existence of anAC0 function
that requires a depth-2 majority circuit of exponential size. Consider the function

f (x) =
m∨

i=1

4m2
∧

j=1

xi j ,

for which Minsky and Papert [MP88] showed that deg±( f ) = m. Since f has high
threshold degree, an application of Theorem 3.2 tof yields a communication prob-
lem with low discrepancy. This communication problem itself can be viewed as an
AC0 circuit of depth 3. Recalling that its discrepancy is exponentially small, we
conclude that it cannot be computed by a depth-2 majority circuit of subexponen-
tial size.

3.2 Proof of the Degree/Discrepancy Theorem

A key ingredient in our proof is the following dual characterization of the threshold
degree, which is a classical result known in greater generality as Gordan’s Trans-
position Theorem [Sch98,§7.8]:

Theorem 3.3. Let f : {0, 1}n → {0, 1} be arbitrary, d a nonnegative integer. Then
exactly one of the following holds:(1) f has threshold degree at most d; (2) there is
a distributionµ over {0, 1}n such thatEx∼µ[(−1)f (x)χS(x)] = 0 for |S| = 0, 1, . . . , d.
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Theorem 3.3 follows from linear-programming duality. We will also make the
following simple observation.

Observation 3.4. Let κ(x) be a probability distribution on{0, 1}r . Fix i1, . . . , ir
∈ {1, 2, . . . , r}. Then

∑

x∈{0,1}r κ(xi1, . . . , xir ) 6 2r−|{i1,...,ir }|, where|{i1, . . . , ir }| denotes
the number of distinct integers among i1, . . . , ir .

We are now ready for the proof of the Degree/Discrepancy Theorem.

Theorem 3.2(Restated from p. 10).Let f : {0, 1}n → {0, 1} be given with thresh-
old degree d> 1. Let N be a given integer, N> n. Define F= [ f (x|V)]x,V, where
the rows are indexed by x∈ {0, 1}N and columns by V∈

(
[N]
n

)

. Then

disc(F) 6

(

4en2

Nd

)d/2

.

Proof [She07a]. Let µ be a probability distribution over{0, 1}n with respect to
which Ez∼µ[(−1)f (z) p(z)] = 0 for every real-valued functionp of d − 1 or fewer
of the variablesz1, . . . , zn. The existence ofµ is assured by Theorem 3.3. We will
analyze the discrepancy ofF with respect to the distribution

λ(x,V) = 2−N+n
(

N
n

)−1

µ(x|V).

Defineψ : {0, 1}n→ R by ψ(z) = (−1)f (z)µ(z). By Theorem 2.2,

discλ(F)2
6 4n E

V,W
|Γ(V,W)|, (3.1)

where we putΓ(V,W) = Ex[ψ(x|V)ψ(x|W)]. To analyze this expression, we prove
two key claims.

Claim 3.5. Assume that|V ∩W| 6 d − 1. ThenΓ(V,W) = 0.

Proof. The claim is immediate from the fact that the Fourier transform of ψ is
supported on characters of orderd and higher. For completeness, we will now give
a more detailed and elementary explanation. Assume for notational convenience
thatV = {1, 2, . . . , n}. Then

Γ(V,W) = E
x
[µ(x1, . . . , xn)(−1)f (x1,...,xn)ψ(x|W)]

=
1

2N

∑

x1,...,xn

µ(x1, . . . , xn)(−1)f (x1,...,xn)
∑

xn+1,...,xN

ψ(x|W)

=
1

2N
E

(x1,...,xn)∼µ




(−1)f (x1,...,xn) ·





∑

xn+1,...,xN

ψ(x|W)





︸               ︷︷               ︸

∗




.
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Since|V ∩W| 6 d − 1, the starred expression is a real-valued function of at most
d − 1 variables. The claim follows by the definition ofµ. �

Claim 3.6. Assume that|V ∩W| = i. Then|Γ(V,W)| 6 2i−2n.

Proof. The claim is immediate from Observation 3.4. For completeness, we will
give a more detailed explanation. For notational convenience, assume that

V = {1, 2, . . . , n},
W = {1, 2, . . . , i} ∪ {n+ 1, n+ 2, . . . , n+ (n− i)}.

We have:

|Γ(V,W)| 6 E
x
[|ψ(x|V)ψ(x|W)|]

= E
x1,...,x2n−i

[µ(x1, . . . , xn)µ(x1, . . . , xi , xn+1, . . . , x2n−i)]

6 E
x1,...,xn

[µ(x1, . . . , xn)]
︸                   ︷︷                   ︸

=2−n

· max
x1,...,xi

E
xn+1,...,x2n−i

[µ(x1, . . . , xk, xn+1, . . . , x2n−i)]
︸                                              ︷︷                                              ︸

62−(n−i)

.

The bounds 2−n and 2−(n−i) follow becauseµ is a probability distribution. �

In view of Claims 3.5 and 3.6, inequality (3.1) simplifies to

discλ(F)2
6

n∑

i=d

2i P[|V ∩W| = i],

which completes the proof of Theorem 3.2 after some routine calculations. �

The discrepancy bound in Theorem 3.2 is not tight. In follow-up work (see
Section 5.1), the author proved a substantially stronger bound using matrix-analytic
techniques. However, that matrix-analytic approach does not seem to extend to the
multiparty model, and as we will see later in Sections 6 and 7,all multiparty papers
in this survey use adaptations of the analysis just presented.

4 The Generalized Discrepancy Method

As we saw in Section 2.2, the discrepancy method is particularly strong in that
it gives communication lower bounds not only for bounded-error protocols but
also for protocols with error vanishingly close to1

2. Ironically, this strength of the
discrepancy method is also its weakness. For example, the function
(x, y) =

∨n
i=1(xi ∧ yi) has a simple low-cost protocol with error1

2 − Ω
(

1
n

)

.
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As a result, has high discrepancy, and no useful lower bounds can
be obtained for it via the discrepancy method. Yet it is well-known that-
 has bounded-error communication complexityΩ(n) in the randomized
model [KS92, Raz92] andΩ(

√
n) in the quantum model [Raz03].

