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Abstract. The domination number of a graph G = (V, E) is the mini-
mum size of a dominating set U ⊆ V , which satisfies that every vertex
in V \U is adjacent to at least one vertex in U . The notion of a problem
kernel refers to a polynomial time algorithm that achieves some provable
reduction of the input size. Given a graph G whose domination number is
k, the objective is to design a polynomial time algorithm that produces a
graph G′ whose size depends only on k, and also has domination number
equal to k. Note that the graph G′ is constructed without knowing the
value of k. Problem kernels can be used to obtain efficient approximation
and exact algorithms for the domination number, and are also useful in
practical settings.
In this paper, we present the first nontrivial result for the general case
of graphs with an excluded minor, as follows. For every fixed h, given a
graph G with n vertices that does not contain Kh as a topological minor,
our O(n3.5 + kO(1)) time algorithm constructs a subgraph G′ of G, such
that if the domination number of G is k, then the domination number
of G′ is also k and G′ has at most kc vertices, where c is a constant that
depends only on h. This result is improved for graphs that do not contain
K3,h as a topological minor, using a simpler algorithm that constructs a
subgraph with at most ck vertices, where c is a constant that depends
only on h.
Our results imply that there is a problem kernel of polynomial size for
graphs with an excluded minor and a linear kernel for graphs that are
K3,h-minor-free. The only previous kernel results known for the dom-
inating set problem are the existence of a linear kernel for the planar
case as well as for graphs of bounded genus. Using the polynomial kernel

construction, we give an O(n3.5 + 2O(
√

k)) time algorithm for finding a
dominating set of size at most k in an H-minor-free graph with n vertices.
This improves the running time of the previously best known algorithm.
Key words: H-minor-free graphs, degenerated graphs, dominating set
problem, fixed-parameter tractable algorithms, problem kernel.
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1 Introduction

The input to a parameterized problem is a pair (x, k), where x is the prob-
lem instance, k is the parameter, and n := |(x, k)| denotes the input size. A
parameterized problem is fixed-parameter tractable if it can be solved in time
f(k) ·nc, for a computable function f : N → N and a constant c. A kernelization
is a polynomial time computable function that given input (x, k) constructs an
equivalent input (x′, k′), such that k′ ≤ k and |x′| ≤ g(k) for a computable func-
tion g : N → N. The image x′ is called the problem kernel of x. In this paper,
the notion of a kernel for the dominating set problem refers to a polynomial
time algorithm that given a graph G whose domination number is k, constructs
a graph G′ whose size depends only on k, and also has domination number equal
to k.

It is easy and known that a parameterized problem is kernelizable if and
only if it is fixed-parameter tractable. Thus, a fixed-parameter algorithm for the
dominating set problem gives a trivial kernel whose size is some function of k,
not necessarily a polynomial. Problem kernels can be used to obtain efficient
approximation and exact algorithms for the domination number, and are also
useful in practical settings.

Our main result is a polynomial problem kernel for the case of graphs with
an excluded minor. This is the most general class of graphs for which a poly-
nomial problem kernel has been established. To the best of our knowledge, the
only previous results are a linear kernel for the planar case as well as for graphs
of bounded genus. For a general introduction to the field of parameterized com-
plexity, the reader is referred to [13],[15], and [23].

Fixed-Parameter Algorithms for the Dominating Set Problem. The
dominating set problem on general graphs is known to be W [2]-complete [13].
This means that most likely there is no f(k) · nc-algorithm for finding a dom-
inating set of size at most k in a graph of size n for any computable function
f : N → N and constant c. This suggests the exploration of specific families of
graphs for which this problem is fixed-parameter tractable.

The method of bounded search trees has been used to give an O(8kn) time
algorithm for the dominating set problem in planar graphs [3] and an O((4g +
40)kn2) time algorithm for the problem in graphs of bounded genus g ≥ 1

[14]. The algorithms for planar graphs were improved to O(46
√

34kn) [1], then

to O(227
√

kn) [20], and finally to O(215.13
√

kk + n3 + k4) [16]. Fixed-parameter
algorithms are now known also for map graphs [10] and for constant powers of
H-minor-free graphs [11]. The running time given in [11] for finding a dominating

set of size k in an H-minor-free graph G with n vertices is 2O(
√

k)nc, where c
is a constant depending only on H . In a previous paper, we proved that the
dominating set problem is fixed-parameter tractable for degenerated graphs, by
establishing an algorithm with running time kO(dk)n for finding a dominating
set of size k in a d-degenerated graph with n vertices [5].

Kernels for the Dominating Set Problem. The reduction rules intro-
duced by Alber, Fellows, and Niedermeier were the first to establish a linear
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problem kernel for planar graphs [4]. The kernel obtained was of size 335k,
where k is the domination number of the graph. Fomin and Thilikos proved that
the same rules of Alber et al. provide a linear kernel of size O(k + g) for graphs
of genus g [17]. Chen et al. improved the upper bound for the planar case to 67k
[9]. They also gave the first lower bound, by proving that for any ε > 0, there
is no (2 − ε)k kernel for the planar dominating set problem, unless P = NP .
It is interesting to note that Alber, Dorn, and Niedermeier introduced a reduc-
tion rule that explores the joint neighborhood of l distinct vertices [2], but this
general rule has been applied only for l = 1 and l = 2, in order to prove that
the directed dominating set problem on planar graphs has a linear size kernel.
Their reduction rule generates a constraint, which is encoded by a corresponding
gadget in the graph. Thus, the kernel constructed is not necessarily a subgraph
of the input graph.

Our Results. By introducing a novel reduction rule, we prove that the
dominating set problem on graphs with an excluded minor admits a polyno-

mial problem kernel. This gives an O(n3.5 + 2O(
√

k)) time algorithm for finding
a dominating set of size at most k in an H-minor-free graph with n vertices.
For graphs that are K3,h-minor-free, the reduction rules of Alber, Fellows, and
Niedermeier [4] are shown to give a linear problem kernel. Due to space limita-
tions, the proof that there is a linear kernel in this case appears in the appendix.
All the reduction rules described in this paper have the property that the only
modifications made to an input graph are the removal of vertices and edges. This
implies that the graph obtained, as a result of applying the rules, is a subgraph
of the input graph. The advantages of this approach are its simplicity and the
fact that it preserves monotone properties, like planarity, being H-minor-free,
and degeneracy. We show that the rules of Alber et al. can also be described in
such a way.

