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Abstract

We show that proving exponential lower bounds on depth four
arithmetic circuits imply exponential lower bounds for unrestricted
depth arithmetic circuits. In other words, for exponential sized cir-
cuits additional depth beyond four does not help.

We then show that a complete black-box derandomization of Iden-
tity Testing problem for depth four circuits with multiplication gates
of small fanin implies a nearly complete derandomization of general
Identity Testing.

1 Introduction

The permanent, by virtue of being complete for #P [16], occupies a central
position in the study of the complexity of counting problems. Its illustrious
sibling, the determinant is comparatively easy, being complete for GapL, a
complexity class housed within NC2 [4, 14, 17].

The difference between the computation complexity of the permanent
and the determinant has been among the most intriguing mathematical
questions of our times. While we know determinant is easy, it has been
difficult to prove any non-trivial lower bounds against the permanent.

In reality, a variety of lower bounds have been proved in restricted set-
tings. Jerrum and Snir [6] show that any monotone circuit computing the
permanent requires exponential size. Shpilka and Wigderson [13] show that
any depth three circuit computing the permanent and determinant over the
rationals requires quadratic size. Grigoriev and Razborov [5] show that any
depth three arithmetic circuit over a finite field computing the permanent or
the determinant requires exponential size. Raz [11] shows every multilinear
forumla computing permanent and determinant requires superpolynomial
size. All of these proofs already require mathematical intricate machinery.

Another path to potential lower bounds was discovered by Kabanets
and Impagliazzo [7]. Ever since they showed a remarkable connection be-
tween efficient polynomial identity testing (PIT) and arithmetic ciruit lower
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bounds, identity testing has invited closer scrutiny. For example, Kayal and
Saxena [9] and Saxena [12] show how certain restricted depth three circuits
have deterministic polynomial time identity tester.

Interestingly, a number of the above results are restricted to depth three
circuits. Why not four or five or six? The reason, and we show it in this
paper, is that crossing the chasm at depth four is as hard as the general
case!

Depth Four Chasm: If a polynomial P (x1, ..., xn) of degree d with d =
O(n) can be computed by an arithmetic circuit of size 2o(d+d log n

d
), it can

also be computed by a depth four arithmetic circuit of size 2o(d+d log n
d
) with

multiplication gates of fanin o(d).

Notice that polynomial P can trivially be computed by an arithmetic circuit
of size 2O(d+d log n

d
) (and depth two). The main result have implications to

identity testing as well.

Identity Testing Chasm: If there is a complete black-box derandomiza-
tion of Identity Testing for depth four circuits with multiplication gates of
small fanin, then the general Identity Testing problem can be deterministi-
cally solved in nO(log n) time.

2 The Chasm at Depth Four

It is easy to see that depth four circuits are more powerful than depth three.
For example, consider the problem of computing determinant over a finite
field F . We know, by [5], that depth three circuits computing determinant
over F require exponential size. We now observe that determinant over F

can be computed by depth four arithmetic circuits of size 2o(n).
We will start with a problem well know to be computationally equivalent

to the determinant: matrix powering [3]. Matrix powering is the problem of
powering an n × n matrix to the nth power, where each entry of the matrix
is either −1, 0, or 1.

The proof is simple. We break the matrix chain of n matrices into√
n equal sections. In each section, we can compute the ijth entry of the

resulting matrix as a sum of products; each product being a multiplication
of

√
n entries. It is easy to see that the number of such products, and hence

the fan-in into the plus gate, is bounded by n
√

n.
At the end of this phase, we are left with

√
n matrices; one for each

section. The ijth entry of the resulting matrix, can similarly be written as
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sum of products. Again, a product would be
√

n long and the sum would
be over all possible n

√
n products.

Overall, this results in a depth 4 circuit of size nO(
√

n) for matrix pow-
ering, and hence for the determinant.

Theorem 2.1 The determinant of a n×n matrix with integer n bit entries
can be computed by depth 4 arithmetic circuits of size nO(

√
n).

We now generalize the above observation to any arithmetic circuit of
subexponential size. In this paper, we use subexponential size to mean
circuits of size 2o(n).

Let P (x1, . . . , xn) be a polynomial of total degree d. We restrict our
attention to the case when d = O(n)3. P can be written as sum of at most
(

n+d
d

)

products. Hence it can always be computed by a depth two circuit of

size 2O(d+d log n
d
) because:

Lemma 2.2 For any n and k(n) such that k(n) = O(n):

(

n + k(n)

k(n)

)

= 2
O(k(n)+k(n) log n

k(n)
)
.

Proof . If k(n) = Θ(n), then
(

n+k(n)
k(n)

)

≤ 2n+k(n) = 2O(k(n)). If k(n) = o(n)

then, using Stirling’s formula for factorial:

(

n + k(n)

k(n)

)

=
(n + k(n))!

n!k(n)!

