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Abstract

A merger is a probabilistic procedure which extracts the randomness out of any
(arbitrarily correlated) set of random variables, as long as one of them is uniform.
Our main result is an efficient, simple, optimal (to constant factors) merger, which,
for k random vairables on n bits each, uses a O(log(nk)) seed, and whose error
is 1/nk. Our merger can be viewed as a derandomized version of the merger of
Lu, Reingold, Vadhan and Wigderson (2003). Its analysis generalizes the recent
resolution of the Kakeya problem in finite fields of Dvir (2008).

Following the plan set forth by Ta-Shma (1996), who defined mergers as part
of this plan, our merger provides the last “missing link” to a simple and modular
construction of extractors for all entropies, which is optimal to constant factors in
all parameters. This complements the elegant construction of optimal extractor by
Guruswami, Vadhan and Umans (2007).

We also give simple extensions of our merger in two directions. First, we gener-
alize it to handle the case where no source is uniform – in that case the merger will
extract the entropy present in the most random of the given sources. Second, we
observe that the merger works just as well in the computational setting, when the
sources are efficiently samplable, and computational notions of entropy replace the
information theoretic ones.

1 Introduction

1.1 Kakeya sets in mathematics and computer sicence

“What is the smallest set in the plane in which one can rotate a needle around completely?”

This natural geometric question was asked in 1917 by Japanese mathematician Soichi
Kakeya. The starting point of our paper is the (more recent) finite field version of this
problem and its connection to problems in mathematics and computer science.

Let F
n denote the n dimensional vector space over a finite field F. A set K ⊂ F

n is
called a Kakeya set if it contains a full line in every possible direction. More formally, for
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every (direction) x ∈ F
n there exists a point f(x) ∈ F

n such that {f(x)+a ·x|a ∈ F} ⊂ K.
The finite field Kakeya problem deals with determining the minimal size of such sets. It is
usually assumed that n, the dimension, is small, and that the field is sufficiently large. A
bound of |K| > |F|n/2 is easy to obtain using the simple fact that the set {x−y |x, y ∈ K}
fills the entire space. The best bound until recently was ≈ |F|(4/7)·n [Rog01, MT04] and
uses the additive number theoretic tools developed in [Bou99, KT02]. The finite field
Kakeya conjecture states that every Kakeya set K must satisfy |K| ≥ Ω(|F|n), where the
implied constant depends only on n.

In mathematics, the finite field Kakeya problem described above was suggested by
Wolff [Wol99] as a model problem for studying the original Euclidean Kakeya problem.
A Kakeya set K ⊂ R

n is a compact subset of Euclidean space R
n, which contains a

unit line segment in every direction. Remarkably, such a set can have Lebesque mea-
sure zero for any dimension n ≥ 2, as shown by Besicovitch [Bes28]. The Euclidean
Kakeya problem deals with proving lower bounds on more refined notions of ‘size’, such
as the Minkowski or Hausdorff dimension. The Euclidean Kakeya conjecture states that
a Kakeya set K ⊂ R

n must have dimension n (which is the bound one gets for sets with
positive area). Despite its recreational flavor, the Euclidean Kakeya problem is a central
open problem in geometric measure theory, with deep connections to Harmonic analysis
(e.g Fefferman’s result on the convergence of Fourier series in high dimensions [Fef71]) and
to other important problems in analysis. Proving the Euclidean Kakeya conjecture (which
is widely believed) seems notoriously difficult, and most progress on it was via combinato-
rial ‘approximations’. For a broader perspective on the subject see the excellent surveys
[Wol99, Bou00, Tao01].

In computer science, an interest in the finite field Kakeya problem arose indepen-
dently in the analysis of a construction of mergers given by [LRVW03] (in connection
with extractors, which will be discussed later). Assume that we have k random variables
X1, X2, . . . , Xk, each distributed over F

n. The Xi’s are arbitrarily correlated, but we know
that at least one of them is uniformly distributed (we don’t know which one). We would
like to have some efficient procedure that will ‘merge’ X1, . . . , Xk into a single random
variable Z (say, also over F

n) in a way that will ensure that Z has high entropy. A pro-
cedure that achieves this goal is called a merger (for a formal definition see Section 2).
A merger can use an additional (short) random string, called a seed in order to compute
the output Z (it is not hard to see that without a seed merging is impossible). The
merger of [LRVW03] is computed as follows: The seed of the merger is a random vector
a = (a1, . . . , ak) ∈ F

k and the output is the linear combination

Z = a1 · X1 + . . . + ak · Xk.

