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Abstract

We prove nΩ(1) lower bounds on the multiparty communication complexity of AC0 functions
in the number-on-forehead (NOF) model for up to Θ(log n) players. These are the first lower
bounds for any AC0 function for ω(log log n) players. In particular we show that there are families
of depth 3 read-once AC0 formulas having k-player randomized multiparty NOF communication
complexity nΩ(1)/2O(k). We show similar lower bounds for depth 4 read-once AC0 formulas that
have nondeterministic communication complexity O(log2 n), yielding exponential separations
between k-party nondeterministic and randomized communication complexity for AC0 functions.

As a consequence of the latter bound, we obtain an nΩ(1/k)/2O(k) lower bound on the k-party
NOF communication complexity of set disjointness. This is non-trivial for up to Θ(

√
log n)

players which is significantly larger than the up to Θ(log log n) players allowed in the best
previous lower bounds for multiparty set disjointness given by Lee and Shraibman [LS08] and
Chattopadhyay and Ada [CA08] (though our complexity bounds themselves are not as strong
as those in [LS08, CA08] for o(log log n) players).

We derive these results by extending the k-party generalization in [CA08, LS08] of the pat-
tern matrix method of Sherstov [She07, She08]. Using this technique, we derive a new sufficient
criterion for strong communication complexity lower bounds based on functions having many di-
verse subfunctions that do not have good low-degree polynomial approximations. This criterion
guarantees that such functions have orthogonalizing distributions that are “max-smooth” as op-
posed to the “min-smooth” orthogonalizing distributions used by Razborov and Sherstov [RS08]
to analyze the sign-rank of AC0.
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1 Introduction

Recently, Sherstov introduced the so-called pattern matrix method to derive discrepancy bounds [She07,
She08] yielding a new strong method for obtaining lower bounds for 2-party quantum communica-
tion complexity. His method was then generalized for k ≥ 2 players [Cha07, CA08, LS08] to yield
the first lower bounds for the general multiparty number-on-forehead communication complexity
of set disjointness for more than 2 players, improving a long line of research on the problem. The
communication lower bound for k players is Ω(n

1
2k /22Θ(k)

) which yields a non-trivial separation
between randomized and nondeterministic k-party models for k ≤ ε log log n for some constant
ε > 0. This separation between randomized and nondeterministic communication complexity was
extended by David and Pitassi and David, Pitassi, and Viola to Ω(log n) players for significantly
more complex functions than disjointness that based on pseudorandom generators [DPV]. Their
construction uses a more complex criterion than the simple masking version of the pattern matrix
method used in [CA08]. Set disjointness is an AC0 function and David, Pitassi, and Viola asked
the question of whether one could prove a separation for Ω(log n) players using an AC0 function
or even whether one could prove any non-trivial lower bound for ω(log log n) players for any AC0

function since their functions are also only in AC0 for k = O(log log n).
We resolve this question positively by showing there is a read-once function in AC0

3
that has

nΩ(1) communication complexity for k = Ω(log n) players. Moreover there is a read-once function
in AC0

4
that for Ω(log n) players has nondeterministic communication complexity O(log2 n) and

randomized communication complexity nΩ(1); i.e., (NPcc

k(n) − BPPcc

k(n)) ∩ AC0
4
6= ∅ for k(n) ≤ δ log n

for some explicit constant δ > 0. Our method significantly improves the power of the pattern
matrix method for proving strong communication complexity lower bounds.

As a consequence of the lower bound for the function we use to separate NPcc

k(n) from BPPcc

k(n), we

obtain nΩ(1/k)/2O(k) lower bounds on the k-party NOF communication complexity of set disjointness
which is non-trivial for up to Θ(

√
log n) players. The best previous lower bounds of Lee and

Shraibman [LS08] and Chattopadhyay and Ada [CA08] for set disjointness describe above do not
apply for ω(log log n) players.

The high-level idea of the k-party version of the pattern matrix method as described in [CA08]
is as follows. Suppose that we want to prove k-party lower bounds for a function F . The general
idea is to show that F can express some Ff

k (specified below) which is a function that under
many projection patterns is the same as a function f of large approximate degree. If f has large
approximate degree, then Sherstov showed that there exists another function g and a distribution µ
on inputs such that with respect to µ, g is both highly correlated with f and orthogonal to all low-
degree polynomials. It follows that Ff

k is also highly correlated with Fg
k and, using the generalized

discrepancy method for communication complexity lower bounds it suffices to prove a discrepancy
lower bound for the latter function. Thanks to the orthogonality of g to all low degree polynomials
this is possible using an iterated application of the Cauchy-Schwartz inequality as in Babai, Nisan,
and Szegedy [BNS92]. For example, the bound for set disjointness Disjk,n(x) = ∨n

i=1 ∧k
j=1 xij ,

which more properly should be called set intersection, corresponds to the case that f = Or which
has approximate degree Ω(

√
n).

In the two party case, Razborov and Sherstov [RS08] extended Sherstov’s method to yield
sign-rank lower bounds for the AC0

3
function FMP

2 where MP (x) = ∧m
i=1 ∨4m2

j=1 xij is the so-called
Minsky-Papert function which has approximate degree Ω(m). The key to their argument is to
show that there is an orthogonalizing distribution µ for MP that is “min-smooth” in that it
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assigns probability at least 8−m2−n−1 to any input vector on which MP is true.
We prove our results by showing that any function f for which there is a diverse collection of

partial assignments ρ such that each of the subfunctions f |ρ of f requires large approximate degree,
there is an orthogonalizing distribution µ for f that is “max-smooth” in that the probability of
subsets defined by partial assignments cannot be too much larger than under the uniform distribu-
tion. The diversity of the partial assignments is determined by a parameter α so we call the degree
bound the (ε, α)-approximate degree. This property is somewhat delicate but applies directly to
Parity and, much more importantly, to Tribesp,q(x) = ∨q

i=1 ∧
p
j=1 xij for certain choices of p and

q. Since Tribesp,q is a subfunction of many other functions we can use it to obtain lower bounds
for many functions in AC0. (The property unfortunately does not apply to Or but we are able to
derive our lower bounds for Disjk,n via reduction.) Our lower bound method also shows that the
simple masking version of the pattern matrix method is sufficient to obtain strong lower bounds.

Results Let T be the set of all Boolean functions that map the all 0’s input to false and each
input with precisely one 1 to true. For any integers m, s, k > 0, any Boolean function f on m bits,
and any s-bit function t ∈ T , we define the following function on msk bits:

Hf,t
k (x1, . . . , xk) := f(t(∧k

i=1x11i, . . . ,∧k
i=1x1si), . . . , t(∧k

i=1xm1i, . . . ,∧k
i=1xmsi)),

for any x1, . . . , xk ∈ {0, 1}ms. Let n = ms. We associate each such Hf,t
K with the k-party NOF

communication problem in which player i can see all xj except for xi and they want to compute

Hf,t
k .

For instance, setting f and t to be Or makes Hf,t
k the set disjointness function Disjk,n and

setting both f and t to be Parity makes Hf,t
k the Generalized Inner Product (GIP) function.

