

Multiparty Communication Complexity of AC⁰

Paul Beame* Computer Science and Engineering University of Washington Seattle, WA 98195-2350 beame@cs.washington.edu Dang-Trinh Huynh-Ngoc[†] Computer Science and Engineering University of Washington Seattle, WA 98195-2350 trinh@cs.washington.edu

June 10, 2008

Abstract

We prove $n^{\Omega(1)}$ lower bounds on the multiparty communication complexity of AC⁰ functions in the number-on-forehead (NOF) model for up to $\Theta(\log n)$ players. These are the first lower bounds for any AC⁰ function for $\omega(\log \log n)$ players. In particular we show that there are families of depth 3 read-once AC⁰ formulas having k-player randomized multiparty NOF communication complexity $n^{\Omega(1)}/2^{O(k)}$. We show similar lower bounds for depth 4 read-once AC⁰ formulas that have nondeterministic communication complexity $O(\log^2 n)$, yielding exponential separations between k-party nondeterministic and randomized communication complexity for AC⁰ functions.

As a consequence of the latter bound, we obtain an $n^{\Omega(1/k)}/2^{O(k)}$ lower bound on the k-party NOF communication complexity of set disjointness. This is non-trivial for up to $\Theta(\sqrt{\log n})$ players which is significantly larger than the up to $\Theta(\log \log n)$ players allowed in the best previous lower bounds for multiparty set disjointness given by Lee and Shraibman [LS08] and Chattopadhyay and Ada [CA08] (though our complexity bounds themselves are not as strong as those in [LS08, CA08] for $o(\log \log n)$ players).

We derive these results by extending the k-party generalization in [CA08, LS08] of the pattern matrix method of Sherstov [She07, She08]. Using this technique, we derive a new sufficient criterion for strong communication complexity lower bounds based on functions having many diverse subfunctions that do not have good low-degree polynomial approximations. This criterion guarantees that such functions have orthogonalizing distributions that are "max-smooth" as opposed to the "min-smooth" orthogonalizing distributions used by Razborov and Sherstov [RS08] to analyze the sign-rank of AC⁰.

^{*}Research supported by NSF grant CCF-0514870

[†]Research supported by a Vietnam Education Foundation Fellowship

1 Introduction

Recently, Sherstov introduced the so-called pattern matrix method to derive discrepancy bounds [She07, She08] yielding a new strong method for obtaining lower bounds for 2-party quantum communication complexity. His method was then generalized for $k \ge 2$ players [Cha07, CA08, LS08] to yield the first lower bounds for the general multiparty number-on-forehead communication complexity of set disjointness for more than 2 players, improving a long line of research on the problem. The communication lower bound for k players is $\Omega(n^{\frac{1}{2k}}/2^{2^{\Theta(k)}})$ which yields a non-trivial separation between randomized and nondeterministic k-party models for $k \le \epsilon \log \log n$ for some constant $\epsilon > 0$. This separation between randomized and nondeterministic communication complexity was extended by David and Pitassi and David, Pitassi, and Viola to $\Omega(\log n)$ players for significantly more complex functions than disjointness that based on pseudorandom generators [DPV]. Their construction uses a more complex criterion than the simple masking version of the pattern matrix method used in [CA08]. Set disjointness is an AC⁰ function and David, Pitassi, and Viola asked the question of whether one could prove a separation for $\Omega(\log n)$ players using an AC⁰ function or even whether one could prove any non-trivial lower bound for $\omega(\log \log n)$ players for any AC⁰ function since their functions are also only in AC⁰ for $k = O(\log \log n)$.

We resolve this question positively by showing there is a read-once function in AC_3^0 that has $n^{\Omega(1)}$ communication complexity for $k = \Omega(\log n)$ players. Moreover there is a read-once function in AC_4^0 that for $\Omega(\log n)$ players has nondeterministic communication complexity $O(\log^2 n)$ and randomized communication complexity $n^{\Omega(1)}$; i.e., $(NP_{k(n)}^{cc} - BPP_{k(n)}^{cc}) \cap AC_4^0 \neq \emptyset$ for $k(n) \leq \delta \log n$ for some explicit constant $\delta > 0$. Our method significantly improves the power of the pattern matrix method for proving strong communication complexity lower bounds.

As a consequence of the lower bound for the function we use to separate $NP_{k(n)}^{cc}$ from $BPP_{k(n)}^{cc}$, we obtain $n^{\Omega(1/k)}/2^{O(k)}$ lower bounds on the k-party NOF communication complexity of set disjointness which is non-trivial for up to $\Theta(\sqrt{\log n})$ players. The best previous lower bounds of Lee and Shraibman [LS08] and Chattopadhyay and Ada [CA08] for set disjointness describe above do not apply for $\omega(\log \log n)$ players.

The high-level idea of the k-party version of the pattern matrix method as described in [CA08] is as follows. Suppose that we want to prove k-party lower bounds for a function \mathcal{F} . The general idea is to show that \mathcal{F} can express some \mathcal{F}_k^f (specified below) which is a function that under many projection patterns is the same as a function f of large approximate degree. If f has large approximate degree, then Sherstov showed that there exists another function g and a distribution μ on inputs such that with respect to μ , g is both highly correlated with f and orthogonal to all low-degree polynomials. It follows that \mathcal{F}_k^f is also highly correlated with \mathcal{F}_k^g and, using the generalized discrepancy method for communication complexity lower bounds it suffices to prove a discrepancy lower bound for the latter function. Thanks to the orthogonality of g to all low degree polynomials this is possible using an iterated application of the Cauchy-Schwartz inequality as in Babai, Nisan, and Szegedy [BNS92]. For example, the bound for set disjointness DISJ_{k,n}(x) = $\bigvee_{i=1}^n \wedge_{j=1}^k x_{ij}$, which more properly should be called set intersection, corresponds to the case that f = OR which has approximate degree $\Omega(\sqrt{n})$.

In the two party case, Razborov and Sherstov [RS08] extended Sherstov's method to yield sign-rank lower bounds for the AC_3^0 function \mathcal{F}_2^{MP} where $MP(x) = \bigwedge_{i=1}^m \bigvee_{j=1}^{4m^2} x_{ij}$ is the so-called Minsky-Papert function which has approximate degree $\Omega(m)$. The key to their argument is to show that there is an orthogonalizing distribution μ for MP that is "min-smooth" in that it assigns probability at least $8^{-m}2^{-n-1}$ to any input vector on which MP is true.

We prove our results by showing that any function f for which there is a diverse collection of partial assignments ρ such that each of the subfunctions $f|_{\rho}$ of f requires large approximate degree, there is an orthogonalizing distribution μ for f that is "max-smooth" in that the probability of subsets defined by partial assignments cannot be too much larger than under the uniform distribution. The diversity of the partial assignments is determined by a parameter α so we call the degree bound the (ϵ, α) -approximate degree. This property is somewhat delicate but applies directly to PARITY and, much more importantly, to TRIBES_{$p,q}(x) = \bigvee_{i=1}^{q} \wedge_{j=1}^{p} x_{ij}$ for certain choices of p and q. Since TRIBES_{p,q} is a subfunction of many other functions we can use it to obtain lower bounds for many functions in AC^{0} . (The property unfortunately does not apply to OR but we are able to derive our lower bounds for DISJ_{k,n} via reduction.) Our lower bound method also shows that the simple masking version of the pattern matrix method is sufficient to obtain strong lower bounds.</sub>

Results Let T be the set of all Boolean functions that map the all 0's input to false and each input with precisely one 1 to true. For any integers m, s, k > 0, any Boolean function f on m bits, and any s-bit function $t \in T$, we define the following function on msk bits:

$$\mathcal{H}_{k}^{f,t}(x_{1},\ldots,x_{k}) := f(t(\wedge_{i=1}^{k} x_{11i},\ldots,\wedge_{i=1}^{k} x_{1si}),\ldots,t(\wedge_{i=1}^{k} x_{m1i},\ldots,\wedge_{i=1}^{k} x_{msi})),$$

for any $x_1, \ldots, x_k \in \{0, 1\}^{ms}$. Let n = ms. We associate each such $\mathcal{H}_K^{f,t}$ with the k-party NOF communication problem in which player *i* can see all x_j except for x_i and they want to compute $\mathcal{H}_k^{f,t}$.

For instance, setting f and t to be OR makes $\mathcal{H}_k^{f,t}$ the set disjointness function $\text{DISJ}_{k,n}$ and setting both f and t to be PARITY makes $\mathcal{H}_k^{f,t}$ the Generalized Inner Product (GIP) function.

Given f as above and n = ms, we also define a function on nk bits by:

$$\mathcal{F}_k^f(x, y_1, \dots, y_{k-1}) := f(x|\phi_{AND}(\wedge_{j=1}^{k-1} y_j)),$$

where $\phi_{AND}(z)$ returns the set of non-zero indices in z and x|S is the bit vector obtained by restricting x to indices in S. We also associate with each \mathcal{F}_k^f the k-party NOF communication problem on $x, y_1, \ldots, y_{k-1} \in \{0, 1\}^n$ in which the player 0 holds x and for $1 \leq i \leq k-1$, player iholds y_i , and they want to compute \mathcal{F}_k^f .

If we partition the above *n*-bit input string *x* into *m* blocks of size *s* and we restrict the inputs y_1, \ldots, y_{k-1} such that the set $S = \phi_{AND}(\wedge_{j=1}^{k-1}y_j)$ as above selects exactly one bit in each of the *m* blocks, then it is easy to see that in this case \mathcal{F}_k^f is a subfunction of $\mathcal{H}_k^{f,t}$. From now on, unless stated otherwise, we will assume that the inputs always satisfy this restriction.

We show that (ϵ, α) -approximate degree lower bounds for a function f allows one to derive lower bounds for \mathcal{F}_k^f .