That is, to merge k inputs we pick a random element in the subspace they span. What is
the best lower bound on the entropy of Z? It turns out that, in order to understand this
question, we must first understand the finite field Kakeya problem.

The connection between this question and the Kakeya problem can be demonstrated
by the following special case. Suppose we try to ‘merge’ two random sources X and Y in
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F
n by outputting the linear combination

Z = a · X + b · Y,

where a and b are chosen uniformly (and independently) in F. Since this computation
is symmetric we can assume w.l.o.g that X is uniform. We can also assume w.l.o.g that
Y = f(X) for some function f : F

n !→ F
n (any additional randomness in Y can be

‘fixed’). We now see that for every fixing of b ∈ F, the support of the random variable Z
is contained in a Kakeya set Kb ⊂ F

n. We thus see that, if there existed a small Kakeya
set, then we could choose the function f such that Z will have small support and so also
small min-entropy. In [LRVW03] is was shown that Z has entropy rate (the ratio between
entropy and length) at least 1/2. This corresponds to the trivial bound of |F|n/2 on the
size of Kakeya sets stated above. It was later shown in [DS07], using the machinery of
[KT02], that the entropy rate of Z is at least 4/7. A lower bound of ≈ 1 on the entropy
rate of Z implies an optimal bound on the size of Kakeya sets.

The finite field Kakeya conjecture was proved very recently by Dvir [Dvi08].

Theorem 1.1 ([Dvi08]). Let K ⊂ F
n be a Kakeya set, where F is a finite field. Then

|K| ≥ Cn · |F|n,

where Cn depends only on n.

While it is not clear how this result will impact the Eucledian Kakeya problem, the
proof technique of [Dvi08] is strong enough to give tight bounds on the output entropy of
the [LRVW03] merger, and do much more, as we describe next.

1.2 From Kakeya sets to mergers

As was mentioned above, the technique of [Dvi08] can be used to show that the output of
the [LRVW03] merger has entropy rate arbitrarily close to 1 (over sufficiently large fields).
This gives a tight analysis of the performance of this merger. However, even though
the [LRVW03] merger is very attractive in its simplicity, it has one major drawback –
the need for k random field elements (the coefficients of the linear combination). This
amount of randomness is already prohibitive if k is not constant (and indeed most of the
complications in the construction of [LRVW03] arise from the need to keep k constant).
Certainly when k is of the same order as n the merger is completely useless, since the seed
contains more entropy than the output. Eliminating (almost completely) the dependence
of the seed length on k is the heart of our paper.

Our results: Our main technical contribution is a derandomized version of the [LRVW03]
merger which uses only a single field element to choose the linear combination, instead of
k field elements. In other words, the k coefficients are functions of a single field elements.
The construction of the new merger, which we call the Curve Merger, can be described
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as follows (see Construction 3.1 for a more detailed description). Let b ∈ F be a random
field element. The coefficients a1, . . . , ak ∈ F will be given by k low degree univariate
polynomials c1, . . . , ck ∈ F[u] evaluated at u = b. The output of the merger is thus given
by the linear combination

Z = c1(b) · X1 + . . . + ck(b) · Xk.

The polynomials c1, . . . , ck will be of degree k − 1 and will satisfy the property that, for
every i ∈ [k] there exists bi ∈ F such that when b = bi we have Z = Xi. In other words,
the output of our merger is computed by passing a degree k − 1 curve through the input
blocks and then choosing a random point on this curve (hence the name).

The analysis of this merger generalizes the argument of [Dvi08] from families of lines
to families of low degree curves. In a nutshell, the proof that the output of the merger has
high entropy goes by contradiction as follows. For each x = (x1, . . . , xk) let Cx denote the
degree k − 1 curve passing through x1, . . . , xk. If the output of the merger doesn’t have
high entropy than it must hit some relatively small set K with some noticeable probability
ε. This means that for at least ε/2 fraction of the inputs x, the curve Cx defined above
must intersect K in at least an ε/2 fraction of its points. Call these values of x ‘good’.
To derive the contradiction, we use the small size of K to design a nonzero polynomial g
of relatively low degree which vanishes on K. But for every good x, the large intersection
of Cx with K guarantees that g vanishes on all points of the curve Cx. Now, if one of
the points on the curve Cx is uniform, we can deduce that g is zero on a large (≥ ε/2)
fraction of the space. Choosing the parameters correctly we get that this implies that
g is identically zero, which contradicts our assumption. The analogy with the Kakeya
problem is that we have many ’directions‘ (the good values of x, which are many since
some Xi was random and ε is noticable) in which low-degree curves intersect our ‘Kakeya
set’ K in many points.