Given f as above and n = ms, we also define a function on nk bits by:

Ff
k (x, y1, . . . , yk−1) := f(x|φAND(∧k−1

j=1yj)),

where φAND(z) returns the set of non-zero indices in z and x|S is the bit vector obtained by

restricting x to indices in S. We also associate with each Ff
k the k-party NOF communication

problem on x, y1, . . . , yk−1 ∈ {0, 1}n in which the player 0 holds x and for 1 ≤ i ≤ k − 1, player i

holds yi, and they want to compute Ff
k .

If we partition the above n-bit input string x into m blocks of size s and we restrict the inputs
y1, . . . , yk−1 such that the set S = φAND(∧k−1

j=1yj) as above selects exactly one bit in each of the m

blocks, then it is easy to see that in this case Ff
k is a subfunction of Hf,t

k . From now on, unless
stated otherwise, we will assume that the inputs always satisfy this restriction.

We show that (ε, α)-approximate degree lower bounds for a function f allows one to derive lower

bounds for Ff
k .

Theorem 1.1. Let n = ms where s = d4eek−1. For 0 ≤ α < 1 and any Boolean function f on m

bits with (5/6, α)-approximate degree d, the function Ff
k defined on n ·k bits requires Rk

1/3(F
f
k ) that

is Ω(d/2k) for k ≤ (1 − α) log2 d.

Corollary 1.2. Under the same conditions as above, if t is any s-bit function in T then Hf,t
k has

k-party randomized NOF communication complexity Ω(d/2k).
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By analyzing the approximation properties of the m = ps bit function Tribesp,q for suitable
choices of p and q, we obtain the first AC0 function separating NPcc

k
from BPPcc

k
for k = ω(log log n).

The separation is non-trivial for k up to Θ(log n).

Theorem 1.3. There is a constant a > 0 such for any n and integer k = k(n) ≤ a log2 n such that
n ≥ ms for s = d4eek−1 and m is of the form pq such that dq0.2e < 2p ≤ 1

6q0.3 ln 2 and the following

holds. The randomized k-party NOF communication complexity of HTribesp,q,Ors

k is Ω(n0.3−ε/ck)
for c = 2(4e)0.3 and its nondeterministic k-party NOF communication complexity is O(log2 n).

Since the function HTribesp,q,Or
k is given by a read-once depth 4 formula we have the following

theorem.

Corollary 1.4. There is a constant δ > 0 such that for any k(n) ≤ δ log2 n there is a function in
AC0

4
∩ (NPcc

k
− BPPcc

k
).

By a reduction from HTribesp,q,Ors

k to Disjk,n we obtain the following lower bound.

Theorem 1.5. The randomized k-party NOF communication complexity of Disjk,n is nΩ(1/k)/2O(k).

Write Tribes
′
p,q for the dual function to Tribesp,q, Tribes

′
p,q(x) = ∧q

i=1 ∨p
j=1 xij . Observe

that HTribes
′

p,q,Or

k is a read-once depth 3 AC0 function since the two layers of ∨ gates can be
combined. Since Tribes

′
p,q has the same degree approximation properties as Tribesp,q, we obtain

a similar lower bound for read-once AC0
3

functions.

Theorem 1.6. There is a constant a > 0 such for any n and integer k = k(n) ≤ a log2 n such

that following holds. There is a function F in read-once AC0
3
, namely HTribes

′

p,q,Ors

k for s =
d4eek−1 and dq0.2e < 2p ≤ 1

6q0.3 ln 2, whose randomized k-party NOF communication complexity is
Ω(n0.3−ε/ck) for c = 2(4e)0.3.

Our technique yields a new sufficient criterion for functions to have high randomized communi-
cation complexity. It can be used to provide strong lower bounds for k = O(log n) for many other
functions including the extension of the Minsky-Papert function MP considered by Razborov and
Sherstov, and the Generalized Inner Product.

Our paper is organized as follows. In Section 2 we give an overview of the method of [She08,
CA08] based on orthogonalizing distributions for functions of large ε-approximate degree and briefly
discuss its limitations. In Sections 3 and 4 we define a new notion which we call the (ε, α)-
approximate degree of a function and show how we can use it to prove Theorem 1.1. In Section 5
we prove that the function Tribesp,q has large (ε, α)-approximate degree. Then we prove Theo-
rems 1.3, 1.5, and 1.6 in Section 6 and conclude by considering a variety of other functions.

2 Preliminaries

2.1 Notations and Terminology

We follow the notation used in [DPV]. We will assume that a Boolean function on m bits is a map
f : {0, 1}m → {−1, 1}.
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Correlation Let f, g : {0, 1}m 7→ R be two functions, and let µ be a distribution on {0, 1}m.
We define the correlation between f and g under µ to be Corµ(f, g) := Ex∼µ[f(x)g(x)]. If G is
a class of functions g : {0, 1}m 7→ R, we define the correlation between f and G under µ to be
Corµ(f,G) := maxg∈G Corµ(f, g).

Communication complexity We denote by Rk
ε (f) the cost of the best k-party randomized

NOF communication protocol for f with two-sided error at most ε, and Nk(f) the cost of the
best k-party nondeterministic communication protocol for f . We denote by Πc

k the class of all
deterministic k-party communication protocols of cost at most c.

Fact 2.1. [KN97] If there exists a distribution µ such that Corµ(f,Πc
k) ≤ 1/3 then Rk

1/3(f) ≥ c.

Lemma 2.2 ([BNS92]). Let f : {0, 1}m×k 7→ R and Um be the uniform distribution on {0, 1}m.
Then,

CorUm(f,Πc
k)

2k−1 ≤ 2c·2k−1·Ey0
1 ,...,y0

k−1,y1
1 ,...,y1

k−1∈{0,1}m

[∣

∣

∣
Ex∈{0,1}m

[

Πu∈{0,1}k−1f(x, yu1
1 , . . . , y

uk−1

k−1 )
]

∣

∣

∣

]

.

Approximate degree The ε-approximate degree of f , degε(f), is the smallest d for which there
exists a multivariate real-valued polynomial p of degree d such that ||f−p||∞ = maxx |f(x)−p(x)| ≤
ε. Following [NS94] we have the following property of approximate degree of OR.

Proposition 2.3. Let Orm : {0, 1}m → {1,−1}. For 0 ≤ ε < 1, degε(Orm) ≥
√

(1 − ε)m/2.

Define an inner product 〈, 〉 on the set of functions f : {0, 1}m → R by 〈f, g〉 = E[f · g]. For
S ⊆ [m], let χS : {0, 1}m → {−1, 1} be the function χS =

∏

i∈S(−1)xi . The χS for S ⊆ [m] form
an orthonormal basis of this space.

Lemma 2.4 ([She08]). If f : {0, 1}m 7→ {−1, 1} is a Boolean function with degε(f) ≥ d then there
exists a function g : {0, 1}m 7→ {−1, 1} and a distribution µ on {0, 1}m such that:

1. Corµ(g, f) > ε; and

2. for every S ⊆ [m] with |S| < d and every function h : {0, 1}|S| 7→ R, Ex∼µ[g(x) · h(x|S)] = 0.