The remainder of this survey (Sections 5–7) is concerned with bounded-
error communication. Crucial to this development is thegeneralizeddiscrep-
ancy method, an ingenious extension of the traditional discrepancy method that
avoids the difficulty just cited. To our knowledge, this idea originated in a
paper by Klauck [Kla01, Thm. 4] and was reformulated in its current form by
Razborov [Raz03]. The development in [Kla01] and [Raz03] takes place in the
quantum model of communication. However, the basic mathematical technique is
in no way restricted to the quantum model, and we will focus here on a model-
independent version of the generalized discrepancy methodfrom [She07b,§2.4].

Specifically, consider anarbitrary communication model and letf : X × Y→
{0, 1} be a given function whose communication complexity we wish to estimate.
Suppose we can find a functionh : X × Y → {0, 1} and a distributionµ on X × Y
that satisfy the following two properties.

1. Correlation of f and h. The functionsf andh are well correlated underµ:

E
(x,y)∼µ

[

(−1)f (x,y)+h(x,y)
]

> ε, (4.1)

whereε > 0 is typically a constant.

2. Hardness ofh.No low-cost protocolΠ in the given model of communication
can computeh to a substantial advantage underµ. Formally, ifΠ is a protocol
in the given model with costC, then

E
(x,y)∼µ

[

(−1)h(x,y) E
[

(−1)Π(x,y)
]]

6 2O(C)γ, (4.2)

whereγ = o(1). The inner expectation in (4.2) is over the internal operation
of the protocol on the fixed input (x, y).

If the above two conditions hold, we claim that any protocol in the given model that
computesf with error at mostε/3 on each input must have costΩ

(

log ε
γ

)

. Indeed,
let Π be a protocol withP[Π(x, y) , f (x, y)] 6 ε/3 for all x, y. Then standard
manipulations reveal:

E
(x,y)∼µ

[

(−1)h(x,y) E
[

(−1)Π(x,y)
]]

> E
(x,y)∼µ

[

(−1)f (x,y)+h(x,y)
]

− 2 · ε
3

(4.1)
>

ε

3
.

In view of (4.2), this shows thatΠmust have costΩ
(

log ε
γ

)

.
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The above framework from [She07b] is meant to emphasize the basic mathe-
matical technique in question, which is independent of the communication model.
Indeed, the communication model enters the picture only in (4.2). It is here that
the analysis must exploit the particularities of the model.To place an upper bound
on the advantage underµ in the quantum model with entanglement, one considers
the quantity‖K‖

√
|X| |Y|, whereK = [(−1)h(x,y)µ(x, y)]x,y. In the randomized model

and the quantum model without entanglement, the quantity toestimate happens to
be discµ(h). (In fact, Linial and Shraibman [LS07b] recently showed thatdiscµ(h)
also works in the quantum model with entanglement.)

For future reference, we now record a quantitative version of the generalized
discrepancy method for the quantum model.

Theorem 4.1 ([She07b], implicit in [Raz03, SZ07]).Let X,Y be finite sets and
f : X × Y→ {0, 1} a given function. Let K= [Kxy]x∈X, y∈Y be any real matrix with
‖K‖1 = 1. Then for eachε > 0,

4Qε ( f )
> 4Q∗ε ( f )

>
〈F,K〉 − 2ε

3‖K‖
√
|X| |Y|

,

where F=
[

(−1)f (x,y)
]

x∈X, y∈Y
.

Observe that Theorem 4.1 uses slightly more succinct notation (matrix vs. function;
weighted sum vs. expectation) but is equivalent to the abstract formulation above.

So far, we have focused on two-party communication. This discussion extends
essentially word-for-word to the multiparty model, with discrepancy serving once
again as the natural measure of the advantage attainable by low-cost protocols.
This extension was formalized by Lee and Shraibman [LS07, Thms. 6, 7] and in-
dependently by Chattopadhyay and Ada [CA08, Lem. 3.2], who proved (4.3) and
(4.4) below, respectively:

Theorem 4.2 (cf. [LS07, CA08]).Fix F : X1×· · ·×Xk→ {−1,+1} andε ∈ [0, 1/2).
Then

2Rk
ε (F)
> (1− ε) max

H,P






〈H ◦ P, F〉 − 1
1−ε ε

discP(H)





(4.3)

and

2Rk
ε (F)
> max

H,P

{

〈H ◦ P, F〉 − 2ε
discP(H)

}

, (4.4)

where in both cases H ranges over sign tensors and P ranges over tensors with
P > 0 and‖P‖1 = 1.
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Proof. Fix an optimal ε-error protocol Π for F. Define F̃(x1, . . . , xk) =

E[(−1)Π(x1,...,xk)], where the expectation is over any internal randomization inΠ.
Let δ ∈ (0, 1] be a parameter to be fixed later. Then

2Rk
ε (F) discP(H) > 〈H ◦ P, F̃〉

= δ

{

〈H ◦ P, F〉 +
〈

H ◦ P,
1
δ

F̃ − F

〉}

> δ

{

〈H ◦ P, F〉 − 1
δ

max{|1− δ − 2ε|, 1− δ}
}

.

where the first inequality restates the original discrepancy method (Theorem 2.3).
Now (4.3) and (4.4) follow by settingδ = 1− ε andδ = 1, respectively. �

The proof in [CA08] is similar to the one just given for the special caseδ = 1.
The proof in [LS07] is rather different and works by defining a suitable norm and
passing to its dual. The norm-based approach was employed earlier by Linial and
Shraibman [LS07b] and can be thought of as a purely analytic analogue of the
generalized discrepancy method.

5 Two-Party Bounded-Error Communication

For a functionf : {0, 1}n → R, recall from Section 1 that itsε-approximate degree
degε( f ) is the least degree of a polynomialp(x1, . . . , xn) with | f (x) − p(x)| 6 ε for
all x ∈ {0, 1}n. We move on to discuss two recent papers on bounded-error com-
munication that use the notion of approximate degree to contribute strong lower
bounds for rather broad classes of functions, subsuming Razborov’s breakthrough
work on symmetric predicates [Raz03]. These lower bounds are valid not only in
the randomized model, but also in the quantum model (regardless of entanglement).