1.2.1 Extensions

We now discuss some natural generalization of our merger. In addition to the analysis
above, which assumes that one of the inputs Xi is uniform on F

n, we also analyze the
Curve Merger under the weaker assumption that some Xi has only high entropy. We show
that, in this case, the output of the merger has entropy rate the same as that of Xi. In
other words, using our merger on any k distributions X1, . . . , Xk preserves the entropy of
the ‘best’ one.

Another simple corollary of our merger is obtained for the computational setting, in
which the random variables Xi are efficiently samplable, and one of them is pseudorandom.
Imagine for example that the Xi are all encryptions of the same message using different
schemes, one of which is secure. Or that the Xi are supplied by different computationally
bounded players, some of which are honest. In both cases we may be interested to
compress these outputs, so as to preserve the pseudoentropy of the largest one. And our
merger does so, with a small truely random seed (although to be honest it is not clear that
minimizing the randomness can be considered an issue in such potential applications).
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1.3 From mergers to extractors

A (k, ε)-extractor is a function E : {0, 1}n×{0, 1}d "→ {0, 1}m such that for every random
variable X with min entropy k, the distribution of E(X,Ud) has statistical distance ≤ ε

from the uniform distribution, where Ud denotes a random variable independent of X

and uniform on {0, 1}d. The input Ud is called a seed and is thought of as being much
shorter (in bits) than X. Intuitively, extractors are procedures that convert ‘weak’ sources
of randomness (distributions with some entropy) into ‘strong’ ones (close to uniform).
Extractors (also called seeded-extractors) are extremely useful in many different areas
of theoretical computer science and cryptography. Applications of extractors range from
error correcting codes to expander graphs to metric embeddings to name just a few. An
excellent survey of this broad field is [Sha02].

An extractor has three interesting parameters. The first is the seed length d, which
we wish to minimize. The second is the output length m, which we want to maximize
(we want to have m ≈ k). The third parameter we wish to minimize is the ‘error’ ε – the
statistical distance of the output of the extractor from the uniform distribution. It can be
shown, using the probabilistic method, that a random function gives an extractor which
is optimal in all three parameters. This, however, is not satisfactory since in applications
we need to be able to compute the extractor efficiently. An extractor which is efficiently
computable is called explicit.

Since the 80’s there were many papers that used a variety of techniques to construct
explicit extractors (see [Sha02] for a complete list of references). The first paper to give
an explicit extractor which was optimal1 both in seed length and in entropy output was
the work of Lu, Reingold, Vadhan and Wigderson [LRVW03]. There were, however, two
drawbacks to their construction. The first (and perhaps the more disturbing of the two)
is that the construction was extremely complicated (compared to eariler constructions).
The second problem was that the extractor was not optimal for small values of ε (e.g
when ε = n−Ω(1)).

Very recently, Guruswami, Umans and Vadhan [GUV07] gave a very elegant construc-
tion of optimal extractors which uses a completely different approach than [LRVW03]
(and many of its predecessors). The approach of [GUV07] uses the strong connection
between extractors and list-decodable error-correcting-codes (already present in previous
works) together with the analysis of the Parvaresh-Vardy codes [PV05] to give a short, self
contained, construction which achieves optimal parameters. The extractor of [GUV07] is
composed of two parts. The first part – a lossless-condenser – transforms the source X

(which has min entropy k) into a ‘condensed’ source X ′, which has the same entropy as
X but is now distributed over {0, 1}k

′

with k′ < 1.01 · k. This condenser is the heart of
[GUV07] and is independently interesting. Extracting uniform bits from X ′ is easy and
can be done in several different ways (since the entropy of X ′ is high relative to its length
in bits).

1For the rest of the introduction we will use the term ‘optimal’ to mean ‘optimal up to multiplicative

constant factors’.
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Our results: Using our new Curve Merger we are able to give an alternative construc-
tion of extractors which are optimal in all three parameters. This construction ‘resurrects’
one of the earliest approaches to the construction of extractors. This approach, due to
Ta-Shma [TS96], is quite intuitive and can be described (informally) as follows: For every
source X ∈ {0, 1}n there exists a ‘splitting point’ t ∈ [n] such that the partition of X

into its t-bit prefix and (n− t)-bit suffix is a block source 2. Extracting randomness from
block sources is much easier than for general sources and was already considered in the
pioneering work of Chor and Goldreich [CG88]. Applying an extractor for block sources
on each of the n possible partitions of X (using the same seed for each partition) we
obtain a distribution Y = (Y1, . . . , Yn) ∈ ({0, 1}m)n such that for some t ∈ [n], Yt is close
to uniform. The last step is to ‘merge’ these n blocks (using the new merger) into a single
block which is has high entropy (say 0.9 · m) and then apply a simple extractor for high
entropy sources to get a distribution which is close to uniform (see the comment on X ′ in
the above discussion).