Proof. Let Φd be the space of polynomials of degree less than d. By definition, degε(f) ≥ d if and
only if minq∈Φd

||f−q||∞ > ε. By duality of norms we have minq∈Φd
||f−q||∞ = maxp∈Φ⊥

d , ||p||1=1〈f, p〉.
Writing µ(x) = |p(x)| the condition ||p||1 = 1 implies that µ is a probability distribution and letting
g(x) = p(x)/µ(x) for µ(x) 6= 0 and g(x) = 1 if µ(x) = 0. Then p(x) = µ(x)g(x). Therefore

ε < 〈f, p〉 = E[f · p] = E[f · g · µ] = Ex∼µ[f(x)g(x)] = Corµ(f, g).

Moreover since p ∈ Φ⊥
d , we have 0 = 〈χS , p〉 = Ex∼µ[χS(x)g(x)]. Now for h : {0, 1}|S| → R for

|S| ≤ d, h(x|S) can be expressed as a degree |S| polynomial and by linearity Ex∼µ[g(x) · h(x|S)] =
0.

We will extend this lemma in Section 3 using more general LP duality.
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2.2 The correlation method

We give an overview of the method as described in [CA08], which extends ideas of [She07, She08]
from 2-party to k-party communication complexity, with specific details at those points that we
are extending in this paper.

Given a Boolean function f on m bits, where f has large 5/6-approximate degree d (i.e, d is

polynomial in m), we want to lower bound Rk
1/3(F

f
k ), where Ff

k (x, y1, . . . , yk−1) is on n · k bits for
n = m · s.

From Lemma 2.4, we obtain another Boolean function g and a distribution µ such that:

1. Corµ(g, f) ≥ 5/6; and

2. for every S ⊆ [m] with |S| < d and every function h : {0, 1}|S| 7→ R, Ex∼µ[g(x) · h(x|S)] = 0.

Divide each player’s n-bit input into m blocks of size s. Let ` be that n/m = s = `k−1. Hence
we can imagine that x consists of m arrays, each having k − 1 dimensions. For 1 ≤ i ≤ k − 1, each
of the m blocks in yi is (a bit vector representing) an index in [`]. Therefore we can view each yi

as in [`]m. Thus φAND(y1, . . . , yk−1) selects exactly one bit of x in each of m blocks.
Based on µ, we define a distribution λ on n · k bits in a straightforward way as follows:

λ(x, y1, . . . , yk−1) :=
µ(x|φAND(y1, . . . , yk−1))

`km2n−m

for eligible y1, . . . , yk−1 and 0 otherwise. Here “eligible” means that y1, . . . , yk−1 satisfy the above
requirements. Then it can be verified that Corγ(Ff

k ,Fg
k ) = Corµ(f, g) ≥ 5/6. Consequently,

Corλ(Ff
k ,Πc

k) ≤ Corλ(Fg
k ,Πc

k) + 1/6.

Therefore we only need to bound Corλ(Fg
k ,Πc

k). Then by Lemma 2.2,

Corλ(Fg
k ,Πc

k))
2k−1

= 2m2k−1
CorUm(µ(x|φAND(y1, . . . , yk−1))g(x|φAND(y1, . . . , yk−1),Π

c
k)2

k−1

≤ 2(c+m)·2k−1 · Ey0
1,...,y0

k−1,y1
1 ,...,y1

k−1
H(y0

1 , . . . , y
0
k−1, y

1
1 , . . . , y

1
k−1),

where

H(y0
1 , . . . , y

0
k−1, y

1
1 , . . . , y

1
k−1) :=

∣

∣

∣
Ex

[

Πu∈{0,1}k−1µ(x|φAND(yu1
1 , . . . , y

uk−1

k−1 ))g(x|φAND(yu1
1 , . . . , y

uk−1

k−1 )
]

∣

∣

∣
.

For 1 ≤ i ≤ k − 1, let ri ∈ {0, . . . ,m} be the number of blocks for which y0
i and y1

i give the
same index. Let r =

∑

ri. We rely on the following three propositions to continue the proof.
Proposition 2.5 and Proposition 2.7 are the same as in [CA08], so we do not give their proofs. We
will prove an extension of Proposition 2.6 in Section 3.

Proposition 2.5. If r < d, then H(y0
1 , . . . , y

0
k−1, y

1
1 , . . . , y

1
k−1) = 0.

Proposition 2.6. H(y0
1 , . . . , y

0
k−1, y

1
1 , . . . , y

1
k−1) ≤ 2(2k−1−1)r

22k−1m
.

Proposition 2.7. For d ≤ j ≤ (k − 1)m, Pr[r = j] ≤ (e(k−1)m
j(`−1) )j(1 − 1

` )
(k−1)m.
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In [CA08, LS08], to prove the lower bound for Disjk,n, the function f is set to Orm and t is set
to Ors. By Proposition 2.3, d = deg5/6(Orm) ≥

√

m/12. Plugging the bound in Proposition 2.7
together with the bounds from Proposition 2.5 for r < d and from Proposition 2.6 when r ≥ d into
the above correlation inequality it is not hard to show that

Corλ(Fg
k ,Πc

k)) ≤ 2c

2d/2k
,

for ` > 22k
kem
d . Hence for k = O(log log n) and c a small enough polynomial in n, we have a

polynomial lower bound for Rk
1/3(Disjk,n) ≥ c.

The key limitation of the above technique is the required lower bound on ` which follows from
the weakness of the upper bound in Proposition 2.6. That weakness is implied by how little can be
assumed about the orthogonalizing distribution µ given by Lemma 2.4. In particular, the arguments
in [She08, CA08, LS08] all allow that µ may assign all of its probability mass to small subsets of
points defined by partial assignments. Indeed, when the function f is Orm, this is the case.
However, we will show that for other very simple functions f one can choose the orthogonalizing
distribution µ so that it does not assign too much weight on such small sets of points; that is, µ
is “max-smooth”. To guarantee this property of µ we need to strengthen Lemma 2.4 by assuming
more of f than just large approximate degree.

3 Beyond approximate degree: a new sufficient criterion for strong
communication complexity bounds

A ρ ∈ {0, 1, ∗}m is called a restriction. For any restriction ρ, let unset(ρ) ⊆ [m] be the set of star
positions in ρ, let |ρ| = m − |unset(ρ)|, and let Cρ be the set of all x ∈ {0, 1}m such that for any
1 ≤ i ≤ m, either ρi = ∗ or ρi = xi. Hence |Cρ| = 2m−|ρ|. Given a restriction ρ ∈ {0, 1, ∗}m and a
function f on {0, 1}m, we define f |ρ on {0, 1}m−|ρ| in the natural way.

The approximate degree of a function f says how hard it is to approximate f . In this paper, we
need a stronger notion which requires that many widely distributed restrictions of f also require
large approximate degree.

