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Abstract

The Nearest Codeword Problem (NCP) is a basic algorithmic question ith#wey of error-correcting codes.
Given a pointv € F3 and a linear spacd. C F3 of dimensiork NCP asks to find a poirite L that minimizes
the (Hamming) distance from It is well-known that the nearest codeword problem is NP-hard. Toereap-
proximation algorithms are of interest. The best efficient approximatigorithms for the NCP to date are due to
Berman and Karpinski. They are a deterministic algorithm that achievesparoximation ratio ofD(k/c) for an
arbitrary constantc, and a randomized algorithm that achieves an approximation ratio @f/ log n).

In this paper we present new deterministic algorithms for approximating tbe that improve substantially
upon the earlier work. Specifically, we obtain:

e A polynomial timeJ(n/ log n)-approximation algorithm;

e AnnC) time O(k log'® n/ log n)-approximation algorithm, wherg(®) n stands fors iterations oflog,
e.g.,log(2) n = loglog n;

o Ann©0oe" ") time O(k/ log n)-approximation algorithm.

We also initiate a study of the following Remote Point Problem (RPP). Given a bpaaeL C Fi of dimen-
sionk RPP asks to find a point € F3 that is far fromL. We say that an algorithm achieves a remoteness of
for the RPP if it always outputs a pointthat is at least--far from L. In this paper we present a deterministic
polynomial time algorithm that achieves a remotenesQ(eflog k/k) for all £ < n/2. We motivate the remote
point problem by relating it to both the nearest codeword problem and #giganigidity approach to circuit lower
bounds in computational complexity theory.

1 Introduction

The Nearest Codeword Problem (NCP) is a basic algorithmic question ingbeytbf error-correcting codes.
Given a poin € [F5 and a linear spack C 5 of dimensionk NCP asks to find a poirite L that minimizes the
(Hamming) distance from. The nearest codeword problem is equivalent to the problem of findiegtarz € F%
that minimizes the number of unsatisfied linear equations in the system v, given a matrixG € IF’;X” and a
vectorv € F3. Itis well-known that the NCP is NP-hard. Therefore approximation algmsthre of interest.

The best efficient approximation algorithms for the NCP to date are due todeand Karpinski [3]. They
are a deterministic algorithm that achieves an approximation rat@(éfc) for an arbitrary constant, and a
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randomized algorithm that achieves an approximation ratio(@f/ log n).* There has been a substantial amount
of work on hardness of approximation for the NCP [2, 5, 4, 1]. The fesult to date is due to Dinur et. al. [4].
It shows NP-hardness of approximating the NCP to witkfid!/ 1ogles™) - Alekhnovich [1] has made a conjecture
that implies inapproximability of the NCP to withim' —¢, for everye > 0.

In this paper we develop negeterministicalgorithms for approximating the NCP. Specifically, we obtain:
1. A polynomial timeO(n/ log n)-approximation algorithm;

2. Ann®®) time O(klog(s) n/log n)-approximation algorithm, whereg(®) n stands fors iterations oflog,
e.g.,log@) n = loglogn;

3. Ann©Uog" ) time O(k/ log n)-approximation algorithm.

Our first algorithm matches the performance of the randomized algorithi®] 6f £ = Q(n). This is the
regime that is of primary importance for the coding theory applications. Gumnskalgorithm improves substan-
tially upon the deterministic algorithm of [3], and nearly matches the randomigedtam of [3] in terms of the
approximation ratio. Finally, our third algorithm has the same approximation ratilbearandomized algorithm
of [3] and a slightly super-polynomial running time. All our algorithms (as vaslbther known algorithms for the
NCP in the literature) can be easily generalized to fields otherlthan

Remote point problem. In this work we also initiate a study of the following Remote Point Problem (RPP).
Given a linear spacé C F7 of dimensionk RPP asks to find a point € 5 that is far fromL. We say that an
algorithm achieves a remotenessrdbr the RPP if it always outputs a pointthat is at least-far from L. We
present a deterministic polynomial time algorithm that achieves a remotenegs bfg k/k) for all £ < n/2.

Our algorithm for the remote point problem is closely related to our firstaqimation algorithm for the nearest
codeword problem.

