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Abstract

We develop quantum fingerprinting technique for constructing quantum branching pro-
grams (QBPs), which are considered as circuits with an ability to use classical bits as control
variables.

We demonstrate our approach constructing optimal quantum ordered binary decision
diagram (QOBDD) for MODm Boolean function. The construction of our technique also
allows to extend the recent result of Ambainis and Nahimovs it is based on. In addition we
show how our technique works for encoding quantum information for the equality problem in
the simultaneous message passing model.

1 Introduction

The implementation of a large-scale quantum computing device nowadays poses a great challenge
for the engineers. At the moment the most realistic way is to construct a quantum computer of a
classical device and a small quantum part. That’s why the number of qubits needed for physical
implementation of an algorithm is a very important complexity measure. In this paper we present
a circuit viewpoint on Quantum Branching Programs (QBPs) for which this measure explicitly
comes out.

Graph based and algebraic definitions of classical and quantum branching programs were ex-
plored in numerous papers [NA00, SA04, AGK01, AGKMP]. We suggest that a QBP can be
considered as a circuit aided with an ability to use classical bits as control variables for unitary op-
erations. Thus, it is quite adequate model for describing the aforementioned “classical-quantum”
computations.

We develop a quantum fingerprinting technique oriented for implementation in the QBP model.
In general, fingerprinting means presentation of initial object by a compact fingerprint which
allows to organize space-efficient computations and reliably extract the result of computation. It
is generally used in randomized and quantum algorithms for testing identity of different objects
such as binary strings, polynomials, matrices and etc. by simply comparing their fingerprints (see
book [MR95] for more information on the subject).

The research [BCWW] of Buhrman, Cleve, Watrous, and De Wolf was the first which explicitly
formulated and developed fingerprinting technique for the quantum communication model. From
2001 this paper has initiated a bunch of results for quantum communications. Implicitly, the
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quantum fingerprinting technique has been also used for quantum finite automata [AF98] (later
improved in [AN08]) and quantum branching programs [AGK01, AGKMP].

In this paper we generalize the approach of [AN08] and explicitly define the quantum finger-
printing technique oriented for implementation in quantum devices. Our construction use simple
controlled rotations about the ŷ axis of the Bloch sphere at each step and can be given an illus-
trative circuit presentation.

For the quantum read-once branching program (quantum OBDD, QOBDD) we consider the
Boolean function MODm(x1, . . . , xn) which answers whether the number of ones in it’s input is a
multiple of m. We present a fingerprinting algorithm computing this function with the exponential
decrease in the size of it’s quantum part (the number of qubits). Using known lower bound [AGK01]
for the size of QOBDD we state that our algorithm is asymptotically optimal.

The paper is organized as follows. The next section presents definitions, quantum circuit
viewpoint on the quantum branching program model, and known lower bound for quantum OBDDs
computing Boolean functions. Section 3 presents our fingerprinting technique in general form
together with the needed technical statement. Then we apply our fingerprinting technique for
constructing an optimal quantum OBDD for Boolean function MODm.

The proven lemma from Section 3 allows us to extend the construction of quantum automata
recognizing divisibility (the regular language Lm) from [AN08]. This is mentioned in Section 5.

In the last section we apply the developed approach for solving the equality problem in the
simultaneous message passing model with no shared keys. Actually it gives essentially the same
error rate and message size as in [BCWW].

2 Preliminaries and Definitions

The definition of a linear branching program is a generalization of the definition of quantum branch-
ing program presented in [AGK01]. Deterministic and quantum oblivious branching programs are
particular cases of linear branching programs. Let Vd be a d-dimensional vector space. We use
|ψ〉 and 〈ψ| to denote column vectors and row vectors respectively from Vd, and 〈ψ1 | ψ2〉 denotes
the inner product. We write ψ when it is not important whether it is in column or row form.

Definition 1 (Linear branching program). A Linear Branching Program P of width d and length
l (a (d, l)− LBP ) over Vd is defined as

P = 〈T, |ψ0〉 ,Accept〉

where T is a sequence of l instructions: Tj =
(
xij , Uj(0), Uj(1)

)
determined by xij tested on the

step j where Uj(0) and Uj(1) are d× d matrices.
Vectors |ψ〉 ∈ Vd are called states (state vectors) of P , |ψ0〉 ∈ Vd is the initial state of P , and

Accept ⊆ {1, . . . , d} is the accepting set.
We define a computation of P on an input σ = (σ1, . . . , σn) ∈ {0, 1}n as follows:

1. A computation of P starts from the initial state |ψ0〉;

2. The j’th instruction of P queries a variable xij , and applies the transition matrix Uj = Uj(σij)
to the current state |ψ〉 to obtain the state |ψ′〉 = Uj(xij) |ψ〉;

3. The final state is

|ψ(σ)〉 =

(
1∏
j=l

Uj(σij)

)
|ψ0〉 .
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The usual complexity measures for (d, l)− LBP are its width d, length l, and size d · l.

