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Abstract

We show analogues of a theorem due to Valiant and Vazirani [16] for
intractable parameterized complexity classes such as W[P], W[SAT] and
the classes of the W-hierarchy as well as those of the A-hierarchy. We do
so by proving a general “logical” version of it which may be of independent
interest.

1 Introduction

1.1 The Valiant-Vazirani Lemma

In classical complexity theory the famous Valiant-Vazirani Lemma states that
“the problems of distinguishing between instances of Sat having zero or one
solution, or finding solutions to instances of Sat having unique solutions, are
as hard as Sat itself.” ([16, Abstract]) Here hardness refers to randomized
reductions with one-sided error. This result can be shaped as a probabilistic
statement about Boolean logic:

Theorem 1 (Valiant, Vazirani 1985) There is a polynomial time algorithm

computing for any Boolean formula α(x̄) a Boolean formula β(x̄ȳ) such that, if

α is satisfiable, then

Pr
b̄∈{0,1}|ȳ|

[

|= ∃=1x̄ (α ∧ β)
b̄

ȳ

]

≥
1

8|x̄|
.

It is easy to see that we can also allow α to come from Boolean logic extended
by various quantifiers. In this work we intend to show such results for others
than Boolean logics.

Our main result states that given a structure A and a formula φ of least
fixed-point logic LFP we can do the following in polynomial time:

First we enlarge A by increasing its universe and declare some additional
(mainly arithmetical) relations on it; second we compute a formula ψ of roughly
the same logical complexity as φ such that if you randomly assign values to
some distinguished variables of ψ, then with “good” probability ψ in the new
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structure singles out exactly one of the solutions of φ in A provided there are
any; furthermore we have one-sided error in the sense that ψ has no solution in
case φ has none.

Theorem 2 Let τ be a vocabulary. There is a relational vocabulary τ∗ and

a polynomial time algorithm which, given a τ-structure A and a formula φ =
φ(x̄) ∈ LFP[τ ], computes a τ∗-enlargement A∗ of A and a quantifier free for-

mula ρ = ρ(x̄ȳz̄) ∈ FO[τ∗] with parameters in A∗ such that, if φ(A) 6= ∅, then

Pr
b̄∈(A∗)|ȳ|

[

A∗ |= ∃=1x̄z̄
(
φȦ(x̄) ∧ ρ(x̄ȳz̄)

) b̄

ȳ

]

≥
1

|A∗|2
.

(Here φȦ is the relativization of φ to the unary predicate Ȧ ∈ τ∗ \ τ which is
interpreted in A∗ by the universe A of A.)

This allows us to move in polynomial time to a “probably unique” formula
without essentially increasing the logical complexity of the input formula.

The logic LFP does not play an essential role here. We state the result for
LFP just because this suffices for the applications we have in mind. Our proof
applies to any logic in the sense of [8] tractably closed under relativizations and
under conjunction with quantifier free first order formulas.

1.2 Applications to complexity theory

Theorem 1 has proven useful in many respects. For example it is a main step
in the original proof of Todas theorem [15] stating that PH ⊆ BP⊕P ⊆ P#P[1].

An immediate corollary of Theorem 1 concerns the problem Unique-Sat:
does a given Boolean formula have exactly one satisfying assignment?

Theorem 3 (Valiant, Vazirani 1985) Unique-Sat is NP-hard under ran-

domized polynomial time reductions with one-sided error.1

Downey, Fellows and Regan [7] ask for analogues of these results in the
parameterized setting. The first difficulty is how to state such analogues.

In a parameterized problem instances x come along with a parameter κ(x) ∈
N which is expected to be small in typical applications. Intuitively the parame-
ter encodes some knowledge we have about the inputs which we want to exploit
algorithmically. To allow for full exploitation the notion of tractability is ad-
justed accordingly: parameterized problems decidable in in time f(κ(x))· |x|O(1)

for an arbitrary computable f : N → N are fixed-parameter tractable. Asking
for fpt algorithms means trying to confine the exponential running time needed
to solve many natural problems to some ‘small’ parameter.