There is an intriguing superficial similarity between our merger and the [GUV07] con-
denser, (as well as the Shaltiel-Umans extractor [SU05]), in that all use the sample to
construct a low degree polynomial over a finite field, and evaluate it at random point(s).
Moreover the analysis of the entropy of the output in all eventually uses the fact that low
degree polynomials cannot have too many zeros. However the constructions and analysis
are quite different, and (again on a superficial level), our analysis uses only fundamen-
tal properties of polynomials, while the [GUV07] analysis relies on more complicated
proeprties of finite field extensions. Our proof is also easier to grasp intuitively since
it has a simple geometric interpretation derived from the Kakeya problem (a small set
cannot intersect many different curves in too many points).

Finally, we feel that having two different constructions of extractors with the best
known parameters more than double the chances of breaking the known bounds and
obtaining even better extractors. For example, an outstanding open problem in extractor
constructions is obtaining an extractor with output length m = k that uses logarithmic
seed. Another is achieving the optimal constant (= 1) in front of the seed length, which
will reduce the degree of the associated bipartite graphs from polynomial to linear in the
input size. We hope that our new merger will lead to progress on these problems (and
others).

1.4 Organization

In Section 2 we give general preliminaries and precise definitions related to extractors
and mergers. In Section 3 we describe the Curve Merger and analyze its performance
in Theorem 3.2. In Section 4 we show how to use the Curve Merger to construct an
optimal extractor (which is given by Theorem 4.4). The extensions to the merger analysis,
described in Section 1.2.1 of the introduction, are given in Section 5.

2A block source is a random variable (X1, X2) such that X1 has high min-entropy and for every fixing
X1 = x1 the conditional random variable X2|X1 = x1 also has sufficiently high min-entropy.
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2 Preliminaries

Throughout the paper F will denote a finite field of q elements. For a polynomial f ∈

F[x1, . . . , xn] we denote by deg(f) the total degree of f . Following is a statement of the
well-known Schwartz-Zippel Lemma, which bounds the number of zeros a multivariate
polynomial can have.

Lemma 2.1 (Schwartz-Zippel). Let f ∈ F[x1, . . . , xn] be a non zero polynomial with

deg(f) ≤ d. Then

|{x ∈ F
n |f(x) = 0}| ≤ d · qn−1.

2.1 Random sources and extractors

We review some of the basic definitions concerning random sources and extractors. The
statistical distance between two distributions P and Q on a finite domain Ω is defined as

max
S⊆Ω

|P (S) − Q(S)| .

We say that P is ε-close to Q if the statistical distance between P and Q is at most ε,
otherwise we say that P and Q are ε-far. If P and Q are ε-close we write P

ε

∼ Q. We will
denote by Un a random variable distributed uniformly in {0, 1}n and which is independent
from all other variables. We say that P is a convex-combination of the distributions
P1, . . . , Pm if there exist real numbers q1, . . . , qm ≥ 0 such that

∑

i∈[m] qi = 1 for which

P =
∑

i∈[m] qi · Pi. The min-entropy of a random variable X is defined as

H∞ (X) ! min
x∈supp(X)

log

(

1

Pr[X = x]

)

(all logarithms are taken to the base 2 unless otherwise noted). We will call a random
variable X distributed over {0, 1}n with min-entropy k an (n, k)-source. The most ‘pow-
erful’ object which is defined with relation to random sources is an extractor (also called
a ‘seeded’ extractor).

Definition 2.2 (Extractor). A function E : {0, 1}n×{0, 1}d &→ {0, 1}m is a (k, ε)-extractor
if for every (n, k)-source X, the distribution E(X,Ud) is ε-close to uniform.

The next two definitions deal with a special family of sources – somewhere random

sources – and with a variant of extractors specifically tailored for this family, called merg-

ers. Somewhere random sources and mergers were originally defined by Ta-Shma [TS96].
Notice that, unlike extractors, mergers are only required to output a source with high min
entropy (we can always apply an extractor for high min entropy sources to get an output
which is close to uniform).

Definition 2.3 (Somewhere random source). Let X = (X1, . . . , Xk) be a random variable

such that each Xi is distributed over {0, 1}n. We say that X is a simple somewhere random
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source if there exists i ∈ [k] such that Xi is uniform. We say that X is a somewhere random

source if X is a convex combination of simple somewhere random sources.

