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Abstract

Representations of Boolean functions by real polynomildg pn im-
portant role in complexity theory. Typically, one is intsted in the least
degree of a polynomigh(x, . .., X,) that approximates or sign-represents a
given Boolean functiorf(xy, ..., X,). This article surveys a new and grow-
ing body of work in communication complexity that centersuard thedual
objects, i.e., polynomials that certify theffittulty of approximating or sign-
representing a given function. We provide a unified guidénheofollowing
results, complete with all the key proofs:

e Sherstov’s DegregDiscrepancy Theoremwhich translates lower
bounds on the threshold degree of a Boolean function intceupp
bounds on the discrepancy of a related function;

e Two different methods for proving lower bounds on bounded-error
communication based on the approximate degree: Shergattsrn
matrix methodand Shi and Zhu'dlock composition method

e Extension of the pattern matrix method to the multiparty elpdb-
tained by Lee and Shraibman and by Chattopadhyay and Adahand
resulting improved lower bounds forsjoINTNESS;

e David and Pitassi’s separation®P andBPP in multiparty communi-
cation complexity fok < (1 — €) logn players.
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1 Introduction

Representations of Boolean functions by real polynomiedsodconsiderable im-
portance in complexity theory. The ease offidulty of representing a given
Boolean function by polynomials from a given set often yéeldluable insights
into the structural complexity of that function.

We focus on two concrete representation schemes that awvablynomi-
als. The first of these corresponds to threshold computatibar a Boolean
function f : {0,1}" — {0,1}, its threshold degreedeg.(f) is the minimum
degree of a polynomialp(xs,..., X)) such thatp(x) is positive if f(x) = 1
and negative otherwise. In other words, the threshold degfef is the least
degree of a polynomial that represertsin sign. Several authors have ana-
lyzed the threshold degree of common Boolean functions [BiBRS95, OS03].
The results of these investigations have found numerouBcafipns to circuit
complexity [ABFR94, BRS95, KP97, KP98] and computationahrhing the-
ory [KS04, KOS04, KS07b].

The other representation scheme that we consider is appati®n in the
uniform norm. For a Boolean functio : {0,1}" — {0,1} and a constant
€ € (0,1/2), the e-approximate degree dof is the least degree of a polynomial
p(X1,...,%,) with [f(X) — p(x)] < € for all x € {0,1}". Note that this repre-
sentation is strictly stronger than the first: no longer ae cgntent with rep-
resentingf in sign, but rather we wish to closely approximateon every in-
put. There is a considerable literature on the approximagred of specific
Boolean functions [NS92, Pat92, KLS96, BCWZ99, AS04, Sh&Usl08]. This
classical notion has been crucial to progress on a varietyuestions, includ-
ing quantum query complexity [BCWZ99, BBGQ1, AS04], communication com
plexity [BWO01, Raz03, BVW07] and computational learningahy [TT99, KS04,
KKMSO05, KS07a].

The approximate degree and threshold degree can be contrg@iralyzed by
means of a linear program. In particular, whenever a givaotfan f cannot be ap-
proximated or sign-represented by polynomials of low deglieear-programming
duality implies the existence of a certalnal object to witness that fact. This dual
object, which is a real function or a probability distritmrti reveals useful new
information about the structural complexity &f The purpose of this article is to
survey a very recent and growing body of work in communicatiomplexity that
revolves around the dual formulations of the approximatgre and threshold
degree. Our ambition here is to provide a unified view of thdigerse results,
complete with all the key proofs, and thereby to encourag@dun inquiry into the
potential of the dual approach.

In the remainder of this section, we give an intuitive ovewiof our survey.



DegregDiscrepancy Theorem. The first result that we survey, in Section 3, is
the author'sDegregDiscrepancy TheorerfEhe07a). This theorem and its proof
technique are the foundation for much of the subsequent workeyed in this
article [She07b, Cha07, LS07, CA08, DPO08]. Fix a Boolearfion f : {0, 1}" —

{0, 1} and letN be a given integelN > n. In [She07a], we introduced the two-party
communication problem of computing

f(Xlv),

where the Boolean string € {0, 1N is Alice’s input and the se¥ c {1,2,..., N}

of size|V| = nis Bob’s input. The symbokjy stands for the projection of onto
the indices inV, in other words Xy = (X, Xi,, - - -, Xi,) € {0,1}", wherei; < iy <

- < ip are the elements of. Intuitively, this problem models a situation when

Alice and Bob’s joint computation depends on onlgf the inputsxy, X, .. ., Xn.
Alice knows the values of all the inputs, o, . .., Xy but does not know which

of them are relevant. Bob, on the other hand, knows whiahputs are relevant
but does not know their values.

We proved in [She07a] that the threshold degdeef f is a lower bound
on the communication requirements of this problem. Moreipady, the De-
gregDiscrepancy Theorem shows that this communication prolilamdiscrep-
ancy exp£Q(d)) as soon adN > 11n?/d. This exponentially small discrepancy
immediately gives af(d) lower bound on communication in a variety of models
(deterministic, nondeterministic, randomized, quantuith and without entangle-
ment). Moreover, the resulting lower bounds on commurocatiold even if the
desired error probability is vanishingly close tt21

The proof of the DegrgPiscrepancy Theorem introduces a novel technique
based on the dual formulation of the threshold degree. I itagppears to be the
first use of the threshold degree (in its primal or dual foromriove communication
lower bounds. As an application, we exhibit in [She07a] the ACC circuit with
exponentially small discrepancy, thereby separat@j from depth-2 majority
circuits and solving an open problem of Krause and Pudldk9K §6]. Indepen-
dently of the author, Buhrman et al. [BVWO07] exhibited aresthC® function with
exponentially small discrepancy, using muctetient techniques.

Bounded-Error Communication. Next, we present two recent results on
bounded-error communication complexity, due to Shers&nep7b] and Shi and
Zhu [SZ07]. These papers use the notion of approximate degreontribute
strong lower bounds for rather broad classes of functiomssieming Razborov's
breakthrough work on symmetric predicates [Raz03]. Thesldwounds are valid
not only in the randomized model, but also in the quantum ik and without
prior entanglement.



The setting in which to view these two works is theneralized discrepancy
methoda simple but very useful principle introduced by Klauck [8d3 and refor-
mulated in its current form by Razborov [Raz03]. i€k, y) be a Boolean function
whose quantum communication complexity is of interest. fitathod asks for a
Boolean functiorh(x, y) and a distribution: on (X, y)-pairs such that;

(1) the functionsf andh are highly correlated under, and
(2) all low-cost protocols have negligible advantage in pating h under.

If suchh andu indeed exist, it follows that no low-cost protocol can conepfito
high accuracy (or else it would be a good predictor for thel fianctionh as well!).
This method is in no way restricted to the quantum model tather, applies to
any model of communication [She07§2.4]. The importance of the generalized
discrepancy method is that it makes it possible, in thearyrove lower bounds
for functions such asissiontness, to which the traditional discrepancy method
does not apply. In Section 4, we provide detailed historimmatkground on the
generalized discrepancy method and compile its quangtatersions for several
models.

The hard part, of course, is findinly and u. Except in rather restricted
cases [Kla01, Thm. 4], it was not known how to do it. As a redbk generalized
discrepancy method was of limited practical use. Thifidalilty was overcome
independently by Sherstov [She07b] and Shi and Zhu [SZ0f$ uwsed the dual
characterization of the approximate degree to obtieimd i« for a broad range of
problems. To our knowledge, the work in [She07b] and [SZ87he first use of
the dual characterization of the approximate degree togprommunication lower
bounds. The specifics of these two works are vefiedent. The construction ¢f
andu in [She07b], which we called theattern matrix methoébr lower bounds on
bounded-error communication, is built around a new madnalytic technique (the
pattern matriy inspired by the author’s Degrégiscrepancy Theorem. The con-
struction in [SZ07], thélock-composition method based on the idea of hardness
amplification by composition. These two methods exhibiteydifferent behavior,
e.g., the pattern matrix method further extends to the party model. We present
the two methods individually in Sections 5.1 and 5.2 and idewa detailed com-
parison of their strength and applicability in Section 5.3.