Definition Given 0 < ε, α ≤ 1 and d > 0, let Π = Πd,ε(f) ⊆ {0, 1, ∗}m be a set of restrictions such
that for any π ∈ Π, degε(f |π) ≥ d. We say that f has (ε, α)-approximate degree at least d, denoted
as degε,α(f) ≥ d, if restrictions in Π are spread out “evenly”. Formally, there is a distribution ν on
Π such that for any ρ ∈ {0, 1, ∗}m with |ρ| ≥ dα, then

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] ≤ 2|ρ|
α−|ρ|.

The set Π and the distribution ν are the witnesses for the (ε, α)-approximate degree of f . Note
that degε(f) = degε,1(f).

We will use this definition to prove the following theorem.

Theorem 3.1 (restatement of Theorem 1.1). Let n = ms where s = d4eek−1. For 0 ≤ α < 1 and

any Boolean function f on m bits with (5/6, α)-approximate degree d, the function Ff
k defined on

n · k bits requires Rk
1/3(F

f
k ) that is Ω(d/2k) for k ≤ (1 − α) log2 d.
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To prove the theorem, we first need the following consequence of large (ε, α)-approximate degree.
We postpone its proof to Section 4.

Lemma 3.2 (extension of Lemma 2.4). Given 0 < ε, α ≤ 1. If f : {0, 1}m 7→ {−1, 1} is a
Boolean function with (ε, α)-approximate degree d, there exist a function g : {0, 1}m 7→ {−1, 1} and
a distribution µ on {0, 1}m such that:

1. Corµ(g, f) ≥ ε;

2. for every T ⊆ [m] with |T | < d and every function h : {0, 1}|T | 7→ R, Ex∼µ[g(x) · h(x|T )] = 0;
and

3. for any restriction ρ with |ρ| ≥ dα, µ(Cρ) ≤ 2|ρ|
α−|ρ|/ε.

Note that, although the upper bound on µ(Cρ) may seem quite weak, it will be sufficient to
obtain an exponential improvement in the dependence of communication complexity lower bounds
on k. Moreover, we note in Section 4 that for any function f computed by an AC0 circuit the
assumption and the upper bound are essentially the best possible for d = logω(1) n.

We now use Lemma 3.2 to prove an improvement of Proposition 2.6. This is the key to our
improved bounds.

Lemma 3.3. If f : {0, 1}m → {1,−1} has (ε, α)-approximate degree d, if g and µ are given by the
application of Lemma 3.2 to f , and if r ≥ d, then

H(y0
1, . . . , y

0
k−1, y

1
1, . . . , y

1
k−1) ≤

2(2k−1−1)rα

22k−1mε2k−1−1
.

Proof. The proof of this lemma is similar to that of [CA08] except that we apply the upper bound
from the third condition of Lemma 3.2. Let Y0k−1 represent the set of m variables indexed jointly by
y0
1, . . . , y

0
k−1. There is precisely one variable chosen from each of the m blocks. Then in increasing

order for each nonzero u ∈ {0, 1}k−1, we let Yu represent the set of variables indexed jointly by
yu1
1 , . . . , y

uk−1

k−1 that are not in Y0k−1 ∪ ⋃

u′<u Yu′ . By definition we then have for each nonzero u,
|Yu| ≥ m − r. Let Z =

⋃

Yu∈{0,1}k−1 .
Since g is 1/-1 valued,

H(y0
1 , . . . , y

0
k−1, y

1
1 , . . . , y

1
k−1) =

∣

∣

∣
Ex

[

Πu∈{0,1}k−1µ(x|φAND(yu1
1 , . . . , y

uk−1

k−1 ))g(x|φAND(yu1
1 , . . . , y

uk−1

k−1 )
]

∣

∣

∣

≤ EZΠu∈{0,1}k−1µ(x|φAND(yu1
1 , . . . , y

uk−1

k−1 ))

= EY k−1
0

µ(x|φAND(y0
1, . . . , y

0
k−1)) (1)

× max
Y
0k−1

EY0...01µ(x|φAND(y0
1, . . . , y

1
k−1))

× max
Y0...0∪Y0...01

EY0...10µ(x|φAND(y0
1, . . . , y

0
k−1))

× . . .

and so on repeatedly for all 2k−1 of the Yu. The term at line (1) equals 2−m because µ is a
distribution. Now we bound each of the remaining terms. For each non-zero u ∈ {0, 1}k−1, the
corresponding term with u is

Tu = max
∪u′<uYu′

EYuµ(x|φAND(yu1
1 , . . . , y

uk−1

k−1 )).
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Let Yu = m − i ≥ m − r. If i < rα, then we can upper bound Tu as

Tu ≤ 1

2m−i
< 2rα−m.

Otherwise, i ≥ rα ≥ dα. Since µ is as defined, we can then bound Tu by

Tu ≤ 2iα−i/ε

2m−i
≤ 2rα−m

ε
.

Thus in both cases, Tu ≤ 2rα−m

ε . Hence the lemma follows.

Now we are ready to prove the main theorem of this section.

Proof of Theorem 3.1. Apply Lemma 3.2 with ε = 5/6 to obtain g and µ. Then follow the approach
as outlined in Section 2. What remains is to show that Corλ(Fg

k ,Πc
k) ≤ 1/6. Now we have, by

Proposition 2.5, Lemma 3.3, and Proposition 2.7,

Corλ(Fg
k ,Πc

k))2
k−1 ≤ 2(c+m)·2k−1 · Ey0

1,...,y0
k−1,y1

1,...,y1
k−1

H(y0
1, . . . , y

0
k−1, y

1
1, . . . , y

1
k−1)

≤ 2c2k−1
(k−1)m
∑

j=d

2(2k−1−1)jα

(
6

5
)2

k−1−1
(e(k − 1)m

j(` − 1)

)j
(1 − 1

`
)(k−1)m. (2)

Since k ≤ (1 − α) log2 d, we have (2k−1 − 1)jα < d1−αjα ≤ j for j ≥ d so (2) is
(3)

≤ (
6

5
2c)2

k−1
(k−1)m
∑

j=d

(2e(k − 1)m

j(` − 1)

)j
(1 − 1

`
)(k−1)m

≤ (6
52c)2

k−1

2d
,

for ` = d4ee. Hence

Corλ(Fg
k ,Πc

k)) ≤
6
52c

2d/2k−1
≤ 1/6,

as long as c ≤ log2(
5
362d/2k−1

). Hence Rk
1/3 is Ω(d/2k) for k ≤ (1 − α) log2 d.