Deterministic branching programs. A deterministic branching program is a linear branching
program over a vector space Rd. A state |ψ〉 of such a program is a Boolean vector with exactly
one 1. The matrices Uj correspond to permutations of order d, and so have exactly one 1 in each
column. For branching programs over groups this is true for the rows as well; in which case, the
Uj are permutation matrices.

Quantum branching programs. We define a quantum branching program as a linear branching
program over a Hilbert space Hd. The |ψ〉 for such a program are complex state vectors with
‖ |ψ〉 ‖2 = 1, and the Uj are complex-valued unitary matrices.

After the l-th (last) step of quantum transformation P measures its configuration |ψσ〉 where
|ψσ〉 = Ul(σil)Ul−1(σil−1

) . . . U1(σi1) |ψ0〉 . Measurement is presented by a diagonal zero-one projec-
tion matrix M where Mii = 1 if i ∈ Accept and Mii = 0 if i 6∈ Accept. The probability Praccept(σ)
of P accepting input σ is defined by

Praccept(σ) = ||M |ψσ〉 ||2.

A QBP P computes f with one-sided error if there exists an ε > 0 such that for all σ ∈ f−1(1)
the probability of P accepting σ is 1 and for all σ ∈ f−1(0) the probability of P accepting σ is less
than 1− ε.

Note that this is a “measure-once” model analogous to the model of quantum finite automata
in [MC97], in which the system evolves unitarily except for a single measurement at the end. We
could also allow multiple measurements during the computation, by representing the state as a
density matrix ρ, and by making the Uj superoperators, but we do not consider this here.

Read-once branching programs.

Definition 2. We call an LBP P an OBDD or read-once LBP if each variable x ∈ {x1, . . . , xn}
occurs in the sequence T of transformations of P at most once.

The “obliviousness” is inherent for an LBP and therefore this definition is consistent with the
usual notion of an OBDD. We will use QOBDD for quantum read-once branching programs and
OBDD for deterministic ones.

The following general lower bound on the width of QOBDDs is proven in [AGK01].

Theorem 1. Let ε ∈ (0, 1/2). Let f(x1, . . . , xn) be a Boolean function (1/2 + ε)-computed (com-
puted with margin ε) by a quantum read-once branching program Q. Then

width(Q) = Ω(log width(P ))

where P is a deterministic OBDD of minimal width computing f(x1, . . . , xn).

Circuit representation. A QBP can be viewed as a quantum circuit aided with an ability to
read classical bits as control variables for unitary operations. That is any quantum circuit is a
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QBP which does not depend essentially on it’s classical inputs.

xj1 • �������� · · ·

xj2 • �������� · · ·
...

xjl · · · • ��������
|φ1〉

U1(1) U1(0) U2(1) U2(0)

· · ·

Ul(1) Ul(0)

NM





|φ2〉 · · · NM



|ψ0〉

 ...

|φq〉 · · · NM





Here xj1 , . . . , xjl is the sequence of (not necessarily distinct) variables denoting classical control
bits.

Note that for a QBP in the circuit setting another important complexity measure explicitly
comes out – a number of qubits q physically needed to implement a corresponding quantum system
with classical control. From definition it follows that log d ≤ q ≤ d/2. The maximum of d/2 is
reached when all the qubits do not interfere and thus are isolated quantum systems.

Definition 3. We call a (d, l)-QBP P a q-qubit QBP if the program P can be implemented as a
classically controlled quantum system based on q qubits.

3 Quantum Fingerprinting

Fingerprinting is the technique that allows to present objects (words over some finite alphabet) by
their fingerprints, which are significantly smaller than the originals. Moreover, they are intended to
reliably extract the important information about the input with one-sided error. The fingerprinting
technique of [BCWW] allows to built an optimal Simultaneous Message Passing (SMP) quantum
protocol for identification of two binary strings. Here we present the fingerprinting technique
adapted for implementation by quantum computational devices. It is based on the recent work
of Ambainis and Nahimovs [AN08], thus refining their construction of an optimal quantum finite
automaton for a specific regular language Lm. We apply this method for the construction of an
optimal QBP for MODm Boolean function. We also show that this approach provides analogous
to [BCWW] result for the Equality problem in the SMP model.