Extensions to the Multiparty Model. Both the Degre®iscrepancy Theo-
rem [She07a] and the pattern matrix method [She07b] gerertal the multiparty
number-on-the-forehead model. In the case of [She07a],etktension was for-
malized by Chattopadhyay [Cha07]. As before,flet{0,1}" — {0, 1} be a given
function. Recall that in théwo-partycase, there was a Boolean string {0, 1}N
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and asinglesetV c {1,2,..., N}. The k-party communication problem features
a Boolean string € {0, 1N" and set/1, ..., Vier < {L2,...,N}. Thek inputs
X, V1,...,Vk_1 are distributed among theparties as usual. The goal is to compute

def
1:(X|V1 ..... kal) =

f(xi%,...,i‘i‘l’ Xi%,...,ih‘l)’ 1.1)
wherei} < i) < -+ < i} are the elements ofj (for j = 1,2,...,k - 1). This
way, again no party knows at once the Boolean strirand the relevant bits in
it. With this setup in place, it becomes relatively strafighvard to bound the
discrepancy by traversing the same line of reasoning asieJ%a]. The extension
of the pattern matrix method [SheQ7b] to the multiparty mages a similar setup
and was done by Lee and Shraibman [LS07] and independentBhhttopadhyay
and Ada [CA08]. We present the proofs of these extensiongati@ 6, placing
them in close correspondence with the two-party case. Téesmsions do not
subsume the two-party results, however (see Section 6 failsle

The authors of [LS07] and [CAQ8] gave important applicagiari their work
to the k-party randomized communication complexity mjoiNTNESS, improving
it from Q(z logn) to Nk 2-029 As a corollary, they separated the multiparty
communication classe¢Py andBPPLC for k = (1-0(1)) log, log, n parties. They
also obtained new results for Lovasz-Schrijver proofeayst, in light of the work
due to Beame, Pitassi, and Segerlind [BPS07].

Separation of NP and BPP.°. The separation of the classe®;® andBPP;*

in [LSO7, CA08] fork = (1 — o(1)) log, log, n parties was followed by another ex-
citing development, due to David and Pitassi [DP08], whas&jed these classes
for k < (1 - €)log, n parties. Here: > 0 is an arbitrary constant. Since the current
barrier for explicit lower bounds on multiparty communiocatcomplexity is pre-
cisely k = log, n, David and Pitassi’s separation matches the state of theAgt.
present this work in Section 7. The powerful idea in this ltesas to redefine
that it sufices to define the projection operator at random, using thieapitistic
method. This insight removed the key technical obstaclegmein [LS07, CA08].
In a follow-up work by David, Pitassi, and Viola [DPV08], tipeobabilistic con-
struction was derandomized to yield explicit separation.

Other Related Work. For completeness, we will mention several duality-based
results in communication complexity that fall outside tegge of this survey. Re-
cent work has seen other applications of dual polynomidte(@3c, RS08], which
are considerably more complicated and no longer corresfittte approximate



degree or threshold degree. More broadly, several receuitsdeature other forms
of duality [LSO07b, LSS08], such as the duality of norms or semidefinite program-
ming duality.

2 Preliminaries

This section reviews our notation and provides relevarfirtimal background.

2.1 General Background

A Boolean functioris a mappingX — {0, 1}, whereX is a finite set such aX =

{0, 1}" or X = {0, 1}" x {0, 1}". The notation f] stands for the sdfl, 2, ..., n}. For

integersN, nwith N > n, the symbol('})) denotes the family of all siza-subsets
of {1,2,...,N}. Forx € {0, 1}", we write|X| = Xy + - -+ + X,. Forx, y € {0, 1}", the

notationx A y refers as usual to the component-wise ANIx@ndy. In particular,
|X A y| stands for the number of positions wherandy both have a 1Throughout
this manuscript, “log” refers to the logarithm to base 2

For tensorsA, B : X3 x --- x Xk — R (whereX; is a finite setj = 1,2,...,Kk),
define (A, B) = X (x, . xoeXox-xx AXL -+, X)B(Xe, . . ., X%). When A and B are
vectors or matrices, this is the standard definition of irpreduct. TheHadamard
product of A and B is the tensorA o B : X; X --- X Xk — R given by
(Ao B)(X,..., %) = A(X1, ..., X)B(X1, ..., X).

The symbolR™" refers to the family of alin x n matrices with real entries.
The (, j)th entry of a matrixXA is denoted by;;. We frequently use “generic-entry”
notation to specify a matrix succinctly: we wrike= [F(i, j)]i,; to mean that the
(i, j)th entry of A is given by the expressioR(i, j). In most matrices that arise in
this work, the exact ordering of the columns (and rows) Elé@vant. In such cases
we describe a matrix by the notatioR(f, j)]ici, je3, Wherel andJ are some index
sets.

Let A € R™". We use the following standard notatiofll. = max ; |Ajl
and||AllL = X IAjjl. We denote the singular values Afby o1(A) > o2(A) >

. = ominmn)(A) > 0. Recall that the spectral norm & is given by||Al| =
maXern, xi=1 IAX| = o1(A). An excellent reference on matrix analysis is [HJ86].

We conclude with a review of the Fourier transform o} Consider the
vector space of functionf, 1}" — R, equipped with the inner produgt, g) =
27" Yxeroap F(X)g(x). For S c [n], defineys : {0,1)" — {-1,+1} by xs(X) =
(=1)Zies X Then {xsl}scin is an orthonormal basis for the inner product space in
guestion. As a result, every functidn: {0, 1}" — R has a unique representation of
the formf(X) = Yscn T(S) xs(X), wheref(S) = (f, ys). The realsf(S) are called



theFourier cogficients of f The following fact is immediate from the definition of
f(S):

Proposition 2.1. Fix f : {0,1}" —» R. Then

max|f(S)| < 27" 1 (X)I.
Sc[n]
xe{0,1}"

2.2 Communication Complexity

This survey features several standard models of commimricdh the case of two
communicating parties, one considers a functionX x Y — {0, 1}, whereX and

Y are some finite sets. Alice receives an ingut X, Bob receiveg € Y, and their
objective is to predicf (x, y) with good accuracy. To this end, Alice and Bob share
a communication channel (classical or quantum, dependinipe model). Alice
and Bob’s communication protocol is said to havreor ¢ if it outputs the correct
answerf(x, y) with probability at least - € on every input. Theostof a given
protocol is the maximum number of bits exchanged on any inpbhe two-party
models of interest to us are the randomized model, the goantodel without
prior entanglement, and the quantum model with prior erleangnt. The least cost
of ane-error protocol forf in these models is denoted By(f), Q.(f), andQ(f),
respectively. It is standard practice to omit the subseripthen error parameter
is € = 1/3. Recall that the error probability of a protocol can be desedafrom
1/3 to any other constart > 0 at the expense of increasing the communication
cost by a constant factor; we will use this fact in many praifthis survey, often
without explicitly mentioning it. Excellent references ¢timese communication
models are [KN97] and [Wol01].

A generalization of two-party communicationniember-on-the-forehead mul-
tiparty communication. Here one considers a functfon X x --- x Xx — {0, 1}
for some finite setx,..., Xx. There arek players. A given inputX,...,X) €
X1 x- - -x X is distributed among the players by placixgn the forehead of player
i (fori =1,...,K). In other words, playerknowsxs, ..., X—1, Xi+1, . . . , Xk but not
X. The players can communicate by writing bits on a shared bizaid, visible to
all. They additionally have access to a shared source obraridts. Their goal is
to devise a communication protocol that will allow them tawately predict the
value of f on every input. Analogous to the two-party case, fmedomizedcom-
munication complexityR¥(f) is the least cost of agrerror communication protocol
for f in this model. The final section of this paper also consideemnbndetermin-
istic communication complexityNK(f), which is the minimum cost of a protocol



for f that always outputs the correct answer on the input§0) and has error prob-
ability less than 1 on each of the inpuits!(1). Analogous to computational com-
plexity, BPPEC (respectivelyNPE) is the class of functions : ({0, 1}")* — {0, 1}
with RK(f) < (Iog n)° @ (respectlverNk(f) < (logn)°®). See [KN97] for further
details.