2 Preliminaries

The paper deals with undirected and simple graphs. Generally speaking, we will
follow the notation used in [8] and [12]. For a graph G = (V, E) and a vertex
v ∈ V , N(v) denotes the set of all vertices adjacent to v (not including v itself),
whereas N [v] denotes N(v) ∪ {v}. This is generalized to the neighborhood of
arbitrary sets by defining N(A) :=

(⋃
v∈A N(v)

)
\ A and N [A] :=

⋃
v∈A N [v].

The graph obtained from G by deleting a vertex v is denoted G−v. The subgraph
of G induced by some set V ′ ⊆ V is denoted by G[V ′].

A dominating set of a graph G = (V, E) is a subset of vertices U ⊆ V , such
that every vertex in V \U is adjacent to at least one vertex in U . The domination
number of a graph G, denoted by γ(G), is the minimum size of a dominating
set. For a set of vertices A, if U ⊆ N [A], then we say that A dominates U .

A graph G is d-degenerated if every induced subgraph of G has a vertex of
degree at most d. A d-degenerated graph with n vertices has less than dn edges.
An edge is said to be subdivided when it is deleted and replaced by a path of
length two connecting its ends, the internal vertex of this path being a new
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vertex. A subdivision of a graph G is a graph that can be obtained from G by
a sequence of edge subdivisions. If a subdivision of a graph H is the subgraph
of another graph G, then H is a topological minor of G. A graph H is called a
minor of a graph G if it can be obtained from a subgraph of G by a series of
edge contractions.

In this paper, we consider only simple paths, that is, paths of the form
x0−x1−· · ·−xk, where the xi are all distinct. The vertices x1, . . . , xk−1 are the
inner vertices of the path. The number of edges of a path is its length. Suppose
that G = (V, E) is a graph, U ⊆ V , and r and l are two integers. We denote

by Ûr,l the set of all vertices v ∈ V \ U for which there are r vertex disjoint
paths of length at most l from v to r different vertices of U . To avoid confusion,
we stress the fact that v is the starting vertex of all the paths, but any other
vertex belongs to at most one of the paths. The vertices of Ûr,l are called central
vertices, and when the values of r and l are clear from the context, the simpler
notation Û will be used.

3 Dominating Sets in Degenerated Graphs

Graphs with either an excluded minor or with no topological minor are known
to be degenerated. We will apply the following useful propositions.

Proposition 1. [7, 21] There exists a constant c such that, for every h, every
graph that does not contain Kh as a topological minor is ch2-degenerated.

Proposition 2. [22, 25, 26] There exists a constant c such that, for every h,
every graph with no Kh minor is ch

√
log h-degenerated.

Some of our results for graphs with no topological Kh use the constant from
Proposition 1. The results can be improved for graphs that are Kh-minor-free
using Proposition 2.

A major part of Rule 2, described in section 5, involves getting a succinct
representation of all sets of some bounded size that dominate a specific set
of vertices in a degenerated graph. This useful representation is achieved by
applying a kO(dk)n time algorithm from [5] for finding a dominating set of size
at most k in a d-degenerated graph with n vertices. We need the following
combinatorial lemma proved in that paper.

Lemma 1. Let G = (V, E) be a d-degenerated graph, and assume that B ⊆ V .
If |B| > (4d + 2)k, then there are at most (4d + 2)k vertices in G that dominate
at least |B|/k vertices of B.

This gives the following useful characterization of dominating sets in degen-
erated graphs.

Theorem 1. Suppose that G = (V, E) is a d-degenerated graph with n vertices,
B ⊆ V , and k ≥ 1. There is an a kO(dk)n time algorithm for finding a family
F of t ≤ (4d + 2)kk! pairs (Di, Bi) of subsets of V , such that |Di| ≤ k and
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|Bi| ≤ (4d + 2)k for every 1 ≤ i ≤ t, for which the following holds. If D ⊆ V
is a subset of size at most k that dominates B, then some i, 1 ≤ i ≤ t, satisfies
that Di ⊆ D and Bi = B \ N [Di].

Proof. The algorithm uses the method of bounded search trees. In each step
of the algorithm, B denotes the vertices that still need to be dominated. If
|B| > (4d + 2)k, then denote by R the set of all vertices that dominate at least
|B|/k vertices of B. Every set of size at most k that dominates B must contain a
vertex from R. It follows from Lemma 1 that |R| ≤ (4d+2)k, so we can build our
search tree, by creating |R| branches and checking all possible options of adding
one of the vertices of R to the dominating set. For each such vertex v ∈ R, we
add v to the dominating set, assign B := B\N(v), and remove v from the graph.
We continue until |B| ≤ (4d+2)k in all the leaves of the search tree. The search
tree can grow to be of size at most (4d + 2)kk!, and each subset D ⊆ V of size
at most k that dominates the original input set B will correspond to one of the
leafs of this search tree, as needed. ut

Though the dominating set problem has a polynomial time approximation
scheme when restricted to a class of graphs with an excluded minor [18], for our
purposes, a fast algorithm that achieves a constant approximation is required.
The following combinatorial Theorem is proved in [5] (note that ] denotes dis-
joint set union).

Theorem 2. Let s be the constant from Proposition 1. Suppose that the graph
G = (B ] W, E) satisfies that W is an independent set, all vertices of W have
degree at least 2, and N(w1) 6= N(w2) for every two distinct vertices w1, w2 ∈ W
for which |N(w1)| < h − 1. If G does not contain Kh as a topological minor,
then there exists a vertex b ∈ B of degree at most (3sh)h.

This gives the following constant factor approximation algorithm.

Theorem 3. Let s be the constant from Proposition 1. Suppose that the graph
G = (B ] W, E) does not contain Kh as a topological minor, and there is a set
of size k that dominates B. There is an O(nk) time algorithm that finds a set
of size at most (3sh)hk that dominates B.