Our approach has the following properties:

• It is oriented for models with classical control and thus for QBPs.

• Fingerprints are easy to create, we use only controlled rotations about the same axis by the
similar angle and Hadamard gates.

• The proven lemma guarantees the existence of a “good” set of parameters which allows to
bound the error probability by an 0 < ε < 1.

4



Fingerprinting technique For the problem being solved we choose some cardinal m, an error
rate ε > 0, fix t = d(2/ε) ln 2me, and construct a mapping g : {0, 1}n → Z. Then for arbitrary
binary string σ = σ1 . . . σn we create it’s fingerprint |hσ〉 composing t single qubit fingerprints |hiσ〉:

|hiσ〉 = cos 2πkig(σ)
m
|0〉+ sin 2πkig(σ)

m
|1〉

|hσ〉 = 1√
t

t∑
i=1

|i〉 |hiσ〉

That is, the last qubit is rotated by t different angles about the ŷ axis of the Bloch sphere.
The chosen parameters ki ∈ {1, . . . ,m− 1} for i = 1, t are “good” in the following sense.

Definition 4. A set of parameters K = {k1, . . . , kt} is called “good” for g 6= 0 mod m if

1

t2

(
t∑
i=1

cos
2πkig

m

)2

< ε.

Informally, that kind of set guarantees, that the probability of error will be bounded by a
constant below 1.

The following lemma proves the existence of a “good” set and follows the proof of the corre-
sponding statement from [AN08].

Lemma 1. There is a set K with |K| = t = d(2/ε) ln 2me which is “good” for all g 6= 0 mod m.

Proof. Using Azuma’s inequality (see, e.g., [MR95]) we prove that a random choice of the set K
is “good” with positive probability .

Let 1 ≤ g ≤ m − 1 and let K be the set of t parameters selected uniformly at random from
{0, . . . ,m− 1}.

We define random variables Xi = cos 2πkig
m

and Yk =
∑k

i=1Xi. We want to prove that Azuma’s
inequality is applicable to the sequence Y0 = 0, Y1, Y2, Y3, . . . , i.e. it is a martingale with bounded
differences. First, we need to prove that E[Yk] <∞.

From the definition of Xi it follows that

E[Xi] =
1

m

m−1∑
j=0

cos
2πjg

m

Consider the following weighted sum of mth roots of unity

1

m

m−1∑
j=0

exp

(
2πjg

m
i

)
=

1

m
· exp(2πigm/m)− 1

exp(2πig/m)− 1
= 0,

since g is not a multiple of m.
E[Xi] is exactly the real part of the previous sum and thus is equal to 0.
Consequently, E[Yk] =

∑k
i=1E[Xi] = 0 <∞.

Second, we need to show that the conditional expected value of the next observation, given all
the past observations, is equal to the last observation.

E[Yk+1|Y1, . . . , Yk] =
1

m

m−1∑
j=0

(
Yk + cos

2πjg

m

)
= Yk +

1

m

m−1∑
j=0

cos
2πjg

m
= Yk
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Since |Yk+1 − Yk| = |Xk+1| ≤ 1 for k ≥ 0 we apply Azuma’s inequality to obtain

Pr(|Yt − Y0| ≥ λ) = Pr

(
|

t∑
i=1

Xi| ≥ λ

)
≤ 2 exp

(
−λ

2

2t

)
Therefore, we induce that the probability of K being not “good” for 1 ≤ g ≤ m− 1 is at most

Pr

(
|

t∑
i=1

Xi| ≥
√
εt

)
≤ 2 exp

(
−εt

2

)
≤ 1

m

for t = d(2/ε) ln 2me.
Hence the probability that constructed set is not “good” for at least one 1 ≤ g ≤ m − 1 is at

most (m− 1)/m < 1. Therefore, there exists a set which is “good” for all 1 ≤ g ≤ m− 1. This set

will also be “good” for all g 6= 0 mod m because cos 2πk(g+jm)
m

= cos 2πkg
m

.

We use this result for our fingerprinting technique choosing the set K = {k1, . . . , kt} which is
“good” for all g = g(σ) 6= 0. That is, it allows to distinguish those inputs whose image is 0 modulo
m from the others.

That hints on how this technique may be applied:

1. We construct g(x), that maps all acceptable inputs to 0 modulo m and others to arbitrary
non-zero (modulo m) integers.