= O

(

(n + k(n))n+k(n)

nnk(n)k(n)

)

= O

(

(

1 +
k(n)

n

)n

·
(

1 +
n

k(n)

)k(n)
)

= O

(

ek(n) ·
(

2
n

k(n)

)k(n)
)

= 2
O(k(n)+k(n) log n

k(n)
)
.

�

3If the degree is ω(n) then the bounds we get are weaker, and in any case the permanent
has sublinear degree.
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Let P be computed by arithmetic circuit C of size M with M =
2o(d+d log n

d
). In [15, 2] it is shown that C can be transformed to a circuit D of

degree d, size MO(1) and depth O(log d) with multiplication gates of fan-in
two. We do a careful analysis of the transformation in [2] to obtain a circuit
D with more structural properties. In particular, we will be interested in
getting good bounds on the degree of the gates.

The circuit D we construct will be a strictly alternating circuit of size
S = MO(1), where M is the size of the original circuit. The addition gates
of D have unbounded fan-in, while multiplication gates of D have fan-in
bounded by 6.

The degree of polynomials computed at each gate satisfies the following
properties:

• the output gate degree is d,

• degree of any child of an addition gate is the same as the degree of the
gate,

• all children of a multiplication gate have degree at most half of the
degree of the gate.

It follows that the depth of the circuit D is at most 2 log d. We now
indicate how to construct such a circuit.

Construction

As a first step, we ensure the C is a layered circuit with alternating levels of
plus and mult gates. Also, we will ensure the fan-in at every multiplication
gate is 2. Finally, we rearrange the children of the multiplication gate so
that the degree of the left child is smaller than or equal to the degree of the
right child.

A proof tree rooted at gate g of circuit C is a subcircuit obtained as
follows:

• start with the subcircuit in C that has gate g at the top and computes
the polynomial associated with gate g,

• for every addition gate in this subcircuit, retain only one input to the
gate while deleting the remaining input lines,

• for any multiplicate gate in the subcircuit, retain both the inputs to
it.
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It is easy to see that a proof tree rooted at g computes a monomial of the
polynomial computed at g and this polynomial equals the sum of all such
monomials.

For every gate g in C, define [g] to stand for the polynomial computed
at gate g. For every pair of gates g and h in C, let [g, h] =

∑

T p(T, h)
where T runs over all the proof trees rooted at g in which h occurs in the
rightmost path of the tree, and p(T, h) denotes the polynomial computed by
the proof tree T when gate h is replaced by constant 1. If h does not occur in
the rightmost path of any proof tree at g then [g, h] is the zero polynomial.
Gates of circuit D will be [g], [g, h], and [xi] for gates g and h of C and
variables xi ([xi] represent the variable xi). The connections between these
gates are described below.

It is easy to see that [g] =
∑n

i=1[g, xi][xi].

Also, if g is a plus gate with children g1, . . . , gk, then [g, h] =
∑k

i=1[gi, h].
Let g be a mult gate with children gL and gR as left and right children

respectively. Then, if the right most path from g to h has only plus gates
then [g, h] = [gL]. Otherwise, for a fixed right most path from g to h, there
must exist a unique intermediate mult gate, say p (with children pL and
pR) along the right most path connecting g and h such that

deg(pR) ≤ 1

2
(deg(g) + deg(h)) ≤ deg(p).

Of course, several right most paths could exist between g and h and we have
no way of pinpointing only them. Therefore we sum over all possible gates
p, satisfying the above condition. Then, [g, h] =

∑

p[g, p][pL][pR, h].
Let us now analyze the three terms in the product. Clearly, deg([g]) =

deg(g) and deg([g, h]) = deg(g) − deg(h).

1. deg([g, p]) = deg(g) − deg(p) ≤ 1
2(deg(g) − deg(h)).

2. deg([pL]) ≤ deg(p) ≤ 1
2deg(g). Again,

deg(pL) ≤ deg(pL) + deg(pR) − deg(h) ≤ deg(g) − deg(h).

3. deg([pR, h]) = deg(pR) − deg(h) ≤ 1
2(deg(g) − deg(h)).

We want all the children of [g, h] to be at most half its degree, deg([g, h]).
The problem is with the child [pL], whose degree need not be bounded
above by 1

2deg([g, h]). To get around this, we apply the depth reduction
algorithm once more to [pL]. We have [pL] =

∑n
i=1[pL, xi][xi] and pL is

a plus gate. Let pL =
∑

j p
j
L with each p

j
L being a mult gate. Then,

[pL, xi] =
∑

j [p
j
L, xi]. Applying the above analysis on [pj

L, xi], we get that
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[pj
L, xi] =

∑

q[p
j
L, q][qL][qR, xi] for certain gates q, qL and qR (qL and qR are

children of q and degree of q satisfies the bounds as above). By our analysis,
for the troublesome left child we now have deg(qL) ≤ 1

2pL ≤ 1
2deg([g, h]).