Proof. Start with a solution D := ∅. Given a graph G = (B ] W, E), remove
all edges whose two endpoints are in W and all vertices of W of degree 0 or 1.
As long as there are two different vertices w1, w2 ∈ W with N(w1) = N(w2),
|N(w1)| < h − 1, remove one of them from the graph. As proved in [5], these
modifications can be performed in time O(|E|) and they obviously do not affect
the minimum size of a set that dominates B. It follows from Theorem 2 that
there is a vertex b ∈ B of degree at most (3sh)

h
. We assign D := D∪N [b], move

the vertices of N(N [b]) ∩ B from B to W , and remove the vertices of N [b] from
the graph. The size of the optimal solution decreased by at least one, since every
set that dominates b must contain at least one vertex from N [b]. We continue
as before in the resulting graph, and after at most k steps, the algorithm will
compute a dominating set as needed. ut
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4 Bounds on the Number of Central Vertices

For graphs with no topological Kh, the following bound applies.

Lemma 2. Let s be the constant from Proposition 1. If the graph G = (V, E)
does not contain Kh as a topological minor, and U ⊆ V is of size k, then for
every l, |Ûh−1,l| ≤ (2sh2l)hlk.

Proof. Denote d = sh2. To bound the size of Û , we initially define the set
B to be equal U , and then in a series 1 + (h − 1)(l − 1) phases, vertices will

be added to B, until eventually Û ⊆ B. As proved later, after every phase i,
1 ≤ i ≤ 1 + (h − 1)(l − 1), the set B will be of size at most (1 + sh2(2l − 1))ik.

This gives the needed bound for Û , by setting i = 1 + (h − 1)(l − 1).
The following is the description of a phase. At the beginning of phase i, the

set B is of size at most (1 + sh2(2l − 1))i−1k. Consider the vertices of V \ B in
some arbitrary order. For each vertex w /∈ B, if there exist two vertex disjoint
paths of length at most l from w to two vertices b1, b2 ∈ B, such that b1 and b2

are not connected, and all the inner vertices of the two paths are not in B, then
add the edge {b1, b2} to G and remove the vertex w from the graph together
with the two paths (the vertices b1 and b2 remain in the graph). Denote the
resulting graph by G′. Obviously, G′[B] does not contain Kh as a topological
minor and therefore has at most d|B| = sh2|B| edges. The number of edges in
the induced subgraph G′[B] is at least the number of deleted vertices divided by
(2l − 1), which means that at most sh2(2l − 1)|B| vertices were deleted so far.
All the vertices that were removed from the graph during this phase are added
to the set B, and now we start the next phase with the original graph G and a
new set B of size at most (1 + sh2(2l − 1))ik.

Consider a vertex v ∈ Û at the beginning of a phase. There are h− 1 vertex
disjoint paths of length at most l from v to a set H of h− 1 different vertices of
U . Assume that when v is considered in the arbitrary order, all the vertices of
these h − 1 paths are still in the graph. We claim that the h − 1 vertices of H
cannot all be adjacent to each other, since otherwise they form a topological Kh

together with v. Thus, if v was not removed from the graph during the phase,
then this can only happen in case there exists a vertex u /∈ B on one of the
h − 1 vertex disjoint paths, which was removed from the graph before v was
considered. This vertex u was later added to B at the end of the phase. There
are h− 1 vertex disjoint paths of length at most l from v to H , and these paths
contain at most (h−1)(l−1) inner vertices. Thus, after at most 1+(h−1)(l−1)
phases, the vertex v will be added to B. ut

Itai, Perl, and Shiloach [19] proved that given a graph G with two distinct
vertices s and t, the problem of deciding whether there exist m vertex disjoint
paths of length at most K from s to t is NP -complete for K ≥ 5 and polyno-
mially solvable for K ≤ 4. Thus, Ûr,3 can be efficiently computed as follows.

Lemma 3. There is an O(|V |1.5|E|) time algorithm for computing Ûr,3 for a
graph G = (V, E), a subset U ⊆ V , and an integer r.
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Proof. Suppose that v ∈ V \ U , and let w be a new vertex that is connected

to all the vertices of U . By definition, v ∈ Ûr,3 if and only if there are r vertex
disjoint paths of length at most 4 from v to w. To determine this, apply the
O(|V |0.5|E|) time algorithm of Itai et al. [19] for finding the maximum number
of vertex disjoint paths of length at most 4 from v to w. ut

5 Problem Kernel for Graphs with an Excluded Minor

The reduction rules described in [4] examine the neighborhood of either a single
vertex or a pair of vertices. In this section we generalize these definitions to a
neighborhood of a set of arbitrary size.

Definition 1. Consider a subset of vertices A ⊆ V of a given graph G = (V, E).
The neighborhood of A is partitioned into four disjoint sets N1(A), N2(A),
N3(A), and N4(A).

– N1(A) := {u ∈ N(A) : N(u) \ N [A] 6= ∅}
– N2(A) := {u ∈ N(A) \ N1(A) : N(u) ∩ N1(A) 6= ∅}
– N3(A) := {u ∈ N(A) \ (N1(A) ∪ N2(A)) : N(u) ∩ N2(A) 6= ∅}
– N4(A) := N(A) \ (N1(A) ∪ N2(A) ∪ N3(A))

In the original definitions from [4], which are described in section 7.2, the
neighborhood is partitioned into only three parts. Here, the definition of N3(A)
is modified and N4(A) takes the role of the ”inner neighborhood” of A.

Proposition 3. Let D be a dominating set of a graph G. If v /∈ N4(A) ∪ A,
then there is a path of length at most 4 from v to a vertex of D, and the path
does not contain any vertices of A.

Proof. Since v /∈ N4(A) ∪ A, there is a path of length at most 3 from v to a
vertex w /∈ N [A], and the path does not contain any vertices of A. Since D is a
dominating set, this vertex w is adjacent to some vertex d ∈ D. Since w /∈ N [A],
then obviously d /∈ A (it could be that d ∈ N(A)). This gives a path of length
at most 4 from v to d, as needed. ut

We now define our two reduction rules. Rule 2 applies Rule 1 as a subroutine.
Rule 1 removes a vertex u from the graph in case there are two other vertices v
and w that such {u, v, w} is an independent set and N(u) = N(v) = N(w) 6= ∅.
Rule 2 examines the ”inner neighborhood” N4(A) of a subset A of size k. By
applying a fixed-parameter algorithm for finding dominating sets in degenerated
graphs, it calculates a small set W that contains all the vertices that dominate
many vertices of N3(A)∪N4(A). More formally, for every set D of size of at most
k that dominates N3(A) ∪ N4(A), there is a subset D′ ⊆ D, such that D′ ⊆ W
and (N3(A)∪N4(A)) \N [D′] ⊆ W . In case N4(A) is large, many of the vertices
of N4(A) \W can be removed from the graph. The main goal of this section will
be to analyze graphs for which Rule 2 cannot be applied anymore.