Definition 2.4 (Merger). We say that a function M : ({0, 1}n)k × {0, 1}d #→ {0, 1}n is

an (m, ε)-merger if for every somewhere random source X = (X1, . . . , Xk) such that each

Xi is distributed over n bit strings, the distribution of M(X,Ud) is ε-close to having min

entropy at least m.

Another family of sources, considered first by Chor and Goldreich [CG88], is that of
block sources.

Definition 2.5 (Block Source). Let X = (X1, X2) be a random source over {0, 1}n1 ×

{0, 1}n2. We say that X is a (k1, k2)-block source if X1 is an (n1, k1)-source and for

each x1 ∈ {0, 1}n1 the conditional random variable X2|X1 = x1 is an (n2, k2)-source. A

function E : {0, 1}n1 × {0, 1}n2 × {0, 1}d #→ {0, 1}m is a (k1, k2, ε)-block source extractor if

for every (k1, k2)-block source X, the distribution E(X,Ud) is ε-close to uniform.

Definition 2.6 (Somewhere block source). Let X = (X1, . . . , Xk) be a random variable

such that each Xi is distributed over {0, 1}ni,1 × {0, 1}ni,2. We say that X is a simple

(k1, k2)-somewhere block source if there exists i ∈ [k] such that Xi is a (k1, k2)-block source.

We say that X is a somewhere (k1, k2)-block source if X is a convex combination of simple

somewhere random sources.

We will call an extractor (or merger) explicit if they can be computed using a deter-
ministic polynomial time Turing machine. 3

3 The Curve Merger

In this section we describe our new merger and analyze its performance. We call this
merger the ‘Curve Merger’ since the output of the merger is computed by passing a
degree k − 1 curve through the k input blocks x1, . . . , xk ∈ F

r and then using the ‘seed’
(which is an element of F) to choose a point uniformly on this curve.

Construction 3.1 (Curve Merger). Let γ1, . . . , γk ∈ F be k distinct field elements. We

define k univariate polynomials c1(u), . . . , ck(u) ∈ F[u] as follows

ci(u) !
∏

j∈[k], j "=i

u − γj

γi − γj

so that ci(γj) is zero if i &= j and one if i = j. We define the function

M : (Fr)k
× F #→ F

r

3To be more precise, we will need to refer to a family of extractors (or mergers) in order for the term
‘polynomial time’ to be meaningful. However, for the sake of brevity, and since these issues are standard,
we will use the word ‘explicit’ for single functions.
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as follows:

M(x1, . . . , xk, u) !

k∑

i=1

ci(u) · xi.

Notice that, for a fixed x = (x1, . . . , xk), the output of M is indeed a curve (of degree
k − 1) that passes through each one of the points x1, . . . , xk. The following theorem,
showing the existence of good mergers, is the main result of this section. For convenience,
the theorem is stated in terms of binary sources. This will allow us to choose the field
size according to the required entropy of the output.

Theorem 3.2. For every α > 0, there exists an explicit (m, ε)-merger M : ({0, 1}n)k ×

{0, 1}d #→ {0, 1}n with m = (1 − α) · n, d = O(log(n) + log(k)) and ε = O ((n · k)−1).

Proof. Let F be a finite field of size q = 2d such that

(n · k)4/α < q ≤ 2(n · k)4/α.

We will assume w.l.o.g that n = r · d for some integer r (we can lose a constant number
of bits of entropy this way but this is negligible). We can thus treat each block Xi as
distributed over F

r. Let
M : (Fr)k

× F #→ F
r

be given by Construction 3.1. We will show that M satisfies the requirements of the
theorem.

First, notice that the seed length of M is

d = log(q) = O(log(n) + log(k))

which is what we wanted. Let
ε = 4 · q−α/4

and notice that indeed ε = O ((n · k)−1). Let U denote a random variable uniform over
F ≈ {0, 1}d and independent of X. Assume w.l.o.g that X1 is uniform (the proof will be
identical if another source is uniform). Let

Z = M(X, U)

denote the output of the merger. If Z is ε-far from having min entropy (1 − α)n than
there exists a set T ⊂ F

r of size

|T | ≤ 2n(1−α) = qr(1−α)

such that
Pr[Z ∈ T ] ≥ ε.

Let
s = q1−α/2,
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and observe that, since r < n < qα/4, we have
(s

r

)r

≥ qr(1−α)
≥ |T |.