The setting in which to view these two works is Klauck and Razborov’s gen-
eralized discrepancy method (see Sections 1 and 4). LetF be a sign matrix whose
bounded-error quantum communication complexity is of interest. The quantum
version of this method (Theorem 4.1) states that to prove a communication lower
bound forF, it suffices to exhibit a real matrixK such that〈F,K〉 is large but‖K‖
is small. The importance of the generalized discrepancy method is that it makes
it possible, in theory, to prove lower bounds for functions such as, to
which the traditional discrepancy method (Theorem 2.3) does not apply.

The hard part, of course, is finding the matrixK. Except in rather restricted
cases [Kla01, Thm. 4], it was not known how to do it. As a result, the general-
ized discrepancy method was of limited practical use. (In particular, Razborov’s
celebrated work [Raz03] did not use the generalized discrepancy method. Instead,
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he introduced a novel alternate technique that was restricted to symmetric func-
tions.) This difficulty was overcome independently by Sherstov [She07b] and Shi
and Zhu [SZ07], who used the dual characterization of the approximate degree to
obtain the matrixK for a broad range of problems. To our knowledge, the work
in [She07b] and [SZ07] is the first use of the dual characterization of the approxi-
mate degree to prove communication lower bounds.

The specifics of these two works are very different. The construction ofK
in [She07b], which we called thepattern matrix methodfor lower bounds on
bounded-error communication, is built around a new matrix-analytic technique
(the pattern matrix) inspired by the author’s Degree/Discrepancy Theorem. The
construction ofK in [SZ07], theblock-composition method,is based on the idea
of hardness amplification by composition. What unites them is use of the dual
characterization of the approximate degree, given by the following theorem.

Theorem 5.1 ([She07b, SZ07]).Fix ε > 0. Let f : {0, 1}n → R be given with
d = degε( f ) > 1. Then there is a functionψ : {0, 1}n→ R such that:

ψ̂(S) = 0 for |S| < d,
∑

z∈{0,1}n
|ψ(z)| = 1,

∑

z∈{0,1}n
ψ(z) f (z) > ε.

Theorem 5.1 follows from linear-programming duality. We shall first cover the
two papers individually in Sections 5.1 and 5.2 and then compare them in detail
in Section 5.3.

5.1 The Pattern Matrix Method

The setting for this work resembles that of the Degree/Discrepancy Theorem
in [She07a] (see Section 3). LetN and n be positive integers, wheren 6 N/2.
For convenience, we will further assume thatn | N. Fix an arbitrary function
f : {0, 1}n→ {0, 1}. Consider the communication problem of computing

f (x|V),

where the bit stringx ∈ {0, 1}N is Alice’s input and the setV ⊂ {1, 2, . . . ,N} with
|V| = n is Bob’s input. As before,x|V denotes the projection ofx onto the indices
in V, i.e., x|V = (xi1, xi2, . . . , xin) ∈ {0, 1}n wherei1 < i2 < · · · < in are the elements
of V.
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The similarities with [She07a], however, do not extend beyond this point. Un-
like that earlier work, we will actually study theeasiercommunication problem
in which Bob’s inputV is restricted to a rather special form. Namely, we will
only allow those setsV that contain precisely one element from each block in the
following partition of{1, 2, . . . ,N}:

{

1, 2, . . . ,
N
n

}

∪
{

N
n
+ 1, . . . ,

2N
n

}

∪ · · · ∪
{

(n− 1)N
n

+ 1, . . . ,N

}

. (5.1)

Even for this easier communication problem, we will prove a much stronger re-
sult than what would have been possible in the original setting with the methods
of [She07a]. In particular, we will considerably improve the Degree/Discrepancy
Theorem from [She07a] along the way. The main results of thiswork are as fol-
lows.

Theorem 5.2 ([She07b]).Any classical or quantum protocol, with or without prior
entanglement, that computes f(x|V) with error probability at most1/5 on each
input has communication cost at least

1
4

deg1/3( f ) · log
⌊ N
2n

⌋

− 2.

In view of the restricted form of Bob’s inputs, we can restateTheorem 5.2 in
terms of function composition. SettingN = 4n for concreteness, we have:

Corollary 5.3 ([She07b]). Let f : {0, 1}n → {0, 1} be given. Define F: {0, 1}4n ×
{0, 1}4n → {0, 1} by

F(x, y) = f
(

x1y1 ∨ x2y2 ∨ x3y3 ∨ x4y4 ,

x5y5 ∨ x6y6 ∨ x7y7 ∨ x8y8 ,

...

x4n−3y4n−3 ∨ x4n−2y4n−2 ∨ x4n−1y4n−1 ∨ x4ny4n

)

,

where xiyi = (xi ∧ yi). Any classical or quantum protocol, with or without prior
entanglement, that computes F(x, y) with error probability at most1/5 on each
input has cost at least14 deg1/3( f ) − 2.

We now turn to the proof. LetV(N, n) denote the set of Bob’s inputs, i.e., the
family of subsetsV ⊆ [N] that have exactly one element in each of the blocks of the
partition (5.1). Clearly,|V(N, n)| = (N/n)n. We will be working with the following
family of matrices.
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Definition 5.4 (Pattern matrix [She07b]). For φ : {0, 1}n → R, the (N, n, φ)-
pattern matrixis the real matrixA given by

A =
[

φ(x|V ⊕ w)
]

x∈{0,1}N , (V,w)∈V(N,n)×{0,1}n
.

In words,A is the matrix of size 2N by 2n(N/n)n whose rows are indexed by
stringsx ∈ {0, 1}N, whose columns are indexed by pairs (V, w) ∈ V(N, n) × {0, 1}n,
and whose entries are given byAx,(V,w) = φ(x|V ⊕ w). The logic behind the term
“pattern matrix” is as follows: a mosaic arises from repetitions of a pattern in the
same way thatA arises from applications ofφ to various subsets of the variables.

Our intermediate goal will be to determine the spectral normof any given pat-
tern matrixA. Toward that end, we will actually end up determining every singular
value ofA and its multiplicity. Our approach will be to representA as the sum of
simpler matrices and analyze them instead. For this to work,we need to be able to
reconstruct the singular values ofA from those of the simpler matrices. Just when
this can be done is the subject of the following lemma from [She07b].