Rule 1: Let A ⊆ V be an independent set of the graph G = (V, E) and
assume that N(v) 6= ∅ for every v ∈ A.
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– Partition the set A into disjoint subsets A1, A2, . . . , At according to the
neighborhoods of vertices of A. That is, every two vertices v, w ∈ Ai satisfy
N(v) = N(w), whereas every two vertices v ∈ Ai and w ∈ Aj for i 6= j
satisfy N(v) 6= N(w).

– For every 1 ≤ i ≤ t for which |Ai| > 2, let v, w ∈ Ai be two arbitrary distinct
vertices. Remove all the vertices of Ai \ {v, w} from the graph.

Rule 2: Suppose that G = (V, E) is d-degenerated and A ⊆ V is a subset of

k vertices. If |N4(A)| > 2(4dk+3k)k+1

, do the following.

– Let F be a family of t ≤ (4d+2)kk! pairs (Di, Bi) of subsets of V , such that
|Di| ≤ k and |Bi| ≤ (4d+2)k for every 1 ≤ i ≤ t for which the following holds.
If D ⊆ V is a subset of size at most k that dominates N3(A) ∪ N4(A), then
some i, 1 ≤ i ≤ t, satisfies that Di ⊆ D and Bi = (N3(A) ∪N4(A)) \ N [Di].

– Denote W := A ∪ ⋃t

i=1(Di ∪ Bi). Remove all edges between vertices of
(N3(A) ∪ N4(A)) \ W .

– Apply Rule 1 to the resulting graph and the independent set N4(A) \ W .

The next two Lemmas prove the correctness of these rules.

Lemma 4. Let A ⊆ V be an independent set of the graph G = (V, E). Applying
Rule 1 to G and A does not change the domination number.

Proof. It is enough to prove that if {x, y, z} is an independent set, such that
N(x) = N(y) = N(z) 6= ∅, then γ(G−z) = γ(G). To prove that γ(G) ≤ γ(G−z),
let D be a dominating set of G − z. If D ∩ N(x) = ∅, then {x, y} ⊆ D, and
therefore (D \ {y}) ∪ {u} is a dominating set of G, for any u ∈ N(x).

To prove that γ(G− z) ≤ γ(G), let D be a minimum dominating set of G. It
cannot be the case that {x, y, z} ⊆ D, since adding one of the vertices of N(x)
to D \ {y, z} results in a smaller dominating set. We can assume, without loss
of generality, that z /∈ D, and therefore D is a dominating set of G − z. ut

Lemma 5. Suppose that G = (V, E) is d-degenerated and A ⊆ V is a subset
of k vertices. In case Rule 2 is applied to G and A, then at least one vertex is
removed from the graph, whereas the domination number does not change.

Proof. Using the notations of Rule 2, denote by G′ the graph obtained from G
by removing all edges between vertices of (N3(A)∪N4(A))\W , just before Rule
1 is applied. It follows from Lemma 4 that in order to verify that Rule 2 does not
change the domination number, it is enough to prove that γ(G′) = γ(G). It is
obvious that γ(G′) ≥ γ(G), since removing edges cannot decrease the domination
number. We now prove that γ(G′) ≤ γ(G). Let D be a minimum dominating set
of G, and let D′ ⊆ D be a subset of minimum size that dominates N3(A)∪N4(A).
This implies that D′ ⊆ A∪N2(A)∪N3(A)∪N4(A) and N [D′] ⊆ N [A]. Obviously
|D′| ≤ k, since otherwise (D \ D′) ∪ A would be a smaller dominating set of
G. Thus, from Theorem 1, some i, 1 ≤ i ≤ t, satisfies that Di ⊆ D′ and
Bi = (N3(A) ∪ N4(A)) \ N [Di]. To prove that D is also a dominating set of G′,
we need to show that the vertices of (N3(A)∪N4(A))\W are dominated by D in
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G′, since the neighborhood of all other vertices remained the same. Assume that
v ∈ (N3(A)∪N4(A)) \W . Since Bi ⊆ W , it follows that v /∈ Bi, and therefore v
is dominated in G by some vertex d ∈ Di. This means that v is still dominated
by d in G′, since Di ⊆ W . This completes the proof that Rule 2 does not change
the domination number.

We now prove that when Rule 2 is applied, at least one vertex of N4(A) \W
is removed from the graph G′. First, note that (N3(A) ∪ N4(A)) \ W is an
independent set, and therefore N4(A) \ W is also independent. Given a vertex
v ∈ N4(A) \ W , obviously N(v) ⊆ A ∪ N3(A) ∪ N4(A) and N(v) 6= ∅, since it
is adjacent to at least one vertex of A. The important property of v is that it
is adjacent in G′ only to vertices of W , since all other edges incident at v were
removed. Since W = A∪⋃t

i=1(Di∪Bi), it follows that |W | ≤ k+(4d+2)kk!(k+
(4d + 2)k)) = (4d + 3)k(4d + 2)kk! + k. It is easy to verify that 2 · 2|W | + |W | ≤
2|W |+2 ≤ 2(4dk+3k)k+1

< N4(A). Thus, |N4(A) \ W | ≥ |N4(A)| − |W | > 2 · 2|W |.
By the pigeonhole principle, we conclude that there are three distinct vertices
x, y, z ∈ N4(A) \ W , such that N(x) = N(y) = N(z) 6= ∅. One of these three
vertices will be removed by Rule 1. ut

The following Lemma is useful for showing that given a graph with an ex-
cluded minor and a dominating set D of size k, there exists a subset of vertices
U whose size is linear in k, such that all vertices not in D ∪ U belong to the
”inner neighborhood” N4(A) of a subset A ⊆ D ∪ U of constant size.

Lemma 6. Let D be a dominating set of the graph G = (V, E). If r ≥ 1 and

v /∈ D ∪ D̂r+1,4, then there exists a subset A ⊆ D ∪ D̂r+1,3 of size at most 40r5,
such that v ∈ N4(A).