Theorem 1.1. Let n = ms where $s = \lceil 4e \rceil^{k-1}$. For $0 \le \alpha < 1$ and any Boolean function f on m bits with $(5/6, \alpha)$ -approximate degree d, the function \mathcal{F}_k^f defined on $n \cdot k$ bits requires $R_{1/3}^k(\mathcal{F}_k^f)$ that is $\Omega(d/2^k)$ for $k \le (1 - \alpha) \log_2 d$.

Corollary 1.2. Under the same conditions as above, if t is any s-bit function in T then $\mathcal{H}_k^{f,t}$ has k-party randomized NOF communication complexity $\Omega(d/2^k)$.

By analyzing the approximation properties of the m = ps bit function $\operatorname{TRIBES}_{p,q}$ for suitable choices of p and q, we obtain the first AC^0 function separating NP_k^{cc} from BPP_k^{cc} for $k = \omega(\log \log n)$. The separation is non-trivial for k up to $\Theta(\log n)$.

Theorem 1.3. There is a constant a > 0 such for any n and integer $k = k(n) \le a \log_2 n$ such that $n \ge ms$ for $s = \lceil 4e \rceil^{k-1}$ and m is of the form pq such that $\lceil q^{0.2} \rceil < 2^p \le \frac{1}{6}q^{0.3} \ln 2$ and the following holds. The randomized k-party NOF communication complexity of $\mathcal{H}_k^{\text{TRIBES}_{p,q}, \text{OR}_s}$ is $\Omega(n^{0.3-\epsilon}/c^k)$ for $c = 2(4e)^{0.3}$ and its nondeterministic k-party NOF communication complexity is $O(\log^2 n)$.

Since the function $\mathcal{H}_k^{\text{TRIBES}_{p,q},\text{OR}}$ is given by a read-once depth 4 formula we have the following theorem.

Corollary 1.4. There is a constant $\delta > 0$ such that for any $k(n) \leq \delta \log_2 n$ there is a function in $AC_4^0 \cap (NP_k^{cc} - BPP_k^{cc})$.

By a reduction from $\mathcal{H}_k^{\text{TRIBES}_{p,q}, \text{OR}_s}$ to $\text{DISJ}_{k,n}$ we obtain the following lower bound.

Theorem 1.5. The randomized k-party NOF communication complexity of $\text{DISJ}_{k,n}$ is $n^{\Omega(1/k)}/2^{O(k)}$.

Write $\operatorname{TRIBES}'_{p,q}$ for the dual function to $\operatorname{TRIBES}_{p,q}$, $\operatorname{TRIBES}'_{p,q}(x) = \bigwedge_{i=1}^{q} \bigvee_{j=1}^{p} x_{ij}$. Observe that $\mathcal{H}_{k}^{\operatorname{TRIBES}'_{p,q},\operatorname{OR}}$ is a read-once depth 3 AC⁰ function since the two layers of \lor gates can be combined. Since $\operatorname{TRIBES}'_{p,q}$ has the same degree approximation properties as $\operatorname{TRIBES}_{p,q}$, we obtain a similar lower bound for read-once AC⁰₃ functions.

Theorem 1.6. There is a constant a > 0 such for any n and integer $k = k(n) \leq a \log_2 n$ such that following holds. There is a function \mathcal{F} in read-once AC_3^0 , namely $\mathcal{H}_k^{\text{TRIBES}'_{p,q}, OR_s}$ for $s = \lceil 4e \rceil^{k-1}$ and $\lceil q^{0.2} \rceil < 2^p \leq \frac{1}{6}q^{0.3} \ln 2$, whose randomized k-party NOF communication complexity is $\Omega(n^{0.3-\epsilon}/c^k)$ for $c = 2(4e)^{0.3}$.

Our technique yields a new sufficient criterion for functions to have high randomized communication complexity. It can be used to provide strong lower bounds for $k = O(\log n)$ for many other functions including the extension of the Minsky-Papert function MP considered by Razborov and Sherstov, and the Generalized Inner Product.

Our paper is organized as follows. In Section 2 we give an overview of the method of [She08, CA08] based on orthogonalizing distributions for functions of large ϵ -approximate degree and briefly discuss its limitations. In Sections 3 and 4 we define a new notion which we call the (ϵ, α) -approximate degree of a function and show how we can use it to prove Theorem 1.1. In Section 5 we prove that the function TRIBES_{p,q} has large (ϵ, α) -approximate degree. Then we prove Theorem 1.3, 1.5, and 1.6 in Section 6 and conclude by considering a variety of other functions.

2 Preliminaries

2.1 Notations and Terminology

We follow the notation used in [DPV]. We will assume that a Boolean function on m bits is a map $f: \{0,1\}^m \to \{-1,1\}.$

Correlation Let $f, g : \{0, 1\}^m \mapsto \mathbb{R}$ be two functions, and let μ be a distribution on $\{0, 1\}^m$. We define the *correlation* between f and g under μ to be $\operatorname{Cor}_{\mu}(f,g) := \mathbf{E}_{x \sim \mu}[f(x)g(x)]$. If \mathcal{G} is a class of functions $g : \{0, 1\}^m \mapsto \mathbb{R}$, we define the correlation between f and \mathcal{G} under μ to be $\operatorname{Cor}_{\mu}(f, G) := \max_{g \in \mathcal{G}} \operatorname{Cor}_{\mu}(f, g)$.

Communication complexity We denote by $R_{\epsilon}^{k}(f)$ the cost of the best k-party randomized NOF communication protocol for f with two-sided error at most ϵ , and $N^{k}(f)$ the cost of the best k-party nondeterministic communication protocol for f. We denote by Π_{k}^{c} the class of all deterministic k-party communication protocols of cost at most c.

Fact 2.1. [KN97] If there exists a distribution μ such that $\operatorname{Cor}_{\mu}(f, \Pi_{k}^{c}) \leq 1/3$ then $R_{1/3}^{k}(f) \geq c$.

Lemma 2.2 ([BNS92]). Let $f : \{0,1\}^{m \times k} \mapsto \mathbb{R}$ and U_m be the uniform distribution on $\{0,1\}^m$. Then,

$$\operatorname{Cor}_{U_m}(f, \Pi_k^c)^{2^{k-1}} \le 2^{c \cdot 2^{k-1}} \cdot \mathbf{E}_{y_1^0, \dots, y_{k-1}^0, y_1^1, \dots, y_{k-1}^1 \in \{0, 1\}^m} \left[\left| \mathbf{E}_{x \in \{0, 1\}^m} \left[\Pi_{u \in \{0, 1\}^{k-1}} f(x, y_1^{u_1}, \dots, y_{k-1}^{u_{k-1}}) \right] \right| \right].$$

Approximate degree The ϵ -approximate degree of f, $deg_{\epsilon}(f)$, is the smallest d for which there exists a multivariate real-valued polynomial p of degree d such that $||f-p||_{\infty} = \max_{x} |f(x)-p(x)| \leq \epsilon$. Following [NS94] we have the following property of approximate degree of OR.

Proposition 2.3. Let $OR_m : \{0,1\}^m \to \{1,-1\}$. For $0 \le \epsilon < 1$, $deg_{\epsilon}(OR_m) \ge \sqrt{(1-\epsilon)m/2}$.

Define an inner product \langle , \rangle on the set of functions $f : \{0,1\}^m \to \mathbb{R}$ by $\langle f,g \rangle = \mathbf{E}[f \cdot g]$. For $S \subseteq [m]$, let $\chi_S : \{0,1\}^m \to \{-1,1\}$ be the function $\chi_S = \prod_{i \in S} (-1)^{x_i}$. The χ_S for $S \subseteq [m]$ form an orthonormal basis of this space.

Lemma 2.4 ([She08]). If $f : \{0,1\}^m \mapsto \{-1,1\}$ is a Boolean function with $deg_{\epsilon}(f) \ge d$ then there exists a function $g : \{0,1\}^m \mapsto \{-1,1\}$ and a distribution μ on $\{0,1\}^m$ such that:

- 1. $\operatorname{Cor}_{\mu}(g, f) > \epsilon$; and
- 2. for every $S \subseteq [m]$ with |S| < d and every function $h : \{0,1\}^{|S|} \mapsto \mathbb{R}$, $\mathbf{E}_{x \sim \mu}[g(x) \cdot h(x|S)] = 0$.

Proof. Let Φ_d be the space of polynomials of degree less than d. By definition, $deg_{\epsilon}(f) \ge d$ if and only if $\min_{q \in \Phi_d} ||f-q||_{\infty} > \epsilon$. By duality of norms we have $\min_{q \in \Phi_d} ||f-q||_{\infty} = \max_{p \in \Phi_d^{\perp}, ||p||_{1}=1} \langle f, p \rangle$. Writing $\mu(x) = |p(x)|$ the condition $||p||_1 = 1$ implies that μ is a probability distribution and letting $g(x) = p(x)/\mu(x)$ for $\mu(x) \neq 0$ and g(x) = 1 if $\mu(x) = 0$. Then $p(x) = \mu(x)g(x)$. Therefore

$$\epsilon < \langle f, p \rangle = \mathbf{E}[f \cdot p] = \mathbf{E}[f \cdot g \cdot \mu] = \mathbf{E}_{x \sim \mu}[f(x)g(x)] = \operatorname{Cor}_{\mu}(f,g).$$

Moreover since $p \in \Phi_d^{\perp}$, we have $0 = \langle \chi_S, p \rangle = \mathbf{E}_{x \sim \mu}[\chi_S(x)g(x)]$. Now for $h : \{0, 1\}^{|S|} \to \mathbb{R}$ for $|S| \leq d$, h(x|S) can be expressed as a degree |S| polynomial and by linearity $\mathbf{E}_{x \sim \mu}[g(x) \cdot h(x|S)] = 0$.