There is no class of intractable parameterized problems playing a role as
predominant as NP in the classical setting. Instead we face several hierar-
chies of intractable classes, most prominently the W-hierarchy. Other important

1In fact Unique-Sat is complete for DP under these reductions [16, Corollary 5]. See [2]
for a discussion.
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classes are W[SAT] and W[P] on the top of the W-hierarchy and those of the
A-hierarchy.

A[1] ⊆ A[2] ⊆ . . .
‖ |

⋃

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[SAT] ⊆ W[P]

We may ask for parameterized analogues of the Valiant-Vazirani Lemma for
each of these intractable classes. Furthermore, the notion of parameterized
randomized reduction can be given various interesting renderings [7, 13, 14]. E.g.
we can restrict the random complexity available on input x to f(κ(x)) · log |x|
many random bits. We call such a reduction W[P]-randomized. If we impose
no bound on the random complexity we speak of paraNP-randomization.

Now, what is known? Downey et al. [7] showed

Theorem 4 (Downey, Fellows, Regan 1998) Let t ≥ 1. There are paraNP-

randomized reductions with one-sided error from W[t] to UniqueW[t].

The classes UniqueW[t] for t ≥ 1 have been introduced in [7]. The reduc-
tions there use κ(x) · |x| · log |x| random bits. With a view to the goal to find
some parameterized analogue of Todas theorem Downey et al. asked how to
derandomize this to, in the present terminology, W[P]-randomized reductions.
We answer this question here. We give reductions using less than κ(x)3 · log |x|
random bits:

Theorem 5 Let t ≥ 1. There are W[P]-randomized reductions with one-sided

error

1. from A[t] to UniqueA[t],

2. from W[t] to UniqueW[t],

3. from W[P] to UniqueW[P] and

4. from W[SAT] to UniqueW[SAT].

In [7] it is asked for the complexity of the parameterized problem p-Unique-
Clique: given a graph and a parameter k, does the graph contain exactly one
clique of size k? As a corollary we get

Theorem 6 p-Unique-Clique is W[1]-hard under W[P]-randomized reduc-

tions with one-sided error.

2 Logical preliminaries

First-order logic A vocabulary τ is a finite set of relation symbols, function
symbols and constants. Relation or function symbols have an associated arity.
τ-atoms are of the form t1 = t2 or Rt1 · · · tr for a relation symbol R ∈ τ of arity
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r and τ -terms t1, . . . , tr. τ-terms a build from individual variables x1, x2, . . .,
constants and function symbols. (First order) τ-formulas FO[τ ] are build from
atoms using Boolean connectives and existential and universal quantification.

A τ -structure A consists in an universe A, i.e. a finite non-empty set, and for
each relation symbol R (function symbol f) from τ of arity r a relation RA ⊆ Ar

(function fA : Ar → A), and for any constant c ∈ τ an element cA ∈ A. A
vocabulary is relational if and only if it contains no function symbols (but may
contain constants). Accordingly we speak of relational formulas and relational
structures.

Let t, u ∈ N. Πt is the class of relational first order formulas of the form
∀ȳ1∃ȳ2 · · ·Qȳtφ, where φ is quantifier-free and Q is ∃ for even t and ∀ for odd
t. If additionally we have |ȳi| ≤ u for all i ∈ [t] we say that the formula belongs
to the class Πt,u.

Parameters and solutions A τ-formula with parameters in A is one con-
taining besides symbols from τ also parameters in A, i.e.constants a with a =
aA ∈ A. Such a formula can be interpreted only in structures containing its
parameters. We write φ ā

x̄
for the formula obtained from φ by substituting in φ

the parameters ā in A for the free occurences of the variables x̄.

Definition 7 For φ = φ(x̄) the set φ(A) of solutions of φ in A is the set of all
ā ∈ A|x̄| such that A |= φ ā

x̄
. For a subtupel x̄1 of x̄, say for simplicity x̄ = x̄1x̄2,

call (x̄1, ā1) a partial solution of (A, φ) if and only if ā1ā2 ∈ φ(A) for some ā2;
in this case ā1ā2 is a satisfying extension of (x̄1, ā1).

Definition 8 A τ∗-enlargement of a τ -structure A is a (τ ∪ τ∗)-structure A∗

which is an expansion of an extension2 of A such that there is some unary
relation symbol Ȧ ∈ τ∗ \ τ with ȦA∗

= A.