A crucial tool for proving communication lower bounds is ttscrepancy
method. Given a functionf : X xY — {0,1} and a distributionu on X x Y,
thediscrepancy of f with respect jois defined as

DD u(x )|

xeS yeT

disg,(f) = max

TQY

This definition generalizes to the multiparty case as fodlofix f : Xy x---x Xk —
{0, 1} and a distribution: on X1 x - - - x X. Thediscrepancy of f with respect jo
is defined as

disg,(f) = max | > w(xl,...,xk)l_[(b.(xl,...,m1,m1,...,xk),

(X105 Xk)
eX1X---X Xk

wherey(xq, . .., X)) = (-1) 00Xy (xq, ..., %) and the maximum ranges over all
functionsg; : Xy X -+- Xj_1 X Xiz1 X -+ X¢ — {0,1}, fori = 1,2,...,k Note that
for k = 2, this definition is identical to the one given previously fbettwo—party
model. We put disd() = min, disg,(f). We identify a functionf : Xy x---x Xx —
{0,1} with its communication tensor B, ..., x) = (=1)f*--x) and speak of
the discrepancy oM and f interchangeably (and likewise for other complexity
measures, such &(f)).

Discrepancy is diicult to analyze as defined. Typically, one uses the following
well-known estimate, derived by repeated applicationshef €auchy-Schwartz
inequality.

Theorem 2.2 ([BNS92, CT93, Raz00])Fix f : X3 x---x Xk — {0,1} and a
distribution g on Xg x - - - X Xi. Puty(Xq, . .., %) = (- 1)f(Xl ----- (X, . . ., X). Then

( disg,(f) )2k_1< E E
Xal-Xd ) e X exia
XiEXl X&ilexk 1

XkeXk 1_[ lﬁ(XZl ’Xik:i,Xk) '

01k1



In the case ok = 2 parties, there are other ways to estimate the discrepargy,
using the spectral norm of a matrix.

For a functionf : X; x --- x X, — {0,1} and a distributioru over X; x
<o X Xy, let DE’“(f) denote the least cost of a deterministic protocol fawhose
probability of error with respect tg is at moste. This quantity is known as the
u-distributional complexityof f. Since a randomized protocol can be viewed as
a probability distribution over deterministic protocolge immediately have that
RE() > max, DE’“(f). We are now ready to state the discrepancy method.

Theorem 2.3 (Discrepancy method; see [KN97])For every f: Xi X --- X Xk —
{0, 1}, every distributionu on X x - - - x Xy, and everyy € (0, 1],

k K, 4
Rij2y2 > Dl/ﬂz—y/z(f) > log, disg,(f)

In other words, a function with small discrepancy is harddmpute to any non-
trivial advantage over random guessing (let alone compuagehigh accuracy). In
the case ok = 2 parties, discrepancy yields analogous lower bounds evérei
guantum model, regardless of prior entanglement [Kre9&0KJ| LS07b].

3 The Degre¢Discrepancy Theorem

This section presents the author’'s Degibéscrepancy Theorem, whose proof tech-
nique is the foundation for much of the subsequent work s@den this arti-
cle [She07b, Cha07, LS07, CA08, DP03].

The original motivation behind this result came from cit@amplexity. A nat-
ural and well-studied computational model is that of a polyial-size circuit of
majority gates. Research has shown that majority circdiitepth 2 and 3 already
possess surprising computational power. Indeed, it is g-ftanding open prob-
lem [KP97] to exhibit a Boolean function thaannotbe computed by a depth-3
majority circuit of polynomial size.

Another extensively studied model is that of polynomialestonstant-depth
circuits with anp, or, Not gates, denoted b&CP. Allender’s classic result [AlI89]
states that every function iC® can be computed by a depth-3 majority circuit of
guasipolynomial size. Krause and Pudlak [KP$§G] ask whether this simulation
can be improved, i.e., whether every functiomAi@® can be computed by a depth-
2 majority circuit of quasipolynomial size. We recently gaa strong negative
answer to this question:



Theorem 3.1 ([She07a]).There is a function F {0, 1}" — {0, 1}, explicitly given
and computable by aaC® circuit of depth3, whose computation requires a ma-
jority vote ofexp@(n*/®)) threshold gates.

We proved Theorem 3.1 by exhibiting &C° function with exponentially small
discrepancy. All previously known functions with exporiaty small discrep-
ancy (e.g., [GHR92, Nis93]) containedriTy or masoriTy as a subfunction and
therefore could not be computedAc®. Buhrman et al. [BVWO7] obtained, inde-
pendently of the author and with muchferent techniques, anotha€c® function
with exponentially small discrepancy, thereby also answeKrause and Pudlak’s
question.

3.1 Bounding the Discrepancy via the Threshold Degree

To construct amC® function with small discrepancy, we developed in [She07a] a
novel technique for generating low-discrepancy functjevtich we now describe.
This technique is not specialized in any wayA6° but, rather, is based on the
abstract notion of threshold degree.

For a Boolean functionf : {0,1})" — {0, 1}, recall from Section 1 that its
threshold degrealeg.(f) is the minimum degree of a polynomialxy, ..., Xn)
with p(xX) > 0 & f(x) = 1 andp(X) < 0 & f(X) = 0. In many cases [MP88],
it is straightforward to obtain strong lower bounds on theshold degree. Since
the threshold degree is a measure of the complexity of a gdamtean function,
it is natural to wonder whether it can yield lower bounds omouunication in a
suitable setting. As we prove in [SheQ7a], this intuitiomtuout to be correct for
everyf.

More precisely, fix a Boolean functiofi : {0,1}" — {0, 1} with threshold
degreed. Let N be a given integeN > n. In [She07a], we introduced the two-
party communication problem of computing

f(Xlv),

where the Boolean string € {0, 1N is Alice’s input and the se¥ c {1,2,..., N}

of size|V| = nis Bob’s input. The symbokjy stands for the projection of onto
the indices inV, in other words Xy = (X, Xi,, - - -, Xi,) € {0,1}", wherei; < iy <

- < ip are the elements of. Intuitively, this problem models a situation when

Alice and Bob’s joint computation depends on onlgf the inputsxy, X, .. ., Xn.
Alice knows the values of all the inputg, xo, . .., Xy but does not know which

of them are relevant. Bob, on the other hand, knows whiahputs are relevant
but does not know their values. As one would hope, it turnstioaitd is a lower
bound on the communication requirements of this problem:

9



Theorem 3.2 (DegrefDiscrepancy Theorem [She07a])Let f: {0, 1}" — {0, 1}
be given with threshold degreexdl. Let N be a given integer, & n. Define F=
[f(xiv)]xv. where the rows are indexed byex{0, 1}N and columns by \& (I}).
Then

To our knowledge, Theorem 3.2 is the first use of the threstelgtee to prove
communication lower bounds. Given a functiérwith threshold degred, The-
orem 3.2 generates a communication problem with discrgpaheost 29 (by
settingN > 16en?/d). This exponentially small discrepancy immediately giges
Q(d) lower bound on communication in a variety of models (deterstic, nonde-
terministic, randomized, quantum with and without entanggnt; see Section 2.2).
Moreover, the resulting lower bounds on communication iamalid when Alice
and Bob merely seek to predict the answer with nonnegligideantage, a critical
aspect for lower bounds against threshold circuits.

We will give a detailed proof of the Degré&iscrepancy Theorem in the next
subsection. For now we will briefly sketch how we used it ind8ha] to prove the
main result of that paper, Theorem 3.1 above, on the existehanAC® function
that requires a depth-2 majority circuit of exponentiaksi€onsider the function

m 4n?

100 =\ /\ %

i=1 j=1

for which Minsky and Papert [MP88] showed that déf) = m. Sincef has high
threshold degree, an application of Theorem 3.2 yeelds a communication prob-
lem with low discrepancy. This communication problem itsaln be viewed as an
AC? circuit of depth 3 Recalling that its discrepancy is exponentially small, we
conclude that it cannot be computed by a depth-2 majorituitiof subexponen-
tial size.

3.2 Proof of the DegregDiscrepancy Theorem

A key ingredient in our proof is the following dual charadzation of the threshold
degree, which is a classical result known in greater geibersd Gordan’s Trans-
position Theorem [Sch98,7.8]:

Theorem 3.3. Let f: {0,1}" — {0, 1} be arbitrary, d a nonnegative integer. Then
exactly one of the following hold$1) f has threshold degree at most(@) there is
a distributiony over{0, 1}" such thatE.,[(-1) ¥ ys(x)] = 0for S| = 0,1,...,d.

10



Theorem 3.3 follows from linear-programming duality. Wellvalso make the
following simple observation.