Proof. To simplify the notation, the symbol D̂ will refer to D̂r+1,3. Let q be the
maximum number of disjoint paths of length 4 from v to q different vertices of
D. Since v /∈ D ∪ D̂r+1,4, it follows from the definition of D̂r+1,4 that q ≤ r.
Construct q such paths, whose total length is the minimum possible. Denote by
B the set of all vertices that appear in these q paths and call the inner vertices
of these paths B′ := B \ (D ∪ {v}). Assign t := 3r(r + r2 + r4) + 1, and assume,

by contradiction, that v /∈ N4(A) for all subsets A ⊆ D ∪ D̂ of size at most
4(r + t − 1). Note that 4(r + t − 1) ≤ 40r5.

We will now construct t paths of length at most 4 and a series of t subsets
A1 ⊆ A2 ⊆ · · · ⊆ At of size at most 4(r+ t−1). Let A1 := B∩ (D∪ D̂). For each
i from 1 to t, do the following. According to our assumption v /∈ N4(Ai) ∪ Ai,
which means by Proposition 3 that there is a path of length at most 4 from v to
a vertex of D, and this path does not contain any vertices from Ai. Denote by Pi

the vertices of a minimum length path, which satisfies these properties. Define
Ai+1 := Ai ∪ (Pi ∩ (D∪ D̂)) and proceed to the next iteration to construct Pi+1.

Note that |A1| ≤ 4r and |Ai+1| ≤ |Ai|+4. Thus, all the sets Ai are of size at
most 4r+4(t−1) = 4(r+ t−1). After completing this process, we get t paths of

length at most 4 that start at v. Note that a vertex u ∈ D∪ D̂ can participate in
at most one of these paths, since once it appears in a path Pi, it is immediately
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added to Ai+1. Because of the maximality of q, each path Pi must contains a
vertex of B′. From now on, we will consider the last appearance of a vertex from
B′ in a path Pi as the starting point of the path. This means that all the paths
Pi start at a vertex of B′ and are of length at most 3. Since |B′| ≤ 3q ≤ 3r and
the number of paths is t = 3r(r + r2 + r4) + 1, by the pigeonhole principle there
must be a vertex b ∈ B′ that is a starting point of r + r2 + r4 +1 paths of length
at most 3. We now prove that b ∈ D̂. There are three possible cases.

Case 1: The vertex b starts at least r +1 paths of length 1. This means that
b is adjacent to r + 1 vertices of D and therefore b ∈ D̂.

Case 2: The vertex b starts at least r2 + 1 paths of length 2. It follows from
the construction that all these paths are from b to a different vertex of D. A
vertex u cannot be the middle vertex of more than r of these paths, since this
would imply that u ∈ D̂, but as mentioned before, vertices of D̂ can appear in
at most one path. Thus, there are at least r + 1 middle vertices that are part of
r + 1 vertex disjoint paths of length 2 from b to D, which implies that b ∈ D̂.

Case 3: The vertex b starts at least r4 + 1 paths of length 3. The vertex b
is the first vertex of these paths, whereas the fourth vertex is always a different
vertex from D. Denote by U2 and U3 the vertices that appear as a second and
third vertex on one of these paths, respectively. Recall that when creating the
paths Pi, we always chose a path of minimum length that leads to a vertex of
D. This implies that U2 ∩ U3 = ∅. As before, vertices of U2 and U3 can belong
to at most r2 and r paths, respectively. The total number of paths is r4 +1, and
therefore |U2| ≥ r2 + 1. Since a vertex of U3 belongs to at most r paths, we can
find r + 1 vertices of U2 that can be matched to r + 1 different vertices of U3 in
a way which would give r + 1 vertex disjoint paths of length 3 from b to r + 1
different vertices of D. This implies that b ∈ D̂.

In all three cases b ∈ D̂, which means that b ∈ A1. Thus, b cannot belong to
any path Pi, and we get a contradiction. ut

Theorem 4. For every fixed h, given a graph G with n vertices that does not
contain Kh as a topological minor, there is an O(n3.5 + kO(1)) time algorithm
that constructs a subgraph G′ of G, such that if γ(G) = k, then γ(G′) = k and
G′ has at most kc vertices, where c is a constant that depends only on h.

Proof. Let s be the constant from Proposition 1. Suppose that the graph G
contains no Kh as a topological minor and γ(G) = k > 1. To construct the kernel,
we perform at most n iterations, as follows. The iteration starts by applying
the O(nk) time approximation algorithm described in Theorem 3 in order to
compute a dominating set D of size at most (3sh)hk. It followed from Lemmas 2

and 3 that the set D̂h−1,3 is of size at most (6sh2)3h|D|, and can be computed in

time O(n2.5). In case there is a subset A ⊆ D∪D̂h−1,3 of size 40(h−2)5, for which
the conditions of Rule 2 are satisfied, then the rule is applied. It follows from
Lemma 5 that at least one vertex is removed from the graph and the domination
number does not change. We continue to the next iteration with the resulting
graph. Upon termination, this process computes a kernel G′ with γ(G′) = k,
and a dominating set D of size at most (3sh)hk.
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As for the kernel size, Lemma 2 implies that |D̂h−1,4| = O(k), whereas from

Lemma 6 we know that if v /∈ D ∪ D̂h−1,4, then there exists a subset A ⊆
D∪ D̂h−1,3 of size at most 40(h−2)5, such that v ∈ N4(A). The number of such
subsets A is kO(1) and it follows from Lemma 5 that each subset A satisfied that
N4(A) = O(1), since Rule 2 cannot be applied anymore. We conclude that the

number of vertices not in D ∪ D̂h−1,4 is kO(1), and the theorem is proved. ut

Theorem 5. There is an O(n3.5+2O(
√

k)) time algorithm for finding a dominat-
ing set of size at most k in an H-minor-free graph with n vertices that contains
such a set.

Proof. Construct a problem kernel G′ using Theorem 4 and apply the 2O(
√

k)nc

time algorithm of Demaine et al. [11] on the graph G′. ut

6 Concluding Remarks and Open Problems

– The dominating set problem is fixed-parameter tractable for degenerated
graphs. An interesting open problem, stated in a preliminary version of this
paper [6], is to decide whether there is a polynomial size kernel in this case.
This problem has been very recently resolved by Philip et al. [24], who ex-
hibited a polynomial kernel in Ki,j-free and degenerated graphs. In their
reduction, the kernel constructed is not a subgraph of the input graph, and
therefore the property of being H-minor-free is not preserved. This is why
the construction of Philip et al. cannot be used for obtaining Theorem 5.