Least fixed-point logic Least-fixed point logic LFP is FO extended by for-
mulas of the form [lfpx̄,Xφ]t̄. For simplicity we recall syntax and semantics only
for the case where t̄ = z̄ for a tuple of variables z̄.

[lfpx̄,Xφ]z̄ is a τ -formula of LFP, φ ∈ LFP[τ ], whenever φ = φ(x̄ȳ) is a
τ ∪ {X}-formula of LFP, X is a |x̄|-ary relation symbol occuring positively in
φ and |x̄| = |z̄|. It has free variables ȳz̄. It is satisfied by b̄c̄ in a τ -structure A
if and only if c̄ is in the least fixed-point reached when, starting with B = ∅,
iterating the operation

B 7→ φ
b̄

ȳ
((A, B)).

Here (A, B) is the τ ∪ {X}-structure obtained from A by interpreting X by B.

2This means A ⊆ A∗ and sA
∗

= sA for a relation smybol or a constant s ∈ τ and for a
function symbol f ∈ τ the restriction of fA

∗
to A is fA.
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3 Proof of the main result

In this section we prove Theorem 2. Let a formula φ(x̄) ∈ LFP[τ ] and a τ -
structure A be given. Let k := |x̄|. If |A| = 1, there is nothing to do – we take
ρ := y = y and as A∗ any τ∗-enlargement of A with A∗ = A. The same works
in case k = 0, since then φ(A) either contains nothing or exactly the empty
tuple.

So we assume k ≥ 1, |A| ≥ 2 and A = {0, . . . , |A| − 1}. We can further
assume that k ≥ 3 and

0̄ := 0 · · · 0
︸ ︷︷ ︸

k times

/∈ φ(A).

To see this, note that φ̃(x̄x1x2) := φ(x̄)∧x1 = 1∧x2 = 1 (where 1 is a parameter)
satisfies this assumption and |φ̃(A)| = |φ(A)|; if A∗ and ρ̃(x̄x1x2ȳz̄) satisfy our
claim for φ̃, then A∗ and ρ(x̄ȳz̄′) := x1 = 1 ∧ x2 = 1 ∧ ρ̃ with z̄′ := z̄x1x2

satisfies our claim for φ(x̄).

3.1 Construction

Let p be the smallest prime bigger than |A| and k + 2. Since by Bertrands
Postulate there is a prime between n and 2n for every n > 1 we know that p
can be computed in polynomial time. The structure A∗ has as universe

A∗ := {0, . . . , k · p− 1}.

We set τ∗ := {R+, R×, Rmod, Ȧ,≤} for ternary R+, R×, Rmod, binary ≤ and
unary Ȧ. We let A∗ be a τ∗-enlargement of A with

ȦA∗

:= A

RA∗

+ := {(a, b, c) ∈ (A∗)3 | a+ b ≡ cmod p}

RA∗

× := {(a, b, c) ∈ (A∗)3 | a · b ≡ cmod p}

RA∗

mod := {(a, b, c) ∈ (A∗)3 | a ≡ bmod c}

≤A∗

:= the natural order

In A∗ the set {0, . . . , p−1} carries the structure of Fp, the field with p elements.
The set of solutions φ(A) ⊆ Ak ⊆ F

k
p can now be viewed as living in the k-

dimensional vectorspace over Fp. We identify vectors with their representations
as k-tuples over Fp with relation to the standard basis. For a vector ā ∈ F

k
p \{0̄}

let 〈ā〉⊥ denote the hyperplane of vectors orthogonal to ā. If we translate 〈ā〉⊥

by ā we get Hā, that is

Hā := 〈ā〉⊥ + ā =
{
b̄+ ā | b̄ ∈ 〈ā〉⊥

}
.

Since this is a hyperplane in F
k
p we know

|Hā| = pk−1. (1)
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Let ā, b̄ ∈ F
k
p \ {0̄} be different. If ā and b̄ are linearly independent, the hy-

perplanes Hā and Hb̄ are not parallel and so the affine subspace Hā ∩ Hb̄ has
dimension k − 2. If ā and b̄ are linearly dependent, then Hā ∩ Hb̄ = ∅. It is
herefore that we use the translate Hā instead of 〈ā〉⊥. Especially we get

|Hā ∩Hb̄| ≤ pk−2. (2)

The proof strategy typically persued to get the Valiant-Vazirani theorem is
by subsequently deviding the space where the solutions live (there a cartesian
power of {0, 1}) randomly in half for a random number of times. Then the
probability that exactly one solution remains is bounded from below.