Lemma 5.5 (Singular values of a matrix sum [She07b]).Let A, B be real ma-
trices with ABT = 0 and ATB = 0. Then the nonzero singular values of A+ B,
counting multiplicities, areσ1(A), . . . , σrankA(A), σ1(B), . . . , σrankB(B).

We are ready to analyze the singular values of a pattern matrix.

Theorem 5.6 (Singular values of a pattern matrix [She07b]).Letφ : {0, 1}n →
R be given. Let A be the(N, n, φ)-pattern matrix. Then the nonzero singular values
of A, counting multiplicities, are:

⋃

S:φ̂(S),0






√

2N+n
(N

n

)n

· |φ̂(S)|
( n
N

)|S|/2
, repeated

(N
n

)|S|
times





.

In particular,

‖A‖ =
√

2N+n
(N

n

)n

max
S⊆[n]

{

|φ̂(S)|
( n
N

)|S|/2}

.

Proof [She07b]. For eachS ⊆ [n], let AS be the (N, n, χS)-pattern matrix. Then
A =

∑

S⊆[n] φ̂(S)AS. For anyS,T ⊆ [n] with S , T, a calculation reveals that
ASAT

T = 0 andAT
SAT = 0. By Lemma 5.5, this means that the nonzero singular

values ofA are the union of the nonzero singular values of allφ̂(S)AS, counting
multiplicities. Therefore, the proof will be complete oncewe show that the only
nonzero singular value ofAT

SAS is 2N+n(N/n)n−|S|, with multiplicity (N/n)|S|.
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For this, it is convenient to writeAT
SAS as the Kronecker product

AT
SAS = [χS(w)χS(w′)]w,w′ ⊗





∑

x∈{0,1}N
χS(x|V) χS(x|V′)





V,V′

.

The first matrix in this factorization has rank 1 and entries±1, which means that
its only nonzero singular value is 2n with multiplicity 1. The other matrix, call
it M, is permutation-similar to 2N diag(J, J, . . . , J), whereJ is the all-ones square
matrix of order (N/n)n−|S|. This means that the only nonzero singular value ofM
is 2N(N/n)n−|S| with multiplicity (N/n)|S|. It follows from elementary properties of
the Kronecker product that the spectrum ofAT

SAS is as desired. �

We are now prepared to formulate and prove thepattern matrix methodfor
lower bounds on bounded-error communication, which gives strong lower bounds
for every pattern matrix generated by a Boolean function with high approximate
degree. Theorem 5.2 and its corollary will fall out readily as consequences.

Theorem 5.7 (Pattern matrix method [She07b]).Let F be the(N, n, f )-pattern
matrix, where f: {0, 1}n→ {0, 1} is given. Put d= deg1/3( f ). Then

Q1/5(F) > Q∗1/5(F) >
1
4

d log
(N

n

)

− 2.

Proof [She07b]. Define f ∗ : {0, 1}n→ {−1,+1} by f ∗(z) = (−1)f (z). Then it is easy
to verify that deg2/3( f ∗) = d. By Theorem 5.1, there is a functionψ : {0, 1}n → R
such that:

ψ̂(S) = 0 for |S| < d, (5.2)
∑

z∈{0,1}n
|ψ(z)| = 1, (5.3)

∑

z∈{0,1}n
ψ(z) f ∗(z) >

2
3
. (5.4)

Let M be the (N, n, f ∗)-pattern matrix. LetK be the (N, n, 2−N(N/n)−nψ)-pattern
matrix. Immediate consequences of (5.3) and (5.4) are:

‖K‖1 = 1, 〈K,M〉 > 2
3
. (5.5)

Our last task is to calculate‖K‖. By (5.3) and Proposition 2.1,

max
S⊆[n]
|ψ̂(S)| 6 2−n. (5.6)

19



Theorem 5.6 yields, in view of (5.2) and (5.6):

‖K‖ 6
( n
N

)d/2
(

2N+n
(N

n

)n)−1/2

. (5.7)

The desired lower bounds on quantum communication now follow directly from
(5.5) and (5.7) by the generalized discrepancy method (Theorem 4.1). �

Remark5.8. In the proof of Theorem 5.7, we bounded‖K‖ using the subtle cal-
culations of the spectrum of a pattern matrix. Another possibility would be to
bound‖K‖ precisely in the same way that we bounded the discrepancy in the De-
gree/Discrepancy Theorem (see Section 3). This, however, would result in polyno-
mially weaker lower bounds on communication.

Theorem 5.7 immediately implies Theorem 5.2 above and its corollary:

Proof of Theorem5.2 [She07b]. The
(⌊

N
2n

⌋

n, n, f
)

-pattern matrix occurs as a sub-
matrix of [ f (x|V)]x∈{0,1}N ,V∈V(N,n). �

Improved Degree/Discrepancy Theorem. We will mention a few more appli-
cations of this work. The first of these is an improved versionof the author’s
Degree/Discrepancy Theorem (Theorem 3.2).

Theorem 5.9 ([She07b]).Let F be the(N, n, f )-pattern matrix, where f :
{0, 1}n→ {0, 1} has threshold degree d. Thendisc(F) 6 (n/N)d/2.

The proof is similar to the proof of the pattern matrix method. Theorem 5.9 im-
proves considerably on the original Degree/Discrepancy Theorem. To illustrate,
consider f (x) =

∨m
i=1

∧m2

j=1 xi j , a function onn = m3 variables. Applying Theo-

rem 5.9 tof leads to an exp(−Θ(n1/3)) upper bound on the discrepancy ofAC0, im-
proving on the previous bound of exp(−Θ(n1/5)) from [She07a]. The exp(−Θ(n1/3))
bound is also the bound obtained by Buhrman et al. [BVW07] independently of the
author [She07a, She07b], using a different function and different techniques.

Razborov’s Lower Bounds for Symmetric Functions. As another application,
we are able to give an alternate proof of Razborov’s breakthrough result on the
quantum communication complexity of symmetric functions [Raz03]. Consider a
communication problem in which Alice has a stringx ∈ {0, 1}n, Bob has a string
y ∈ {0, 1}n, and their objective is to compute

D(|x∧ y|)
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for some predicateD : {0, 1, . . . , n} → {0, 1} fixed in advance. This general setting
encompasses several familiar functions, such as (determining ifx and
y intersect) and   2 (determining ifx andy intersect in an odd
number of positions).