Observation 3.4. Let k(X) be a probability distribution on{Q, 1" Fix ig,..., Iy
€{1,2,...,r}. ThenY o1y k(Xis - - -, %i,) < 271wl “wherelfis, .. . i, }| denotes
the number of distinct integers among.i. ., ir.

We are now ready for the proof of the Degterscrepancy Theorem.

Theorem 3.2(Restated from p. 10)Let f : {0, 1}" — {0, 1} be given with thresh-
old degree &> 1. Let N be a given integer, ¥ n. Define F= [f(Xlv)]xv, where
the rows are indexed bye({0, 1}N and columns by \¢ (1\]). Then

4?2
~a)
Proof [She07a] Let u be a probability distribution ovef0, 1}" with respect to
which E,.,[(-1)f@p(z)] = 0 for every real-valued functiop of d — 1 or fewer

of the variables,, ..., z,. The existence of is assured by Theorem 3.3. We will
analyze the discrepancy Bfwith respect to the distribution

disc(F) < (

-1
A V) = 2“(?1') HOX).

Definey : {0,1}" - R by ¢(2) = (-1)'@u(2). By Theorem 2.2,

disy(F)? < 4" E IT(V, W), (3.)
where we pul'(V, W) = Ex[y(Xlv)¥(Xlw)]. To analyze this expression, we prove
two key claims.
Claim 3.5. Assume thalv N W| < d - 1. ThenI'(V,W) = 0.

Proof. The claim is immediate from the fact that the Fourier tramsf@f  is
supported on characters of ordkand higher. For completeness, we will now give
a more detailed and elementary explanation. Assume fotioogh convenience
thatV ={1,2,...,n}. Then

T(VW) = Eu(xa. .. X)) (=) 04y (xw)]

= o D O DS )

1,--sXn X1, XN

Xnt15-- XN
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Since|lV N W| < d — 1, the starred expression is a real-valued function of at most
d - 1 variables. The claim follows by the definition @f O

Claim 3.6. Assume thalV N W| = i. Then|['(V, W)| < 2-2".

Proof. The claim is immediate from Observation 3.4. For completenae will
give a more detailed explanation. For notational conver@eassume that

V={12,...,n},
W={L12...,i}u{n+Ln+2,....,n+(n=10)}.

We have:

IT(V, W) < ELg (X ) (Xw)l]
= Ezn_i[/i(xl, oo XU(XT, oy Xy Xneds -+ o5 Xon—i)]

X1yee0s X
< E_[u(xg,....%)] - max E  [u(Xt, .. s X Xnt1s -5 Xon-i)] -
X1,..Xn X1, X Xnsl,eXon-i
=2-n <2-(n-i)
The bounds 2" and 2" follow becauseu is a probability distribution. O

In view of Claims 3.5 and 3.6, inequality (3.1) simplifies to

n
disci(F)? < > -2 PIVA W =1],
i=d

which completes the proof of Theorem 3.2 after some routaheutations. O

The discrepancy bound in Theorem 3.2 is not tight. In follagvwork (see
Section 5.1), the author proved a substantially strongentaising matrix-analytic
techniques. However, that matrix-analytic approach doeéseem to extend to the
multiparty model, and as we will see later in Sections 6 aradl multiparty papers
in this survey use adaptations of the analysis just predente

4 The Generalized Discrepancy Method

As we saw in Section 2.2, the discrepancy method is partigutrong in that

it gives communication lower bounds not only for boundeaeprotocols but

also for protocols with error vanishingly close %olronically, this strength of the

discrepancy method is also its weakness. For exampleyighentNess function
1

pisi(x.5) = \/L;(% A yi) has a simple low-cost protocol with errgr— Q(%).

12



As a result,pisjointNess has high discrepancy, and no useful lower bounds can
be obtained for it via the discrepancy method. Yet it is vkelbwn thatpis-
joinTNEss has bounded-error communication complexityn) in the randomized
model [KS92, Raz92] anf(/n) in the quantum model [Raz03].

The remainder of this survey (Sections 5-7) is concerneth Wwitunded-
error communication. Crucial to this development is teneralizeddiscrep-
ancy method, an ingenious extension of the traditionalrefgmcy method that
avoids the diiculty just cited. To our knowledge, this idea originated in a
paper by Klauck [Kla01, Thm. 4] and was reformulated in itsrent form by
Razborov [Raz03]. The development in [Kla0l1l] and [RazOREsaplace in the
guantum model of communication. However, the basic mattieatdechnique is
in no way restricted to the quantum model, and we will focusehmn a model-
independent version of the generalized discrepancy mdibod[She07b§2.4].

Specifically, consider aarbitrary communication model and ldt: X XY —

{0, 1} be a given function whose communication complexity we wiskgtimate.
Suppose we can find a functidn: X x Y — {0, 1} and a distributionu on X x Y
that satisfy the following two properties.

1. Correlation of f and h. The functionsf andh are well correlated under.

E [(_1)f(x,y)+h(x,y)] > e, (4.1)
()~

wheree > 0 is typically a constant.

2. Hardness ofh. No low-cost protocoll in the given model of communication
can computd to a substantial advantage ungeFormally, if T is a protocol
in the given model with cost, then

E [(_1)h(xy) E [(_1)H(xy)]] < 200)y, (4.2)
(Xy)~p

wherey = o(1). The inner expectation in (4.2) is over the internal operatio
of the protocol on the fixed inpuk(y).

If the above two conditions hold, we claim that any protoodhe given model that
computesf with error at mosk/3 on each input must have cc&(log £) . Indeed,
let TT be a protocol withP[TI(x,y) # f(X,y)] < €/3 for all x,y. Then standard
manipulations reveal:

e (A1) €
>

E [(_1)h(>w)E[(_l)H(X,y)”> E [(_1)f(x,y)+h(x,y)]_2.§ > 2

(Xy)~u (xy)~u 3

In view of (4.2), this shows thall must have cos® (log 5) .

13



The above framework from [SheQ7b] is meant to emphasize db& lnathe-
matical technique in question, which is independent of thraraunication model.
Indeed, the communication model enters the picture onlyiR)( It is here that
the analysis must exploit the particularities of the modelplace an upper bound
on the advantage undgrin the quantum model with entanglement, one considers
the quantityl|K[VIXT[Y], whereK = [(=1)"*¥)u(x, y)]«, - In the randomized model
and the quantum model without entanglement, the quantiégtimate happens to
be disg(h). (In fact, Linial and Shraibman [LSO7b] recently showed ttiat, (h)
also works in the quantum model with entanglement.)

For future reference, we now record a quantitative versioin® generalized
discrepancy method for the quantum model.

Theorem 4.1 ([She07b], implicit in [Raz03, SZ07]).Let X Y be finite sets and
f: XxY — {0,1} agiven function. Let K= [Ky,]xex yey D€ any real matrix with
[IK|ly = 1. Then for eacke > 0,

420 5 gQun 5 (HKO -2
BIIKIVIXITY]

where F= [(—1)f(x’y)]xex oy’

Observe that Theorem 4.1 uses slightly more succinct notétnatrix vs. function;
weighted sum vs. expectation) but is equivalent to the abistormulation above.

So far, we have focused on two-party communication. Thisudision extends
essentially word-for-word to the multiparty model, wittsdiepancy serving once
again as the natural measure of the advantage attainablewbygodlst protocols.
This extension was formalized by Lee and Shraibman [LSORsIt6, 7] and in-
dependently by Chattopadhyay and Ada [CAQ8, Lem. 3.2], wiovgd (4.3) and
(4.4) below, respectively:

Theorem 4.2 (cf. [LSO7, CAQ8]).Fix F : X1 x---xXx — {—1,+1} ande € [0, 1/2).
Then

HoP Fy— L e
RCF) s (1 — ( ’ 1-¢
2 >(1-¢ rﬂ%x{ disee(H) } (4.3)
and
RE(F) (H o P, F> - 26
2RF) > rﬂ%X{—disqa(H) , (4.4)

where in both cases H ranges over sign tensors and P rangestevsors with
P>0and|P|1 =1

14



Proof. Fix an optimal e-error protocol I1 for F. Define F(xi,...,%) =
E[(-1)(x--X)], where the expectation is over any internal randomizatiofiLin
Lets € (0, 1] be a parameter to be fixed later. Then

2RF) disge(H) > (H o P,F)
:5{<HOP, F)+<HoP, glﬁ—F>}
1
>5{<Hop, F)—gmax{|1—6—25|,1—6}}.

where the first inequality restates the original discrepanethod (Theorem 2.3).
Now (4.3) and (4.4) follow by setting = 1 — € andé = 1, respectively. O

The proof in [CAQ08] is similar to the one just given for the sja cases = 1.
The proof in [LS07] is rather dlierent and works by defining a suitable norm and
passing to its dual. The norm-based approach was employkel &g Linial and
Shraibman [LS07b] and can be thought of as a purely analyizdogue of the
generalized discrepancy method.