9



4 Proof of Lemma 3.2

Proof. As in the proof for Lemma 2.4, we write the requirements down as a linear program and
study its dual. The lemma is implied by proving that the following linear program P has optimal
value 1:

Minimize η subject to

yS :
∑

x∈{0,1}m

h(x)χS(x) = 0 |S| < d (4)

β :
∑

x∈{0,1}m

h(x)f(x) ≥ ε (5)

vx : µ(x) − h(x) ≥ 0 x ∈ {0, 1}m (6)

wx : µ(x) + h(x) ≥ 0 x ∈ {0, 1}m (7)

aρ : η − 2|ρ|−|ρ|α
∑

x∈Cρ

µ(x) ≥ 0 ρ ∈ {0, 1, ∗}m, |ρ| ≥ dα (8)

γ :
∑

x∈{0,1}m

µ(x) = 1 (9)

Suppose that we have optimum η = 1. In this LP formulation, inequality γ ensures that the
function µ is a probability distribution, and inequalities vx and wx ensure that µ(x) ≥ |h(x)| so
||h||1 ≤ 1. If ||h||1 = 1, then we must have µ(x) = |h(x)| and we can write h(x) = µ(x)g(x) as in
the proof of Lemma 2.4 and then the inequalities yS will ensure that Corµ(g, χS) = 0 for |S| < d
and inequality β will ensure that Corµ(f, g) ≥ ε as required. Finally, each inequality aρ ensures
that µ(Cρ) ≤ 2−|ρ|+|ρ|α = 2−|ρ|+|ρ|α which is actually a little stronger than our claim.

The only issue is that an optimal solution might have ||h||1 < 1. However in this case inequality
β ensures that ||h||1 ≥ ε. Therefore, for any solution of the above LP with function h, we can
define another function h′(x) = h(x)/||h||1 with ||h′||1 = 1 and a new probability distribution µ′

by µ′(x) = |h′(x)| ≤ µ(x)/||h||1 ≤ µ(x)/ε. This new h′ and µ′ still satisfy all the inequalities as
before except possibly inequality aρ but in this case if we increase η by a 1/||h||1 factor it will also
be satisfied. Therefore, the µ′(Cρ) ≤ 2−|ρ|+|ρ|α/ε.

Here is the dual LP:

Maximize β · ε + γ subject to

η :
∑

ρ∈{0,1,∗}m,|ρ|≥dα

aρ = 1 (10)

µ(x) : vx + wx + γ −
∑

Cρ3x,|ρ|≥dα

2|ρ|−|ρ|αaρ = 0 x ∈ {0, 1}m (11)

g(x) : βf(x) +
∑

|S|<d

ySχS(x) + wx − vx = 0 x ∈ {0, 1}m (12)

β, vx, wx, aρ ≥ 0 x ∈ {0, 1}m (13)

Since yS are arbitrary we can replace
∑

|S|<d ySχS(x) by pd(x) where pd is an arbitrary poly-
nomial of degree < d to obtain the modified dual:

10



Maximize β · ε + γ subject to

η :
∑

ρ∈{0,1,∗}m,|ρ|≥dα

aρ = 1 (14)

µ(x) : vx + wx + γ −
∑

Cρ3x,|ρ|≥dα

2|ρ|−|ρ|αaρ = 0 x ∈ {0, 1}m (15)

g(x) : βf(x) + pd(x) + wx − vx = 0 x ∈ {0, 1}m (16)

β, vx, wx, aρ ≥ 0 x ∈ {0, 1}m (17)

Equations (15) and (16) for x ∈ {0, 1}m together are equivalent to:

2wx + βf(x) + pd(x) + γ −
∑

Cρ3x,|ρ|≥dα

2|ρ|−|ρ|αaρ = 0

and
2vx − βf(x) − pd(x) + γ −

∑

Cρ3x,|ρ|≥dα

2|ρ|−|ρ|αaρ = 0.

Since these are the only constraints on vx and wx respectively other than negativity these can be
satisfied by any solution to

βf(x) + pd(x) + γ ≤
∑

Cρ3x,|ρ|≥dα

2|ρ|−|ρ|αaρ

and
−βf(x) − pd(x) + γ ≤

∑

Cρ3x,|ρ|≥dα

2|ρ|−|ρ|αaρ,

which together are equivalent to

|βf(x) + pd(x)| + γ ≤
∑

Cρ3x,|ρ|≥dα

2|ρ|−|ρ|αaρ.

Since pd(x) is an arbitrary polynomial function of degree less than d we can write pd = −βp′d where
p′d is another arbitrary polynomial function of degree less than d and we can replace the terms
|βf(x) + pd(x)| by β|f(x) − p′d(x)|.

Therefore the dual program D is equivalent to maximizing β · ε + γ subject to

β|f(x) − p′d(x)| + γ ≤
∑

Cρ3x,|ρ|≥dα

2|ρ|−|ρ|αaρ

for all x ∈ {0, 1}m, aρ is probability distribution on the set of all restrictions of size at least dα,
and p′d is a real-valued function of degree < d.

Now, let B be the set of points at which |f(x) − p′d(x)| ≥ ε. For any x ∈ B, the value of the
objective function of D, which is β · ε + γ, is not more than

β|f(x) − p′d(x)| + γ ≤
∑

Cρ3x,|ρ|≥dα

2|ρ|−|ρ|αaρ. (18)

11



Let R(x) denote the right-hand side of inequality (18). It suffices to prove that R(x) ≤ 1 for some
x ∈ B. This is, in turn, equivalent to proving that

min
x∈B

R(x) ≤ 1,

for any distribution aρ. Suppose, by contradiction, that there exists a distribution aρ such that
R(x) > 1 for any x ∈ B. Let Π, the set of restrictions, and ν, a distribution on Π, be the witnesses
for the (ε, α)-approximate degree of f . Picking π ∈ Π randomly according to ν, we define the
random variable

Iπ :=
∑

ρ:|ρ|≥dα, Cρ∩Cπ 6=∅

2|ρ|−|ρ|αaρ.

Then,

Eπ∼ν(Iπ) =
∑

ρ:|ρ|≥dα

Pr[Cρ ∩ Cπ 6= ∅] · 2|ρ|−|ρ|αaρ ≤
∑

ρ:|ρ|≥dα

2|ρ|
α−|ρ| · 2|ρ|−|ρ|αaρ ≤ 1.

Therefore there exists π ∈ Π for which Iπ ≤ 1. If there exists x ∈ B such that x ∈ Cπ, then since

R(x) =
∑

Cρ3x,|ρ|≥dα

2|ρ|−|ρ|αaρ > 1,

we would have Iπ > 1. Thus Cπ ∩ B = ∅. So for any x ∈ Cπ, we have |f(x) − p′d(x)| ≤ ε. But
since the degree of p′d is less than d this contradicts the fact that degε(f |π) ≥ d. Thus the lemma
follows.

We note that the bounds in Lemma 3.2 are essentially the best possible for AC0 functions: By
results of Linial, Mansour, and Nisan [LMN89], for any AC0 function f there is a function pd of

logO(1) n degree, such that ||f − pd||22 ≤ 2n−nδ
for some constant δ > 0. Let Bn be the set of x

such that |f(x) − pd(x)| ≥ ε. Then |Bn|ε2 ≤ ∑

x∈Bn
|f(x) − pd(x)|2 ≤ ||f − pd(x)||22 ≤ 2n−nδ

so

|Bn| ≤ 2n−nδ
/ε2. Also, if we tried to replace the upper bound on µ(Cρ) by some c(|ρ|) where c(n)

is ω(1/|Bn|) then we could choose ax = 1/|Bn| for x ∈ Bn and aρ = 0 for all other ρ and for these
values β would be unbounded.