– Another challenging question is to characterize the families of graphs for
which the dominating set problem admits a linear kernel. We cannot rule
out the possibility that a linear kernel can be obtained for graphs with any
fixed excluded minor.
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7 Appendix

7.1 Bounds on the Number of Central Vertices

The following Lemma from [5] gives an upper bound on the number of cliques
of a prescribed fixed size in a degenerated graph.

Lemma 7. If a graph G with n vertices is d-degenerated, then for every k ≥ 1,
G contains at most

(
d

k−1

)
n copies of Kk.

Given a graph with no topological Km,h and a specific set M of m vertices,
we would like to bound the number of vertices that have m vertex disjoint paths
of total length at most l to the m vertices of M .

Lemma 8. Suppose that G = (V, E) does not contain Km,h as a topological
minor and M ⊆ V is a set of m > 1 vertices. The number of vertices v /∈ M
that have m vertex disjoint paths of total length at most l to the m vertices of
M is less than h(m(h − 1))l−m(l − m + 1)!.

Proof. Define f(m, h, l) := h(m(h − 1))l−m(l − m + 1)!. The lemma is proved
by induction on l. For l = m, the lemma bounds the number of vertices that
are adjacent to all the vertices of M , and the claim follows from the fact that G
does not have a subgraph isomorphic to Km,h. Suppose that the lemma is true
for l ≥ m. We prove it for l + 1, as follows. Given a set M of m vertices, denote
by Q the set of vertices v /∈ M that have m vertex disjoint paths of total length
at most l + 1 to the m vertices of M , and denote by Pv the set of all vertices on
these m paths, except for the vertices of M . Thus, |Pv| ≤ l + 2−m and v ∈ Pv.

We first prove that each vertex w /∈ M belongs to at most m·f(m, h, l)−m+1
of the sets {Pv}v∈Q. Suppose, by contradiction, that there is a vertex w that
belongs to more than m ·f(m, h, l)−m+1 of the sets Pv. Since possibly w ∈ Pw,
there are more than m(f(m, h, l) − 1) vertices v for which w ∈ Pv and w is an
inner vertex of one of the m paths from v to M . Thus, there is some vertex
u ∈ M , such that there are at least f(m, h, l) vertices v for which w ∈ Pv and
w appears in Pv on the path from v to u. This means that there are f(m, h, l)
vertices v for which there are m vertex disjoint paths of total length at most l
to the m vertices (M \ {u}) ∪ {w}. This contradicts the induction hypothesis.

We showed that every vertex w belongs to at most m · f(m, h, l) − m + 1
of the sets Pv. To prove the lemma for l + 1, assume, by contradiction, that
|Q| ≥ f(m, h, l + 1). Assign W := Q. We do the following h − 1 times, for each
i, 1 ≤ i ≤ h − 1. Let wi be an arbitrary element of W . Note that |Pwi

| ≤
l + 2 − m. Remove from W all the vertices v ∈ W such that Pv ∩ Pwi

6= ∅, and
continue to choose an arbitrary wi+1 ∈ W . At each step, at most (l +2−m)(m ·
f(m, h, l) − m + 1) vertices are removed from W , so after h − 1 steps, at most
(h−1)(l+2−m)(m ·f(m, h, l)−m+1) < f(m, h, l+1) vertices will be removed
from W . Thus, the h−1 iterations can indeed be performed, and at the end, the
set W is not empty, so we can choose the last arbitrary element wh ∈ W . The
vertices of M together with the h vertices w1, . . . , wh form a topological Km,h.
This is a contradiction and the lemma is proved. ut
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The following result bounds the number of central vertices in graphs with no
topological Km,h.

Lemma 9. Let s be the constant from Proposition 1. If G = (V, E) does not
contain Km,h as a topological minor, and U ⊆ V is of size k, then for every l,

|Ûm,l| ≤ (smhl)2m2l2k

Proof. Denote d = s(m + h)2. The proof is similar to that of Lemma 2, so we
highlight only the modifications needed. Initially we set B to be equal to U .
During a phase, if there is still a vertex w /∈ B for which there are two vertex
disjoint paths of length at most l from w to two vertices b1, b2 ∈ B, such that b1

and b2 are not connected, and all the inner vertices of the two paths are not in B,
then add the edge {b1, b2} and remove the vertex w from the graph together with
the two paths. Denote the resulting graph by G′. It follows from the analysis of
Lemma 2 that at most sh2(2l− 1)|B| vertices are removed during the phase. All
the removed vertices are later added to B.

In addition to the vertices that were added to B in the way described, we
would like to add more vertices to B, as follows. Consider a vertex v ∈ Û at the
beginning of the phase. There are m vertex disjoint paths of length at most l from
v to a set M of m different vertices. Assume that none of the vertices on these
m paths were removed during the phase. This means that if v was not removed
either, then this can only happen in case G′[M ] is a clique of size m. In this case
we also add v to B. We now count the number of vertices v of this type. Since G′

does not contain Km,h as a topological minor, we get from Lemma 8 that there
can be at most h(m(h− 1))lm−m(lm−m + 1)! vertices v with m vertex disjoint
paths of length at most l from v to the m vertices of M . It follows from Lemma 7
that there are at most

(
d

m−1

)
|B| ≤ (s(m+h)2)m−1|B| cliques of size m in G′[B],

which means that at most (s(m + h)2)m−1h(m(h − 1))lm−m(lm − m + 1)!|B|
vertices of Û were not accounted for. The total number of vertices that are added
to B during a phase is therefore less than (smhl)2ml|B|, whereas the number of

phases is at most m(l − 1) + 1. This gives the needed bound for |Û |. ut

7.2 Problem Kernel for Graphs with no Topological K3,h

All graphs considered in this section contain no K3,h as a topological minor, for
some fixed h. Whenever using the big Oh notation, the hidden constant depends
only on h. We use the following definitions from [4] concerning the neighborhood
of a single vertex and the neighborhood of a pair of vertices.

Definition 2. Consider a vertex v ∈ V of a given graph G = (V, E). The
neighborhood of v is partitioned into three disjoint sets N1(v), N2(v), and N3(v).