Of course, the bound holds easily for the q and qR as well and therefore, we
have:

[g, h] =
∑

p

n
∑

i=1

∑

j

∑

q

[g, p][pj
L, q][qL][qR, xi][xi][pR, h]

where p, q satisfy the appropriate degree constraints. This completes the
description of circuit D.

By introducing dummy plus gates in the circuit, we can ensure that
plus and mult gates alternate in D. Thus we get a fan-in 6 multiplication
circuit D with depth at most 2 log d (of which at most log d layers are of
mult gates) and size MO(1). All the properties that we had listed of circuit
D are satisfied. Let S be the size of the circuit D, S = MO(1).

We construct a depth 4 circuit E from D. Choose any ` such that

` ≤ d+d log n
d

log S
and ` = ω(1). Set t = 1

2 log6 `. Cut the circuit D in two
halves: the top one has exactly t mult layers with the last layer being of
mult gates and the rest of layers belong to the bottom half. Let g1, . . .,
gk (k ≤ S) be the output gates in the bottom layer. We can view the top
layer as computing a polynomial in k new variables, say, y1, . . ., yk. Let this
polyonmial be P0(y1, . . . , yk). Let the polynomial computed at the gate gi

be Pi(x1, . . . , xn) for 1 ≤ i ≤ k. The polynomial computed by the circuit D

equals
P0(P1(x1, . . . , xn), . . . , Pk(x1, . . . , xn)).

We now obtain an upper bound on the degrees of all these polynomials.
Since the top layer has exactly t mult layers and each mult gate has fanin
bounded by 6, the degree of P0 is bounded by 6t. Since the degree goes down
by at least a factor of two across mult layers, the degree of Pi is bounded
by d

2t for 1 ≤ i ≤ k.
Express each Pi, 0 ≤ i ≤ k as a sum of products, thus each requiring

a depth two circuit to compute. Patching together these circuits, we get
a depth four circuit computing the polynomial computed by D. Let this
circuit be E. Let us calculate the size of E.

Lemma 2.3 Polynomial P0 can be written as a sum of at most
(

S+6t

6t

)

prod-
ucts, each of fanin ≤ 6t. Polynomials Pi, 1 ≤ i ≤ k, can be written as a

sum of at most
(n+ d

2t

d

2t

)

products, each of fanin ≤ d
2t .
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Proof . The number of monomials on n variables and degree k is
(

n+k
k

)

.
The lemma now follows from the degree bound on each polynomial and the
number of variables they are defined on. �

Therefore, the size of circuit E is bounded by

(

S + 6t

6t

)

+ S ·
(

n + d
2t

d
2t

)

=

(

S +
√

`√
`

)

+ S ·
(

n + d
`δ

d
`δ

)

(δ = 1
2 log6 2)

≤ (2S)
√

` + S · 2O( d

`δ
+ d

`δ
(log n

d
+log `δ))

(since
√

` ≤ S and d
`δ = o(n))

= 2O(
√

(d+d log n
d
) log S) + S · 2o(d+d log n

d
)

= 2o(d+d log n
d
).

Therefore, we have the following theorem.

Theorem 2.4 Let P (x1, . . . , xn) be a polynomial of degree d = O(n) over
the field F . If there exists an arithmetic circuit of size 2o(d+d log n

d
) for P then

there exists a depth 4 arithmetic circuit of size 2o(d+d log n
d
) for P . Further,

the fanin of second layer mult gates is bounded by `(n) where ` is any
sufficiently slowly growing function in ω(1) and the fanin of bottom layer
mult gates is bounded by o(d).

For multilinear polynomials, we have the following corollary.

Corollary 2.5 Let P (x1, . . . , xn) be a multilinear polynomial of over the
field F . If there exists an arithmetic circuit of size 2o(n) for P , then there
exists a depth 4 arithmetic circuit of size 2o(n) for P .

When the multilinear polynomial is specialized to the permanent we get,

Corollary 2.6 If every depth 4 arithmetic circuit for Permanent require
exponential size, then every arithmetic circuit for Permanent requires expo-
nential size.

3 Black-box Derandomization of Identity Testing

An arithmetic circuit of size n is a low degree circuit if the polynomial
computed by the circuit has degree ≤ n. Low degree Identity Testing is the
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problem of testing if a given low degree circuit is zero. In this section, we
relate the black-box derandomization of depth four Identity Testing to low
degree Identity Testing. A black-box derandomization of low degree Identity
Testing problem can be defined as follows (it is a restriction of the definition
given in [1] to low degree circuits).