As it turns out, the hardness of this general communication problem depends on
whetherD changes value close to the middle of the range{0, 1, . . . , n}. Specifically,
define`0(D) ∈ {0, 1, . . . , bn/2c} and `1(D) ∈ {0, 1, . . . , dn/2e} to be the smallest
integers such thatD is constant in the range [`0(D), n−`1(D)].Razborov established
optimal lower bounds on the quantum communication complexity of every function
of the formD(|x∧ y|):

Theorem 5.10 (Razborov [Raz03]).Let D : {0, 1, . . . , n} → {0, 1} be an arbitrary
predicate. Put f(x, y) = D(|x∧ y|). Then

Q1/3( f ) > Q∗1/3( f ) > Ω
(√

n`0(D) + `1(D)
)

.

In particular, has quantum communication complexityΩ(
√

n), regard-
less of entanglement. Prior to Razborov’s result, the best lower bound [BW01,
ASTS+03] for  was onlyΩ(logn).

In [She07b], we give a new proof of Razborov’s Theorem 5.10 using a straight-
forward application of the pattern matrix method.

5.2 The Block Composition Method

Given functionsf : {0, 1}n → {0, 1} andg : {0, 1}k × {0, 1}k → {0, 1}, let f ◦ gn

denote the composition off with n independent copies ofg. More formally, the
function f ◦ gn : {0, 1}nk × {0, 1}nk→ {0, 1} is given by

( f ◦ gn)(x, y) = f (. . . , g(x(i), y(i)), . . . ),

wherex = (. . . , x(i), . . . ) ∈ {0, 1}nk andy = (. . . , y(i), . . . ) ∈ {0, 1}nk.

This section presents Shi and Zhu’sblock composition method[SZ07], which
gives a lower bound on the communication complexity off ◦ gn in terms of certain
properties off andg. The relevant property off is simply its approximate degree.
The relevant property ofg is its spectral discrepancy,formalized next.

Definition 5.11 (Spectral discrepancy [SZ07]).Given g : {0, 1}k × {0, 1}k →
{0, 1}, its spectral discrepancyρ(g) is the leastρ > 0 for which there exist sets
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A, B ⊆ {0, 1}k and a distributionµ on A× B such that
∥
∥
∥
∥
∥

[

µ(x, y)(−1)g(x,y)
]

x∈A,y∈B

∥
∥
∥
∥
∥
6

ρ
√
|A| |B|

, (5.8)

∥
∥
∥
∥
∥

[

µ(x, y)
]

x∈A,y∈B

∥
∥
∥
∥
∥
6

1+ ρ
√
|A| |B|

, (5.9)

and
∑

(x,y)∈A×B

µ(x, y)(−1)g(x,y) = 0. (5.10)

In view of (5.8) alone, the spectral discrepancyρ(g) is an upper bound on the
discrepancy disc(g). The key additional requirement (5.9) is satisfied, for example,
by doubly stochastic matrices [HJ86,§8.7]: if A = B and all row and column sums
in [µ(x, y)]x∈A,y∈A are 1/|A|, then‖[µ(x, y)]x∈A,y∈A‖ = 1/|A|.

As an illustration, consider the familiar function   2, given
by k(x, y) =

⊕k
i=1(xi ∧ yi).

Proposition 5.12 ([SZ07]).The functionk hasρ(k) 6 1/
√

2k − 1.

Proof [SZ07]. Takeµ to be the uniform distribution overA×B,whereA = {0, 1}k\
{0k} andB = {0, 1}k. �

We are prepared to state the general method.

Theorem 5.13 (Block composition method [SZ07]).Fix f : {0, 1}n → {0, 1} and
g : {0, 1}k × {0, 1}k → {0, 1}. Put d= deg1/3( f ) andρ = ρ(g). If ρ 6 d/(2en), then

Q( f ◦ gn) > Q∗( f ◦ gn) = Ω(d).

Proof (adapted from [SZ07]). Fix setsA, B ⊆ {0, 1}k and a distributionµ on A× B
with respect to whichρ = ρ(g) is achieved. Definef ∗ : {0, 1}n → {−1,+1} by
f ∗(z) = (−1)f (z). Then one readily verifies that deg2/3( f ∗) = d. By Theorem 5.1,
there existsψ : {0, 1}n→ R such that

ψ̂(S) = 0 for |S| < d, (5.11)
∑

z∈{0,1}n
|ψ(z)| = 1, (5.12)

∑

z∈{0,1}n
ψ(z) f ∗(z) >

2
3
. (5.13)
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Define matrices

F =
[

f ∗(. . . , g(x(i), y(i)), . . . )
]

x,y
,

K =



2
nψ(. . . , g(x(i), y(i)), . . . )

n∏

i=1

µ(x(i), y(i))





x,y

,

where in both cases the row indexx = (. . . , x(i), . . . ) ranges overAn and the column
indexy = (. . . , y(i), . . . ) ranges overBn. In view of (5.10) and (5.13),

〈F,K〉 > 2
3
. (5.14)

We proceed to bound‖K‖. Put

MS =





∏

i∈S
(−1)g(x

(i) ,y(i)) ·
n∏

i=1

µ(x(i), y(i))





x,y

, S ⊆ [n].

Then (5.8) and (5.9) imply, in view of the tensor structure ofMS, that

‖MS‖ 6 |A|−n/2 |B|−n/2 ρ|S|(1+ ρ)n−|S|. (5.15)

On the other hand,

‖K‖ 6
∑

S⊆[n]

2n|ψ̂(S)| ‖MS‖

=
∑

|S|>d

2n|ψ̂(S)| ‖MS‖ by (5.11)

6

∑

|S|>d

‖MS‖ by (5.12) and Proposition 2.1

6 |A|−n/2 |B|−n/2
n∑

i=d

(

n
i

)

ρi(1+ ρ)n−i by (5.15).