5 Tribes has large (ε, α)-approximate degree

It is not obvious that any function, let alone a function in AC0, has large (ε, α)-approximate degree
for α < 1. Recall that the function Tribesp,q on m = pq bits is defined by

Tribesp,q(x) = ∨q
i=1 ∧

p
j=1 xi,j.

Usually the function Tribes is defined so that 2p is linear or nearly-linear in q. We will show that,
with a different relationship in which q � 2p but p is still Θ(log q), the (ε, α)-approximate degree
of Tribesp,q is large.

Lemma 5.1. Let r, q, p be positive integers with q > r > p ≥ 2 and let 1 > α > β > 0 be
such that qβ ≥ rp, 2p − 1 ≥ q1−β, qα ≥ 6

ln 22pr, and rα(α−β) ≥ 12(3p/ ln 2)2. Then Tribesp,q has

(5/6, α)-approximate degree at least
√

r/12.
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Proof. We define a distribution ν on restrictions Rpr
m that leave pr out of the m variables unset as

follows: pick uniformly at random a subset of q − r of the q terms of Tribesp,q; then for each of
these terms, assign values to the variables in the term uniformly at random from {{0, 1}p −1p}. It
is clear that for any π with ν(π) > 0, Orr is a subfunction of Tribesp,q|π so deg5/6(Tribesp,q|π) ≥
deg5/6(Orr) ≥

√

r/12.

Let ρ be any restriction of size i = |ρ| ≥ (r/12)α/2. By definition, we need to prove that

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] ≤ 2iα−i.

Now

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] =
1

( q
q−r

)

∑

S⊂[q],|S|=q−r

Πj∈S pj ,

where pj is the probability that π and ρ agree on the variables in the j-th term in Tribesp,q. Write
i = i1 + . . . + iq, where ij is the number of assignments ρ makes to variables in the j-th term of
Tribesp,q. Then

pj ≤
2p−ij

2p − 1
= 2−ij (1 +

1

2p − 1
).

Let iS =
∑

j∈S ij be the number of assignments ρ makes to variables in terms in S and kS = |{j ∈
S : ij > 0}| be the number of terms in S in which ρ assigns least one value. Hence,

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] <
1

( q
q−r

)

∑

S⊂[q],|S|=q−r

2−iS (1 +
1

2p − 1
)kS . (19)

Let k = |{j : ij > 0}| be the total number of terms in which ρ assigns at least one value. There
are 2 cases: (I) k ≥ q/2, and (II) k < q/2.

Now consider case (I). Thus i ≥ q/2. In Equation 19, we have kS ≤ q for every S. Thus,

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] ≤ 1
( q
q−r

)

∑

S⊂[m],|S|=q−r

2−iS (1 +
1

2p − 1
)q.

It is easy to see that iS ≥ i − pr for every such S. Hence we get

1
( q
q−r

)

∑

S⊂[q],|S|=q−r

2−iS ≤ 2pr−i ≤ 2(2i)β−i,

since pr ≤ qβ ≤ (2i)β in this case. Thus,

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] ≤ 2(2i)β−i(1 +
1

2p − 1
)q ≤ 2(2i)β−ieqβ ≤ 22β(1+1/ ln 2)iβ−i,

since q1−β ≤ 2p−1 and i ≥ q/2. We upper bound the term 2β(1+1/ ln 2) iβ by iα as follows: Since
i ≥ (r/12)α/2,

iα−β ≥ (r/12)α(α−β)/2 ≥ (rα(α−β)/12)1/2 ≥ 3p/ ln 2 (20)

by our assumption in the statement of the lemma. Since p ≥ 2, we have iα−β > 6 > 2β(1 + 1/ ln 2)
which is all that we need to derive that Prπ∼ν [Cρ ∩ Cπ 6= ∅] < 2iα−i in case I.
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Next, we consider case (II). We must have k ≤ p1−β(2p − 1) iβ , because otherwise

i ≥ k > p1−β(2p − 1)iβ ≥ p1−βq1−βiβ,

which implies i1−β > (pq)1−β and hence i > pq = m which is impossible. Therefore

(1 +
1

2p − 1
)kS ≤ e

kS
2p−1 ≤ e

k
2p−1 ≤ ep1−β iβ .

So,

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] < ep1−β iβS where S =
1

( q
q−r

)

∑

S⊂[q],|S|=q−r

2−iS = ES∼U [2−iS ].

and U is the uniform distribution on subsets of [q] of size q − r.
Now we continue by upper bounding S. For the moment let us assume that i is divisible by p.

If we view the terms as the bins, and the assigned positions by ρ as balls placed in corresponding
bins, then we observe that S can only increase if we move one ball from a bin A of x > 0 balls to
another bin B of y ≥ x balls. This is because only those iS with S containing exactly one of these
two bins are affected by this move. Then, we can write the contribution of these S’s in S before
the move as

S ′ =
∑

S⊂[q], |S|=q−r, S∩{A,B}=1

2−iS =
∑

S′⊂[q]−{A,B}, |S′|=q−r−1

2−iS′ (2−x + 2−y),

and after the move as

S ′′ =
∑

S′⊂[q]−{A,B}, |S′|=q−r−1

2−iS′ (2−x+1 + 2−y−1).

Since y ≥ x, S ′′ > S ′.
Hence w.l.o.g. and with the assumption that p divides i, we can assume that the balls are

distributed such that every bin is either full, i.e containing p balls, or empty. Hence k = i/p and
for any 1 ≤ j ≤ q, either ij = 0 or ij = p.

Claim 5.2. If i is divisible by p then S ≤ 2−i e2p+1rk/q.

We first see how the claim suffices to prove the lemma. If i is not divisible by p then we note
that S is a decreasing function of i and apply the claim for the first i′ = pbi/pc > i−p positions set
by ρ to obtain an upper bound of S < 2p−ie2p+1ri/(pq) that applies for all choices of i. The overall
bound we obtain in this case is then

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] < ep1−β iβ2pe2p+1ri/(pq)2−i

= 2iβp1−β/ ln 2+p+2p+1ri/(pq ln 2)2−i.

We now consider the exponent iβp1−β/ ln 2 + p + 2p+1ri/(pq ln 2) and show that it is at most iα.
For the first term observe that by (20), iα−β ≥ 3p/ ln 2 so iβp1−β/ ln 2 ≤ iα/3. For the second term
again by (20) we have p ≤ iα−β/3 ≤ iα/3. For the last term, since qα ≥ 6

ln 22pr, we have

2p+1ri

pq ln 2
≤ qαi

3pq
≤ i(pq)α−1/3 ≤ iα/3,
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since i ≤ pq. Therefore in case II we have Prπ∼ν [Cρ ∩Cπ 6= ∅] < 2iα−i as required. It only remains
to prove the claim.
Proof of Claim: Let T = {ij | ij = p} be the subset of k terms assigned by ρ. Therefore
iS = |S ∩ T |p where S is a random set of size q − r and T is a fixed set of size k and both are in
[q]. We have two subcases: (IIa) when k ≤ r and (IIb) when q/2 ≥ k > r.