We motivate the remote point problem by relating it to the matrix rigidity approachrdaoitlower bounds in
computational complexity theory. The notion of matrix rigidity was introduced éslie Valiant in 1977 [10]. In
what follows we say that a set C [y is r-far from a linear spacé C F3 if A contains a point that is-far
from L. (Observe, that this is quite different from the usual notion of distantedsn sets.) Valiant called a set
A C F7 rigid if for some fixede > 0, A is n-far from every linear spacé C F7, dim L = n/2. Valiant showed
that if a setd C 7 is rigid and|A| = O(n); then the linear transformation frombits to|A| bits induced by a
matrix whose rows are all elements Afcan not be computed by a circuit of XOR gates that simultaneously has
sizeO(n) and deptrO(log n).?

Valiant’'s work naturally led to the challenge of constructing a small explicit g4, (since such a set yields
an explicit linear map, for that we have a circuit lower bound). This chgédrmas triggered a long line of work.
For references see [6, 7, 8, 9]. Unfortunately, after more than teesdes of efforts, we are still nowhere close to
constructing an explicit rigid set with the parameters needed to get implicaticogiplexity theory. In particular
there are no known constructions of sdts_ 7 of sizeO(n) that arew(1)-far from every linear spacé C F%,
dim L = n/2. Moreover if we restrict ourselves to setsof sizen; then we do not know how to construct an
explicit set that is jusB8-far from every linear space of dimensiarf2, despite the fact that a random sétof
cardinalityn is 2(n)-far from every such space with an overwhelming probability.

!In fact, Berman and Karpinski [3] only claim that their randomized athor achieves @ (k/ log k) approximation. However it is
immediate from their analysis that they also gé2@& / log n) approximation.

2The original paper of Valinat [10] and the follow-up papers use a sdraedifferent language. Specifically, they talk about matrices
A whose rank remains no less thaf2 even after every row is modified in less thahcoordinates; rather than about sdtshat for every
linear spacd. C F3, dim L = n/2 contain a poinz € A that isn®-far from L. However, it is not hard to verify that the two concepts
above are equivalent.



In this paper we propose the remote point problem as an intermediate cledlfeigs less daunting than the
challenge of designing a small rigid set, and yet could help us develop seightimto the structure of rigid sets.
Recall that a rigid set is a set that is simultaneoushfar from everylinear space., dim L = n/2. Given the
state of art with constructions of explicit rigid sets we find it natural to carsath easier algorithmic Remote Set
Problem (RSP) where we are given a single linear sga@nd our goal is to design an(n)-sized setd;, C Fy
that isn-far from L. Clearly, if we knew how to construct explicit rigid sets, we could solve thE REhout even
looking at the input. The remote point problem is a natural special case oéthote set problem. Here we are
given a linear spacé C 4 and need to find a single point that is far frdm

In this paper we present an algorithm that for every linear spaceF%, dim L = n/2 generates a point that
is Q(logn)-far from L. (For spaced. of dimensionk < n/2, our algorithm generates a point of distance at least
Q(nlogk/k) from L.) We are not aware of efficient algorithms to generate point€Xoar)-sized collections of
points) further away from a given arbitrary linear space of dimensjtn

Organization. We present our first approximation algorithm for the NCP in section 2. \&fsgmt our second
and third algorithms in section 3. We present our algorithm for the remote pabtem in section 4.

2 An O(n/logn)-approximation algorithm
We start with the formal statements of the NCP and of our main result.
Nearest codeword problem.
e INSTANCE: A linear codel, = {zG | z € F5} given by a generator matri¥ € F5*" and a vectop € F.
e SOLUTION: A codeword € L.
e OBJECTIVE FUNCTION (to be minimized): The Hamming distamké v).

Theorem 1 Letc > 1 be an arbitrary constant. There exists a determiniatfé®) time [n/clog n]-approximation
algorithm for the NCP.

In order to proceed with the proof we need the following notation:

e For a positive integed, let B; = {z € Fy | d(0", z) < d} denote a Hamming ball of radius

e For acollection of vectord/ C F%, let Span(M') denote the smallest linear subspac&¥®fcontaining)M.
e Forsetsd, B C F}, wedefineA+ B={a+b|a€ A bec B}.