We will extend this lemma in Section 3 using more general LP duality.

2.2 The correlation method

We give an overview of the method as described in [CA08], which extends ideas of [She07, She08] from 2-party to k-party communication complexity, with specific details at those points that we are extending in this paper.

Given a Boolean function f on m bits, where f has large 5/6-approximate degree d (i.e, d is polynomial in m), we want to lower bound $R_{1/3}^k(\mathcal{F}_k^f)$, where $\mathcal{F}_k^f(x, y_1, \ldots, y_{k-1})$ is on $n \cdot k$ bits for $n = m \cdot s$.

From Lemma 2.4, we obtain another Boolean function g and a distribution μ such that:

- 1. $Cor_{\mu}(g, f) \ge 5/6$; and
- 2. for every $S \subseteq [m]$ with |S| < d and every function $h : \{0,1\}^{|S|} \mapsto \mathbb{R}, \mathbf{E}_{x \sim \mu}[g(x) \cdot h(x|S)] = 0.$

Divide each player's *n*-bit input into *m* blocks of size *s*. Let ℓ be that $n/m = s = \ell^{k-1}$. Hence we can imagine that *x* consists of *m* arrays, each having k-1 dimensions. For $1 \le i \le k-1$, each of the *m* blocks in y_i is (a bit vector representing) an index in $[\ell]$. Therefore we can view each y_i as in $[\ell]^m$. Thus $\phi_{AND}(y_1, \ldots, y_{k-1})$ selects exactly one bit of *x* in each of *m* blocks.

Based on μ , we define a distribution λ on $n \cdot k$ bits in a straightforward way as follows:

$$\lambda(x, y_1, \dots, y_{k-1}) := \frac{\mu(x | \phi_{AND}(y_1, \dots, y_{k-1}))}{\ell^{km} 2^{n-m}}$$

for eligible y_1, \ldots, y_{k-1} and 0 otherwise. Here "eligible" means that y_1, \ldots, y_{k-1} satisfy the above requirements. Then it can be verified that $\operatorname{Cor}_{\gamma}(\mathcal{F}_k^f, \mathcal{F}_k^g) = \operatorname{Cor}_{\mu}(f, g) \geq 5/6$. Consequently,

$$\operatorname{Cor}_{\lambda}(\mathcal{F}_{k}^{f}, \Pi_{k}^{c}) \leq \operatorname{Cor}_{\lambda}(\mathcal{F}_{k}^{g}, \Pi_{k}^{c}) + 1/6.$$

Therefore we only need to bound $\operatorname{Cor}_{\lambda}(\mathcal{F}_{k}^{g}, \Pi_{k}^{c})$. Then by Lemma 2.2,

$$\operatorname{Cor}_{\lambda}(\mathcal{F}_{k}^{g},\Pi_{k}^{c}))^{2^{k-1}} = 2^{m2^{k-1}}\operatorname{Cor}_{U_{m}}(\mu(x|\phi_{AND}(y_{1},\ldots,y_{k-1}))g(x|\phi_{AND}(y_{1},\ldots,y_{k-1}),\Pi_{k}^{c})^{2^{k-1}}$$
$$\leq 2^{(c+m)\cdot2^{k-1}}\cdot\mathbf{E}_{y_{1}^{0},\ldots,y_{k-1}^{0},y_{1}^{1},\ldots,y_{k-1}^{1}}H(y_{1}^{0},\ldots,y_{k-1}^{0},y_{1}^{1},\ldots,y_{k-1}^{1}),$$

where

$$H(y_1^0,\ldots,y_{k-1}^0,y_1^1,\ldots,y_{k-1}^1) := \left| \mathbf{E}_x \left[\Pi_{u \in \{0,1\}^{k-1}} \mu(x|\phi_{AND}(y_1^{u_1},\ldots,y_{k-1}^{u_{k-1}})) g(x|\phi_{AND}(y_1^{u_1},\ldots,y_{k-1}^{u_{k-1}}) \right] \right|.$$

For $1 \le i \le k-1$, let $r_i \in \{0, \ldots, m\}$ be the number of blocks for which y_i^0 and y_i^1 give the same index. Let $r = \sum r_i$. We rely on the following three propositions to continue the proof. Proposition 2.5 and Proposition 2.7 are the same as in [CA08], so we do not give their proofs. We will prove an extension of Proposition 2.6 in Section 3.

Proposition 2.5. If r < d, then $H(y_1^0, \ldots, y_{k-1}^0, y_1^1, \ldots, y_{k-1}^1) = 0$.

Proposition 2.6. $H(y_1^0, \ldots, y_{k-1}^0, y_1^1, \ldots, y_{k-1}^1) \le \frac{2^{(2^{k-1}-1)r}}{2^{2^{k-1}m}}.$

Proposition 2.7. For $d \le j \le (k-1)m$, $\Pr[r=j] \le (\frac{e(k-1)m}{j(\ell-1)})^j (1-\frac{1}{\ell})^{(k-1)m}$.

In [CA08, LS08], to prove the lower bound for $\text{DISJ}_{k,n}$, the function f is set to OR_m and t is set to OR_s . By Proposition 2.3, $d = deg_{5/6}(\text{OR}_m) \geq \sqrt{m/12}$. Plugging the bound in Proposition 2.7 together with the bounds from Proposition 2.5 for r < d and from Proposition 2.6 when $r \geq d$ into the above correlation inequality it is not hard to show that

$$\operatorname{Cor}_{\lambda}(\mathcal{F}_{k}^{g}, \Pi_{k}^{c})) \leq \frac{2^{c}}{2^{d/2^{k}}},$$

for $\ell > \frac{2^{2^k} kem}{d}$. Hence for $k = O(\log \log n)$ and c a small enough polynomial in n, we have a polynomial lower bound for $R_{1/3}^k(\text{DISJ}_{k,n}) \ge c$.

The key limitation of the above technique is the required lower bound on ℓ which follows from the weakness of the upper bound in Proposition 2.6. That weakness is implied by how little can be assumed about the orthogonalizing distribution μ given by Lemma 2.4. In particular, the arguments in [She08, CA08, LS08] all allow that μ may assign all of its probability mass to small subsets of points defined by partial assignments. Indeed, when the function f is OR_m , this is the case. However, we will show that for other very simple functions f one can choose the orthogonalizing distribution μ so that it does not assign too much weight on such small sets of points; that is, μ is "max-smooth". To guarantee this property of μ we need to strengthen Lemma 2.4 by assuming more of f than just large approximate degree.

3 Beyond approximate degree: a new sufficient criterion for strong communication complexity bounds

A $\rho \in \{0, 1, *\}^m$ is called a *restriction*. For any restriction ρ , let $unset(\rho) \subseteq [m]$ be the set of star positions in ρ , let $|\rho| = m - |unset(\rho)|$, and let C_{ρ} be the set of all $x \in \{0, 1\}^m$ such that for any $1 \leq i \leq m$, either $\rho_i = *$ or $\rho_i = x_i$. Hence $|C_{\rho}| = 2^{m-|\rho|}$. Given a restriction $\rho \in \{0, 1, *\}^m$ and a function f on $\{0, 1\}^m$, we define $f|_{\rho}$ on $\{0, 1\}^{m-|\rho|}$ in the natural way.

The approximate degree of a function f says how hard it is to approximate f. In this paper, we need a stronger notion which requires that many widely distributed restrictions of f also require large approximate degree.

Definition Given $0 < \epsilon, \alpha \leq 1$ and d > 0, let $\Pi = \Pi_{d,\epsilon}(f) \subseteq \{0,1,*\}^m$ be a set of restrictions such that for any $\pi \in \Pi$, $deg_{\epsilon}(f|_{\pi}) \geq d$. We say that f has (ϵ, α) -approximate degree at least d, denoted as $deg_{\epsilon,\alpha}(f) \geq d$, if restrictions in Π are spread out "evenly". Formally, there is a distribution ν on Π such that for any $\rho \in \{0, 1, *\}^m$ with $|\rho| \geq d^{\alpha}$, then

$$\Pr_{\pi \sim \nu} [C_{\rho} \cap C_{\pi} \neq \emptyset] \le 2^{|\rho|^{\alpha} - |\rho|}.$$

The set Π and the distribution ν are the *witnesses* for the (ϵ, α) -approximate degree of f. Note that $deg_{\epsilon}(f) = deg_{\epsilon,1}(f)$.

We will use this definition to prove the following theorem.

Theorem 3.1 (restatement of Theorem 1.1). Let n = ms where $s = \lceil 4e \rceil^{k-1}$. For $0 \le \alpha < 1$ and any Boolean function f on m bits with $(5/6, \alpha)$ -approximate degree d, the function \mathcal{F}_k^f defined on $n \cdot k$ bits requires $R_{1/3}^k(\mathcal{F}_k^f)$ that is $\Omega(d/2^k)$ for $k \le (1 - \alpha) \log_2 d$. To prove the theorem, we first need the following consequence of large (ϵ, α) -approximate degree. We postpone its proof to Section 4.

Lemma 3.2 (extension of Lemma 2.4). Given $0 < \epsilon, \alpha \leq 1$. If $f : \{0,1\}^m \mapsto \{-1,1\}$ is a Boolean function with (ϵ, α) -approximate degree d, there exist a function $g : \{0,1\}^m \mapsto \{-1,1\}$ and a distribution μ on $\{0,1\}^m$ such that:

- 1. $\operatorname{Cor}_{\mu}(g, f) \geq \epsilon;$
- 2. for every $T \subseteq [m]$ with |T| < d and every function $h : \{0,1\}^{|T|} \mapsto \mathbb{R}$, $\mathbf{E}_{x \sim \mu}[g(x) \cdot h(x|T)] = 0$; and
- 3. for any restriction ρ with $|\rho| \ge d^{\alpha}$, $\mu(C_{\rho}) \le 2^{|\rho|^{\alpha} |\rho|} / \epsilon$.