The expression on the left-hand-side is a lower bound on the number of monomials in r
variables and degree at most s. Therefore, there are more monomials of degree ≤ s than
points in T . We can thus find (by solving a system of linear equations) a non-zero degree
≤ s polynomial g ∈ F[y1, . . . , yr] such that g(y) = 0 for all y ∈ T . Our goal is now to
show that g is zero on many more points in F

r, thus deriving a contradiction (since a
low degree polynomial can’t be zero on too many points). To show this, we will use the
special structure of the output distribution of M .

For each x1 ∈ F
r let

px1
! Pr[Z ∈ T |X1 = x1]

and let
G ! {x1 ∈ F

r|px1
≥ ε/2}.

Then, by an averaging argument and since X1 is uniform, we get

Pr[X1 ∈ G] = |G| · q−r
≥ ε/2.

Our contradiction will follow from the next claim, showing that g is zero on all points
in G. The intuition for the proof is that for x1 ∈ G, there exists a degree k − 1 curve
passing through x1, that intersects T in ‘too many’ points. This, in turn, implies that the
restriction of g to this curve (which is also a low degree polynomial) is identically zero
and so g(x1) = 0.

Claim 3.3. Let x1 ∈ G. Then g(x1) = 0.

Proof. Since the conditional probability of Z being in T given X1 = x1 is at least ε/2 we
can fix the random variables X2, . . . , Xk to values x2, . . . , xk ∈ F

r such that we still have

Pr[Z ∈ T |X = (x1, . . . , xk)] ≥ ε/2

(notice that in the above expression the only randomness comes from the seed). Let

C !

{

k
∑

i=1

ci(u) · xi

∣

∣

∣

∣

∣

u ∈ F

}

.

Then, the restriction of g to C is given by the univariate polynomial

h(u) ! g (c1(u) · x1 + . . . + ck(u) · xk) ,

which has degree at most s · (k − 1). From the above discussion, the polynomial h(u) is
zero on at least an ε/2-fraction of F and since ( using the bound k < qα/4)

s · (k − 1)

q
<

ε

2
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we get that, from Lemma 2.1, h must be zero on all points in F and in particular on
u = γ1 (where γ1 is given by Construction 3.1). Therefore

0 = h(γ1) = g(c1(γ1) · x1 + . . . + ck(γ1) · xk) = g(x1)

which is what we wanted to prove.

We now get a contradiction to Lemma 2.1 since, by the above claim and by the bound
on |G|, we get that g is zero on an ε/2 fraction of the space F

r and this is a contradiction
since ε/2 > s/q.

4 A merger-based extractor

In this section we show how to combine the Curve Merger of Section 3 with classical
extractor machinery to derive an extractor which is optimal, up to constant factors, in
all parameters. Besides the merger of Theorem 3.2, we will use the following result of
Reingold, Shaltiel and Wigderson [RSW00], which gives an optimal extractor for block
soruces.

Lemma 4.1 ([RSW00]). Let n = n1 + n2 and let k1, k2 be such that k2 > log4(n1) then

there exists an explicit (k1, k2, ε)-block source extractor E : {0, 1}n1 × {0, 1}n2 × {0, 1}d "→

{0, 1}m with m = k1, d = O(log(n)) and ε = n−Ω(1).

We can use the above lemma to derive a simple extractor for sources with very high
min entropy. This extractor will be useful to us since the output of the merger will only
give us a source with high min entropy and our final goal is to get a source which is close
to uniform.

Corollary 4.2. Suppose k = (1 − α)n. Then there exists an explicit (k, ε)-extractor
E : {0, 1}n × {0, 1}d "→ {0, 1}m with ε = n−Ω(1), d = O(log(n)) and m = (1 − 3α) · n.

Proof. If we partition the source X into two blocks (X1, X2) of length (1 − 2α) · n and
2α ·n then we get a source which is n−Ω(1)-close to a (k1, k2)-block source with k2 > Ω(n)
and k1 ≥ (1 − 3α) · n (see [GW97] for a proof of this fact). Applying the block source
extractor from Lemma 4.1 gives us the required extractor.

Another technical tool we will require is the following lemma which follows from the
work of Ta-Shma [TS96]. This lemma gives a simple way to transform an arbitrary source
into a somewhere block source.

Lemma 4.3. Let X be an (n, k)-source with k > 10 · log4(n). For each t ∈ [n] let

Y (t) = (Y
(t)
1 , Y

(t)
2 ) denote the partition of X into two consecutive blocks of length t and

n − t. That is, Y (t) is distributed over {0, 1}t × {0, 1}n−t. Let Y = (Y (1), . . . , Y (n)).
Then Y is (1/n)-close to a somewhere (k1, k2)-block source, with k1 = k − 2 log4(n) and

k2 = log4(n).

