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On the Efficiency of Non-Uniform PCPP Verifiers

Or Meir

Abstract

We define a non-uniform model of PCPs of Proximity, and observe that in this model the
non-uniform verifiers can always be made very efficient. Specifically, we show that any non-
uniform verifier can be modified to run in time that is roughly polynomial in its randomness
and query complexity.

1 Introduction

The PCP Theorem [AS98, ALM'98] is one of the major achievements of Complexity Theory. A
PCP (Probabilistically Checkable Proof) is a proof that allows checking the validity of a claim by
reading only a small number of symbols of the proof. The PCP Theorem asserts the existence of
PCPs of polynomial length for any claim that can be stated as membership in an NP set. The
theorem has found many applications, most notably in establishing lower bounds for approximation
algorithms.

Further research in the area of PCPs has lead to the more general notion of PCPs of Proximity
(PCPPs) |BSGH'06, DR06]. Roghly speaking, in the setting of PCPPs we wish to verify that a
given string is close to satisfying some property, by reading only a small part of the string. In order
to do so, we are provided a “proof” that is supposed to convince us that the string satisfies the
property, but we are only allowed to read a small part of the proof.

One of the interesting aspects of PCPPs is that since the verification procedure reads only a very
small part of the tested string, it may run in a time that is smaller than the length of that string.
Specifically, it is known that in some cases, a string of length n can be verified in time poly (logn)
(see, for example, [BFLS91, BSGH'05]).

In this note we consider the case where the verification procedure is non-uniform, and ask how
efficient can non-uniform verification procedures be. It turns out that defining a non-uniform model
of PCPPs is quite tricky. In particular, if we use the standard non-uniform models of computation,
then it is impossible to have efficient verification procedures. We then consider an alternative model,
which seems to be more appropriate for this discussion, and show that in this model every set that
has a PCP of proximity has in fact a very efficient verification procedure.

2 Background: PCPs of Proximity

We review a formal definition of PCP of Proximity.

Definition 1. For x,y € {0,1}", we denote by d(x,y) the relative Hamming distance between x and
y, that is, d(x,y) is the fraction of coordinates on which = and y differ. For any string = € {0,1}"
and a set S C {0,1}" we denote by 6(z, S) the relative Hamming distance of = to the closest element
of S. We say that x is 7-far from S if §(x, S) > 7 and that it is 7-close to S otherwise.
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Notation 2. Let M be an oracle machine that is given oracle access to two oracles. Then, we
denote by M¥*(x) the output of the machine M when given explicit input x, oracle access to the
oracles y and z, where y is the first oracle and z is the second oracle. This notation can be extended
to a machine that is given access to three oracles, which will be useful later.

Definition 3. Let S C {0,1}". A probabilistic oracle machine V is said to be a verifier of proximity
for S with query complexity ¢ : N — N, randomness complexity » : N — N, threshold 7 € [0, 1] and
rejection probability ¢ € [0, 1] if it satisfies the following requirements:

1. V has oracle access to two oracles - the tested oracle and the proof oracle.

2. When given as explicit input a number n, the verifier V' tosses at most r(n) coins and makes
at most ¢(n) queries (to both its oracles).

3. Completeness: For every = € S there exists a proof string IT, € {0,1}" such that

Pr [Vx;nz(|:17|) accepts| =1

4. Soundness: For every x € {0,1}" that is 7-far from S and every proof string IT € {0,1}" it
holds that Pr [V*!(|z|) rejects] > e.

We say that V' has proof length p : N — N if Requirement 3 can be always satisfied with a string IT,
such that |[II,| < p(|z]).

Remark 4. Definition 3 is not the most general that one can consider. Few generalizations that
appeared in the PCP literature are

1. PCPPs for pair-languages (see, e.g., [BSGH'06]). In this settings, we let S C {0,1}* x {0,1}"
and for every x € {0,1}" we define S, = {y : (x,y) € S}. The verifier gets an explicit input
x € {0,1}" and an oracle access to y € {0,1}" and to a proof IT € {0,1}", and needs to decide
whether y is close to .S,.

2. PCPPs with different soundness requirements: One might let 7 and € be functions that depend
on |x|. Also, ¢ may depend on 6 (z, S).

3. PCPPs over a different alphabet: One may consider strings over some finite alphabet > rather
than only {0,1}.

We chose to use Definition 3 for simplicity. However, all the discussion in this note, and in particular
Definition 6 and Theorem 7 (below), can be modified to hold for the foregoing generalizations (see
Remark 9).