2. After the necessary manipulations with the fingerprint the H⊗ log t operator is applied to the
first log t qubits. This operation “collects” all of the cosine amplitudes at the all-zero state.
That is, we obtain the state of type

|h′σ〉 =
1

t

t∑
i=1

cos

(
2πkig(σ)

m

)
|00 . . . 0〉 |0〉+

2t∑
i=2

αi |i〉

3. Then this state is measured in the standard computational basis and we accept the input if
the outcome is the all-zero state. This happens with probability

Praccept(σ) =
1

t2

(
t∑
i=1

cos
2πkig(σ)

m

)2

,

which is 1 for inputs, whose image is 0 mod m, and is bounded by ε for the others.

4 Computation of some Boolean functions in the QOBDD

model

4.1 Computation of the MODm function

Consider the following symmetric Boolean function MODm: for an input σ = σ1 . . . σn ∈ {0, 1}n
we have MODm(σ) = 1 iff a number of ones in σ is a multiple of m, where m ≥ 2 is an integer.

Theorem 2. The function MODm can be presented by a O(log logm)-qubit QOBDD P (read-once
O(log logm)-qubit QBP) with one-sided error 0 < ε < 1.

6



Proof. Let ε > 0 and fix t = d(2/ε) ln 2me.
First we present an log 2t-qubit QOBDD P for MODm in a circuit setting and then we prove

that it computes MODm with one-sided error. Program P is presented by the following quantum
circuit:

x1 • ··· • ··· ··· ···
x2 ··· • ··· • ··· ···

...xn ··· ··· ··· • ··· •
|φ1〉 H �������� ··· • �������� ··· • ··· �������� ··· • H NM






|φ2〉 H �������� ··· • �������� ··· • ··· �������� ··· • H NM





...

|1〉 |t〉 |1〉 |t〉 |1〉 |t〉











|φ log t〉 H �������� ··· • �������� ··· • ··· �������� ··· • H NM





|φtarget〉 R1 ··· Rt R1 ··· Rt ··· R1 ··· Rt NM





Initially |ψ1〉 = |ψ2〉 = · · · = |ψlog t〉 = |ψtarget〉 = |0〉. Unitary transformations Ri = Rŷ

(
4πki
m

)
,

i ∈ {1, . . . , t}, are rotations of the “target qubit” by an angle 4πki/m and the set of parameters
K = {k1, . . . , kt} is “good” according to the Definition 4. For an input σ = σ1 . . . σn ∈ {0, 1}n
treated as unary representation of a number g(σ) =

∑n
i=1 σi the program P creates (step by step

while reading the input σ) it’s fingerprint |hσ〉 as the composition of t single qubit fingerprints
|hiσ〉:

|hiσ〉 = cos 2πkig(σ)
m
|0〉+ sin 2πkig(σ)

m
|1〉

|hσ〉 = 1√
t

t∑
i=1

|i〉 |hiσ〉

Now it’s easy to see that we have applied the Quantum Fingerprinting technique described in
Section 3 with g(x) =

∑n
i=1 xi and parameter m set to the modulo of MODm.

Afterwards we apply the H⊗ log t ⊗ I operator which transforms the fingerprint |hσ〉 into the

|h′σ〉 =
1

t

t∑
i=1

cos

(
2πkig(σ)

m

)
|00 . . . 0〉 |0〉+

2t∑
i=2

αi |i〉

for some amplitudes αi, which are not important for us.
The final state is measured in the standard computational basis. The input σ is accepted if

quantum register is all-zero (i.e. |h′σ〉 = |00 . . . 0〉 |0〉), otherwise the input σ is rejected. From the
construction of P we have for arbitrary input σ the acceptance probability as follows:

Praccept(σ) =
1

t2

(
t∑
i=1

cos
2πkig(σ)

m

)2

Thus if MODm(σ) = 1 that is, g(σ) = 0 mod m then Praccept(σ) = 1. If MODm(σ) = 0 that is,
g(σ) 6= 0 mod m then the probability of obtaining the |00 . . . 0〉 |0〉 state is less than ε because of
the “goodness” of the set of parameters k1, . . . , kt.

Note that the number of qubits used in this construction is log t + 1 = O(log logm) which is
asymptotically optimal due to the result of Theorem 1 and the fact that any deterministic OBDD
for MODm requires width Ω(m).
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5 Recognizing divisibility in the QFA model

Using the proof from the section 3 we can state that the the result of Ambainis and Nahimovs
[AN08] concerning recognition of the language Lm by a 1-way Quantum Finite Automata (QFA)
can be extended to the case of arbitrary integer m ≥ 2.

6 Equality problem in the SMP model

As an another application of the described approach consider the equality problem in the simul-
taneous message passing model without shared key (see [BCWW]). In this model Alice and Bob
receive their binary strings σ and γ respectively and need to send a message as small as possible
to the referee, who makes a test and decides whether σ = γ or not. We construct a protocol
analogous to that of Buhrman et al and thus prove the following theorem.