– N1(v) := {u ∈ N(v) : N(u) \ N [v] 6= ∅}
– N2(v) := {u ∈ N(v) \ N1(v) : N(u) ∩ N1(v) 6= ∅}
– N3(v) := N(v) \ (N1(v) ∪ N2(v))



Kernels for the Dominating Set Problem on Graphs with an Excluded Minor 15

Definition 3. Consider two distinct vertices v, w ∈ V of a given graph G =
(V, E). The neighborhood of the two vertices is partitioned into three disjoint
sets N1(v, w), N2(v, w), and N3(v, w).

– N1(v, w) := {u ∈ N(v, w) : N(u) \ N [v, w] 6= ∅}
– N2(v, w) := {u ∈ N(v, w) \ N1(v, w) : N(u) ∩ N1(v, w) 6= ∅}
– N3(v, w) := N(v, w) \ (N1(v, w) ∪ N2(v, w))

Here is a simple observation that follows immediately from the previous def-
initions.

Proposition 4. Let D be a dominating set of a graph G. If u /∈ N3(v) ∪ {v},
then there is a path of length at most 3 from u to a vertex of D, and the path
does not contain v. If u /∈ N3(v, w) ∪ {v, w}, then there is a path of length at
most 3 from u to a vertex of D, and the path contains neither v nor w.

The following is a simplified presentation of the two reduction rules of Alber
et. al [4]. As proved there, these reduction rules do not change the domination
number of the graph. Unlike the original rules, in which new vertices can be
added to the graph, in our formulation the only modifications made to the graph
are the removal of vertices and edges. Another useful property of the following
formulation is that in case a rule is applied, at least one vertex is removed from
the graph. Unlike the original rules, vertices that belong to N2(v) or N2(v, w) are
not removed in our rules. We note that Alber et. al specifically proved that their
rules preserve planarity, and this might imply that the authors did not notice the
fact that the reduction rules actually construct a subgraph of the input graph,
and therefore all monotone properties are preserved.

Rule 3: Given a graph G = (V, E) and a vertex v ∈ V , if |N3(v)| > 1,
then do the following. Let v′ be some arbitrary vertex of N3(v). Remove all the
vertices of N3(v) \ {v′} and all the edges incident at v′, except for {v, v′}.

Rule 4: Let v and w be two distinct vertices of the graph G = (V, E).
If |N3(v, w)| > 2 and N3(v, w) cannot be dominated by a single vertex from
N2(v, w) ∪ N3(v, w), then do the following.

– If both v and w dominate N3(v, w), then let z and z′ be two arbitrary distinct
vertices of N3(v, w). Remove all the vertices of N3(v) \ {z, z′} and all the
edges incident at z and z′, except for the edges {v, z}, {w, z}, {v, z′}, {w, z′}.

– If v dominates N3(v, w) but w does not dominate it, then let v′ be some
arbitrary vertex of N3(v, w). Remove all the vertices of N3(v) \ {v′} and all
the edges incident at v′, except for the edge {v, v′}. The case that only w
dominates N3(v, w) is handled in a symmetric manner.

– If neither v nor w dominate N3(v, w), then let v′ and w′ be two arbitrary
distinct vertices of N3(v, w) such that v′ is adjacent to v and w′ is adjacent
to w. Remove all the vertices of N3(v) \ {v′, w′} and all the edges incident
at v′ and w′, except for the edges {v, v′}, {w, w′}.

A graph is called reduced in case Rules 3 and 4 cannot be applied to it
anymore. The following definitions are specific to this section.
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Definition 4. Let D be a dominating set of the graph G = (V, E).

– Denote by D̃ the set of vertices in V \ D that have at least two neighbors
from D.

– Suppose that d1, d2 ∈ D are two distinct vertices. Denote by Inner(d1, d2)
the set of all inner vertices of paths of length 3 of the type d1 − x − y −
d2, such that x, y ∈ N3(d1, d2) \ (D ∪ D̂3,3 ∪ D̃). Denote Inner(D) :=⋃

d1,d2∈D,d1 6=d2
Inner(d1, d2)

Lemma 10. For a fixed h ≥ 2, suppose that G = (V, E) is a reduced graph that
contains no K3,h as a topological minor. If D is a dominating set of size k, then

|D̃| = O(k).

Proof. Assume that v ∈ D̃. This means that v is adjacent to at least 2 vertices
of D, so we distinguish between three cases.

Case 1: The vertex v is adjacent to at least 3 vertices of D. Thus, by defi-
nition v ∈ D̂3,3, and it follows from Lemma 9 that |D̂3,3| = O(k).

Case 2: The vertex v is adjacent to exactly 2 vertices d1, d2 ∈ D and v /∈
N3(d1, d2). It follows from proposition 4 that there is a path of a length at most
3 from v to a vertex of D, and the path does not use the vertices d1 and d2. This
implies that v ∈ D̂3,3 and we proceed as in the previous case.

Case 3: The vertex v is adjacent to exactly 2 vertices d1, d2 ∈ D and v ∈
N3(d1, d2). The number of pairs d1, d2 ∈ D for which there is a vertex v /∈ D
such that N(v) ∩ D = {d1, d2} is O(k). To see this, just connect each such pair
d1, d2, in case they were not connected before. Denote the resulting graph by G′.
The number of edges in G′[D] is at least the number of pairs we are counting.
Since G′[D] does not contain K3,h as a topological minor, it has O(k) edges.

For two distinct vertices d1, d2 ∈ D, denote by Q the set of vertices v ∈
N3(d1, d2) that are adjacent to both d1 and d2. It is now enough to prove that
|Q| ≤ h. By contradiction, assume that |Q| > h ≥ 2. Since the graph is reduced,
there is a vertex w ∈ N2(d1, d2) ∪ N3(d1, d2) that dominates N3(d1, d2). Note
that w can possibly belong to N3(d1, d2). This implies that d1,d2, and w together
with Q \ {w} form a K3,h. This is a contradiction, and the claim is proved. ut

Corollary 1. For a fixed h ≥ 2, let D be a dominating set of size k of a reduced
graph G = (V, E) that contains no K3,h as a topological minor. If a subset U ⊆ V
of size m satisfies that D ∩ U = ∅, then |N [U ]| = O(k + m).