5 Two-Party Bounded-Error Communication

For a functionf : {0, 1}" — R, recall from Section 1 that its-approximate degree
deg(f) is the least degree of a polynomia(x, . . ., Xn) with [f(X) — p(X)| < e for
all x € {0,1}". We move on to discuss two recent papers on bounded-error com-
munication that use the notion of approximate degree toribomé strong lower
bounds for rather broad classes of functions, subsumingdrav’'s breakthrough
work on symmetric predicates [Raz03]. These lower boundwalid not only in
the randomized model, but also in the quantum model (regssdif entanglement).

The setting in which to view these two works is Klauck and Raal’s gen-
eralized discrepancy method (see Sections 1 and 4)- beta sign matrix whose
bounded-error quantum communication complexity is ofrege The quantum
version of this method (Theorem 4.1) states that to provenanmanication lower
bound forF, it suffices to exhibit a real matriK such thatF, K) is large but|K]||
is small. The importance of the generalized discrepancyhaotkis that it makes
it possible, in theory, to prove lower bounds for functionss aspisjoINTNESS, tO
which the traditional discrepancy method (Theorem 2.3sdu# apply.

The hard part, of course, is finding the matkx Except in rather restricted
cases [Kla01, Thm. 4], it was not known how to do it. As a redé general-
ized discrepancy method was of limited practical use. (Ini@dar, Razborov's
celebrated work [Raz03] did not use the generalized discrgpmethod. Instead,
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he introduced a novel alternate technique that was resdrict symmetric func-
tions.) This dificulty was overcome independently by Sherstov [She07b] dmd S
and Zhu [SZ07], who used the dual characterization of thecequpate degree to
obtain the matrixK for a broad range of problems. To our knowledge, the work
in [She07b] and [SZ07] is the first use of the dual characiéidn of the approxi-
mate degree to prove communication lower bounds.

The specifics of these two works are veryfelient. The construction df
in [She07b], which we called thpattern matrix methodor lower bounds on
bounded-error communication, is built around a new mariglytic technique
(the pattern matriy inspired by the author's Degrégiscrepancy Theorem. The
construction ofK in [SZ07], theblock-composition methods based on the idea
of hardness amplification by composition. What unites themse of the dual
characterization of the approximate degree, given by thexmg theorem.

Theorem 5.1 ([She07b, SZ07])Fix € > 0. Let f : {0,1}" — R be given with
d = deg(f) > 1. Then there is a functiow : {0, 1}" — R such that:

#(S)=0 for |S| < d,
D, w@i=1

ze{0,1}"
Z W(2F(2) > e

ze{0,1}"

Theorem 5.1 follows from linear-programming duality. WealsHirst cover the
two papers individually in Sections 5.1 and 5.2 and then aphem in detail
in Section 5.3.

5.1 The Pattern Matrix Method

The setting for this work resembles that of the Degbescrepancy Theorem
in [She07a] (see Section 3). LBk andn be positive integers, whem < N/2.
For convenience, we will further assume tlmatf N. Fix an arbitrary function
f 1 {0,1}" — {0, 1}. Consider the communication problem of computing

f(Xlv),

where the bit stringk € {0, 1}N is Alice’s input and the se¥ c {1,2,..., N} with
V| = nis Bob's input. As beforex|y denotes the projection ofonto the indices
inV,i.e,Xv = (X, X, - - ., X,) € {0, }" wherei; < iy < --- < i, are the elements
of V.
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The similarities with [She07a], however, do not extend lmglythis point. Un-
like that earlier work, we will actually study theasiercommunication problem
in which Bob’s inputV is restricted to a rather special form. Namely, we will
only allow those set¥ that contain precisely one element from each block in the
following partition of{1,2,..., N}:

{1,2,...,ﬂ}u{ﬂ+1,...,2—N}u---u{(”_1)N +1,...,N}. (5.1)
n n n n

Even for this easier communication problem, we will prove achmstronger re-
sult than what would have been possible in the original regtivith the methods
of [SheQ7a]. In particular, we will considerably improvestbegre¢gDiscrepancy
Theorem from [She07a] along the way. The main results ofvhigk are as fol-
lows.

Theorem 5.2 ([She07b]).Any classical or quantum protocol, with or without prior
entanglement, that compute$xff,) with error probability at mostl/5 on each
input has communication cost at least

% deg(f) Iog{%J 2,

In view of the restricted form of Bob’s inputs, we can restateorem 5.2 in
terms of function composition. Settiidj = 4n for concreteness, we have:

Corollary 5.3 ([She07b]). Let f : {0,1)" — {0, 1} be given. Define E {0, 1}*" x
{0,1}" — {0, 1} by
FOoy) = f( xays vV Xeya V Xays vV Xaya,

Xsys V Xeye V Xryr V. Xgys,

Xan-3Yan-3 V' Xan-2Yan-2 V' Xan-1Yan-1 V' XanY4n ),

where xyi = (X A y;). Any classical or quantum protocol, with or without prior
entanglement, that computeg>sy) with error probability at mostl/5 on each
input has cost at least degy5(f) — 2.

We now turn to the proof. Le¥(N, n) denote the set of Bob’s inputs, i.e., the
family of subsets/ C [N] that have exactly one element in each of the blocks of the
partition (5.1). Clearly|'V(N, n)| = (N/n)". We will be working with the following
family of matrices.
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Definition 5.4 (Pattern matrix [She07b]). For ¢ : {0,1}" — R, the (N,n, ¢)-
pattern matrixis the real matrixA given by
A= [‘b(XlV ® w)]xe{o,l}’\‘,(V,w)E(V(N,n)x{O,l}" :

In words, A is the matrix of size ® by 2"(N/n)" whose rows are indexed by
stringsx € {0, 1}N, whose columns are indexed by paisi®) € V(N,n) x {0,1)",
and whose entries are given By ..) = ¢(Xlv ® w). The logic behind the term
“pattern matrix” is as follows: a mosaic arises from repetis of a pattern in the
same way thah arises from applications @fto various subsets of the variables.

Our intermediate goal will be to determine the spectral nofany given pat-
tern matrixA. Toward that end, we will actually end up determining evengsiar
value of A and its multiplicity. Our approach will be to represekts the sum of
simpler matrices and analyze them instead. For this to weelkneed to be able to
reconstruct the singular values Affrom those of the simpler matrices. Just when
this can be done is the subject of the following lemma fromef&tb].

Lemma 5.5 (Singular values of a matrix sum [She07b])Let A B be real ma-
trices with AB = 0 and A'B = 0. Then the nonzero singular values of+AB,
counting multiplicities, arer1(A), ..., oranka(A), o1(B), . . ., oranks(B).

We are ready to analyze the singular values of a patternxmatri

Theorem 5.6 (Singular values of a pattern matrix [She07b]).Let¢ : {0, 1}" —
R be given. Let A be th@\, n, ¢)-pattern matrix. Then the nonzero singular values
of A counting multiplicities, are:

U { /2N+n(%)n-|$(S)|(%)|SV2, repeated(%)ISI timeS}.

S:¢(S)#0

In particular,

1A = 2N(§) g]g?n]x{@(sn(ﬁ)'sl/z}.