Note that, although the upper bound on $\mu(C_{\rho})$ may seem quite weak, it will be sufficient to obtain an exponential improvement in the dependence of communication complexity lower bounds on k. Moreover, we note in Section 4 that for any function f computed by an AC⁰ circuit the assumption and the upper bound are essentially the best possible for $d = \log^{\omega(1)} n$.

We now use Lemma 3.2 to prove an improvement of Proposition 2.6. This is the key to our improved bounds.

Lemma 3.3. If $f : \{0,1\}^m \to \{1,-1\}$ has (ϵ, α) -approximate degree d, if g and μ are given by the application of Lemma 3.2 to f, and if $r \ge d$, then

$$H(y_1^0, \dots, y_{k-1}^0, y_1^1, \dots, y_{k-1}^1) \le \frac{2^{(2^{k-1}-1)r^{\alpha}}}{2^{2^{k-1}m}\epsilon^{2^{k-1}-1}}.$$

Proof. The proof of this lemma is similar to that of [CA08] except that we apply the upper bound from the third condition of Lemma 3.2. Let $Y_{0^{k-1}}$ represent the set of m variables indexed jointly by y_1^0, \ldots, y_{k-1}^0 . There is precisely one variable chosen from each of the m blocks. Then in increasing order for each nonzero $u \in \{0,1\}^{k-1}$, we let Y_u represent the set of variables indexed jointly by $y_1^{u_1}, \ldots, y_{k-1}^{u_{k-1}}$ that are not in $Y_{0^{k-1}} \cup \bigcup_{u' < u} Y_{u'}$. By definition we then have for each nonzero u, $|Y_u| \ge m - r$. Let $Z = \bigcup Y_{u \in \{0,1\}^{k-1}}$.

Since g is 1/-1 valued,

$$\begin{split} H(y_{1}^{0}, \dots, y_{k-1}^{0}, y_{1}^{1}, \dots, y_{k-1}^{1}) &= \left| \mathbf{E}_{x} \left[\Pi_{u \in \{0,1\}^{k-1}} \mu(x | \phi_{AND}(y_{1}^{u_{1}}, \dots, y_{k-1}^{u_{k-1}})) g(x | \phi_{AND}(y_{1}^{u_{1}}, \dots, y_{k-1}^{u_{k-1}})) \right] \\ &\leq \mathbf{E}_{Z} \Pi_{u \in \{0,1\}^{k-1}} \mu(x | \phi_{AND}(y_{1}^{u_{1}}, \dots, y_{k-1}^{u_{k-1}})) \\ &= \mathbf{E}_{Y_{0}^{k-1}} \mu(x | \phi_{AND}(y_{1}^{0}, \dots, y_{k-1}^{0})) \\ &\times \max_{Y_{0k-1}} \mathbf{E}_{Y_{0\dots 0} \cup Y_{0\dots 01}} \mu(x | \phi_{AND}(y_{1}^{0}, \dots, y_{k-1}^{1})) \\ &\times \max_{Y_{0\dots 0} \cup Y_{0\dots 01}} \mathbf{E}_{Y_{0\dots 10}} \mu(x | \phi_{AND}(y_{1}^{0}, \dots, y_{k-1}^{0})) \\ &\times \dots \end{split}$$

and so on repeatedly for all 2^{k-1} of the Y_u . The term at line (1) equals 2^{-m} because μ is a distribution. Now we bound each of the remaining terms. For each non-zero $u \in \{0,1\}^{k-1}$, the corresponding term with u is

$$T_{u} = \max_{\bigcup_{u' < u} Y_{u'}} \mathbf{E}_{Y_{u}} \mu(x | \phi_{AND}(y_{1}^{u_{1}}, \dots, y_{k-1}^{u_{k-1}})).$$

Let $Y_u = m - i \ge m - r$. If $i < r^{\alpha}$, then we can upper bound T_u as

$$T_u \le \frac{1}{2^{m-i}} < 2^{r^\alpha - m}.$$

Otherwise, $i \ge r^{\alpha} \ge d^{\alpha}$. Since μ is as defined, we can then bound T_u by

$$T_u \le \frac{2^{i^{\alpha}-i}/\epsilon}{2^{m-i}} \le \frac{2^{r^{\alpha}-m}}{\epsilon}.$$

Thus in both cases, $T_u \leq \frac{2^{r^{\alpha}-m}}{\epsilon}$. Hence the lemma follows.

Now we are ready to prove the main theorem of this section.

Proof of Theorem 3.1. Apply Lemma 3.2 with $\epsilon = 5/6$ to obtain g and μ . Then follow the approach as outlined in Section 2. What remains is to show that $\operatorname{Cor}_{\lambda}(\mathcal{F}_{k}^{g}, \Pi_{k}^{c}) \leq 1/6$. Now we have, by Proposition 2.5, Lemma 3.3, and Proposition 2.7,

$$\operatorname{Cor}_{\lambda}(\mathcal{F}_{k}^{g},\Pi_{k}^{c}))^{2^{k-1}} \leq 2^{(c+m)\cdot2^{k-1}} \cdot \mathbf{E}_{y_{1}^{0},\dots,y_{k-1}^{0},y_{1}^{1},\dots,y_{k-1}^{1}} H(y_{1}^{0},\dots,y_{k-1}^{0},y_{1}^{1},\dots,y_{k-1}^{1})$$

$$\leq 2^{c2^{k-1}} \sum_{j=d}^{(k-1)m} 2^{(2^{k-1}-1)j^{\alpha}} (\frac{6}{5})^{2^{k-1}-1} (\frac{e(k-1)m}{j(\ell-1)})^{j} (1-\frac{1}{\ell})^{(k-1)m}.$$
(2)

Since $k \leq (1-\alpha)\log_2 d$, we have $(2^{k-1}-1)j^{\alpha} < d^{1-\alpha}j^{\alpha} \leq j$ for $j \geq d$ so (2) is

$$\leq \left(\frac{6}{5}2^{c}\right)^{2^{k-1}} \sum_{j=d}^{(k-1)m} \left(\frac{2e(k-1)m}{j(\ell-1)}\right)^{j} (1-\frac{1}{\ell})^{(k-1)m} \\ \leq \frac{\left(\frac{6}{5}2^{c}\right)^{2^{k-1}}}{2^{d}},$$

for $\ell = \lfloor 4e \rfloor$. Hence

$$\operatorname{Cor}_{\lambda}(\mathcal{F}_{k}^{g}, \Pi_{k}^{c})) \leq \frac{\frac{6}{5}2^{c}}{2^{d/2^{k-1}}} \leq 1/6,$$

as long as $c \leq \log_2(\frac{5}{36}2^{d/2^{k-1}})$. Hence $R_{1/3}^k$ is $\Omega(d/2^k)$ for $k \leq (1-\alpha)\log_2 d$.

(3)

Proof of Lemma 3.2 4

Proof. As in the proof for Lemma 2.4, we write the requirements down as a linear program and study its dual. The lemma is implied by proving that the following linear program \mathcal{P} has optimal value 1:

Minimize η subject to

$$y_S:$$
 $\sum_{x \in \{0,1\}^m} h(x)\chi_S(x) = 0$ $|S| < d$ (4)

$$\beta: \qquad \sum_{x \in \{0,1\}^m} h(x) f(x) \ge \epsilon \tag{5}$$

$$v_x: \qquad \mu(x) - h(x) \ge 0 \qquad x \in \{0, 1\}^m \qquad (6)$$

$$w_x: \qquad \mu(x) + h(x) \ge 0 \qquad x \in \{0, 1\}^m \qquad (7)$$

$$\mu(x) + h(x) \ge 0 \qquad \qquad x \in \{0, 1\}^m \tag{7}$$

$$a_{\rho}: \qquad \eta - 2^{|\rho| - |\rho|^{\alpha}} \sum_{x \in C_{\rho}} \mu(x) \ge 0 \qquad \rho \in \{0, 1, *\}^{m}, |\rho| \ge d^{\alpha}$$
(8)

$$\gamma: \qquad \sum_{x \in \{0,1\}^m} \mu(x) = 1$$
(9)

Suppose that we have optimum $\eta = 1$. In this LP formulation, inequality γ ensures that the function μ is a probability distribution, and inequalities v_x and w_x ensure that $\mu(x) \geq |h(x)|$ so $||h||_1 \leq 1$. If $||h||_1 = 1$, then we must have $\mu(x) = |h(x)|$ and we can write $h(x) = \mu(x)g(x)$ as in the proof of Lemma 2.4 and then the inequalities y_S will ensure that $\operatorname{Cor}_{\mu}(g,\chi_S) = 0$ for |S| < dand inequality β will ensure that $\operatorname{Cor}_{\mu}(f,g) \geq \epsilon$ as required. Finally, each inequality a_{ρ} ensures that $\mu(\hat{C}_{\rho}) \leq 2^{-|\rho|+|\rho|^{\alpha}} = 2^{-|\rho|+|\rho|^{\alpha}}$ which is actually a little stronger than our claim.

The only issue is that an optimal solution might have $||h||_1 < 1$. However in this case inequality β ensures that $||h||_1 \geq \epsilon$. Therefore, for any solution of the above LP with function h, we can define another function $h'(x) = h(x)/||h||_1$ with $||h'||_1 = 1$ and a new probability distribution μ' by $\mu'(x) = |h'(x)| \le \mu(x)/||h||_1 \le \mu(x)/\epsilon$. This new h' and μ' still satisfy all the inequalities as before except possibly inequality a_{ρ} but in this case if we increase η by a $1/||h||_1$ factor it will also be satisfied. Therefore, the $\mu'(C_{\rho}) \leq 2^{-|\rho|+|\rho|^{\alpha}}/\epsilon$.