Here we argue similarly. Our solutions live in F
k
p. An idea now is to cut down

this space to a 1/p-fraction using random hyperplanes and to do so subsequently
for a random number of times. We do not select random hyperplanes but a
random number of random vectors from F

k
p and look at the event that all these

are contained in a hyperplane Hā associated with a solution ā ∈ φ(A). Arguing
with (1) and (2) similarly to the argument known from the classical setting we
can bound from below the probability that the above event holds for exactly
one solution. It is here where we need that 0̄ /∈ φ(A). Details follow.

Intuitively the following formula wants x̄ from A such that the first u+ 2 of
ȳ1, . . . , ȳk+2 ∈ F

k
p are in Hx̄:

ρ′ :=
∧

j∈[k]

Ȧxj ∧
∧

i∈[k+2]

“ȳ′i = ȳi mod p” ∧Rmoduu
′(k + 1)

∧
∧

i∈[k+2]

(
max{i− 2, 0} ≤ u′ → “ȳ′i ∈ Hx̄”

)
.

Here max{i− 2, 0}, (k + 1) and p are parameters. “ȳ′i = ȳi mod p” abbreviates
the formula

∧

j∈[k]Rmodyijy
′
ijp, where we write e.g. ȳ1 = y11 · · · y1k.

We now explain for what formula “ȳ ∈ Hx̄” stands for. Observe that –
loosely written – ȳ ∈ Hx̄ if and only if

∑

j(yj − xj) · xj = 0. We introduce
auxiliary variables for all intermediate results obtained when computing this
sum, namely we intend uj = yj − xj , the vj ’s to denote the products summed
and the wj ’s to denote the partial sums obtained when adding up the vj ’s one
after the other.

We let “ȳ ∈ Hx̄” stand for the following formula with parameter 0:

∧

j∈[k]

R+ujxjyj ∧
∧

j∈[k]

R×ujxjvj ∧
∧

j∈[k−1]

R+wjvjwj+1 ∧ w1 = v1 ∧ wk = 0.

So “ȳ ∈ Hx̄” is a formula in the variables x̄ȳūv̄w̄. In ρ′ we use for each i ∈ [k+2]
different auxiliary variables ūiv̄iw̄i in “ȳ′i ∈ Hx̄”, that is “ȳ′i ∈ Hx̄” = “ȳ′i ∈
Hx̄”(x̄ȳ′iūiv̄iw̄i).

We aim at a formula ρ such that with good probability for a random assign-

ment to the ȳi and u we have exactly one solution of φȦ ∧ ρ. Sofar this cannot
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work since we can assign whatever we want to the auxiliary variables ūiv̄iw̄i for
i larger that the value of u′ plus 2. We set

ρ := ρ′ ∧
∧

i∈[k+2]

(¬max{i− 2, 0} ≤ u′ → “ūiv̄iw̄i = 0̄”).

In the notation of our claim we let ȳ comprise all the ȳi’s and u and we let z̄
comprise all primed variables as well as all the auxiliary variables ūiv̄iw̄i.

This completes the construction of A∗ and ρ. It is clear that A∗ and ρ can
be computed in polynomial time given A and x̄.3

3.2 Probability analysis

Assume φ(A) 6= ∅. Let b ∈ A∗ and b̄1, . . . , b̄k+2 ∈ (A∗)k be arbitrary. Abbreviate

ψ := (φȦ ∧ ρ)
b

u

b̄1 · · · b̄k+2

ȳ1 · · · ȳk+2
.

Then (x̄, ā) is a partial solution of (A∗, ψ) if and only if

ā ∈ φ(A) and (b̄i mod p) ∈ Hā for all i ∈ [(bmod (k + 1)) + 2].