The next lemma is the core of our algorithm. It shows thé&treeighborhood of a linear spaéecan be covered
by a (small) number of linear spac@gs of larger dimension, in such a way that no linear spafg contains
points that are too far from.

to
Lemma?2 Let L be a linear space, and < t be positive integers. LeB; \ {0"} = |J B} be an arbitrary
i=1
partition of the set ofi unit vectors inta disjoint classes each of size/t] or |n/t]. For everyS C [t] such that
|S| = dlet Mg = Span (L U (U;cg B)) - Then
L+ By C|JMs € L+ Byryn, (1)
S

whereS runs over all subsets ¢f] of cardinalityd.



Proof: We first show the left containment. Lebe an arbitrary vector il + By. We havev = [ +ej, +.. . +¢j,,,
whered' < d, all e;, are unit vectors antlc L. For everyr € [d'] leti, € [t] be such thaj, € Bi". Consider a
setS C [t] suchthatS| = d andiy,...,iy € S. Itis easy to see thate Ms.

We proceed to the right containment. Let= {i1,...,i4} be an arbitrary subset @ of cardinalityd. Recall
that the cardinality of every s@'", r € [d] is at most[n/t]. Therefore every elementc Mg can be expressed
asasum = [ +y, wherel € L andy is a sum of at most[n/t] unit vectors. Thus € L + By, /¢]- [ |

We are now ready to proceed with the proof of the theorem.

Proof of theorem 1: Observe that if the pointis more thare log n-far from L; then any vector i, (for instance,
the origin) is an[n/clog n|-approximation for. Let us assume thal(v, L) < clogn and set = [clogn]|. Our
algorithm iterates over valuese [0, [clogn|]. For eachd we generate all linear spacéss, S C [t], |S| = d as
defined in lemma 2. We check whetheis contained in one of those spaces. Lemma 2 implies that after at most
d(v, L) iterations we get € Mg, for someS = {iy,...,i4}. We expands as a sumv = [ + y wherel € L andy
is a sum of at mosi[n/clogn] unit vectors from J°_, B¥". Obviously,d(v,1) < d(v, L)[n/clogn]. We report
[ as our[n/clogn]-approximation for. The pseudo-code is below.
Sett = [clognl;
For everyd € [0, clogn]
For everyS = {i1,...,iq} C [t] such thatS| =d
If v € Mg Then
Begin
Represent asv = [ + y, wherel € L andy is a sum of unit vectors frongjjf:1 Bi’";
Output I;
Terminate;
End
Output 0™;
It is easy to see that the algorithm above runs in tiffé&). The first loop make®)(clogn) iterations. The
second loop makes at mast'e”l = n©(©) jterations. Finally, the internal computation rung#A) time. M

3 Arecursive O(klog' n/log n)-approximation algorithm
The goal of this section is to prove the following

Theorem 3 Lets > 1 be an integer and > 1 be an arbitrary constant. There exists a determiniafté°®) time
[k log(s) n/clogn|-approximation algorithm for the NCP, where the constant insideQhmotation is absolute
andlog® n denotess iterations of theog function.

Proof: Our proof goes by induction oniand combines ideas from o0Gr(n/ log n)-approximation algorithm of
section 2 with ideas from the deterministic approximation algorithm of Berman anpi&ki [3]. We start with
some notation.

e Letz*G = [I* € L denote some fixed optimal approximationdby a vector inL.
o LetE = {i € [n] | [} # v;} be the set of coordinates whefrediffers fromv.

¢ In what follows we slightly abuse the notation and use the léitey denote the multi-set of columns of the
generator matrix ol (as well as the generator matrix itself).



h
¢ We call a partition of the multi-se¥ = | G; into disjoint setsegularif for everyi € [h], the vectors irG;
i

are linearly independent and:

h
Span(G;) = Span (U Gj) . 2

Jj=t

Again, in what follows we slightly abuse the notation and use sym@gls < [h] to denote the sets of
columns of the generator matrix, the corresponding subsets],oénd the sub-matrices of the generator
matrix of L.

e We denote the restriction of a vecterc 5 to coordinates in a set C [n], by u|g € IF‘f'.

The following claim (due to Berman and Karpinski [3]) constitutes the base of the induction. We include
the proof for the sake of completeness.