11



Proof. This follows from Lemma 2.3.1 in [TS96].

We will construct our extractor in four steps. The first will be to use Lemma 4.3 to
convert the source into a somewhere block source. The second step will be to apply the
block-source extractor from Lemma 4.2 on each of these blocks (with the same seed) to
obtain a somewhere random source. Then we will use the merger of Theorem 3.2 to merge
these blocks into a single block which is close to having min entropy rate close to one. The
final step will be to apply the extractor given by Corollary 4.2 to obtain a distribution
which is close to uniform. The error in each one of these steps will be polynomially small
(in n) and so we will get a polynomially small error for the entire construction.

Theorem 4.4. Suppose k > 10 · log4(n) and let β > 0 be some constant. Then, there

exists an explicit (k, ε)-extractor E : {0, 1}n
× {0, 1}d

"→ {0, 1}m with m = (1 − β) · k,

d = O(log(n)) and ε = n−Ω(1).

Proof. Let X be an (n, k)-source with k > 10 · log4(n). For each t ∈ [n] let Y (t) =

(Y
(t)
1 , Y

(t)
2 ) be as in Lemma 4.3 and let Y = (Y (1), . . . , Y (n)). Let k1 = k − 2 log4(n) and

k2 = log4(n). For each t ∈ [n] let

Et :
(

{0, 1}t
× {0, 1}n−t

)

× {0, 1}d1
"→ {0, 1}m

be the (k1, k2, n
−Ω(1))-block source extractor given by Lemma 4.1, such that d1 = O(log(n))

and m = k1. Let S1 denote a random variable uniformly distributed over {0, 1}d1 and
independent of X. For each t ∈ [n] let us denote by

Zt = Et

(

Y (t), S1

)

and let Z = (Z1, . . . , Zn). Then, by Lemma 4.3 and Lemma 4.1 we have that Z is n−Ω(1)

close to a somewhere random source with n blocks of length k1-bits each. Notice that we
can use the same seed S1 in each one of the applications of Et since the definition of a
somewhere random source allows for arbitrary dependencies among the different blocks.

Our next step is to apply the merger of Theorem 3.2 on Z. Let

M :
(

{0, 1}k1

)n

× {0, 1}d2
"→ {0, 1}m

be the merger given by Theorem 3.2 with

d2 = O(log(k1) + log(n)) = O(log(n))

and
m = (1 − β/10) · k1 > (1 − β/4) · k.

Notice that the error incurred by this merger is n−Ω(1). Let S2 be a random variable
distributed uniformly over {0, 1}d2 and independent of X and of S1 and let

W = M(Z, S2)
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denote the output of the merger on input Z and with seed S2. Then, by Theorem 3.2, we
have that W is n−Ω(1)-close to having min entropy at least (1 − β/10) · k1. We can thus
apply the extractor from Corollary 4.2 (with an additional independent seed of length
O(log(n)) bits) to get a source which is n−Ω(1)-close to uniform and has length (1−α) · k.

Notice that in each one of the four steps of the construction we used a seed which
has length O(log(n)) and so our total seed requirements are logarithmic in n, as was
required.

5 Extensions to the merger analysis

5.1 The ‘somewhere high-entropy’ case

It is possible to consider, instead of somewhere random sources, sources which have one
block that has only high min entropy. It is then natural to try and construct mergers for
such sources that preserve ‘most’ of the entropy of the ‘good’ block. In this section we show
that the Curve Merger also works in this setting. The proof will be by direct reduction
and will only rely on the fact that the merger commutes with any linear projection. Since
we will not need to apply this merger in the binary setting we will state this result over
the finite field F. Making the transition to binary strings is standard and the field size
can be chosen, as is done in Theorem 3.2, to control the statistical error.

We will say that a random variable X ∈ (Fn)k is a somewhere s-source if there exists
an index i ∈ [k] such that the min entropy of Xi is at least s · log(q) (one can also allow
for convex combinations of such sources, as in Definition 2.3). Notice that s doesn’t have
to be an integer.

Theorem 5.1. Let α > 0. Let X = (X1, . . . , Xk) ∈ (Fn)k be a somewhere s-source,

where s is bigger than some absolute constant C. Let M : (Fn)k × F $→ F
n be defined as

in Construction 3.1 and let Y be a random variable uniform on F and independent of X.

Suppose q > (s·k)10/α. Then, M(X, Y ) is ε-close to having min-entropy ≥ (1−α)·s·log(q),
where ε = q−Ω(1).