Proof [She07b] For eachS C [n], let As be the {, n, ys)-pattern matrix. Then

A = Xscnl #(S)As. For anyS, T C [n] with S # T, a calculation reveals that
AsAr = 0 andAJAr = 0. By Lemma 5.5, this means that the nonzero singular
values ofA are the union of the nonzero singular values of¢gé$)As, counting
multiplicities. Therefore, the proof will be complete onee show that the only
nonzero singular value @ As is 2M*"(N/n)"1SI, with multiplicity (N/n)'!.
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For this, it is convenient to writALAs as the Kronecker product

ALAs = [xs@hs@)ww ®

D XS(XIV)XS(XIV/)] :
Vv’

xe{0, 1N

The first matrix in this factorization has rank 1 and entrds which means that
its only nonzero singular value is' 2vith multiplicity 1. The other matrix, call

it M, is permutation-similar to r2diag(J, J...,J), whered is the all-ones square
matrix of order \N/n)"SI. This means that the only nonzero singular valudvbf

is 2N(N/n)"1SI with multiplicity (N/n)!S!. It follows from elementary properties of
the Kronecker product that the spectrumééms is as desired. O

We are now prepared to formulate and prove plagtern matrix methodor
lower bounds on bounded-error communication, which gitemg lower bounds
for every pattern matrix generated by a Boolean functiofwigh approximate
degree. Theorem 5.2 and its corollary will fall out readityansequences.

Theorem 5.7 (Pattern matrix method [She07b]).Let F be the(N, n, f)-pattern
matrix, where f: {0, 1}" — {0, 1} is given. Put d= deg3(f). Then

N 1 N
Q1/5(F) 2 Ql/S(F) > Zdlog(ﬁ)—z

Proof [She07b] Definef* : {0, 1}" — {-1,+1} by f*(2) = (<1)'@. Then it is easy
to verify that deg,3(f*) = d. By Theorem 5.1, there is a functign: {0,1}" — R
such that:

%(S)=0 for|S| < d, (5.2)
> w@l=1, (5.3)
ze{0,1}"

L2
PIRCINGE 3 (5.4)
ze{0,1}"

Let M be the [, n, f*)-pattern matrix. LeK be the (N, n, 2-N(N/n)="y)-pattern
matrix. Immediate consequences of (5.3) and (5.4) are:

2
IKll2 =1, KMy > = (5.5)

Our last task is to calculati||. By (5.3) and Proposition 2.1,
max|y(S)| < 2. (5.6)
Scln]
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Theorem 5.6 yields, in view of (5.2) and (5.6):

IKIl < (%)‘”2 (zN+n(§)n)_l/2. (5.7)

The desired lower bounds on quantum communication nowviodoectly from
(5.5) and (5.7) by the generalized discrepancy method (fEned.1). O

Remark5.8. In the proof of Theorem 5.7, we boundéK || using the subtle cal-
culations of the spectrum of a pattern matrix. Another pmksi would be to
bound||K|| precisely in the same way that we bounded the discrepandeibeé-
gregDiscrepancy Theorem (see Section 3). This, however, wadgdltin polyno-
mially weaker lower bounds on communication.

Theorem 5.7 immediately implies Theorem 5.2 above and itslleoy:

Proof of Theorens.2 [She07h] The (| 2 | n.n, f)-pattern matrix occurs as a sub-
matrix of [f(Xlv)]xe(o,yN vev(nn)- o

Improved DegregDiscrepancy Theorem. We will mention a few more appli-
cations of this work. The first of these is an improved versibrihe author’s
Degre¢Discrepancy Theorem (Theorem 3.2).

Theorem 5.9 ([She07b]).Let F be the(N,n, f)-pattern matrix, where f:
{0, 1} — {0, 1} has threshold degree @hendiscF) < (n/N)¥/2.

The proof is similar to the proof of the pattern matrix methdtheorem 5.9 im-
proves considerably on the original Degi@iscrepancy Theorem. To illustrate,
considerf(x) = \/{; /\'j“:z1 Xij, a function onn = me variables. Applying Theo-
rem 5.9 tof leads to an exp(®(n*/3)) upper bound on the discrepancyAg?, im-
proving on the previous bound of exp®(n'/°)) from [She07a]. The exp@(n/3))
bound is also the bound obtained by Buhrman et al. [BVWO7pmhdently of the
author [She07a, She07b], using &&lient function and dierent techniques.

Razborov's Lower Bounds for Symmetric Functions. As another application,
we are able to give an alternate proof of Razborov's brealtiin result on the
guantum communication complexity of symmetric functioRaf03]. Consider a
communication problem in which Alice has a strirge {0, 1}", Bob has a string
y € {0,1}", and their objective is to compute

D(x A yl)
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for some predicat® : {0, 1,...,n} — {0, 1} fixed in advance. This general setting
encompasses several familiar functions, suctiasintness (determining ifx and

y intersect) anekNer ProbucT MobuLo 2 (determining ifx andy intersect in an odd
number of positions).

As it turns out, the hardness of this general communicatiobhlpm depends on
whetherD changes value close to the middle of the raf@4, .. ., n}. Specifically,
definefp(D) € {0,1,...,[n/2]} and¢1(D) € {0,1,...,[n/2]} to be the smallest
integers such thdd is constant in the rangéd(D), n—¢1(D)]. Razborov established
optimal lower bounds on the quantum communication comfyl@fievery function
of the formD(|x A yl):

Theorem 5.10 (Razborov [Raz03]).Let D: {0, 1,...,n} — {0, 1} be an arbitrary
predicate. Put €x,y) = D(IX A y|). Then

Qua(f) > Qj5(f) > Q(Ynto(D) + £1(D)).

In particular,pisioiINTNEss has quantum communication complexi®df+/n), regard-
less of entanglement. Prior to Razborov’s result, the hmsgel bound [BWO1,
ASTS"03] for pissointness was onlyQ(log n).

In [She07b], we give a new proof of Razborov's Theorem 5.16gua straight-
forward application of the pattern matrix method.

5.2 The Block Composition Method

Given functionsf : {0,1}" — {0,1} andg : {0,1}* x {0, 1} — {0,1}, let f o "
denote the composition df with n independent copies @f More formally, the
function f o g" : {0, 1}"K x {0, 1}"% — {0, 1} is given by

(fog"(xy) = f(....g(x,yV),...),

wherex = (..., X0, ...)) e {0, 1} andy = (..., yD,...) € {0, 1}k

This section presents Shi and Zhbl®ck composition methd&zZ07], which
gives a lower bound on the communication complexityf efs" in terms of certain
properties off andg. The relevant property of is simply its approximate degree.
The relevant property af is its spectral discrepancyprmalized next.

Definition 5.11 (Spectral discrepancy [SZ07]).Giveng : {0, 1}k x {0, 1}k —
{0, 1}, its spectral discrepancy(g) is the leasip > O for which there exist sets
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A BC{0,1}*and a distributionu on A x B such that

X, P
H[ﬂ(x,y)(_l)g( 9 sl < = (5.8)
1+p
H[,U( X4)] enves| < VAT (5.9)
and
D, Hxy)1 =0, (5.10)

(xy)eAxB

In view of (5.8) alone, the spectral discrepandy) is an upper bound on the
discrepancy disg). The key additional requirement (5.9) is satisfied, for exi@mp
by doubly stochastic matrices [HJ8R.7]: if A = B and all row and column sums
in [u(x y)] xeAyeA are YA, then||[u(x, y)] xeAyeAll = 1/|A.

As anillustration, consider the familiar functi@mner propucT MobULO 2, given

k
by (X, y) = Di_1 (% A ).
Proposition 5.12 ([SZ07]). The functionry hasp(ipy) < 1/V2K — 1.

Proof [SZ07]. Takeu to be the uniform distribution ovekx B, whereA = {0, 1}%\
{0} andB = {0, 1}, O

We are prepared to state the general method.
Theorem 5.13 (Block composition method [SZ07])Fix f : {0, 1}" — {0, 1} and
g:{0, 3% x (0,1} - {0,1}. Putd = deg53(f) andp = p(g). If p < d/(2en), then

Q(f 0 ¢g") > Q*(f 0 ¢") = Q(d).