Here is the dual LP:

 η :

Maximize $\beta \cdot \epsilon + \gamma$ subject to

$$\sum_{\rho \in \{0,1,*\}^m, |\rho| \ge d^{\alpha}} a_{\rho} = 1 \tag{10}$$

$$\mu(x): \qquad v_x + w_x + \gamma - \sum_{C_\rho \ni x, |\rho| \ge d^{\alpha}} 2^{|\rho| - |\rho|^{\alpha}} a_{\rho} = 0 \qquad x \in \{0, 1\}^m$$
(11)

$$g(x): \qquad \beta f(x) + \sum_{|S| < d} y_S \chi_S(x) + w_x - v_x = 0 \qquad x \in \{0, 1\}^m \qquad (12)$$

$$\beta, v_x, w_x, a_\rho \ge 0 \qquad \qquad x \in \{0, 1\}^m \tag{13}$$

Since y_S are arbitrary we can replace $\sum_{|S| \le d} y_S \chi_S(x)$ by $p_d(x)$ where p_d is an arbitrary polynomial of degree < d to obtain the modified dual:

Maximize $\beta \cdot \epsilon + \gamma$ subject to

 η :

$$\sum_{\rho \in \{0,1,*\}^m, |\rho| \ge d^{\alpha}} a_{\rho} = 1$$
(14)

$$\mu(x): \qquad v_x + w_x + \gamma - \sum_{C_\rho \ni x, |\rho| \ge d^{\alpha}} 2^{|\rho| - |\rho|^{\alpha}} a_{\rho} = 0 \qquad x \in \{0, 1\}^m$$
(15)

$$g(x): \qquad \qquad \beta f(x) + p_d(x) + w_x - v_x = 0 \qquad \qquad x \in \{0, 1\}^m \qquad (16)$$

$$\beta, v_x, w_x, a_\rho \ge 0 \qquad \qquad x \in \{0, 1\}^m \tag{17}$$

Equations (15) and (16) for $x \in \{0, 1\}^m$ together are equivalent to:

$$2w_x + \beta f(x) + p_d(x) + \gamma - \sum_{C_{\rho} \ni x, |\rho| \ge d^{\alpha}} 2^{|\rho| - |\rho|^{\alpha}} a_{\rho} = 0$$

and

$$2v_x - \beta f(x) - p_d(x) + \gamma - \sum_{C_\rho \ni x, |\rho| \ge d^\alpha} 2^{|\rho| - |\rho|^\alpha} a_\rho = 0.$$

Since these are the only constraints on v_x and w_x respectively other than negativity these can be satisfied by any solution to

$$\beta f(x) + p_d(x) + \gamma \leq \sum_{C_\rho \ni x, |\rho| \geq d^\alpha} 2^{|\rho| - |\rho|^\alpha} a_\rho$$

and

$$-\beta f(x) - p_d(x) + \gamma \leq \sum_{C_\rho \ni x, |\rho| \geq d^\alpha} 2^{|\rho| - |\rho|^\alpha} a_\rho,$$

which together are equivalent to

$$|\beta f(x) + p_d(x)| + \gamma \le \sum_{C_\rho \ni x, |\rho| \ge d^{\alpha}} 2^{|\rho| - |\rho|^{\alpha}} a_{\rho}.$$

Since $p_d(x)$ is an arbitrary polynomial function of degree less than d we can write $p_d = -\beta p'_d$ where p'_d is another arbitrary polynomial function of degree less than d and we can replace the terms $|\beta f(x) + p_d(x)|$ by $\beta |f(x) - p'_d(x)|$.

Therefore the dual program \mathcal{D} is equivalent to maximizing $\beta \cdot \epsilon + \gamma$ subject to

$$\beta |f(x) - p'_d(x)| + \gamma \le \sum_{C_\rho \ni x, |\rho| \ge d^\alpha} 2^{|\rho| - |\rho|^\alpha} a_\rho$$

for all $x \in \{0,1\}^m$, a_ρ is probability distribution on the set of all restrictions of size at least d^{α} , and p'_d is a real-valued function of degree < d.

Now, let B be the set of points at which $|f(x) - p'_d(x)| \ge \epsilon$. For any $x \in B$, the value of the objective function of \mathcal{D} , which is $\beta \cdot \epsilon + \gamma$, is not more than

$$\beta|f(x) - p'_d(x)| + \gamma \le \sum_{C_\rho \ni x, |\rho| \ge d^\alpha} 2^{|\rho| - |\rho|^\alpha} a_\rho.$$

$$\tag{18}$$

Let R(x) denote the right-hand side of inequality (18). It suffices to prove that $R(x) \leq 1$ for some $x \in B$. This is, in turn, equivalent to proving that

$$\min_{x \in B} R(x) \le 1$$

for any distribution a_{ρ} . Suppose, by contradiction, that there exists a distribution a_{ρ} such that R(x) > 1 for any $x \in B$. Let Π , the set of restrictions, and ν , a distribution on Π , be the witnesses for the (ϵ, α) -approximate degree of f. Picking $\pi \in \Pi$ randomly according to ν , we define the random variable

$$I_{\pi} := \sum_{\rho:|\rho| \ge d^{\alpha}, \ C_{\rho} \cap C_{\pi} \neq \emptyset} 2^{|\rho| - |\rho|^{\alpha}} a_{\rho}$$

Then,

$$\mathbf{E}_{\pi \sim \nu}(I_{\pi}) = \sum_{\rho: |\rho| \ge d^{\alpha}} \Pr[C_{\rho} \cap C_{\pi} \neq \emptyset] \cdot 2^{|\rho| - |\rho|^{\alpha}} a_{\rho} \le \sum_{\rho: |\rho| \ge d^{\alpha}} 2^{|\rho|^{\alpha} - |\rho|} \cdot 2^{|\rho| - |\rho|^{\alpha}} a_{\rho} \le 1.$$

Therefore there exists $\pi \in \Pi$ for which $I_{\pi} \leq 1$. If there exists $x \in B$ such that $x \in C_{\pi}$, then since

$$R(x) = \sum_{C_{\rho} \ni x, |\rho| \ge d^{\alpha}} 2^{|\rho| - |\rho|^{\alpha}} a_{\rho} > 1,$$

we would have $I_{\pi} > 1$. Thus $C_{\pi} \cap B = \emptyset$. So for any $x \in C_{\pi}$, we have $|f(x) - p'_d(x)| \le \epsilon$. But since the degree of p'_d is less than d this contradicts the fact that $deg_{\epsilon}(f|_{\pi}) \ge d$. Thus the lemma follows.

We note that the bounds in Lemma 3.2 are essentially the best possible for AC^0 functions: By results of Linial, Mansour, and Nisan [LMN89], for any AC^0 function f there is a function p_d of $\log^{O(1)} n$ degree, such that $||f - p_d||_2^2 \leq 2^{n-n^{\delta}}$ for some constant $\delta > 0$. Let B_n be the set of x such that $||f(x) - p_d(x)| \geq \epsilon$. Then $|B_n|\epsilon^2 \leq \sum_{x \in B_n} |f(x) - p_d(x)|^2 \leq ||f - p_d(x)||_2^2 \leq 2^{n-n^{\delta}}$ so $|B_n| \leq 2^{n-n^{\delta}}/\epsilon^2$. Also, if we tried to replace the upper bound on $\mu(C_{\rho})$ by some $c(|\rho|)$ where c(n) is $\omega(1/|B_n|)$ then we could choose $a_x = 1/|B_n|$ for $x \in B_n$ and $a_{\rho} = 0$ for all other ρ and for these values β would be unbounded.

5 TRIBES has large (ϵ, α) -approximate degree

It is not obvious that any function, let alone a function in AC^0 , has large (ϵ, α) -approximate degree for $\alpha < 1$. Recall that the function $TRIBES_{p,q}$ on m = pq bits is defined by

$$\operatorname{TRIBES}_{p,q}(x) = \bigvee_{i=1}^{q} \wedge_{j=1}^{p} x_{i,j}.$$

Usually the function TRIBES is defined so that 2^p is linear or nearly-linear in q. We will show that, with a different relationship in which $q \gg 2^p$ but p is still $\Theta(\log q)$, the (ϵ, α) -approximate degree of TRIBES_{p,q} is large.

Lemma 5.1. Let r, q, p be positive integers with $q > r > p \ge 2$ and let $1 > \alpha > \beta > 0$ be such that $q^{\beta} \ge rp$, $2^p - 1 \ge q^{1-\beta}$, $q^{\alpha} \ge \frac{6}{\ln 2} 2^p r$, and $r^{\alpha(\alpha-\beta)} \ge 12(3p/\ln 2)^2$. Then $\operatorname{TriBes}_{p,q}$ has $(5/6, \alpha)$ -approximate degree at least $\sqrt{r/12}$.

Proof. We define a distribution ν on restrictions R_m^{pr} that leave pr out of the m variables unset as follows: pick uniformly at random a subset of q-r of the q terms of $\text{TRIBES}_{p,q}$; then for each of these terms, assign values to the variables in the term uniformly at random from $\{\{0,1\}^p - \mathbf{1}^p\}$. It is clear that for any π with $\nu(\pi) > 0$, OR_r is a subfunction of $\text{TRIBES}_{p,q}|_{\pi}$ so $deg_{5/6}(\text{TRIBES}_{p,q}|_{\pi}) \geq deg_{5/6}(\text{OR}_r) \geq \sqrt{r/12}$.