Sinceρ 6 d/(2en), we further have

‖K‖ 6 |A|−n/2 |B|−n/2 2−Θ(d). (5.16)

In view of (5.14) and (5.16), the desired lower bound onQ∗(F) now follows by the
generalized discrepancy method (Theorem 4.1). �

Proposition 5.12 and Theorem 5.13 have the following consequence:

23



Theorem 5.14 ([SZ07]).Fix a function f : {0, 1}n → {0, 1} and an integer k>
2 log2 n+ 5. Then Q( f ◦ nk) > Q∗( f ◦ nk) > Ω(deg1/3( f )).

For the functionk(x, y) =
∨k

i=1(xi ∧ yi), Shi and Zhu prove that
ρ(k) = O(1/k). Unlike Proposition 5.12, this fact requires a nontrivial proof
using Knuth’s calculation of the eigenvalues of certain combinatorial matrices. In
conjunction with Theorem 5.13, this upper bound onρ(k) leads with some work
to the following implication:

Theorem 5.15 ([SZ07]).Define f : {0, 1}n×{0, 1}n → {0, 1} by f(x, y) = D(|x∧y|),
where D: {0, 1, . . . , n} → {0, 1} is given. Then

Q( f ) > Q∗( f ) > Ω
(

n1/3`0(D)2/3 + `1(D)
)

.

The symbols̀ 0(D) and`1(D) have their meaning from Section 5.1. Theorem 5.15
is of course a weaker version of Razborov’s celebrated lowerbounds for symmetric
functions (Theorem 5.10), obtained with a different proof.

5.3 Pattern Matrix Method vs. Block Composition Method

To restate the block composition method,

Q∗( f ◦ gn) > Ω(deg1/3( f )) provided that ρ(g) 6
deg1/3( f )

2en
.

The key player in this method is the quantityρ(g), which needs to be small. This
poses two complications. First, the functiong will generally need to depend on
many variables, fromk = Θ(logn) to k = nΘ(1), which weakens the final lower
bounds on communication (recall thatρ(g) > 2−k always). For example, the lower
bounds obtained in [SZ07] for symmetric functions are polynomially weaker than
Razborov’s optimal lower bounds (see Theorems 5.15 and 5.10, respectively).

A second complication, as Shi and Zhu note, is that “estimating the quantity
ρ(g) is unfortunately difficult in general” [SZ07,§4.1]. For example, re-proving
Razborov’s lower bounds reduces to estimatingρ(g) with g being the
function. Shi and Zhu accomplish this using Hahn matrices, an advanced tool that
is also the centerpiece of Razborov’s own proof (Razborov’suse of Hahn matrices
is somewhat more demanding).

These complications do not arise in the pattern matrix method. For example, it
implies (by settingN = 2n in Theorem 5.7) that

Q∗( f ◦ gn) > Ω(deg1/3( f ))
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for any functiong : {0, 1}k×{0, 1}k → {0, 1} such that the matrix [g(x, y)]x,y contains
the following submatrix, up to permutations of rows and columns:





1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1





. (5.17)

To illustrate, one can takeg to be

g(x, y) = x1y1 ∨ x2y2 ∨ x3y3 ∨ x4y4,

or
g(x, y) = x1y1y2 ∨ x1 y1y2 ∨ x2 y1 y2 ∨ x2 y1 y2.

(In particular, the pattern matrix method subsumes Theorem5.14.) To summarize,
there is a simple functiong on onlyk = 2 variables that works universally for allf .
This means no technical conditions to check, such asρ(g), and no blow-up in the
number of variables. As a result, in [She07b] we are able to re-prove Razborov’s
optimal lower bounds exactly. Moreover, the technical machinery involved is self-
contained and disjoint from Razborov’s proof.

We have just seen that the pattern matrix method gives stronglower bounds for
many functions to which the block composition method does not apply. However,
this does not settle the exact relationship between the scopes of applicability of the
two methods. Several natural questions arise. If a functiong : {0, 1}k × {0, 1}k →
{0, 1} has spectral discrepancyρ(g) 6 1

2e, does the matrix [g(x, y)]x,y contain (5.17)
as a submatrix, up to permutations of rows and columns? An affirmative answer
would mean that the pattern matrix method has a strictly greater scope of applica-
bility; a negative answer would mean that the block composition method works in
some situations where the pattern matrix method does not apply. If the answer is
negative, what can be said forρ(g) = o(1) orρ(g) = n−Θ(1)?

Another intriguing issue concerns multiparty communication. As we will see
in Section 6, the pattern matrix method extends readily to the multiparty model.
This extension makes heavy use of the fact that the rows of a pattern matrix are
applications of the same function to different subsets of the variables. In the gen-
eral context of block composition (Section 5.2), it is unclear how to carry out this
extension. It is inviting to explore a synthesis of the two methods in the multiparty
model or another suitable context.

6 Extensions to the Multiparty Model

In this section, we present extensions of the Degree/Discrepancy Theorem and of
the pattern matrix method to the multiparty model. We start with some notation.
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Fix a functionφ : {0, 1}n → R and an integerN with n | N. Define the (k,N, n, φ)-
pattern tensoras thek-argument functionA : {0, 1}n(N/n)k−1×[N/n]n×· · ·×[N/n]n→
R given byA(x,V1, . . . ,Vk−1) = φ(x|V1,...,Vk−1), where

x|V1,...,Vk−1

def
=

(
x1,V1[1],...,Vk−1[1] , . . . , xn,V1[n],...,Vk−1[n]

)
∈ {0, 1}n

and V j[i] denotes theith element of then-dimensional vectorV j . (Note that we
index the stringx by viewing it as ak-dimensional array ofn×(N/n)×· · ·×(N/n) =
n(N/n)k−1 bits.) This definition generalizes the author’s pattern matrices if one
ignores the⊕ operator (Section 5.1).

We are ready for the first result of this section, namely, an extension of the De-
gree/Discrepancy Theorem (Theorem 3.2) to the multiparty model.This extension
was originally obtained by Chattopadhyay [Cha07, Lem. 2] for slightly different
tensors and has since been revisited in one form or another: [LS07, Thm. 19],
[CA08, Lem. 4.2]. The proofs of these several versions are quite similar and are in
close correspondence with the original two-party case.