Proof (adapted from [SZ07])Fix setsA, B {0, 1} and a distribution: on A x B
with respect to whichp = p(g) is achieved. Defind* : {0,1}" — {-1,+1} by
f*(2) = (-1)'@. Then one readily verifies that dgg(f*) = d. By Theorem 5.1,
there existw : {0, 1}" — R such that

w(S) = for|S| < d, (5.11)
> @)= (5.12)
ze{0,1}"
IRCICE § (513)
z€{0,2}"

22



Define matrices

F= [f*(- g0, y0), ')]x,y’

n
K= (2% .., g0, y0), ) [ [0,y
i=1 Xy

where in both cases the row index (..., X%, ...) ranges oveA" and the column
indexy = (...,y",...) ranges oveB". In view of (5.10) and (5.13),

2
(F,K) > 3 (5.14)
We proceed to boungK||. Put
Ms = []‘[(—1)9“"*“”) ‘ l_[,u(x('),y('))l . scnl
ieS i=1 X,y

Then (5.8) and (5.9) imply, in view of the tensor structuredvt, that
IMs]| < JAITY2 B2 plSI(1 4+ p)™1SI, (5.15)
On the other hand,

K< D" 2"W(S)l IMs]

Scln]
= > 2W(S)IMs| by (5.11)
1SI>d
< Z [IMs|| by (5.12) and Proposition 2.1
IS|>d
n n\ . .
<A 1B Y (i)p'(l +p)™ by (5.15).
i=d

Sincep < d/(2en), we further have
IKI < |AI™2 B2 270, (5.16)

In view of (5.14) and (5.16), the desired lower bound®tiF) now follows by the
generalized discrepancy method (Theorem 4.1). O

Proposition 5.12 and Theorem 5.13 have the following consecg:
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Theorem 5.14 ([SZ07]).Fix a function f: {0,1}" — {0, 1} and an integer k>
2log, n+ 5. Then Qf o p}) > Q*(f o py) > Q(deg5(f)).

For thepisjointness functionpisic(X, y) = vik:l(xi Ayi), Shiand Zhu prove that
p(oissy) = O(1/k). Unlike Proposition 5.12, this fact requires a nontriviabqir
using Knuth’s calculation of the eigenvalues of certain boratorial matrices. In
conjunction with Theorem 5.13, this upper boundogmssy) leads with some work
to the following implication:

Theorem 5.15 ([SZ07]).Define f: {0, 1}"x{0, 1}" — {0, 1} by f(x,y) = D(xAyl),
where D: {0,1,...,n} — {0, 1} is given. Then

Qf) > Q'(f) > Q(n'36(D)*° + £4(D)).

The symbolgy(D) and¢;(D) have their meaning from Section 5.1. Theorem 5.15
is of course a weaker version of Razborov’s celebrated lwends for symmetric
functions (Theorem 5.10), obtained with d@drent proof.

5.3 Pattern Matrix Method vs. Block Composition Method

To restate the block composition method,

deg/5(f)

Q'(fog") > Q(degs(f))  provided that  p(g) < —

The key player in this method is the quantitfy), which needs to be small. This
poses two complications. First, the functigrwill generally need to depend on
many variables, fronk = ®(logn) to k = n®®, which weakens the final lower
bounds on communication (recall thet) > 27% always). For example, the lower
bounds obtained in [SZ07] for symmetric functions are poiyially weaker than
Razborov’s optimal lower bounds (see Theorems 5.15 and &e&pectively).

A second complication, as Shi and Zhu note, is that “estimgatine quantity
o(g) is unfortunately diicult in general” [SZ07§4.1]. For example, re-proving
Razborov’s lower bounds reduces to estimapig) with g being thepisjoINTNESS
function. Shi and Zhu accomplish this using Hahn matricesadvanced tool that
is also the centerpiece of Razborov’s own proof (Razboresés of Hahn matrices
is somewhat more demanding).

These complications do not arise in the pattern matrix ntetRor example, it
implies (by setting\N = 2nin Theorem 5.7) that

Q(f o ¢") > Q(deg, 5())
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for any functiong : {0, 1}*x{0, 1}k — {0, 1} such that the matrixf(x, y)]x, contains
the following submatrix, up to permutations of rows and ouhs:

101
(5.17)

oor
R P o
oOr o

To illustrate, one can takgto be

g(Xy) = Xw1 V Xey2 V Xgyz V Xaya,

or

gXy) = Xwiy2 V Xiyiz V Xeyiy2 vV Xeyiy.
(In particular, the pattern matrix method subsumes Thedrdah.) To summarize,
there is a simple functiog on onlyk = 2 variables that works universally for &l
This means no technical conditions to check, such(as and no blow-up in the
number of variables. As a result, in [She07b] we are able-{oroge Razborov's
optimal lower bounds exactly. Moreover, the technical nraaty involved is self-
contained and disjoint from Razborov’s proof.

We have just seen that the pattern matrix method gives stowey bounds for
many functions to which the block composition method dodsapply. However,
this does not settle the exact relationship between theesaaiapplicability of the
two methods. Several natural questions arise. If a funefior0, 1}¥ x {0, 1} —
{0, 1} has spectral discrepanp{y) < zie does the matrixd(x, y)]x, contain (5.17)
as a submatrix, up to permutations of rows and columns? flxmative answer
would mean that the pattern matrix method has a strictlytgreszope of applica-
bility; a negative answer would mean that the block compmsinethod works in
some situations where the pattern matrix method does ndy.appphe answer is
negative, what can be said fofg) = o(1) orp(g) = n~®1)?

Another intriguing issue concerns multiparty communimati As we will see
in Section 6, the pattern matrix method extends readily éonthultiparty model.
This extension makes heavy use of the fact that the rows oftarpanatrix are
applications of the same function tdfidirent subsets of the variables. In the gen-
eral context of block composition (Section 5.2), it is uaclow to carry out this
extension. It is inviting to explore a synthesis of the twalmoels in the multiparty
model or another suitable context.

6 Extensions to the Multiparty Model

In this section, we present extensions of the Defserepancy Theorem and of
the pattern matrix method to the multiparty model. We stath wome notation.
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Fix a functiong : {0, 1}" — R and an integeN with n | N. Define the k, N, n, ¢)-
pattern tensogs thek-argument functiom : {0, 1}"N/W s [N/n]"x.- - -x[N/n]" —
R given byA(x, V1,..., Vk-1) = ¢(Xv,....v, 1), Where

def
X|V1,...,Vk,1 :e (Xl,Vl[l] ..... Vk,]_[l]a seey Xﬂ,V]_[n] ..... Vk,]_[n]) € {Oa 1}”

and Vj[i] denotes thath element of ther-dimensional vectoV;. (Note that we
index the stringk by viewing it as &-dimensional array afix (N/n)x---x(N/n) =

n(N/n)k-1 bits.) This definition generalizes the author’s patternrives if one
ignores thep operator (Section 5.1).

We are ready for the first result of this section, namely, daresion of the De-
gregDiscrepancy Theorem (Theorem 3.2) to the multiparty motieis extension
was originally obtained by Chattopadhyay [Cha07, Lem. 2]dlightly different
tensors and has since been revisited in one form or anoth&07], Thm. 19],
[CA08, Lem. 4.2]. The proofs of these several versions aite gimilar and are in
close correspondence with the original two-party case.

Theorem 6.1 ([Cha07, LS07, CA08]).Let f : {0,1}" — {0,1} be given with
threshold degree @& 1. Let N be a given integer, hN. Let F be the(k, N, n, f)-
pattern tensor. If N> 4en?(k — 1)22* /d, thendisc(F) < 2-9/2".

Proof (adapted from [ChaQ7, LS07, CAO8JAs in the proof of the De-
gregDiscrepancy Theorem, let be a probability distribution ovef0, 1}"
with respect to whichE,.,[(-1)"@p(2)] = 0 for every real-valued functiom
of d — 1 or fewer of the variablegy,...,z, The existence of: is assured by
Theorem 3.3. We will analyze the discrepancyroivith respect to the distribution

N -n(k-1)
) ,U(X|v1 ..... Vk_l)-

/l(xv Vl, ey Vk—l) — 2_n(N/n)k_1+n (_
n

Definey : {0,1}" - R by y(2) = (-1)'@u(2). By Theorem 2.2,

disc,(F)* < 227 EIF(V)! 6.1)

where we puv = (V2,Vi,..., VY |,V ;) and

IvV)=Ely (X|vg,vg ..... vg_l) l_[ Y (X|vj1,v§2,...,vﬁ-11) :

2e{0, 1} 1\{0k-1}
() ®
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For a fixed choice oY/, define sets
A={G, VI, V2 [i) s i=12....n},
B={(i,VR[i]..... V&G : i=12...,m ze (0, ¢\ (0],

Clearly, A and B are the sets of variables featured in the expressibhand )
above, respectively. To analyz¢V), we prove two key claims analogous to those
in the DegregDiscrepancy Theorem.

Claim 6.2. Assume thatAn B| < d— 1. ThenI'(V) = 0.