Furthermore, if (x̄, ā) is a partial solution of (A∗, ψ), then it has exactly one
satisfying extension. Especially

|ψ(A∗)| =
∣
∣
{
ā ∈ φ(A) | b̄i mod p ∈ Hā for all i ∈ [(bmod (k + 1)) + 2]

}∣
∣ . (3)

We define a function f by

f
(
bb̄1 · · · b̄k+2

)
:=

∣
∣
∣
∣
(φȦ ∧ ρ)

b

u

b̄1 · · · b̄k+2

ȳ1 · · · ȳk+2
(A∗)

∣
∣
∣
∣
.

Think of the set of the bb̄1 · · · b̄k+2’s as carrying a probability space with the
uniform probability measure. Declare two points of this space bb̄1 · · · b̄k+2 and
b′b̄′1 · · · b̄

′
k+2 to be equivalent if and only if b ≡ b′ mod (k+1) and componentwise

b̄i ≡ b̄′i mod p for all i ∈ [k + 2].
Then the event {f = 1} is a union of such equivalence classes. All equivalence

classes have the same size since both p and k devide |A∗|. It is herefore that
we chose A∗ as we did. Thus the probability that f is 1 on a random argument
bb̄1 · · · b̄k+2 is the same as the probability that f is 1 on an argument chosen
uniformly at random from those bb̄1 · · · b̄k+2 with b < k + 1 and b̄i ∈ F

k
p for all

i ∈ [k + 2].
Let B,B1, . . . , Bk+2 be independent random variables such that B is uni-

formly distributed in {0, . . . , k} and each Bi is uniformly distributed in F
k
p. Say,

these random variables are defined on a probability space with measure Pr. We
aim to bound Pr [f(BB1 · · ·Bk+2) = 1] from below.

3Note that ρ depends only weakly on φ.
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Call m good if and only if

pm ≤ |φ(A)| ≤ pm+1.

Since 1 ≤ |φ(A)| ≤ |A|k ≤ pk for any good m we have 0 ≤ m ≤ k. Hence
Pr[B is good] is at least 1/(k + 1). Note that, if we find some t such that
Pr[f(mB1 · · ·Bk+2) = 1] ≥ t for all good m, then we know that for at least an
1/(k + 1) fraction of b’s we find at least a t fraction of b̄1 · · · b̄k+2’s such that f
is 1 and hence Pr[f(BB1 · · ·Bk+2) = 1] ≥ t/(k + 1).

Thus to prove our theorem it suffices to establish the following Claim I. It
is only for the sake of some commodity here why we assumed k ≥ 3 since this
implies 1/((k + 1)2p2) ≥ 1/|A∗|2.

Claim I: If m is good, then Pr
[
f(mB1 · · ·Bk+2) = 1

]
≥ 1/(2p2).

Proof of Claim I: Let m be good. By equation (3)

f(mB1 · · ·Bk+2) = |{ā ∈ φ(A) | B1, . . . , Bm+2 ∈ Hā}|.

Hence f(mb̄1 · · · b̄k+2) = 1 if and only if there is a solution ā ∈ φ(A) such that
Hā contains all b̄1, . . . , b̄m+2 but there is no other solution with this property.
Define for ā ∈ φ(A) the event

A(ā) := {B1, . . . , Bm+2 ∈ Hā} ∩
⋂

ā′∈φ(A)\{ā}

⋃

i∈[m+2]

{Bi /∈ Hā′}.

Then A(ā) ∩A(ā′) = ∅ for different ā, ā′ ∈ φ(A) and

{f(mB1 · · ·Bk+2) = 1} =
⋃̇

ā∈φ(A)

A(ā). (4)

Using the following Claim II we get what we want:

Pr
[
f(mB1 · · ·Bk+2) = 1

] (4)
=

∑

ā∈φ(A)

Pr[A(ā)]
Claim II
>

∑

ā∈φ(A)

p− 1

pm+3

m good

≥
pm(p− 1)

pm+3
≥

1

2p2
.

Claim II: If m is good, then Pr[A(ā)] > (p− 1)/pm+3 for all ā ∈ φ(A).