Remark 5. Another area for which this discussion is relevant is Property Testing. In the settings
of property testing we wish to test that a given string is close to satisfy some property by reading
a small part of it, but unlike the case of PCPPs, we need to do so without using a proof oracle.
Known examples of property testing include linearity tests (e.g. [BLR93|), low-degree tests (e.g.
[RS96]), and graph properties (e.g. [GGR98, GR02]). Although most of the discussion in this note
is relevant also to property testing, Theorem 7 (below) holds only in some restricted settings of
property testing (see Remark 10).



3 Non-uniform verifiers

We now turn our attention to non-uniform verifiers and their efficiency. The use of non-uniform
verifiers may be necessary, for example, if the set S is in P/poly but not in P. Furthermore,
non-uniform verifiers were used in [GS06, Mei07] to verify codes that were constructed using the
probabilistic method, and were thus non-uniform. The notion of non-uniform verifiers also arises
naturally in some of the transformations presented in [BGS98|, but it was avoided there (and
reductions to promise problems were used instead).

Defining non-uniform verifiers properly turns out to be a non-trivial issue. The most straight-
forward way to define such verifiers is to replace the machine V in Definition 3 with a machine that
takes advice, or with a family of oracle circuits. However, this definition puts a harsh restriction on
the efficiency of the verifiers. For example, if we use machines that take advice, then the running
time of those machines will be bounded from below by the length of the advice, because a smaller
running time will not allow the machine to read all of its advice. Since in some uses of non-uniform
verifiers (e.g. the uses of [GS06, Mei07]) the advice is of length that is polynomial in the length of
the tested string, defining verifiers using machines that take advice will not allow the verifier to run
in time that is considerably smaller than |z|.

In order to avoid this problem, we giving the verifier oracle access to the advice string. When
using oracle access, the verifier is able to read only the parts of the advice it needs. This means
that the running time of the verifier is no longer lower-bounded by the length of the advice string,
but rather only in its logarithm. This motivates the following definition.

Definition 6. Let S C {0,1}". A probabilistic oracle machine V is said to be a non-uniform verifier
of proximity for S with advice {a,}, oy (Where a,, € {0,1}" for all n € N), query complexity ¢ : N — N,
randomness complexity r : N — N, threshold 7 € [0, 1] and rejection probability € € [0, 1] if it satisfies
the following requirements:

1. V has oracle access to three oracles: the tested oracle, the proof oracle and the advice oracle.

2. On input n, the verifier V' tosses at most r(n) coins and makes at most g(n) queries to the
tested oracle and the proof oracle. However, V' may make an unlimited number of queries to
the advice oracle.

3. For every x € S there exists a proof string IT, € {0, 1}" such that Pr [V*!#:%=I(|z|) accepts] = 1.
4. For every = € {0,1}" that is 7-far from S and every proof string IT, € {0,1}" it holds that

Pr [Vx§Hac§a\w\ (|=]) rejects] > €

We say that V' has advice length ¢ : N — N if |a,| < ¢(n) for every n € N. The proof length of V is
defined in the same way as in Definition 3.

We conclude this discussion by observing that every set that has a non-uniform verifier, has in
fact a very efficient non-uniform verifier, that uses the advice to speed up the verification. This
observation, while having an almost trivial proof, makes our lives considerably easier when designing
non-uniform verifiers, since it means that we do not have to worry about the running time of the
verifiers.

Theorem 7. Let S C {0,1}" be a set that has non-uniform verifier of prozimity V with query com-
plezity q(n), randomness complexity r(n) and proof length p(n). Then S has a non-uniform verifier
of prozimity V' that runs in time poly (¢(n),r(n),logn,logp(n)) and has the same query complezity,



randomness complexity, threshold and rejection probability as V. Furthermore, the verifier V' uses
the same proofs as V', and has advice length

270000 (g(n) - log (n -+ p(n)) +1)

Remark 8. Note that the advice length of V' does not depend on the advice length of V. Indeed,
the construction of V’ does not use the advice of V' at all.