Let ρ be any restriction of size $i = |\rho| \ge (r/12)^{\alpha/2}$. By definition, we need to prove that

$$\Pr_{\pi \sim \nu}[C_{\rho} \cap C_{\pi} \neq \emptyset] \le 2^{i^{\alpha} - i}.$$

Now

$$\Pr_{\pi \sim \nu} [C_{\rho} \cap C_{\pi} \neq \emptyset] = \frac{1}{\binom{q}{(q-r)}} \sum_{S \subset [q], |S| = q-r} \prod_{j \in S} p_j,$$

where p_j is the probability that π and ρ agree on the variables in the *j*-th term in $\text{TRIBES}_{p,q}$. Write $i = i_1 + \ldots + i_q$, where i_j is the number of assignments ρ makes to variables in the *j*-th term of $\text{TRIBES}_{p,q}$. Then

$$p_j \le \frac{2^{p-i_j}}{2^p - 1} = 2^{-i_j} \left(1 + \frac{1}{2^p - 1}\right)$$

Let $i_S = \sum_{j \in S} i_j$ be the number of assignments ρ makes to variables in terms in S and $k_S = |\{j \in S : i_j > 0\}|$ be the number of terms in S in which ρ assigns least one value. Hence,

$$\Pr_{\pi \sim \nu} [C_{\rho} \cap C_{\pi} \neq \emptyset] < \frac{1}{\binom{q}{q-r}} \sum_{S \subset [q], |S|=q-r} 2^{-i_S} (1 + \frac{1}{2^p - 1})^{k_S}.$$
(19)

Let $k = |\{j : i_j > 0\}|$ be the total number of terms in which ρ assigns at least one value. There are 2 cases: (I) $k \ge q/2$, and (II) k < q/2.

Now consider case (I). Thus $i \ge q/2$. In Equation 19, we have $k_S \le q$ for every S. Thus,

$$\Pr_{\pi \sim \nu} [C_{\rho} \cap C_{\pi} \neq \emptyset] \le \frac{1}{\binom{q}{q-r}} \sum_{S \subset [m], |S|=q-r} 2^{-i_{S}} (1 + \frac{1}{2^{p}-1})^{q}.$$

It is easy to see that $i_S \ge i - pr$ for every such S. Hence we get

$$\frac{1}{\binom{q}{q-r}} \sum_{S \subset [q], |S|=q-r} 2^{-i_S} \le 2^{pr-i} \le 2^{(2i)^\beta - i},$$

since $pr \leq q^{\beta} \leq (2i)^{\beta}$ in this case. Thus,

$$\Pr_{\pi \sim \nu} [C_{\rho} \cap C_{\pi} \neq \emptyset] \le 2^{(2i)^{\beta} - i} (1 + \frac{1}{2^{p} - 1})^{q} \le 2^{(2i)^{\beta} - i} e^{q^{\beta}} \le 2^{2^{\beta} (1 + 1/\ln 2)i^{\beta} - i},$$

since $q^{1-\beta} \leq 2^p - 1$ and $i \geq q/2$. We upper bound the term $2^{\beta}(1+1/\ln 2) i^{\beta}$ by i^{α} as follows: Since $i \geq (r/12)^{\alpha/2}$,

$$i^{\alpha-\beta} \ge (r/12)^{\alpha(\alpha-\beta)/2} \ge (r^{\alpha(\alpha-\beta)}/12)^{1/2} \ge 3p/\ln 2$$
 (20)

by our assumption in the statement of the lemma. Since $p \ge 2$, we have $i^{\alpha-\beta} > 6 > 2^{\beta}(1+1/\ln 2)$ which is all that we need to derive that $\Pr_{\pi \sim \nu}[C_{\rho} \cap C_{\pi} \neq \emptyset] < 2^{i^{\alpha}-i}$ in case I.

Next, we consider case (II). We must have $k \leq p^{1-\beta}(2^p-1) i^{\beta}$, because otherwise

$$i \geq k > p^{1-\beta}(2^p-1)i^\beta \geq p^{1-\beta}q^{1-\beta}i^\beta$$

which implies $i^{1-\beta} > (pq)^{1-\beta}$ and hence i > pq = m which is impossible. Therefore

$$(1+\frac{1}{2^p-1})^{k_S} \le e^{\frac{k_S}{2^p-1}} \le e^{\frac{k}{2^p-1}} \le e^{p^{1-\beta}i^{\beta}}.$$

So,

$$\Pr_{\pi \sim \nu}[C_{\rho} \cap C_{\pi} \neq \emptyset] < e^{p^{1-\beta}i^{\beta}} \mathcal{S} \quad \text{where} \quad \mathcal{S} = \frac{1}{\binom{q}{q-r}} \sum_{S \subset [q], |S|=q-r} 2^{-i_{S}} = E_{S \sim U}[2^{-i_{S}}].$$

and U is the uniform distribution on subsets of [q] of size q - r.

Now we continue by upper bounding S. For the moment let us assume that i is divisible by p. If we view the terms as the bins, and the assigned positions by ρ as balls placed in corresponding bins, then we observe that S can only increase if we move one ball from a bin A of x > 0 balls to another bin B of $y \ge x$ balls. This is because only those i_S with S containing exactly one of these two bins are affected by this move. Then, we can write the contribution of these S's in S before the move as

$$\mathcal{S}' = \sum_{S \subset [q], \ |S| = q-r, \ S \cap \{A,B\} = 1} 2^{-i_S} = \sum_{S' \subset [q] - \{A,B\}, \ |S'| = q-r-1} 2^{-i_{S'}} (2^{-x} + 2^{-y})$$

and after the move as

$$\mathcal{S}'' = \sum_{S' \subset [q] - \{A,B\}, \ |S'| = q - r - 1} 2^{-i_{S'}} (2^{-x+1} + 2^{-y-1}).$$

Since $y \ge x$, $\mathcal{S}'' > \mathcal{S}'$.

Hence w.l.o.g. and with the assumption that p divides i, we can assume that the balls are distributed such that every bin is either full, i.e containing p balls, or empty. Hence k = i/p and for any $1 \le j \le q$, either $i_j = 0$ or $i_j = p$.

Claim 5.2. If i is divisible by p then $S \leq 2^{-i} e^{2^{p+1}rk/q}$.

We first see how the claim suffices to prove the lemma. If i is not divisible by p then we note that S is a decreasing function of i and apply the claim for the first $i' = p\lfloor i/p \rfloor > i - p$ positions set by ρ to obtain an upper bound of $S < 2^{p-i}e^{2^{p+1}ri/(pq)}$ that applies for all choices of i. The overall bound we obtain in this case is then

$$\Pr_{\pi \sim \nu} [C_{\rho} \cap C_{\pi} \neq \emptyset] < e^{p^{1-\beta} i^{\beta}} 2^{p} e^{2^{p+1} r i/(pq)} 2^{-i}$$
$$= 2^{i^{\beta} p^{1-\beta}/\ln 2 + p + 2^{p+1} r i/(pq\ln 2)} 2^{-i}$$

We now consider the exponent $i^{\beta}p^{1-\beta}/\ln 2 + p + 2^{p+1}ri/(pq\ln 2)$ and show that it is at most i^{α} . For the first term observe that by (20), $i^{\alpha-\beta} \ge 3p/\ln 2$ so $i^{\beta}p^{1-\beta}/\ln 2 \le i^{\alpha}/3$. For the second term again by (20) we have $p \le i^{\alpha-\beta}/3 \le i^{\alpha}/3$. For the last term, since $q^{\alpha} \ge \frac{6}{\ln 2}2^pr$, we have

$$\frac{2^{p+1}ri}{pq\ln 2} \le \frac{q^{\alpha}i}{3pq} \le i(pq)^{\alpha-1}/3 \le i^{\alpha}/3,$$

since $i \leq pq$. Therefore in case II we have $\Pr_{\pi \sim \nu}[C_{\rho} \cap C_{\pi} \neq \emptyset] < 2^{i^{\alpha}-i}$ as required. It only remains to prove the claim.

Proof of Claim: Let $T = \{i_j \mid i_j = p\}$ be the subset of k terms assigned by ρ . Therefore $i_S = |S \cap T|p$ where S is a random set of size q - r and T is a fixed set of size k and both are in [q]. We have two subcases: (IIa) when $k \leq r$ and (IIb) when $q/2 \geq k > r$.

If $k \leq r$ then we analyze S based on the number j of elements of S contained in T. There are $\binom{k}{j}$ choices of elements of T to choose from and q-r-j elements to select from the q-k elements of \overline{T} . Therefore

$$S = \frac{\sum_{j=0}^{k} {\binom{r}{j} \binom{q-k}{q-r-j} 2^{-jp}}}{\binom{q}{q-r}}$$

Now since

$$\frac{\binom{q-k}{q-r-j}}{\binom{q}{q-r}} = \frac{(q-k)!(q-r)!r!}{q!(q-r-j)!(r-(k-j))!} < \frac{(q-r)^j r^{k-j}}{(q-k)^k} = \left(\frac{r}{q-k}\right)^k \left(\frac{q-r}{r}\right)^j,$$

we can upper bound \mathcal{S} by

$$\left(\frac{r}{q-k}\right)^{k} \sum_{j=0}^{\kappa} \binom{k}{j} 2^{-pj} \left(\frac{q-r}{r}\right)^{j} = \left(\frac{r}{q-k}\right)^{k} \left(1 + \frac{q-r}{2^{p}r}\right)^{k}$$

$$= 2^{-pk} \left(\frac{r}{q-k}\right)^{k} \left(\frac{2^{p}r + (q-r)}{r}\right)^{k}$$

$$= 2^{-i} \left(\frac{q + (2^{p} - 1)r}{q-k}\right)^{k}$$

$$= 2^{-i} \left(1 + \frac{(2^{p} - 1)r + k}{q-k}\right)^{k}$$

$$\le 2^{-i} \left(1 + \frac{2^{p}r}{q-k}\right)^{k}$$

$$\le 2^{-i} e^{2^{p}rk/(q-k)}$$

$$\le 2^{-i} e^{2^{p+1}rk/q}.$$

since $k \leq q/2$.