Proof. Suppose that X1 has min-entropy ≥ s · log(q) (the argument will be the same for
other blocks) and let

m = '(1 − α/10) · s(.

A standard application of the Leftover Hash Lemma [ILL89] shows that there exists a
linear projection

π : F
n $→ F

m

such that π(X1) is δ-close to uniform, with δ = q−Ω(1). Let Z = M(X, Y ) and observe
that

π(Z) = π(M(X, Y )) = M ′(π(X1), . . . , π(Xk), Y )

13



where M ′ : (Fm)k × F "→ F
m is again given by Construction 3.1. Since π(X) is δ-close to

a somewhere random source, and since the field size is large enough, we can carry on the
analysis given in the proof of Theorem 3.2 and get that π(Z) is q−Ω(1)-close to having min
entropy (1−α) ·s · log(q) (we omit some simple calculations). The proof is now completed
since applying a fixed function π cannot increase the min entropy and so Z is also close
to having min entropy (1 − α) · s · log(q).

We observe also that the same technique applied in the proof above (taking a random
projection to a smaller space) can be used to give a bound on the size of Kakeya sets that
contain only a ‘few’ lines. More formally, we can show the following:

Theorem 5.2. For every ε > 0 and every integer s > 2 there exists a constant Cs,ε such

that if K ⊂ F
n contains lines in at least qλ directions and s = &λ' than

|K| ≥ Cs,ε · q
λ−ε.

Proof. (Sketch) We project K onto F
s−1 using a random projection π : F

n "→ F
s−1. Using

the same argument as above we can deduce that there exists π such that π(K) contains
at least (1/2) · qs−1 lines (we count lines with multiplicities but this doesn’t matter). We
can now prove, as in [Dvi08], that |π(K)| ≥ Cs · q

s−1. Using tensoring (see Corollary 1.2
in [Dvi08]) this bound can be ‘lifted’ to Cs,ε · q

λ−ε for every ε > 0. The constant Cs,ε can
be seen to be of the order of (s/ε)−s.

5.2 The computational setting

To properly define this setting, we need to first define the type of distributions we will
consider, and their “samplability”. The samplers below explicitely generate “somewhere”
distributions, by which we mean a distribution of several random variables of which one
has some property, e.g being random, pseudorandom, having high min-entropy etc.

Definition 5.3 (Somewhere sampler). A function S : {0, 1}n × {0, 1}m → ({0, 1}n)k is a

somewhere-sampler if for every input pair x ∈ {0, 1}n and r ∈ {0, 1}m there is an i ∈ [k]
such that S(x, r)i = x. We call a sampler S efficient if m is polynomial in n, and S is

computable by a polynomial size circuit4.

Note that applying S to independent distributions X, R guarantees that the min-
entropy of S(X, R) is at least that of X. In particular every somewhere random distri-
bution, and more generally every somewhere s-source have a somewhere sampler. Note
that we make no assumption on the distribution R, and in particular it may be constant.
In both the information theoretic and computational settings it is good to view X as
given, and then an adversary uses the sampler S and the randomness R to generate the
“somewhere” output.

4As usual we should formally be talking about an ensemble of distributions and circuits, one for every

n, etc.
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Next we define computational min-entropy.

Definition 5.4 (Computational min-entropy). Two distributions X, Z on {0, 1}n are
called computationally indistinguishable if for every polynomial size (distinguisher) circuit
D we have |Pr[D(X) = 1]−Pr[D(Z) = 1]| ≤ n−ω(1). The computational min-entropy of a
distribution X is at least k if it is computationally indistinguis from some distribution Z
with min-entropy at least k. When k = n we call the distribution X pseudorandom.

We note that the notion of computational min-entropy is quite subtle, and there is
more than one natural definition for it. The one above is perhaps the most natural, and is
taken from the seminal paper of Hastad et al [HILL99]. We refer the reader to [BSW03]
for thorough discussion of these definitions and the interrelations between them (including
many interesting open problems).

The simple observation of this section (for which we have no applications but hope it
may find some), is that our merger performs as well in this setting as in the information
theoretic one.

Theorem 5.5. Let α > 0 and let M be the merger of Construction 3.1 with |F| > (nk)4/α.
Then for every distribution X with computational min-entropy s, every efficient some-
where sampler S and random variable R independent of X, we have that M(S(X,R), Y )
is (1/nk)-close to having computational min-entropy (1 − α)s.

Proof. (Sketch) It suffices to observe that, since the sampler S is efficient, it can be
combined with any hypothetical distniguisher circuit D for the output of M to yield a
distinguisher for X, violating the information theoretic quality of the merger in Theo-
rem 5.1.
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