Proof of Claim II: Let m be good and ā ∈ φ(A). Write B̄ := (B1, . . . , Bm+2).
By (1)

Pr
[
B̄ ∈ Hm+2

ā

]
=

∏

i∈[m+2]

Pr [Bi ∈ Hā] = 1/pm+2. (5)

Let ā, ā′ ∈ φ(A), ā′ 6= ā. Then by (2)

Pr
[
B̄ ∈ (Hā ∩Hā′)m+2

]
≤ 1/p2(m+2). (6)
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By (5) and (6)

Pr
[
B̄ ∈ Hm+2

ā′ | B̄ ∈ Hm+2
ā

]
≤

1/p2(m+2)

1/pm+2
= 1/pm+2. (7)

Clearly

Pr [A(ā)] = Pr
[
B̄ ∈ Hm+2

ā

]
· Pr

[⋂

ā′

⋃

i∈[m+2]

{Bi /∈ Hā′} | B̄ ∈ Hm+2
ā

]

≥ Pr
[
B̄ ∈ Hm+2

ā

]
·
(

1 −
∑

ā′

Pr
[
B̄ ∈ Hm+2

ā′ | B̄ ∈ Hm+2
ā

])

.

Here ā′ ranges over φ(A) \ {ā}. Using (5) and (7) we conclude that

Pr [A(ā)] ≥
1

pm+2
·

(

1 −
|φ(A)| − 1

pm+2

)
m good
>

1

pm+2
·

(

1 −
pm+1

pm+2

)

=
p− 1

pm+3
.

�

4 Applications to parameterized complexity the-

ory

In this section we apply Theorem 2 to prove Theorem 5. This is straightforward
using the model-checking characterizations of the classes involved.

4.1 Complexity theoretic preliminaries

The parameterized setting We first recall the basic notions from param-
eterized complexity theory [6, 12]. We lean on [12]. Fix a finite alphabet Σ
containing at least two elements. A parameterized problem is a pair (P, κ) of a
classical problem P ⊆ Σ∗ and a parameterization κ : Σ∗ → N computable in
polynomial time. (P, κ) belongs to the class FPT of fixed-parameter tractable

problems if and only if there is an algorithm deciding it in fpt time, i.e. on
input x ∈ Σ∗ it needs time at most f(κ(x)) · |x|O(1) where f : N → N is some
computable funtion.

An fpt reduction from a parameterized problem (P, κ) to another (P ′, κ′) is a
(many-one) reduction r : Σ∗ → Σ∗ from P to P ′ computable in fpt time “which
doesn’t increase the parameter too much”: κ′ ◦ r ≤ g ◦ κ for some computable
g : N → N. We write (P, κ) ≤fpt (P ′, κ′) in case such a reduction exists and

[(P, κ)]fpt :=
{
(P ′, κ′) | (P ′, κ′) ≤fpt (P, κ)

}
.

Parameterized randomization A W[P]-randomized reduction with one-sided

error4 from (P, κ) to (P ′, κ′) is a probabilistic Turing machine T running in fpt

4The choice of this terminology [14] is motivated by the machine characterization [5] of the
class W[P].
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time such that for some computable f, g, h : N → N and some c ∈ N it uses on
any x ∈ Σ∗ at most f(κ(x)) · log |x| many random bits (coins) and

– if x ∈ P , then Pr[T (x) ∈ P ′] ≥ 1
g(κ(x))|x|c ,

– if x /∈ P , then Pr[T (x) ∈ P ′] = 0,

– Pr[κ′(T (x)) ≤ h(κ(x))] = 1.

Here, as usual, the probability is taken over the coin tosses of T on x and the
random variable T (x) is the output of T on x.

Model-checking problems For a set of formulas Φ of some logic we consider
the parameterized model checking problem p-MC(Φ)

Input: a structure A and a formula φ ∈ Φ.
Parameter: ‖φ‖ ∈ N (the size of φ).
Question: Is φ(A) 6= ∅?

This sloppy notation intends to define the parameterized problem consisting
of the classical problem MC(Φ) := {(A, φ) | φ ∈ Φ and φ(A) 6= ∅} and the
parameterization (A, φ) 7→ ‖φ‖.

p-var-MC(Φ) is the parameterized problem obtained from MC(Φ) using the
parameterization

(A, φ) 7→ number of (bound or free) variables of φ.