Theorem 6.1 ([Cha07, LS07, CA08]).Let f : {0, 1}n → {0, 1} be given with
threshold degree d> 1. Let N be a given integer, n| N. Let F be the(k,N, n, f )-
pattern tensor. If N> 4en2(k − 1)22k−1

/d, thendisc(F) 6 2−d/2k−1
.

Proof (adapted from [Cha07, LS07, CA08]). As in the proof of the De-
gree/Discrepancy Theorem, letµ be a probability distribution over{0, 1}n
with respect to whichEz∼µ[(−1)f (z) p(z)] = 0 for every real-valued functionp
of d − 1 or fewer of the variablesz1, . . . , zn. The existence ofµ is assured by
Theorem 3.3. We will analyze the discrepancy ofF with respect to the distribution

λ(x,V1, . . . ,Vk−1) = 2−n(N/n)k−1+n
(N

n

)−n(k−1)

µ(x|V1,...,Vk−1).

Defineψ : {0, 1}n→ R by ψ(z) = (−1)f (z)µ(z). By Theorem 2.2,

discλ(F)2k−1
6 2n2k−1

E
V
|Γ(V)|, (6.1)

where we putV = (V0
1 ,V

1
1 , . . . ,V

0
k−1,V

1
k−1) and

Γ(V) = E
x




ψ

(

x|V0
1 ,V

0
2 ,...,V

0
k−1

)

︸              ︷︷              ︸

(†)

∏

z∈{0,1}k−1\{0k−1}

ψ

(

x|Vz1
1 ,V

z2
2 ,...,V

zk−1
k−1

)

︸                                   ︷︷                                   ︸

(‡)




.
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For a fixed choice ofV, define sets

A =
{

(i,V0
1[i], . . . ,V0

k−1[i]) : i = 1, 2, . . . , n
}

,

B =
{

(i,Vz1
1 [i], . . . ,Vzk−1

k−1 [i]) : i = 1, 2, . . . , n; z ∈ {0, 1}k−1 \ {0k−1}
}

.

Clearly, A and B are the sets of variables featured in the expressions (†) and (‡)
above, respectively. To analyzeΓ(V), we prove two key claims analogous to those
in the Degree/Discrepancy Theorem.

Claim 6.2. Assume that|A∩ B| 6 d − 1. ThenΓ(V) = 0.

Proof. Immediate from the fact that the Fourier transform ofψ is supported on
characters of orderd and higher. �

Claim 6.3. Assume that|A∩ B| = i. Then|Γ(V)| 6 2i2k−1−n2k−1
.

Proof. Observation 3.4 shows that|Γ(V)| 6 2−n2k−1
2n2k−1−|A∪B|. Furthermore, it is

straightforward to verify that|A∪ B| > n2k−1 − |A∩ B|2k−1. �

In view of Claims 6.2 and 6.3, inequality (6.1) simplifies to

discλ(F)2k−1
6

n∑

i=d

2i2k−1
P[|A∩ B| = i].

It remains to boundP[|A∩B| = i]. For a fixed elementa,we haveP[a ∈ B | a ∈ A] 6
(k − 1)n/N by the union bound. Moreover, given two distinct elementsa, a′ ∈
A, the corresponding eventsa ∈ B and a′ ∈ B are independent. Therefore,

P[|A∩ B| = i] 6
(
n
i

) (
(k−1)n

N

)i
, which yields the desired bound on discλ(F). �

Remark6.4. Recall from Section 5.1 that the two-party Degree/Discrepancy The-
orem was considerably improved in [She07b] using matrix-analytic techniques.
Those techniques, however, do not extend to the multiparty model. As a result,
Theorem 6.1 that we have just presented does not subsume the improved De-
gree/Discrepancy Theorem (Theorem 5.9).

We now present an adaptation of the pattern matrix method (Theorem 5.7) to
the multiparty model, obtained by Lee and Shraibman [LS07] and independently
by Chattopadhyay and Ada [CA08]. The proof is closely analogous to the two-
party case. However, the spectral calculations for patternmatrices do not extend
to the multiparty model, and one is forced to fall back on the less precise calcula-
tions introduced in the Degree/Discrepancy Theorem (Theorem 3.2). In particular,
the result we are about to present does not subsume the two-party pattern matrix
method.
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Theorem 6.5 ([LS07, CA08]).Let f : {0, 1}n → {0, 1} be given withdeg1/3( f ) =
d > 1. Let N be a given integer, n| N. Let F be the(k,N, n, f )-pattern tensor. If
N > 4en2(k− 1)22k−1

/d, then Rk(F) > Ω(d/2k).

Proof (adapted from [LS07, CA08]). Define f ∗ : {0, 1}n → {−1,+1} by f ∗(z) =
(−1)f (z). Then it is easy to verify that deg2/3( f ∗) = d. By Theorem 5.1, there is a
functionψ : {0, 1}n→ R such that:

ψ̂(S) = 0 for |S| < d,
∑

z∈{0,1}n
|ψ(z)| = 1,

∑

z∈{0,1}n
ψ(z) f ∗(z) >

2
3
. (6.2)

Fix a function h : {0, 1}n → {−1,+1} and a distributionµ on {0, 1}n such
that ψ(z) ≡ h(x)µ(x). Let H be the (k,N, n, h)-pattern tensor. LetP be the
(k,N, n, 2−n(N/n)k−1+n(N/n)−n(k−1)µ)-pattern tensor. ThenP is a probability distri-
bution. By (6.2),

〈H ◦ P, F∗〉 > 2
3
, (6.3)

whereF∗ is the (k,N, n, f ∗)-pattern tensor. As we saw in the proof of Theorem 6.1,

discP(H) 6 2−d/2k−1
. (6.4)

The theorem now follows by the generalized discrepancy method (Theorem 4.2) in
view of (6.3) and (6.4). �

The authors of [LS07] and [CA08] gave important applications of their work
to thek-party randomized communication complexity of, improving
it from Ω(1

k logn) to nΩ(1/k)2−O(2k). As a corollary, they separated the multiparty
communication classesNPcc

k andBPPcc
k for k = (1−o(1)) log2 log2 n parties. They

also obtained new results for Lovász-Schrijver proof systems, in light of the work
due to Beame, Pitassi, and Segerlind [BPS07].