Theorem 3. There is a quantum protocol that solves the equality problem in the SMP model with
one-sided error probability bounded below 1 using O(log n) qubits of communication.

Proof. We apply the fingerprinting technique from Section 3 here followed by the “swap-test” from
[BCWW]. We set m to the 2n (where |σ| = |γ| = n), construct g(x) =

∑n
i=1 2i−1xi as a numeric

value of the input, fix an 0 < ε < 1, and choose a “good” set of t = d(2/ε) ln 2me parameters
K = {k1, . . . , kt}. Now Alice and Bob create their fingerprints |hσ〉 and |hγ〉 as

|hσ〉 = 1√
t

t∑
i=1

|i〉
(

cos 2πkig(σ)
m
|0〉+ sin 2πkig(σ)

m
|1〉
)

|hγ〉 = 1√
t

t∑
i=1

|i〉
(

cos 2πkig(γ)
m
|0〉+ sin 2πkig(γ)

m
|1〉
)

and send them to the referee, who applies the transformation (H
⊗

I) (controlled-SWAP) (H
⊗

I)
to the state |0〉 |hσ〉 |hγ〉 and measures the first qubit of the resulting state 1/2 |0〉 (|hσ〉 |hγ〉 +
|hγ〉 |hσ〉) + 1/2 |1〉 (|hσ〉 |hγ〉 − |hγ〉 |hσ〉). The referee outputs ”yes” if the state |0〉 was observed
which happens with probability Praccept(σ, γ) = 1

2
(1 + |〈hσ | hγ〉|2), that is

Praccept(σ, γ) = 1
2

+ 1
2t2

∣∣∣∣ t∑
i=1

cos 2πkig(σ)
m

cos 2πkig(γ)
m

+ sin 2πkig(σ)
m

sin 2πkig(γ)
m

∣∣∣∣2
= 1

2
+ 1

2t2

∣∣∣∣ t∑
i=1

cos 2πki(g(σ)−g(γ))
m

∣∣∣∣2
When σ = γ this equals 1 and the probability of obtaining |0〉 when σ 6= γ is bounded by

Praccept(σ, γ) <
1

2
+

1

2
ε < 1

The number of qubits sent to the referee is 2 log 2t = O(log logm) = O(log n). In [BCWW]
it was also shown that Ω(log n) qubits are needed to solve the posed equality problem, so our
approach is asymptotically optimal like that of [BCWW].

Acknowledgements We thank Juhani Karhumaki for invitation to the University of Turku and
a number of interesting discussions on the subject of the paper.

Research was supported by the University of Turku and the Russian Fund for Basic Research
(under the grant 08-07-00449).

8



References

[AF98] A. Ambainis and R. Freivalds, 1-way quantum finite automata: strengths, weaknesses and
generalization. Proceeding of the 39th IEEE Conference on Foundation of Computer Science,
1998, See also arXiv:quant-ph/9802062 v3, pp. 332–342.

[AN08] A. Ambainis and N. Nahimovs, Improved constructions of quantum automata,
arXiv:0805.1686v1, 2008.

[AGK01] F. Ablayev, A. Gainutdinova, and M. Karpinski, On computational power of quantum
branching programs. Lecture Notes in Computer Science, no. 2138, Springer-Verlag, 2001, See
also arXiv:quant-ph/0302022 v1, pp. 59–70.

[AGKMP] F. Ablayev, A. Gainutdinova, M. Karpinski, C. Moore, and C. Pollette, On the compu-
tational power of probabilistic and quantum branching programs of constant width. Information
and Computation (2005).

[BCWW] H. Buhrman, R. Cleve, J. Watrous, R. de Wolf, Quantum fingerprinting, Physical Review
Letters, 87(16):167902, 2001.

[MC97] C. Moore and J.P. Crutchfield, Quantum automata and quantum grammars. Theoretical
Computer Science 237: 275–306, 2000.

[MR95] R. Motwani, P. Raghavan, Randomized Algorithms. Cambridge University Press, 1995.

[NA00] M. Nakanishi, K. Hamaguchi, and T. Kashiwabara, Ordered quantum branching programs
are more powerful than ordered probabilistic branching programs under a bounded-width re-
striction. Proc. 6th Intl. Conf. on Computing and Combinatorics (COCOON), Lecture Notes
in Computer Science 1858: 467–476, 2000.

[SA04] M. Sauerhoff and D. Sieling, Quantum branching programs and space-bounded nonuniform
quantum complexity. ph/0403164, March 2004.

9

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