Parameterized intractable classes There are well-known characterizations
of parameterized intractable classes by model-checking problems. Originally [6]
the classes of the W-hierarchy, W[SAT] and W[P] have been defined by weighted
satisfiability problems for various classes of Boolean circuits. For the “basic
machinery” translating weighted satisfiability problems to model-checking prob-
lems and vice-versa see [10]. Let t ≥ 1.

– A[t] = [p-MC(Πt−1)]
fpt,

– W[t] = [p-MC(Πt−1,1)]
fpt,

– W[SAT] = [p-var-MC(Π0)]
fpt

These characterizations can be found in the monograph [12, Chapter 7]. For a

characterization of W[P] by model-checking problems let Σ1LFP[1] denote the
class of LFP-formulas of the form [lfpx,Xφ]y, where (X is unary and) φ is a first
order formula in which at most one variable has bounded occurences. Then [4,
Theorem 33(1)]

– W[P] = [p-MC(Σ1LFP[1])]fpt

Clearly all these characterizations although not originally stated this way hold
true for formulas with parameters.
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4.2 Parameterized Valiant-Vazirani lemmata

For a (classical) model-checking problem MC(Φ) let Unique-MC(Φ) be the
(classical) problem

Input: a structure A and a formula φ ∈ Φ.
Question: Is |φ(A)| = 1?

Naturally we write p-Unique-MC(Φ) for the ‘uniqueness-variant’ of p-MC(Φ).
For t ≥ 1 we define the ‘uniqueness-variant’ of W[t] by setting

UniqueW[t] := [p-Unique-MC(Πt−1,1)]
fpt.

The classes UniqueA[t],UniqueW[P] and UniqueW[SAT] are similarly obtained.

Remark 9 In [7] the classes UniqueW[t] were defined via “uniqueness variants”
of weighted satisfiability problems for certain circuit classes. That our defini-
tion is equivalent follows from the fact that these problems are parsimoniously

interreducible with the corresponding model-checking problems.5

Proof of Theorem 5. Let a model-checking problem MC(Φ) for Φ ⊆ LFP be
given, let (A, φ(x̄)) be an instance of it and let k = |x̄|. Our probabilistic

Turing machine first computes deterministically A∗ and (φȦ ∧ ρ) from Theo-
rem 2 in polynomial time. It then guesses randomly b̄ ∈ (A∗)|ȳ| and outputs
(

A∗, (φȦ ∧ ρ) b̄
ȳ

)

.

Note that for any Φ coming from any of the model-checking problems com-

plete for one of the classes mentioned in Theorem 5, we have (φȦ ∧ ρ) ∈ Φ,
whenever φ ∈ Φ – perhaps modulo a polynomial time transformation. Without
loss of generality we can assume that |A| ≥ k + 2, so |A∗| < k · 2 · |A|. In

case φ(A) = ∅, clearly (φȦ ∧ ρ) b̄
ȳ
(A∗) = ∅. Hence we have one-sided error.

Otherwise we have (A∗, (φȦ ∧ ρ) b̄
ȳ
) ∈ Unique-MC(Φ) with probability at least

1/|A∗|2 > 1/(k2 · 4 · |A|2).
Note that |ȳ| = (k + 2) · k + 1 and thus the machine needs only

((k + 2) · k + 1) · dlog |A∗|e random bits.

This number obeys a bound of the form f(κ(x)) · log |x| for κ being the parame-
terization mapping x = (A, φ) to the number k of variables of φ and hence also
for κ being the parameterization by ‖φ‖. �

Proof of Theorem 6. Let (P, κ) ∈ W[1]. Then (P, κ) ≤fpt p-MC(Π0). By Theo-
rem 5 we have a W[P]-randomized reduction from p-MC(Π0) to its uniqueness
variant p-Unique-MC(Π0). Now, there is a parsimonious fpt reduction from
p-MC(Π0) to p-Clique, i.e. an fpt reduction which on any instance (A, φ) of

5For t = 1 see e.g. [12, Theorems 14.17, 14.12]. For t > 1 on the one hand the reductions
from [12, Lemmata 7.5, 7.10] can be slightly modified to become parsimonious and on the
other hand so it is for the ones from [12, Lemmata 7.23, 7.24].
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p-MC(Π0) produces an instance (G, k) of p-Clique such that |φ(A)| equals the
number of k-cliques in G. Hence this is an fpt reduction from p-Unique-MC(Π0)
to p-Unique-Clique. �

Thus the uniqueness variant of p-Clique is hard for W[1] under W[P]-
randomized reductions with one-sided error.