Base case of the induction: Let ¢ > 1 be an arbitrary constant. There exists a deterministit®) time
[k/c|-approximation algorithm for the NCP.

Proof of the base case: We start with an informal description of the algorithm. Our goal is to "approteétya
recoverz™* from v (which is a "noisy” version of*). Recall that* andwv differ in coordinates that belong tbB.
We assume thd| < n/[k/c] since otherwise any vector in the spdcés a valid [k/c|-approximation for.
The algorithm has two phases. During the first phase we compute a rpgttition of the multi-setz. Note that
such a partition necessarily has at lgast n/k classes. Therefore there is a clégs: € [h] such that

|Gi N E[ < (n/[k/c])/(n/k) <c.

During the second phase we iterate over all clagses € [h] of the regular partition, trying to "fix” the differences
betweerw | . andl* |, and thus "approximately” recover*. More specifically, for every € [h] we solve the
systemzG; = u for z, for everyu that differs fromv | in up toc coordinates. (In cases when the system
xG; = u happens to be under-determined we take an arbitrary single solution.) &akigwery class in the
regular partition gives us a number of candidate vectota the end we select a single vector that yields the best
approximation fomw.

To see that the algorithm indeed produces a vidit:|-approximation fow, consider the smallest indéxsuch
that|G; N E| < c. Note that one of the linear systems that we are going to solve while procéissiith class of
the regular partition isG; = I* | ;. . Letz be an arbitrary solution of the above system. Clearly,

i—1 h
d(xG,v)de(:ch,v\Gj)+Zd(:ch,v]Gj>. 3)
j=1 =i
However for everyj < i — 1 we have
d(2Gjovlg,) <k <clkfel <d(Ilg, vl ) Th/el, @)

by our choice of. Also, zG; = I* \Gi and formula (2) yield
xGJ :l*’Gj7 (5)

for all j > . Combining formulae (4), (5) and (3) we gétzG,v) < d(I*,v)[k/c] and thuszG is a [k/c]-
approximation for. The pseudo-code of the algorithm is below:



Obtain a regular partitiotr =  J;¢;, Gi;
Set Thest = Ok;
For everyi € [h]
For every vectory in IF'ZG” such that the Hamming weight gfis at most:
Begin
Find anz € F} such thatrG; = v |, +v;
If d(zG,v) < d(zpest G, v) Then Set zpest = ;
End
Output zyest G
It is easy to see that the algorithm above runs in titffé&). The first loop make®)(n) iterations. The second
loop makes at mosi© iterations. Finally, obtaining a regular partition and the internal computationrbatin
n°M time.

We now proceed to the induction step.

Induction step: Lets > 1 be an integer and > 1 be an arbitrary constant. Suppose there exists a deterministic
nO(s=¢) time [k log®~") n/clog n]-approximation algorithm for the NCP; then there exists determiniétés)
time [k log(®) n/clog n]-approximation algorithm for the NCP.

Proof of the induction step: The high level idea behind our algorithm is to reduce the nearest codewor
problem on an instano@, v) to n°() (smaller) instances of the problem and to solve those instances using the
algorithm from the induction hypothesis.

We start in a manner similar to the proof of the base case. Our goal is tad’dpyately” recover the vector™
fromwv (which is a "noisy” version of*). Recall that* andv differ in coordinates that belong #8. We assume that
|E| < n/[klog® n/clogn] since otherwise any vector in the spdcis a valid[ % log'®) /¢ log n]-approximation
for . Our algorithm has two phases. During the first phase we compute a reguiition of the multi-setz. Note
that such a partition necessarily has at léast n/k classes. Therefore there is a clégs: € [h] such that

|G N E| < (n/[klog® n/clogn])/(n/k) < clogn/log'® n.