In the case that $r \leq k \leq q/2$ we observe that by symmetry we can equivalently view the expectation S as the result of an experiment in which the set S of size q - r is chosen first and the set T of size k is chosen uniformly at random. We analyze this case based on the number j of elements of \overline{S} contained in T. There are $\binom{r}{j}$ choices of elements of \overline{S} to choose from and k - j elements to select from the $q - r \geq q/2 \geq k$ elements of S. Therefore

$$S = \frac{\sum_{j=0}^{r} {\binom{r}{j} \binom{q-r}{k-j} 2^{-(k-j)p}}}{\binom{q}{k}}$$

Using the fact that

$$\frac{\binom{q-r}{k-j}}{\binom{q}{k}} = \frac{(q-r)!(q-k)!k!}{q!(k-j)!(q-r-k+j)!} < \frac{(q-k)^{r-j}k^j}{(q-r)^r} = \left(\frac{q-k}{q-r}\right)^r \left(\frac{k}{q-k}\right)^j,$$

we upper bound \mathcal{S} by

$$2^{-pk} \left(\frac{q-k}{q-r}\right)^r \sum_{j=0}^r \binom{r}{j} \left(\frac{2^p k}{q-k}\right)^j = 2^{-pk} \left(\frac{q-k}{q-r}\right)^r \left(1 + \frac{2^p k}{(q-k)}\right)^r$$
$$= 2^{-i} \left(\frac{q-k}{q-r}\right)^r \left(\frac{q+(2^p-1)k}{q-k}\right)^r$$
$$= 2^{-i} \left(\frac{q+(2^p-1)k}{q-r}\right)^r$$
$$= 2^{-i} \left(1 + \frac{(2^p-1)k+r}{q-r}\right)^r$$
$$\leq 2^{-i} \left(1 + \frac{2^p k}{q-r}\right)^r$$
$$\leq 2^{-i} e^{2^{prk/(q-r)}}$$
$$\leq 2^{-i} e^{2^{p+1}rk/q}$$

since $r \leq q/2$.

Corollary 5.3. Given any $1 > \epsilon > 0$. Let q, p be positive integers with $q > p \ge 2$ such that $\lceil q^{1-\beta} \rceil < 2^p \le \frac{1}{6}q^{\alpha+\epsilon-1}\ln 2$ for some fixed constants $1 > \alpha > \beta > 1 - \epsilon$. Then for large enough q, TRIBES_{p,q} has $(5/6, \alpha)$ -approximate degree at least $\sqrt{q^{1-\epsilon}/12}$.

Proof. We apply Lemma 5.1 with $r := \lfloor q^{1-\epsilon} \rfloor$. All conditions in the statement of the lemma would then be satisfied for q large enough. In particular, for q large enough,

$$q^{\beta}/r \ge q^{\beta+\epsilon-1} > \log q > p,$$

and

$$r^{\alpha(\alpha-\beta)} = q^{(1-\epsilon)\alpha(\alpha-\beta)} > 12(3\log q/\ln 2)^2 > 12(3p/\ln 2)^2.$$

Corollary 5.4. Let q, p be positive integers with $q > p \ge 2$ such that $\lceil q^{0.2} \rceil < 2^p \le \frac{1}{6}q^{0.3} \ln 2$. Then for large enough q, TRIBES_{p,q} has (5/6, 0.9)-approximate degree at least $\sqrt{q^{0.6}/12}$.

Proof. Follows from the last corollary with $\epsilon = 0.4$, $\alpha = 0.9$, and $\beta = 0.8$.

6 Multiparty communication complexity of AC⁰

6.1 A separating function for NP_k^{cc} and BPP_k^{cc} for $k = O(\log n)$

In this subsection we will show that $\mathcal{F}_k^{\text{TRIBES}_{p,q}}$ separates $\mathsf{NP}_k^{\mathsf{cc}}$ and $\mathsf{BPP}_k^{\mathsf{cc}}$ for $k = O(\log n)$ for some appropriately chosen values of p and q.

Lemma 6.1. $N^k(\mathcal{F}_k^{\text{TRIBES}_{p,q}})$ is $O(\log q + p \log n)$ for any $k \ge 2$.

Proof. The lemma is easy to see as follows. The 0-th player (who holds x), guesses one of the q branches and sends this guess to all other players. Then he also broadcasts the positions of all the p bits in that branch. Finally any other player, who can see x and is given the p positions, can compute the output of $\mathcal{F}_k^{\text{TRIBES}_{p,q}}$. The communication cost is then $O(\log q + p \log n)$ bits.

Lemma 6.2. Let $0 < \epsilon < 1$. Let q, p be sufficiently large positive integers with $q > p \ge 2$ such that $\lceil q^{1-\beta} \rceil < 2^p \le \frac{1}{6}q^{\alpha+\epsilon-1}\ln 2$ for some fixed constants $1 > \alpha > \beta > 1-\epsilon$. Let m = pq and $n \ge pqs$ for $s = \lceil 4e \rceil^{k-1}$ and $k \le a \log_2 n$ for some constant a > 0 depending only on α . Then for any $\delta > 0$, $R_{1/3}^k(\mathcal{H}_k^{\mathrm{TRIBES}_{p,q},\mathrm{OR}_s) \ge R_{1/3}^k(\mathcal{F}_k^{\mathrm{TRIBES}_{p,q}})$ is $\Omega(q^{(1-\epsilon)/2}/2^k)$, which is $\Omega(n^{(1-\epsilon)/2-\delta}/c^k)$ for $c = 2(4e)^{(1-\epsilon)/2}$.

Proof. Applying Corollary 5.4, we get that for large enough q, TRIBES_{p,q} has $(5/6, \alpha)$ -approximate degree of $\Omega(q^{(1-\epsilon)/2})$. Then it follows from Theorem 3.1 that $R_{1/3}^k(\mathcal{F}_k^{\text{TRIBES}_{p,q}})$ is $\Omega(q^{(1-\epsilon)/2}/2^k)$, when k is $O(\log n)$.

Since q = m/p and p is $O(\log q)$, we get that q is $\Omega(m/(\log m))$. Moreover, $m \ge n/(4e)^k$. Hence $R_{1/3}^k(\mathcal{F}_k^{\operatorname{TRIBES}_{p,q}})$ is $\Omega(n^{(1-\epsilon)/2-\delta}/c^k)$, for $c = 2(4e)^{(1-\epsilon)/2}$ and any $\delta > 0$.

In particular, we get the following corollary.

Corollary 6.3. Let q, p be positive integers with $q > p \ge 2$ such that $\lceil q^{0.2} \rceil < 2^p \le \frac{1}{6}q^{0.3} \ln 2$. Then for $k \le a \log_2 n$ for some constant a > 0 the following holds. For q large enough and any $\delta > 0$, $R_{1/3}^k(\mathcal{H}_k^{\mathrm{TRIBES}_{p,q},\mathrm{OR}_s}) \ge R_{1/3}^k(\mathcal{F}_k^{\mathrm{TRIBES}_{p,q}})$ is $\Omega(q^{0.3}/2^k)$ which is $\Omega(n^{0.3-\delta}/c^k)$ for $c = 2(4e)^{0.3}$.

Proof. Follows from Lemma 6.2 with $\epsilon = 0.4$, $\alpha = 0.9$, and $\beta = 0.8$.

Combining Lemma 6.1 and Corollary 6.3 we obtain our desired separation.

Theorem 6.4. Let q, p be large enough positive integers with $q > p \ge 2$ such that $\lceil q^{0.2} \rceil < 2^p \le \frac{1}{6}q^{0.3}\ln 2$. Then $\mathcal{F}_k^{\mathrm{TRIBES}_{p,q}} \in \mathsf{NP}_k^{\mathsf{cc}} - \mathsf{BPP}_k^{\mathsf{cc}}$ for $k \le a \log n$ for some constant a > 0.

6.2 Lower bound for $DISJ_{k,n}$

In this subsection we reduce $\mathcal{H}_k^{\text{TRIBES}_{p,q},\text{OR}_s}$ to $\text{DISJ}_{k,n}$ for a suitable value of n to obtain a NOF communication complexity lower bound on $\text{DISJ}_{k,n}$ for k up to $\Theta(\sqrt{\log n})$ players.

Theorem 6.5. Given constants $1 > \epsilon, \alpha > 0$ such that $1 > \alpha > 1 - \epsilon$. Then for $k \le a\sqrt{\log_2 n}$ for some constant a > 0 depending only on α, ϵ , $R_{1/3}^k(\text{DISJ}_{n,k})$ is $\Omega(n^{c/k}/2^k)$, where $c = \frac{1-\epsilon}{7\alpha+7\epsilon-6}$. In particular, $R_{1/3}^k(\text{DISJ}_{n,k})$ is $\Omega(n^{1/(6k)}/2^k)$.

Proof. Recall that

$$DISJ_{k,n}(x) = \bigvee_{i=1}^{n} \wedge_{j=1}^{k} x_{i,j}$$

For any $x \in \{0,1\}^{Nk}$, where N = pqs for integers p, q, and s we rewrite $\mathcal{H}_k^{\text{TRIBES}_{p,q}, \text{OR}_s}$ as

$$\mathcal{H}_{k}^{\mathrm{TRIBES}_{p,q},\mathrm{OR}_{s}}(x) = \bigvee_{i=1}^{q} \wedge_{j=1}^{p} \bigvee_{u=1}^{s} \wedge_{v=1}^{k} x_{i,j,u,v}$$
$$= \bigvee_{i=1}^{q} \bigvee_{I \in [s]^{p}} \wedge_{j=1}^{p} \wedge_{v=1}^{k} x_{i,j,I(j),v}$$

by expanding the second " \wedge ", where I(j) is the *j*-th index of *I*. This in turn equals

$$= \bigvee_{i=1}^{q} \bigvee_{I \in [s]^{p}} \wedge_{v=1}^{k} \wedge_{j=1}^{p} x_{i,j,I(j),v}$$

$$= \bigvee_{i=1}^{q} \bigvee_{I \in [s]^{p}} \wedge_{v=1}^{k} y_{i,I,v}$$

$$= \bigvee_{i \in [q], I \in [s]^{p}} \wedge_{v=1}^{k} y_{i,I,v}$$

$$= \text{DISJ}_{n,k}(y),$$

where the bits of vector $y \in \{0,1\}^{nk}$ for $n = qs^p$, indexed by $i \in [q], I \in [s]^p$, and $v \in [k]$, are given by

$$y_{i,I,v} = \wedge_{j=1}^p x_{i,j,I(j),v}.$$

Observe that for any two players $v \neq v'$, player v' can compute any value $y_{i,I,v}$. Thus the k players can compute $\mathcal{H}_k^{\mathrm{TRIBES}_{p,q},\mathrm{OR}_s}$ by executing a NOF randomized communication protocol for $\mathrm{DISJ}_{n,k}$ on y of length nk, where $n = qs^p$.