If k ≤ r then we analyze S based on the number j of elements of S contained in T . There are
(k

j

)

choices of elements of T to choose from and q− r− j elements to select from the q− k elements

of T . Therefore

S =

∑k
j=0

(

r
j

)(

q−k
q−r−j

)

2−jp

(

q
q−r

) .

Now since
( q−k
q−r−j

)

( q
q−r

) =
(q − k)!(q − r)!r!

q!(q − r − j)!(r − (k − j))!
<

(q − r)jrk−j

(q − k)k
=

( r

q − k

)k(q − r

r

)j
,

we can upper bound S by

( r

q − k

)k
k

∑

j=0

(

k

j

)

2−pj
(q − r

r

)j
=

( r

q − k

)k(

1 +
q − r

2pr

)k

= 2−pk
( r

q − k

)k(2pr + (q − r)

r

)k

= 2−i
(q + (2p − 1)r

q − k

)k

= 2−i
(

1 +
(2p − 1)r + k

q − k

)k

≤ 2−i
(

1 +
2pr

q − k

)k

≤ 2−i e2prk/(q−k)

≤ 2−i e2p+1rk/q.

since k ≤ q/2.
In the case that r ≤ k ≤ q/2 we observe that by symmetry we can equivalently view the

expectation S as the result of an experiment in which the set S of size q − r is chosen first and
the set T of size k is chosen uniformly at random. We analyze this case based on the number j
of elements of S contained in T . There are

(r
j

)

choices of elements of S to choose from and k − j
elements to select from the q − r ≥ q/2 ≥ k elements of S. Therefore

S =

∑r
j=0

(r
j

)(q−r
k−j

)

2−(k−j)p

(q
k

) .

Using the fact that

(

q−r
k−j

)

(

q
k

) =
(q − r)!(q − k)!k!

q!(k − j)!(q − r − k + j)!
<

(q − k)r−jkj

(q − r)r
=

(q − k

q − r

)r( k

q − k

)j
,
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we upper bound S by

2−pk
(q − k

q − r

)r
r

∑

j=0

(

r

j

)

( 2pk

q − k

)j
= 2−pk

(q − k

q − r

)r(

1 +
2pk

(q − k)

)r

= 2−i
(q − k

q − r

)r(q + (2p − 1)k

q − k

)r

= 2−i
(q + (2p − 1)k

q − r

)r

= 2−i
(

1 +
(2p − 1)k + r

q − r

)r

≤ 2−i
(

1 +
2pk

q − r

)r

≤ 2−ie2prk/(q−r)

≤ 2−ie2p+1rk/q

since r ≤ q/2.

Corollary 5.3. Given any 1 > ε > 0. Let q, p be positive integers with q > p ≥ 2 such that
dq1−βe < 2p ≤ 1

6qα+ε−1 ln 2 for some fixed constants 1 > α > β > 1 − ε. Then for large enough q,

Tribesp,q has (5/6, α)-approximate degree at least
√

q1−ε/12.

Proof. We apply Lemma 5.1 with r := bq1−εc. All conditions in the statement of the lemma would
then be satisfied for q large enough. In particular, for q large enough,

qβ/r ≥ qβ+ε−1 > log q > p,

and
rα(α−β) = q(1−ε)α(α−β) > 12(3 log q/ ln 2)2 > 12(3p/ ln 2)2.

Corollary 5.4. Let q, p be positive integers with q > p ≥ 2 such that dq0.2e < 2p ≤ 1
6q0.3 ln 2. Then

for large enough q, Tribesp,q has (5/6, 0.9)-approximate degree at least
√

q0.6/12.

Proof. Follows from the last corollary with ε = 0.4, α = 0.9, and β = 0.8.

6 Multiparty communication complexity of AC0

6.1 A separating function for NPcc

k
and BPPcc

k
for k = O(log n)

In this subsection we will show that FTribesp,q

k separates NPcc

k
and BPPcc

k
for k = O(log n) for

some appropriately chosen values of p and q.

Lemma 6.1. Nk(FTribesp,q

k ) is O(log q + p log n) for any k ≥ 2.
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Proof. The lemma is easy to see as follows. The 0-th player (who holds x), guesses one of the q
branches and sends this guess to all other players. Then he also broadcasts the positions of all the
p bits in that branch. Finally any other player, who can see x and is given the p positions, can

compute the output of FTribesp,q

k . The communication cost is then O(log q + p log n) bits.

Lemma 6.2. Let 0 < ε < 1. Let q, p be sufficiently large positive integers with q > p ≥ 2 such that
dq1−βe < 2p ≤ 1

6qα+ε−1 ln 2 for some fixed constants 1 > α > β > 1 − ε. Let m = pq and n ≥ pqs
for s = d4eek−1 and k ≤ a log2 n for some constant a > 0 depending only on α. Then for any

δ > 0, Rk
1/3(H

Tribesp,q ,Ors

k ) ≥ Rk
1/3(F

Tribesp,q

k ) is Ω(q(1−ε)/2/2k), which is Ω(n(1−ε)/2−δ/ck) for

c = 2(4e)(1−ε)/2.

Proof. Applying Corollary 5.4, we get that for large enough q, Tribesp,q has (5/6, α)-approximate

degree of Ω(q(1−ε)/2). Then it follows from Theorem 3.1 that Rk
1/3(F

Tribesp,q

k ) is Ω(q(1−ε)/2/2k),

when k is O(log n).
Since q = m/p and p is O(log q), we get that q is Ω(m/(log m)). Moreover, m ≥ n/(4e)k. Hence

Rk
1/3(F

Tribesp,q

k ) is Ω(n(1−ε)/2−δ/ck), for c = 2(4e)(1−ε)/2 and any δ > 0.

In particular, we get the following corollary.

Corollary 6.3. Let q, p be positive integers with q > p ≥ 2 such that dq0.2e < 2p ≤ 1
6q0.3 ln 2. Then

for k ≤ a log2 n for some constant a > 0 the following holds. For q large enough and any δ > 0,

Rk
1/3(H

Tribesp,q,Ors

k ) ≥ Rk
1/3(F

Tribesp,q

k ) is Ω(q0.3/2k) which is Ω(n0.3−δ/ck) for c = 2(4e)0.3.

Proof. Follows from Lemma 6.2 with ε = 0.4, α = 0.9, and β = 0.8.

Combining Lemma 6.1 and Corollary 6.3 we obtain our desired separation.

Theorem 6.4. Let q, p be large enough positive integers with q > p ≥ 2 such that dq0.2e < 2p ≤
1
6q0.3 ln 2. Then FTribesp,q

k ∈ NPcc

k
− BPPcc

k
for k ≤ a log n for some constant a > 0.

6.2 Lower bound for Disjk,n

In this subsection we reduce HTribesp,q ,Ors

k to Disjk,n for a suitable value of n to obtain a NOF
communication complexity lower bound on Disjk,n for k up to Θ(

√
log n) players.