7 Separation ofNPcc
k and BPPcc

k

We conclude this survey with a separation ofNPcc
k andBPPcc

k for k = (1− ε) log2 n
parties, due to David and Pitassi [DP08]. This is an exponential improvement over
the previous separation in [LS07, CA08]. The crucial insight in this new work is
to redefine the projection operatorx|V1,...,Vk−1 from Section 6 using the probabilistic
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method. This removes the key bottleneck in the previous analyses [LS07, CA08].
Unlike the previous work, however, this new approach no longer applies to-
.

We start with some notation. Fix integersn,mwith n > m. Letψ : {0, 1}m→ R
be a given function with

∑

z∈{0,1}m |ψ(z)| = 1. Let d denote the least order of a
nonzero Fourier coefficient ofψ. Fix a Boolean functionh : {0, 1}m→ {−1,+1} and
a distributionµ on {0, 1}m such thatψ(z) ≡ h(z)µ(z). For a mappingα : ({0, 1}n)k →
(
[n]
m

)

, define a (k + 1)-party communication problemHα : ({0, 1}n)k+1 → {−1,+1}
by H(x, y1, . . . , yk) = h(x|α(y1,...,yk)). Analogously, define a distributionλα on
({0, 1}n)k+1 by λ(x, y1, . . . , yk) = 2−(k+1)n+mµ(x|α(y1,...,yk)).

Theorem 7.1 ([DP08]). Assume that n> 16em22k. Then for a uniformly random
choice ofα : ({0, 1}n)k →

(
[n]
m

)

,

E
α

[

discλα(Hα)2k]

6 2−n/2 + 2−d2k+1.

Proof (adapted from [DP08]). By Theorem 2.2,

discλα(Hα)2k
6 2m2k

E
Y
|Γ(Y)|, (7.1)

where we putY = (y0
1, y

1
1, . . . , y

0
k, y

1
k) and

Γ(Y) = E
x





∏

z∈{0,1}k
ψ

(

x|
α
(

y
z1
1 ,y

z2
2 ,...,y

zk
k

)

)



.

For a fixed choice ofY, we will use the shorthandSz = α(yz1
1 , . . . , y

zk
k ). To ana-

lyzeΓ(Y), we prove two key claims analogous to those in the Degree/Discrepancy
Theorem and in Theorem 6.1.

Claim 7.2. Assume that|
⋃

Sz| > m2k − d2k−1. ThenΓ(Y) = 0.

Proof. If |
⋃

Sz| > m2k−d2k−1, then someSz must feature more thanm−d elements
that do not occur in

⋃

u,z Su. But this forcesΓ(Y) = 0 since the Fourier transform
of ψ is supported on characters of orderd and higher. �

Claim 7.3. For every Y, |Γ(Y)| 6 2−|
⋃

Sz|.

Proof. Immediate from Observation 3.4. �

29



In view of (7.1) and Claims 7.2 and 7.3, we have

E
α

[

discλα(Hα)2k]

6

m2k−m∑

i=d2k−1

2i P
Y,α

[∣
∣
∣
∣

⋃

Sz

∣
∣
∣
∣ = m2k − i

]

.

It remains to bound the probabilities in the last expression. With probability at
least 1− k2−n over the choice ofY, the stringsy0

1, y
0
1 . . . , y

0
k, y

1
k will all be distinct.

Conditioning on this event, the fact thatα is chosen uniformly at random means that
the 2k setsSz are distributed independently and uniformly over

(
[n]
m

)

. A calculation
now reveals that

P
Y,α

[∣
∣
∣
∣

⋃

Sz

∣
∣
∣
∣ = m2k − i

]

6 k2−n +

(

m2k

i

) (

m2k

n

)i

6 k2−n + 8−i . �

We are ready to present the separation ofNPcc
k andBPPcc

k .

Theorem 7.4 (Separation ofNPcc
k and BPPcc

k [DP08]). Let k 6 (1 − ε) log2 n,
whereε > 0 is a given constant. Then there exists a function Fα : ({0, 1}n)k+1 →
{−1,+1} with Nk+1(Fα) = O(logn) but Rk+1(Fα) = nΩ(1).

Proof (adapted from [DP08]). Let m = bnζc for a sufficiently small constantζ =
ζ(ε) > 0. As usual, definem : {0, 1}m → {−1,+1} by m(z) = 1 ⇔ z = 0m.

It is known [NS92, Pat92] that deg1/3(m) = Θ(
√

m). As a result, Theorem 5.1
guarantees the existence of a functionψ : {0, 1}m→ R such that:

ψ̂(S) = 0 for |S| < Θ(
√

m),
∑

z∈{0,1}m
|ψ(z)| = 1,

∑

z∈{0,1}m
ψ(z)m(z) >

1
3
.

Fix a functionh : {0, 1}m → {−1,+1} and a distributionµ on {0, 1}m such that
ψ(z) ≡ h(z)µ(z). For a mappingα : ({0, 1}n)k →

(
[n]
m

)

, let Hα andλα be as defined
at the beginning of this section. Then Theorem 7.1 shows the existence ofα such
that

discλα(Hα) 6 2−Ω(
√

m).

Using the properties ofψ, one readily verifies that〈H ◦ λα, Fα〉 > 1/3, where
Fα : ({0, 1}n)k+1 → {−1,+1} is given byFα(x, y1, . . . , yk) = m(x|α(y1,...,yk)). By the
generalized discrepancy method (Theorem 4.2),

Rk+1(Fα) > Ω(
√

m) = nΩ(1).
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On the other hand,Fα has nondeterministic complexityO(logn). Namely,
Player 1 (who knowsy1, . . . , yk) nondeterministically selects an elementi ∈
α(y1, . . . , yk) and announcesi. Player 2 (who knowsx) then announcesxi as the
output of the protocol. �

A recent follow-up result due to David, Pitassi, and Viola [DPV08] derandomizes
the choice ofα in Theorem 7.4, yielding anexplicit separation ofNPcc

k andBPPcc
k

for k 6 (1− ε) log2 n.
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