Proof Fix n € N. The advice string a, of V' consists of 2"(*4(") small strings, each small string
corresponding to some pair in {0, 1}"™ x {0,1}9™_ Let us denote the small string that corresponds
to (w,v) € {0,1}"™ x {0,1}9™ by a!*"). Bach small string (") is of length q(n)-log (n+p(n))+1
and contains the following information:

glw,v)

1. For each i € [g(n)], the string a contains the i-th query that V' makes to the tested oracle
(or proof oracle) when tossing the coins w, and when the answers that it got to the first i — 1
queries are equal to the 7 — 1-th prefix of v.

2. The string a%‘)’v) contains the output of V' when tossing coins w and when it gets v as the

answers to its queries.

Note that indeed |a,,| < 27+ . (¢(n) - log (n + p(n)) + 1) (since log (n + p(n)) is the number of
bits required to represent a coordinate in the oracles). Also, observe that the advice of V’ does not
use the advice of V.

We now define the verifier V' in the obvious way: On input n, the verifier V' begins by tossing
a sequence of coins w € {0,1}" ™. Next, for each i € [¢(n)], the verifier V’ retrieves the next query
that it should make to the tested oracle (or proof oracle) from a, using w and the answers it got
for the previous i — 1 queries. Finally, if the answers that V' got are v € {0, 1}q(”), then it retrieves
from a%‘)’v) the decision of V' on coins w and on answers v, and outputs this decision. It is easy
to verify that V' indeed runs in time poly (¢(n),r(n),logn,logp(n)), and has the required query
complexity, randomness complexity, threshold and rejection probability. |

Remark 9. As we mentioned in Remark 4, Theorem 7 can also be made to hold for the various
generalizations of PCPPs. However, modifying Theorem 7 to accomodate those generalizations
would require suitable changes to its parameters: In particular, generalization to PCPPs for pair-
languages would require allowing the verifier to run in time polynomial in the explicit input, and
generalization to arbitrary alphabet would require allowing advice length of 27(") . |E|q(").

Remark 10. As mentioned in Remark 5, most of the discussion in this note holds also for the area of
property testing. However, Theorem 7 does not hold in the standard formalism of property testing.
The reason is that Theorem 7 depends crucially on the postulation that the number of queries that
the verifier makes is fixed, when given |z|. On the other hand, the standard definitions of property
testing allow the number of queries to depend on § (z,.S). However, in a recent paper, Goldreich and
Ron [GRO08] suggested the model of “Proximity Oblivious Testing” for property testing, in which the
number of queries does not depend on ¢ (z,S) (while allowing the rejection probability to depend
on ¢ (x,S)). Theorem 7 can be modified to hold in this specific model of property testing.

Acknowledgement. The author wishes to thank Oded Goldreich for useful comments on drafts
of this note.



References

[ALM™98] Sanjeev Arora, Carsten Lund, Rajeevi Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and intractability of approximation problems. Journal of ACM,
45(3):501-555, 1998. Preliminary version in FOCS 1992.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checkable proofs: A new characterization
of np. Journal of ACM volume, 45(1):70-122, 1998. Preliminary version in FOCS 1992.

[BFLS91] Laszlo Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In STOC, pages 21-31, 1991.

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and
nonapproximability-towards tight results. SIAM J. Comput., 27(3):804-915, 1998.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with appli-
cations to numerical problems. J. Comput. Syst. Sci., 47(3):549-595, 1993.

[BSGHT05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Short pcps verifiable in polylogarithmic time. pages 120-134, 2005.

[BSGHT06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust pcps of proximity, shorter pcps and applications to coding. SIAM Journal of
Computing, 36(4):120-134, 2006.

[DRO6] Irit Dinur and Omer Reingold. Assignment testers: Towards combinatorial proof of
the pcp theorem. SIAM Journal of Computing, 36(4):155-164, 2006.

[GGRY8]  Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. J. ACM, 45(4):653-750, 1998.

[GRO2] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorith-
mica, 32(2):302-343, 2002.

[GROS] Oded Goldreich and Dana Ron. On proximity oblivious testing. FElectronic Colloquium
on Computational Complexity (ECCC), (041), 2008.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and pcps of almost linear
length. Journal of ACM, 53(4):558-655, 2006. Preliminary version in FOCS 2002,
pages 13-22.

[Mei07] Or Meir. Combinatorial construction of locally testable codes. Electronic Colloquium

on Computational Complexity (ECCC), (115), 2007.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with
applications to program testing. SIAM Journal of Computing, 25(2):252-271, 1996.

ECCC ISSN 1433-8092
5 http://ecce.hpi-web.de/