Theorem 6.5. Given constants 1 > ε, α > 0 such that 1 > α > 1 − ε. Then for k ≤ a
√

log2 n for
some constant a > 0 depending only on α, ε, Rk

1/3(Disjn,k) is Ω(nc/k/2k), where c = 1−ε
7α+7ε−6 . In

particular, Rk
1/3(Disjn,k) is Ω(n1/(6k)/2k).

Proof. Recall that
Disjk,n(x) = ∨n

i=1 ∧k
j=1 xi,j.

For any x ∈ {0, 1}Nk , where N = pqs for integers p, q, and s we rewrite HTribesp,q,Ors

k as

HTribesp,q,Ors

k (x) = ∨q
i=1 ∧

p
j=1 ∨s

u=1 ∧k
v=1 xi,j,u,v

= ∨q
i=1 ∨I∈[s]p ∧p

j=1 ∧k
v=1 xi,j,I(j),v

by expanding the second “∧”, where I(j) is the j-th index of I. This in turn equals
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= ∨q
i=1 ∨I∈[s]p ∧k

v=1 ∧p
j=1 xi,j,I(j),v

= ∨q
i=1 ∨I∈[s]p ∧k

v=1yi,I,v

= ∨i∈[q], I∈[s]p ∧k
v=1 yi,I,v

= Disjn,k(y),

where the bits of vector y ∈ {0, 1}nk for n = qsp, indexed by i ∈ [q], I ∈ [s]p, and v ∈ [k], are given
by

yi,I,v = ∧p
j=1xi,j,I(j),v.

Observe that for any two players v 6= v′, player v′ can compute any value yi,I,v. Thus the k players

can compute HTribesp,q,Ors

k by executing a NOF randomized communication protocol for Disjn,k

on y of length nk, where n = qsp.
Let β be a constant such that α > β > 1 − ε. Let q > p ≥ 2 be sufficiently large and satisfy

dq1−βe < 2p ≤ 1
6qα+ε−1 ln 2. Let s = d4eek−1. From Lemma 6.2, we know that for k ≤ a log2 q for

some constant a > 0 depending only on α, Rk
1/3(H

Tribesp,q,Ors

k ) is Ω(q(1−ε)/2/2k). Observe that

since 2p ≤ 1
6qα+ε−1 ln 2 ≤ qα+ε−1 we have

n = qsp < qd4eekp < q1+(α+ε−1)k log2d4ee.

Since log2d4ee < 3.5, letting b = 7(α + ε − 1) + 1, we get q > n2/(bk). Therefore Rk
1/3(Disjn,k) is

Ω(n
1−ε
bk /2k).

The rest of the theorem follows by taking ε = 0.4 and α = 0.9.

6.3 The randomized communication complexity of depth-3 AC0

In the last two subsections, we showed that there is a depth-4 read-once AC0 function separating
NPcc

k
and BPPcc

k
for k up to Θ(log n), and there is a depth-2 read-once AC0 function separating

NPcc

k
and BPPcc

k
for k up to Θ(

√
log n). In this subsection we show that there is a depth-3 AC0

function that is hard for randomized NOF communication complexity for k up to Θ(log n).

Corollary 6.6. Let q, p be positive integers with q > p ≥ 2 such that dq0.2e < 2p ≤ 1
6q0.3 ln 2, then

for q large enough and any ε > 0, Rk
1/3(H

f,t
k ) ≥ Rk

1/3(F
f
k ) is Ω(q0.3/2k) which is Ω(n0.3−ε/ck) when

k is O(log n), and c = 2(4e)0.3, where f is Tribes
′
p,q, the dual of the Tribesp,q function on m = pq

bits, and t is the Or function on s bits and n = m · s for s = d4eek−1. Moreover,

Hf,t
k (x) = ∧i∈[q] ∨j∈[p], u∈[s] ∧v∈[k]xi,j,u,v

is a depth 3 read-once formula.

Proof. The first part follows directly from the proof of Lemma 6.2. Since the second layer of f can
be combined with t into one layer, the second part follows.

Although we have shown non-trivial lower bounds for Disjk,n for k up to Θ(
√

log n) it is open
whether one can prove similar lower bounds to Corollary 6.6 for k = ω(

√
log n) players for Disjk,n

18



or any other depth-2 AC0 function. The difficulty of extending our lower bound methods is our
inability to apply Lemma 3.2 to Or since the constant function 1 approximates Or on all but one
point.

The above function is far from unique. In particular, since it contains the above function
as a subfunction, a similar mΩ(1)/2O(k) lower bound applies to the k-party NOF communication
complexity of the extension of the Minsky-Papert function that is the k-party analogue of the
function considered by Razborov and Sherstov [RS08], namely ∧m

i=1 ∨m2

j=1 ∧k
v=1xi,j,v.

7 Outside of AC0

7.1 Generalized Inner Product (GIP)

We can use Theorem 3.1 to prove a Ω(n1−ε/ck)-lower bound on k-party NOF randomized commu-
nication complexity for the GIP function defined on n · k bits as follows:

GIPn,k(x1, . . . , xk) := ⊕n
i=1

(

∧k
j=1 xj,i

)

,

for any constant ε > 0, where c > 4 is some constant. With the lower bound of Ω(n/4k) proved in
[BNS92], our technique shows that we do not lose too much by applying the pattern matrix method
with a simple masking scheme.

Lemma 7.1. For any 0 < γ < α ≤ 1, Paritym has (5/6, α)-approximation degree of Ω(mγ).

Proof. We define the witnesses for the (5/6, α)-approximate degree of Paritym to be the set
Rmγ

m and ν taken to be the uniform distribution on the set. It follows that for any π ∼ ν,
deg5/6(Paritym|π) = Ω(mγ). Thus what remains is to show that for any integers m ≥ i ≥ Ω(mγα),
if we pick uniformly at random ρ such that |ρ| = i and π ∼ ν, then

Pr[Cρ ∩ Cπ 6= ∅] < 2iα−i,

for sufficiently large m.
We consider two cases: (1) i ≤ mγ and (2) i > mγ . These are exactly like the cases in the

proof of the claim in Lemma 5.1 with q = m, r = mγ , p = 1 and k = i. The bound follows since
2 · 2−ie8mγ−1i < 2iα−i.

Corollary 7.2. Rk
1/3(GIPn,k) is Ω(n1−ε/ck) for any constant ε > 0 and c = 8e.

Proof. It is easy to see that GIPn,k = Hf,t
k , where f = Paritym and t = Paritys and n = m · s.

From Lemma 7.1, the (5/6, α)-approximate degree of f is d = Ω(mγ) for any 0 < γ < α < 1. Then

by applying Theorem 3.1, since m = n/(4e)k and for α > γ = 1−ε, we have Rk
1/3(H

f,t
k ) ≥ Rk

1/3(F
f
k )

and the latter is Ω(d/2k) which is Ω(n1−ε/ck) for c = 8e.
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