Let β be a constant such that $\alpha > \beta > 1 - \epsilon$. Let $q > p \ge 2$ be sufficiently large and satisfy $\lceil q^{1-\beta} \rceil < 2^p \le \frac{1}{6}q^{\alpha+\epsilon-1}\ln 2$. Let $s = \lceil 4e \rceil^{k-1}$. From Lemma 6.2, we know that for $k \le a \log_2 q$ for some constant a > 0 depending only on α , $R_{1/3}^k(\mathcal{H}_k^{\operatorname{TRIBES}_{p,q},\operatorname{OR}_s})$ is $\Omega(q^{(1-\epsilon)/2}/2^k)$. Observe that since $2^p \le \frac{1}{6}q^{\alpha+\epsilon-1}\ln 2 \le q^{\alpha+\epsilon-1}$ we have

$$n = qs^p < q \lceil 4e \rceil^{kp} < q^{1+(\alpha+\epsilon-1)k\log_2\lceil 4e \rceil}.$$

Since $\log_2 \lceil 4e \rceil < 3.5$, letting $b = 7(\alpha + \epsilon - 1) + 1$, we get $q > n^{2/(bk)}$. Therefore $R_{1/3}^k(\text{Disj}_{n,k})$ is

$$\Omega(n^{\frac{1-\epsilon}{bk}}/2^k)$$

The rest of the theorem follows by taking $\epsilon = 0.4$ and $\alpha = 0.9$.

c .

6.3 The randomized communication complexity of depth-3 AC⁰

In the last two subsections, we showed that there is a depth-4 read-once AC^0 function separating NP_k^{cc} and BPP_k^{cc} for k up to $\Theta(\log n)$, and there is a depth-2 read-once AC^0 function separating NP_k^{cc} and BPP_k^{cc} for k up to $\Theta(\sqrt{\log n})$. In this subsection we show that there is a depth-3 AC^0 function that is hard for randomized NOF communication complexity for k up to $\Theta(\log n)$.

Corollary 6.6. Let q, p be positive integers with $q > p \ge 2$ such that $\lceil q^{0.2} \rceil < 2^p \le \frac{1}{6}q^{0.3} \ln 2$, then for q large enough and any $\epsilon > 0$, $R_{1/3}^k(\mathcal{H}_k^{f,t}) \ge R_{1/3}^k(\mathcal{F}_k^f)$ is $\Omega(q^{0.3}/2^k)$ which is $\Omega(n^{0.3-\epsilon}/c^k)$ when k is $O(\log n)$, and $c = 2(4e)^{0.3}$, where f is TRIBES'_{p,q}, the dual of the TRIBES_{p,q} function on m = pq bits, and t is the OR function on s bits and $n = m \cdot s$ for $s = \lceil 4e \rceil^{k-1}$. Moreover,

$$\mathcal{H}_{k}^{j,\iota}(x) = \wedge_{i \in [q]} \vee_{j \in [p], \ u \in [s]} \wedge_{v \in [k]} x_{i,j,u,v}$$

is a depth 3 read-once formula.

Proof. The first part follows directly from the proof of Lemma 6.2. Since the second layer of f can be combined with t into one layer, the second part follows.

Although we have shown non-trivial lower bounds for $\text{DISJ}_{k,n}$ for k up to $\Theta(\sqrt{\log n})$ it is open whether one can prove similar lower bounds to Corollary 6.6 for $k = \omega(\sqrt{\log n})$ players for $\text{DISJ}_{k,n}$

or any other depth-2 AC^0 function. The difficulty of extending our lower bound methods is our inability to apply Lemma 3.2 to OR since the constant function 1 approximates OR on all but one point.

The above function is far from unique. In particular, since it contains the above function as a subfunction, a similar $m^{\Omega(1)}/2^{O(k)}$ lower bound applies to the k-party NOF communication complexity of the extension of the Minsky-Papert function that is the k-party analogue of the function considered by Razborov and Sherstov [RS08], namely $\wedge_{i=1}^m \vee_{j=1}^{m^2} \wedge_{v=1}^k x_{i,j,v}$.

7 Outside of AC^0

7.1 Generalized Inner Product (GIP)

We can use Theorem 3.1 to prove a $\Omega(n^{1-\epsilon}/c^k)$ -lower bound on k-party NOF randomized communication complexity for the GIP function defined on $n \cdot k$ bits as follows:

$$\operatorname{GIP}_{n,k}(x_1,\ldots,x_k) := \bigoplus_{i=1}^n \left(\wedge_{j=1}^k x_{j,i} \right),$$

for any constant $\epsilon > 0$, where c > 4 is some constant. With the lower bound of $\Omega(n/4^k)$ proved in [BNS92], our technique shows that we do not lose too much by applying the pattern matrix method with a simple masking scheme.

Lemma 7.1. For any $0 < \gamma < \alpha \leq 1$, PARITY_m has $(5/6, \alpha)$ -approximation degree of $\Omega(m^{\gamma})$.

Proof. We define the witnesses for the $(5/6, \alpha)$ -approximate degree of PARITY_m to be the set $R_m^{m^{\gamma}}$ and ν taken to be the uniform distribution on the set. It follows that for any $\pi \sim \nu$, $deg_{5/6}(\operatorname{PARITY}_m|_{\pi}) = \Omega(m^{\gamma})$. Thus what remains is to show that for any integers $m \geq i \geq \Omega(m^{\gamma\alpha})$, if we pick uniformly at random ρ such that $|\rho| = i$ and $\pi \sim \nu$, then

$$\Pr[C_{\rho} \cap C_{\pi} \neq \emptyset] < 2^{i^{\alpha} - i},$$

for sufficiently large m.

We consider two cases: (1) $i \leq m^{\gamma}$ and (2) $i > m^{\gamma}$. These are exactly like the cases in the proof of the claim in Lemma 5.1 with q = m, $r = m^{\gamma}$, p = 1 and k = i. The bound follows since $2 \cdot 2^{-i} e^{8m^{\gamma-1}i} < 2^{i^{\alpha}-i}$.

Corollary 7.2. $R_{1/3}^k(GIP_{n,k})$ is $\Omega(n^{1-\epsilon}/c^k)$ for any constant $\epsilon > 0$ and c = 8e.

Proof. It is easy to see that $\operatorname{GIP}_{n,k} = \mathcal{H}_k^{f,t}$, where $f = \operatorname{PARITY}_m$ and $t = \operatorname{PARITY}_s$ and $n = m \cdot s$. From Lemma 7.1, the $(5/6, \alpha)$ -approximate degree of f is $d = \Omega(m^{\gamma})$ for any $0 < \gamma < \alpha < 1$. Then by applying Theorem 3.1, since $m = n/(4e)^k$ and for $\alpha > \gamma = 1 - \epsilon$, we have $R_{1/3}^k(\mathcal{H}_k^{f,t}) \ge R_{1/3}^k(F_k^f)$ and the latter is $\Omega(d/2^k)$ which is $\Omega(n^{1-\epsilon}/c^k)$ for c = 8e.

References

[BNS92] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. *Journal of Computer and System Sciences*, 45(2):204– 232, October 1992.

- [CA08] Arkadev Chattopadhyay and Anil Ada. Multiparty communication complexity of disjointness. Technical Report TR08-002, Electronic Colloquium in Computation Complexity, http://www.eccc.uni-trier.de/eccc/, 2008.
- [Cha07] Arkadev Chattopadhyay. Discrepancy and the power of bottom fan-in in depth-three circuits. In Proceedings 48th Annual Symposium on Foundations of Computer Science, pages 449–458, Berkeley,CA, October 2007. IEEE.
- [DPV] Matei David, Toniann Pitassi, and Emanuele Viola. Improved separations between nondeterministic and randomized multiparty communication. Submission to RANDOM 2008.
- [KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, Cambridge, England; New York, 1997.
- [LMN89] M. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and learnability. In 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park,NC, October 1989.
- [LS08] Troy Lee and Adi Shraibman. Disjointness is hard in the multi-party number-on-theforehead model. Technical Report TR08-003, Electronic Colloquium in Computation Complexity, http://www.eccc.uni-trier.de/eccc/, 2008.
- [NS94] N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials. Computational Complexity, 4:301–314, 1994.
- [RS08] A. A. Razborov and A. A. Sherstov. The sign-rank of AC^0 . Technical Report TR08-016, Electronic Colloquium in Computation Complexity, http://www.eccc.uni-trier.de/eccc/, 2008.
- [She07] A. A. Sherstov. Separating AC⁰ from depth-2 majority circuits. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pages 294–301, San Diego, CA, June 2007.
- [She08] A. A. Sherstov. The pattern matrix method for lower bounds on quantum communication. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, Victoria, BC, May 2008. To appear.

20

ECCC	

ISSN 1433-8092

http://eccc.hpi-web.de/