During the second phase we iterate over all clagsgs € [h] of the regular partition, trying to locate a large
subsetV C G; such that* |, = v |y, . We use such a subset to restrict our optimization problemddr that
satisfyzG |, = v |, and thus obtain a smaller instance of the NCP. More formally, during the d@tmse we:

1. Set

(s-1)
b {clognJ 7 ‘P 2clognlog nl ©)
log®®) n log® n

2. Setrest = 0F.
3. Foreveryi € [h] :
4. SetG’ = ;5; Gj-
(@) If & > tthen
i. Split the class7; into a disjoint union ot setsG; = Ltjl G7, each of sizd|G;|/t] or [|G;|/t].

ii. ForeveryS C [t] such thatS| = b, setW = {J, ¢\ s G :



iii. Consider an affine optimization problem of finding ane F5 that minimizesd (zG’,v | ),
subject toxG |, = v |y, . Properties of the regular partition imply that here we are minimizing
over an affine spacg’ of dimension|G;| — ||, in ]F'QGI‘.

iv. Turn the problem above into a form of an NCP [if§, padding both the target vectorand the
matrix G’ with zeros) and solve it approximately farusing the algorithm from the induction
hypothesis. (Note that every affine optimization problem of minimizitg.J + z,v) overx
for J € IF’;X” andz,v € 3, can be easily turned into a form of an NCP, i.e., the problem of
minimizing d(xJ, v + z) overz € F5.

V. If d(xG,v) < d(xpest G, v) then setrpest = .

(b) Else

i. For every vectoy in F,™' such that the Hamming weight gfis at mosb :
ii. Find anz € F§ such thattG; = v |, + u;
iii. If d(zG,v) < d(zpestG,v) then setrpest = .

|Gl
2

5. OutputzyestG.

We now argue that the algorithm above indeed obtains a \Vﬁl]dg(s) n/clog n]-approximation for the NCP.
We first consider (the easier) case when< t. Our analysis is similar to the analysis of the base case of the
induction. Leti € [h] be the smallest index such that; N E| < |clogn/log!® n] = b. Note that one of the
linear systems that we are going to solve while processing-thelass of the regular partition is&; = [* |Gi .

Let = be an arbitrary solution of the above system. We need to bdur@, v) from above. Clearly,

i—1
A(aG,o) = " d (265,016, +d (2G v ). (7)
j=1
However for everyj < i — 1 we have

clogn clogn N k log(s) n
. <k< — || < p
d<xGJ’U|Gj) sks log® n P{;/ <log(s)n)-‘ 7d(l |Gj7v|Gj) [ clogn | ©

by our choice of. Also, zG; = I* \Gi and formula (2) yield
.I'G/ - l* |G/ 5 (9)

Combining formulae (8), (9) and (7) we gétrG, v) < d(I*,v)[klog® n/clogn].

We now proceed to the > ¢ case. Again, let € [h] be the smallest index such that; N E| < b. Note that
one of the set8l’ C G; considered when processing the cl&sswill necessarily have an empty intersection with
the setE. Let = € F% be an approximate solution of the corresponding problem of minimizifgs’, v ler) s
subject toxG |, = v |y, , produced by an algorithm from the induction hypothesis. We need to bé(urd, v)
from above. Formulae (7) and (8) reduce our task to boundifg=’, v | ) . Observe that when minimizing
d(zG',v| ), subjecttarG |y, = v |y, , We are minimizing over an affine space of dimensibrwhere

(s)
K < [h/]b < { klog'® n -‘ clogn

2clognlogt® "V n | log®n

Note thatk > ¢ implies

{ klog® n w < klog® n

2clognlogt "V n| = clognlogt=n’



Thereforek’ < k/log"*~!) n and the approximation algorithm from the induction hypothesis yields' alog -
approximate solution, i.e.,
d(ZL‘G/,U|G/) Sd(l*|G/,U|G/) [kf/clogn-l (10)

Combining formulae (8), (10) and (7) we g&t:G, v) < d(I*,v)[klog® n/clogn].

To estimate the running time note that the external loop of our algorithm néalkesiterations and the internal
loop makes at mos(tlt)) iterations where each iteration involves a recursi?&s—°) time call if k > t. It is easy

to see that “
o R clogn/log'®) n
<t> < (et/b) < 4eclognlog®=Yn clog® n _ 00
b 10g(8) n logn

9

where the second inequality follows frabn< ¢/2 andt < 4clognlog®~Y n/log!® n. Combining the estimates
above we conclude that the total running time of our algorithrf4&*) . |

Choosings = [log* n] in theorem 3 we obtain

Theorem 4 Let ¢ > 1 be an arbitrary constant. There exists a deterministféc!os" ) time [k/clogn]-
approximation algorithm for the NCP.