Proof. The set D∪U is obviously a dominating set. A vertex v ∈ N [U ]\ (D∪U)
is adjacent to a vertex of U and also to a vertex of D, since D is a dominating
set. This means that v is adjacent to at least two vertices of D ∪ U . The result
now follows from Lemma 10. ut

Lemma 11. Suppose that G = (V, E) is a reduced graph that contains no K3,h

as a topological minor. If D is a dominating set of size k, then there are O(k)
pairs d1, d2 ∈ D for which Inner(d1, d2) 6= ∅.
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Proof. Consider the pairs d1, d2 ∈ D for which Inner(d1, d2) 6= ∅ in some arbi-
trary order. For each such pair d1, d2, there are two vertices x, y ∈ N3(d1, d2) \
(D ∪ D̂3,3 ∪ D̃) that appear on the path d1 − x − y − d2. We claim that both
x and y do not belong to any other pair Inner(d′1, d

′
2). To see this, suppose

by contradiction that x ∈ Inner(d1, d2) ∩ Inner(d′1, d
′
2) for {d′1, d′2} 6= {d1, d2}.

Since x /∈ D̃, it has only one neighbor in D, so assume, without loss of generality,
that x is adjacent to d1 = d′1 and x appears on the two paths d1 − x − y − d2

and d1 − x − z − d′2. This implies that x ∈ D̂3,3, a contradiction, and the claim
is proved.

In each case as above, we delete the vertices x and y, and add an edge between
d1 and d2, assuming this edge does not exist. Denote the resulting graph by G′.
Obviously, G′[D] does not contain K3,h as a topological minor and therefore has
at most O(k) edges. The number of edges in the induced subgraph G′[D] is at
least the number of pairs for which Inner(d1, d2) 6= ∅, as claimed. ut

Lemma 12. Let D be a dominating set of a reduced graph G = (V, E) that
contains no K3,h as a topological minor. Every two distinct vertices d1, d2 ∈ D
satisfy |Inner(d1, d2)| ≤ 2h2.

Proof. By contradiction, assume that |Inner(d1, d2)| ≥ 2h2 + 1. This implies
that |N3(d1, d2)| > 2, and since the graph is reduced, there is a vertex v ∈
N2(d1, d2)∪N3(d1, d2) that dominates N3(d1, d2). Let q be the maximum number
of vertex disjoint paths of the type d1−x−y−d2, such that x, y ∈ Inner(d1, d2),
and denote by W the 2q inner vertices of these paths. Note that v can possibly
belong to W . We must have that q ≤ h, since otherwise d1,d2, and v would be
part of a topological K3,h. Since |W | = 2q ≤ 2h, there are at least 2h(h− 1) + 1
vertices of Inner(d1, d2) \ W that appear on a path of the type d1 − x − y − d2

together with one of the vertices of W . Thus, there is a vertex w ∈ W that
belongs to at least h of these paths. Assuming, without loss of generality, that
w is adjacent to d1, there are h + 1 different paths of length 2 from w to d2, and
the inner vertices of these paths are from Inner(d1, d2). Thus, w,d2, and v are
part of a K3,h. This is a contradiction, and the claim is proved. ut

Lemma 13. Suppose that the reduced graph G = (V, E) contains no K3,h as a
topological minor. If D is a dominating set of size k, then |Inner(D)| = O(k).

Proof. Follows immediately from Lemmas 11 and 12. ut

Lemma 14. Suppose that the reduced graph G = (V, E) contains no K3,h as a
topological minor. If D is a dominating set of size k, then the number of vertices
that appear on a path of length 3 between two vertices of D is O(k).

Proof. We examine the inner vertices of paths of the form d1 − v − x− d2, such
that d1, d2 ∈ D. It follows from Lemmas 9 and 10 that |D̂3,3∪ D̃| = O(k), which

means that it remains to count the number of vertices not in D∪D̂3,3∪D̃. Assume

that v /∈ D ∪ D̂3,3 ∪ D̃. Since v /∈ D̃, it is adjacent to exactly one vertex of D,

and therefore x /∈ D. If x ∈ D̂3,3 ∪ D̃, then v ∈ N [D̂3,3 ∪ D̃], but it follows from
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Corollary 1 that |N [D̂3,3∪D̃]| = O(k). If either v or x do not belong to N3(d1, d2),

then this implies that x ∈ D̂3,3, but this case has already been addressed. The

only remaining case is that v, x ∈ N3(d1, d2) \ (D ∪ D̂3,3 ∪ D̃), which means that
v ∈ Inner(D), and we know from Lemma 13 that |Inner(D)| = O(k). ut

We can now state the main result of this section.

Theorem 6. For every fixed h, given a graph G that does not contain K3,h

as a topological minor, there is a polynomial time algorithm that constructs a
subgraph G′ of G, such that if γ(G) = k, then γ(G′) = k and G′ has at most ck
vertices, where c is a constant that depends only on h.

Proof. Suppose that G contains no K3,h as a topological minor and γ(G) = k.
As long as the conditions of Rules 3 and 4 are satisfied, apply these rules to get
a reduced subgraph G′. Alber et. al [4] proved that γ(G′) = k, so let D be a

dominating set of G′ of size k. It follows from Lemma 10 that |D̃| = O(k), so

we need to count the number of vertices not in D ∪ D̃. Assume v /∈ D ∪ D̃ is
adjacent to d1 ∈ D. If v ∈ N3(d1), then in a reduced graph |N3(d1)| ≤ 1, which
means that there could be at most k vertices of this type. Assume now that
v /∈ N3(d1), so by Proposition 4 there is a path of length at most 3 from v to
a vertex d2 ∈ D, and d1 is not part of this path. We examine a shortest path
p from d1 to d2, in which v is the second vertex of the path. Since v /∈ D̃, it is
adjacent to only one vertex of D, so the path p can be of length either 3 or 4.

In case p is of length 3, then it follows from Lemma 14 that there are at most
O(k) vertices of this type. If p is of length 4, denote it by d1 − v − x − y − d2,
where x, y /∈ D. The vertex x is adjacent to some vertex of D. It cannot be
adjacent to d2, since a path p on minimum length was chosen. If x is adjacent
to a vertex of D \ {d1, d2}, then x ∈ D̂3,3 and v ∈ N [D̂3,3], but it follows from

Corollary 1 that |N [D̂3,3]| = O(k). The remaining case is that d1 is the only
vertex in D that is adjacent to x. Since x /∈ D is on a path of length 3 from d1

to d2, it follows from Lemma 14 and Corollary 1 that the number of vertices v
of this type is also O(k). ut
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