Definition 3.1 Let F be a field. Let C be a class of low degree arithmetic
circuits over F . Function f : N 7→ (F [y])∗ is a s(n)-pseudorandom generator
against class C of arithmetic circuits if

• f(n) = (pn
1 (y), pn

2 (y), . . . , pn
n(y)), pn

j (y) ∈ F [y] is computable in time
polynomial in s(n) and each pn

j is of degree bounded by s(n).

• For any arithmetic circuit C ∈ C of size n computing a polynomial of n

variables over F , C(x1, x2, . . . , xn) = 0 iff C(pn
1 (y), pn

2 (y), . . . , pn
n(y)) =

0.

Given an s(n)-pseudorandom generator f against C, one can solve the
Identity Testing problem (for circuits from the class C) deterministically in
time sO(1)(n) by simply plugging in the polynomial pn

j for xj and evaluat-
ing the resulting (univariate) polynomial. A complete derandomization is
obtained when s(n) is a polynomial in n. We call such generators optimal
pseudorandom generators.

Theorem 3.2 Consider the class of depth 4 arithmetic circuits over F with
fanin of second layer mult gates bounded by O(`(n)) (for any unbounded
function `) and the fanin of bottom layer mult gates bounded by O(log n). If
there is an optimal pseudorandom generator against this class of circuits then
the low degree Identity Testing problem over F can be solved deterministically
in time nO(log n).

Proof . Let f be an optimal pseudorandom generator against the class
of depth 4 circuits over F defined above. It was shown in [1] that such a
pseudorandom generator yields a family of multilinear polynomials {qm}m≥1

such that qm is over m variables, is computable in time 2O(m), and requires
depth 4 circuits of size 2Ω(m), with fanins of second and bottom layer mult

gates bounded by O(`(2m)) and O(m) respectively, to compute. By The-
orem 2.4, polynomial qm requires exponential sized circuits (of any depth)
to compute. Now, we can construct an algorithm that derandomizes low
degree Identity Testing over F in time nO(log n) using the polynomial q as
shown by the lemma below. �
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Lemma 3.3 Let {qm}m≥1 be a multilinear polynomial family over F com-
putable in exponential time and that cannot be computed by subexponential
sized arithmetic circuits. Then the low degree Identity Testing problem over
F can be solved in time nO(log n).

Proof . The proof is along the lines of the proof of Lemma 7.6 in [7]. Let
C be any circuit over F of size n computing a polynomial of degree ≤ n.
We wish to test if C compute the zero polynomial. Let S1, S2, . . ., Sn be
subsets of [1, c log n] (for a suitable constant c) such that |Si| = d log n (for
a suitable d < c) and |Si ∩ Sj | ≤ log n (for i 6= j). This family of sets
is the Nisan-Wigderson design [10] and can be efficiently constructed. For
a tuple of variables (x1, x2, . . . , xc log n), denote by (x1, x2, . . . , xc log n)Si

the
tuple obtained by retaining only those variables whose indices occur in Si

(the variables are always arranged in increasing order of index). Without
loss of generality, we can assume that C has n inputs z1, . . ., zn. Replace
zi by pi = qd log n(x1, x2, . . . , xc log n)Si

for each i. We now claim that if C is
zero after substitution then it is zero without substitution as well.

Suppose not. So C(z1, . . . , zn) 6= 0 and C(p1, . . . , pn) = 0. Then
there must exist an index j such that C(p1, . . . , pj , zj+1, . . . , zn) = 0 and
C(p1, . . . , pj−1, zj , . . . , zn) 6= 0. Randomly fix values of variables zj+1, . . .,
zn as well as xi’s not occuring in the polynomial pj in the last circuit. The
circuit will still compute a non-zero polynomial with high probability. Fix
value to the above variables that keep the circuit non-zero. Now replace
each pi, i < j, by a sum of product form. Since all but log n variables of
pi are fixed, the size of this form is bounded by n. After replacement, we
get a circuit of size ≤ n2 over variables (x1, . . . , xc log n)Sj

and zj that is
non-zero but becomes zero on substituting zj by pj. Hence zj − pj divides
the polynomial computed by the new circuit. We now use the multivariate
polynomial factorization algorithm [8] to compute this factor. The circuit
computing the factor has size ne for some constant e independent of d. This
gives us a circuit of size ne+n2 that computes polynomial pj which is qd log n.
Choosing a suitable d yields a contradiction on the hardness of qd log n.

Therefore, if C was non-zero to start with, it continues to be non-zero
even after the substitution. Now express C as sum of products using brute-
force. Since C after substitution computes a degree O(n log n) polyonmial
over O(log n) variables, it will have at most nO(log n) terms. This gives an
nO(log n) time algorithm for testing if C is a zero. �

Theorem 3.2 is suboptimal. It is an interesting open question to improve
it to obtain polynomial time algorithm instead of nO(log n).
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