4 Theremote point problem

We start with a formal statement of the remote point problem.
Remote point problem.
e INSTANCE: A linear codel, = {zG | = € F} given by a generator matri® € Fx<".
e SOLUTION: A pointv € 7.
e OBJECTIVE FUNCTION (to be maximized): The Hamming distad¢e, v) from the codel to a pointv.

We start with an algorithm that generatdsg n-remote points for linear spaces of dimensior n /2.

Theorem 5 Letc > 1 be an arbitrary constant. There exists a determinisfié®) time algorithm that for a given
linear spacel C F4,dim L < n/2 generates a point such thati(L,v) > clogn, providedn is large enough.

Proof: At the first phase of our algorithm we sét= [clogn], t = [4clogn] and use lemma 2 to obtain a
family of () = n9( linear spaced/s, S C [t],|S| = d such that

L+ B[clogn] - UMS
S

It is readily seen from the construction of lemma 2 that the dimension of epaned/s is at mostn /2 +n/3 =
5n/6, providedn is large enough.

At the second phase of our algorithm we generate a pothat is not contained in the unidng Mg, (and
therefore is/clog n]-remote fromL.) We consider a potential functioh that for every setV’ C [ returns

S(W) = 3 [W N Mg,
S



where the sum is over afl C [t],|S| = d. We assume that is large enough, so that

w(p) = Y- otsl = () 1015 < 2
s

We initially setWW = F5 and iteratively reduce the size oF by a factor of two (cuttingy” with coordinate
hyperplanes). At every iteration the value®f1) gets reduced by a factor of two or more. Therefore after
iterations we arrive at a sét’ that contains a single pointsuch tha®({v}) = 0. That point is[clog n|-remote
from L. For a sei?V C F7, i € [n], andb € F; let W|,,—, denote the sefx € W | z; = b}. The pseudo-code of
our algorithm is below:

Set t = [4clogn] andd = [clogn];

Obtain () linear spaced/s as defined in lemma 2.

Set W = Iy

For everyi in [n]

|f (I)(W‘xi:[)) < @(W‘zizl) Sat W = W’azi:(ﬁ Else Set W = W’J;i:l;
Output the single element dii’;
Note that every evaluation of the potential functidiin our algorithm takes®(©) time, since all we need to do

is compute the dimensions ¢f ) = n(© affine space$l’ N M. The algorithm involvegn such computations
and therefore runs in®© time. [ |

Remark 6 Itis easy to see that the algorithm of theorem 5 can be extended to geparasethat are log n-far
from a given linear space of dimension up(io— ¢)n for any constant > 0.

We now present our algorithm for the remote point problem in its full gdiera

Theorem 7 Letc > 1 be an arbitrary constant. There exists a determinisfié®) time algorithm that for a given
linear spacel C F7, dim L = k < n/2 generates a point such thatd(L,v) > |n/2k|[2clog k], providedn is
large enough.

Proof: We partition the multi-set of columns of the matfixin h = [n/2k| multi-setsG;, ¢ € [h] in such a way
that every multi-sef7;, (with possibly a single exception) has size exa2fty Next for all multi-sets; of size2k
we use the algorithm of theorem 5 to obtain a pojrthat is2c log k-remote from the spaderG; | » € F5} C F3*.
Finally, we concatenate all vectors together (possibly padding the result with less tBareeros) to obtain a
vectorv € thatis|n/2k][2clog k]-remote fromL. |

5 Conclusion

In this paper we have given three new deterministic approximation algorithmisefaearest codeword problem.
Our algorithms improve substantially upon the (previously best known)rdatistic algorithm of [3]. Moreover,
our algorithms approach (though do not match) the performance of tdemared algorithm of [3]. Obtaining a
complete derandomization remains a challenging open problem.

We have also initiated a study of the remote point problem that asks to findtfgudirom a given linear space
L C Fy. We presented an algorithm that achieves a remoteneQ¢rdbg k/k) for linear spaces of dimension
k < n/2. We consider further research on the remote point problem (and thedredsimte set problem) to be a
promising approach to constructing explicit rigid matrices in the sense of V§li@h
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