Proof. Immediate from the fact that the Fourier transformyofs supported on
characters of ordat and higher. O

Claim 6.3. Assume thatA N B| = i. Then[(V)| < 2127-n2*,

Proof. Observation 3.4 shows that(V)| < 272" 2027'-IAVBI Fyrthermore, it is
straightforward to verify thafA U B| > n2<"1 — |An B| 2¢-1. o

In view of Claims 6.2 and 6.3, inequality (6.1) simplifies to

n
disc(F)* " < > 2% PlIAN Bl = i].
i=d
It remains to boun[|ANB| = i]. For a fixed elemerd, we haveP[a € B| a € A] <

(k = 1)n/N by the union bound. Moreover, given two distinct elemeata’ €
A, the corresponding events € B anda € B are independent. Therefore,

PIANBI =] < () (W)i , which yields the desired bound on di¢E). O

Remark6.4. Recall from Section 5.1 that the two-party Degiiscrepancy The-
orem was considerably improved in [She07b] using matrixhgic techniques.
Those techniques, however, do not extend to the multipadgiain As a result,
Theorem 6.1 that we have just presented does not subsumengiteved De-
gregDiscrepancy Theorem (Theorem 5.9).

We now present an adaptation of the pattern matrix methoddfEm 5.7) to
the multiparty model, obtained by Lee and Shraibman [LS®id] iadependently
by Chattopadhyay and Ada [CA08]. The proof is closely analsgto the two-
party case. However, the spectral calculations for patteatrices do not extend
to the multiparty model, and one is forced to fall back on #sslIprecise calcula-
tions introduced in the Degrégiscrepancy Theorem (Theorem 3.2). In particular,
the result we are about to present does not subsume the tiyopgadtern matrix
method.
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Theorem 6.5 ([LS07, CA08]).Let f : {0,1}" — {0, 1} be given withdeg;5(f) =
d > 1 Let N be a given integer, hN. Let F be thek, N, n, f)-pattern tensor. If
N > den?(k — 1)227"/d, then F(F) > Q(d/24).

Proof (adapted from [LS07, CA08])Define f* : {0,1}" — {-1,+1} by f*(2) =
(-1)'@. Then it is easy to verify that deg(f*) = d. By Theorem 5.1, there is a
functiony : {0, 1}" — R such that:

%(S) =0 for|S| < d,
D, w@l=1,
ze{0,1}"
L2
PIRZCINGE 3 (6.2)
ze{0,1}"

Fix a functionh : {0,1})" — {-1,+1} and a distributionu on {0, 1}" such
that (2 = h(Xu(x). Let H be the k, N, n, h)-pattern tensor. LeP be the
(k, N, n, 2-"(N/Wten N ) =n(-1) ) -pattern tensor. TheR is a probability distri-
bution. By (6.2),

2
<H ° P’ F*> > é’ (63)

whereF* is the k, N, n, f*)-pattern tensor. As we saw in the proof of Theorem 6.1,
disce(H) < 27927, (6.4)

The theorem now follows by the generalized discrepancy atefliheorem 4.2) in
view of (6.3) and (6.4). O

The authors of [LS07] and [CAO8] gave important applicagiari their work
to the k-party randomized communication complexity mjoiNTNESS, improving
it from Q(% logn) to N2/W2-029, As a corollary, they separated the multiparty
communication classe¢Py® andBPPLC for k = (1-0(1)) log, log, n parties. They
also obtained new results for Lovasz-Schrijver proofeayst, in light of the work
due to Beame, Pitassi, and Segerlind [BPS07].

7 Separation of NP;° and BPP.°

We conclude this survey with a separatiorNgf,° andBPP for k = (1-€)log, n
parties, due to David and Pitassi [DP08]. This is an expdakiniprovement over
the previous separation in [LS07, CA08]. The crucial insighthis new work is
to redefine the projection operatiy, v, , from Section 6 using the probabilistic
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method. This removes the key bottleneck in the previousyaeal[LS07, CAOQ8].
Unlike the previous work, however, this new approach no éorapplies toois-
JOINTNESS.

We start with some notation. Fix integaranwithn> m. Lety : {0,1}™ - R
be a given function withy, ;o 1ym [¥(2)] = 1. Let d denote the least order of a
nonzero Fourier cdicient ofy. Fix a Boolean functiom : {0, 1}™ — {-1, +1} and
a distributionu on {0, 1}™ such thaiy(2) = h(2u(2). For a mapping : ({0, ")k —
(™). define a k + 1)-party communication probletd,, : ({0, 1j")<! — {-1,+1}
by H(X,y1,...,uk) = h(Xla@.,..s0)- Analogously, define a distribution, on
(0, 1ML by A% y1, - -, yk) = 27D (Mg y)-

Theorem 7.1 ([DP08]). Assume that r»= 16a1?2%. Then for a uniformly random
choice ofx : ({0, 1}")* — ([;‘q])

E [disq, (Ho)*| < 272 + 2742+,

Proof (adapted from [DP08])By Theorem 2.2,

discy, (Ha)? < 2™ EI(Y), (7.1)

where we puty = (42, 41,.... 40, yi) and

L1 (X'a<yil,y;2,...,yik>)] -

26{0,1}k

r(Y)=E

For a fixed choice ofY, we will use the shorthan&, = a(y?, . ,yﬁk). To ana-
lyzeT'(Y), we prove two key claims analogous to those in the DgBriserepancy
Theorem and in Theorem 6.1.

Claim 7.2. Assume thatl J S;| > m2¥ — d2*1. ThenI'(Y) = 0.

Proof. If || S, > m2X-d2k-1, then somé, must feature more than—d elements
that do not occur it J,., Sy. But this forced (Y) = 0 since the Fourier transform
of ¢ is supported on characters of oradkand higher. O

Claim 7.3. Forevery Y [[(Y)| < 271U,

Proof. Immediate from Observation 3.4. O
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In view of (7.1) and Claims 7.2 and 7.3, we have

. " m2*-m
e ur]< S 2 g s

i=d2k-1

=m2'<—i].

It remains to bound the probabilities in the last expressidfith probability at
least 1- k2™" over the choice of, the strings,?, 2. .., 42, y¢ will all be distinct.
Conditioning on this event, the fact thats chosen uniformly at random means that
the X setsS, are distributed independently and uniformly of#). A calculation
now reveals that

Ya USZ

We are ready to present the separatioNBf® andBPP[°.

TN

i
P :m2k—i]<k2‘“+( : T) <k2"+87. O

Theorem 7.4 (Separation ofNP.® and BPP;® [DP08]). Let k < (1 - €)log, n,
wheree > 0is a given constant. Then there exists a functign: F{0, 1}")**1 —
{-1, +1} with N**1(F,) = O(logn) but R*%(F,) = n®D).

Proof (adapted from [DP08])Let m = |n] for a suficiently small constant =
(€) > 0. As usual, definery @ {0,1}M —» {-1,+1} byorn(2 = 1 © z= 0
It is known [NS92, Pat92] that dgg(orm) = ©(vm). As a result, Theorem 5.1
guarantees the existence of a function{0, ;™ — R such that:

¥(S)=0 for S| < ©(vm),
D, w@I=1,
ze{0,1}m
1
D, V@orn@ > 3.
ze{0,1}M

Fix a functionh : {0,1J™ — {-1,+1} and a distributionu on {0, 1}™ such that
¥(2) = h(2u(2). For a mappingr : ({0, 11M* — (1), let H, and ., be as defined
at the beginning of this section. Then Theorem 7.1 showsxisteace ofx such
that

discy, (Ha) < 2790m,

Using the properties of, one readily verifies tha¢H o 1,,F,) > 1/3, where
Fo 1 (10, "% — (=1, +1} is given byFo (X, y1. . .., 4k) = ORm(Xla(yy....))- BY the
generalized discrepancy method (Theorem 4.2),

RCL(F,) > Q(Vm) = n?@),
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On the other handF, has nondeterministic complexit®(logn). Namely,
Player 1 (who knowsy,...,yx) nondeterministically selects an eleménte
a(y1,...,yx) and announces Player 2 (who knows) then announces; as the
output of the protocol. O

A recent follow-up result due to David, Pitassi, and Viola¥{208] derandomizes
the choice ofr in Theorem 7.4, yielding aexplicit separation oNP;® andBPP;*
fork < (1-¢)log,n.
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