What is an upper bound on its complexity? It is easy to see that the problem
p-Two-Cliques

Input: a graph G and a natural k ∈ N.
Question: k.
Question: does G contain at least two k-Cliques?

is in W[1]. E.g. it is easy to write down a quantifier free first-order formula
φ(x̄ȳ) in the language of graphs satisfied exactly by those āb̄ such that ā and
b̄ are tuples listing different k-cliques – but that reduces p-Two-Cliques to
p-MC(Π0). But clearly p-Unique-Clique is the intersection of p-Clique and
the complement of p-Two-Cliques. Thus, by W[1]-completess of p-Clique,
two non-adaptive oracle queries to p-Clique suffice to solve p-Unique-Clique.

Proposition 10 p-Unique-Clique is non-adaptively fpt Turing-reducible to

p-Clique.

(Here, in fpt Turing reductions the oracle access has to be balanced: the parame-
ter of any query has to be effectively bounded in terms of the input parameter.)

5 Further results and questions

For the sake of readability we skipped some notions from parameterized com-
plexity theory and thereby waived some easy further results. The reader familiar
with the nondeterministic random access machine model [5] easily sees that the
reduction from the proof of Theorem 2 can be implemented by such a machine
which is tail-nondeterministic – i.e. it performs nondeterministic (random) steps
only in “the end of the computation”. This is called W[1]-randomization in [14].

The argument given for Theorem 5 shows more than stated. It proves ana-
loguous statements also for all classes of the W∗-hierarchy, all classes of the
Wfunc-hierarchy, all classes of the A-matrix and the classes AW[∗], AW[SAT]
and AW[P]. See [12, Chapter 8] for model-checking characterizations of these
classes excepting AW[P]. For AW[P] see [4, Theorem 33(2)].

Our results on the Clique problem do not exhibit a special property of this
problem, they examplify more general statements using notions from param-
eterized counting complexity [12, Chapter 14]. For a parameterized counting
problem (F, κ) (i.e. F : Σ∗ → N and κ a parameterization) let Unique-(F, κ)
denote the problem of, given x ∈ Σ∗, to decide if F (x) = 1 (with parameteriza-
tion κ). Of course we think of a counting problem as coming from a the decision
problem D-(F, κ) which asks, given x ∈ Σ∗, if F (x) > 0. Then
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Theorem 11 Let t ≥ 1. If a parameterized counting problem (F, κ) is #W[t]-
complete under parsimonious fpt reductions, then Unique-(F, κ) is W[t]-hard
under W[1]-randomized fpt reductions with one-sided error.

Proposition 12 Let t ≥ 1. If a parameterized counting problem (F, κ) is

#W[t]-complete under parsimonious fpt reductions, then Unique-(F, κ) is non-

adaptively fpt Turing-reducible to D-(F, κ).

Let us mention that Theorem 2 has been applied in [3]. Chen and Flum
consider for a Πt-formula φ = φ(X) which is negative in a set variable X
the parameterized counting problem p-Non-Maximal-WDφ to count, given a
structure A and a parameter k, the number of non-maximal solutions of size k.
They show that p-Non-Maximal-WDφ is not #W[1]-hard under parsimonious
reductions unless W[1] is tractable in the sense that each problem in W[1] can
be solved by a W[P]-randomized fpt algorithm [3].

Perhaps the most important question is whether in Theorem 2 we can
achieve a success probability (let it be one with two sided error) of at least,
say, 1/k? This question comes from the struggle for a parameterized analogue
of Todas theorem. Something like this seems to be prerequisite for combina-
torics like those persued in [15] for the operators BP and ⊕. Possible param-
eterized analogues [12, Chapter 14] of Todas theorem are statements such as

A[t] ⊆ FPT#W[1] or W[t] ⊆ FPT#W[1] or A[t] ⊆ FPT#W[P].

Acknowledgements I owe much to discussions I had with Juan Andrés Mon-
toya. I thank Jörg Flum for his advice.
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