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Abstract. We study the question whether the number of rounds in pulgiic- perfect zero-knowledge
(PZK) proofs can be collapsed to a constant. Despite extenssgareh into the round complexity of
interactive and zero-knowledge protocols, there is nocatibn how to address this question. Furthermore,
the main tool to tackle this question is instance-dependentmitments, but currently such schemes are
only statistically hiding, whereas we need perfectly hidithemes.

We give the firstperfectlyhiding instance-dependent commitment scheme. This scltambe con-
structed from any problem that has®@K proof. We then show that obtaining such a scheme that is also
constant-rounds not only sufficient, but also necessary to collapse thebmrrof rounds irPZK proofs.
Hence, we show an equivalence between the tasks of obtah@ngpmmitment, and collapsing the rounds.
Our idea also yields an elegant equivalence between zenatkdge and commitments.

In the second part of the paper we construct a non-inteeggberfectly hiding scheme whose binding
property holds on all but an exponentially small fractiontleé inputs. Informally, this shows that the
rounds in public-coirPZK proofs can be collapsed if we can guarantee that the proveatishoosing its
randomness from a small set. We formalize this conditionguai preamble, which we then apply to some
simple cases. An interesting consequence of independentdt is that we use the circuits from the study of
NIPZK in the commitment scheme of Naor [39], and this leads to a refegtly-hiding instance-dependent
commitment foNIPZK problems with a small soundness error.

Key words: constant-round, perfect zero-knowledge, instance{u#gr® commitment schemes.

1 Introduction

Perfect zero-knowledge protocols allowpeover to prove an assertion to ‘eerifier, but without leak-
ing any information to the verifier but the validity of the adson [27]. Unlike other variants of zero-
knowledge protocols, which allow the prover to leak infotim@a, these protocols guarantee the highest
level of privacy to the prover. Many problems that admit petfzero-knowledge proofs, likeQDRATIC-
REsIDuousITY [27] and DSCRETELOG [50], play a central role in cryptography, and they are used i
key agreement, encryption schemes, digital signaturesidemtification schemes (c.f., [15, 17, 19]). In ad-
dition to their value to cryptography, perfect zero-knadge protocols are intriguing also from a complexity
theoretic perspective. This is so because allkim@vnproblems admitting perfect zero-knowledge proofs,
like GRAPH-ISOMORPHISM[22], are inNP, but not known to b&P-complete or inP. Furthermore, all of
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these problems admitround public-coinPZK proofs, and have a very simple combinatorial characteriza-
tion [29]. This raises fascinating questions. For examigl®ZK contained inNP? Can we show that all
the problems ilPZK admit perfect zero-knowledge proofs with a constant-nunalbeounds?

Although many problems admit perfect zero-knowledge mpoofost of the research so far focused on
statistical and computational zero-knowledge pro&ZK and CZK, respectively). Unlike perfect zero-
knowledge, these variants allow the prover to leak a smatiiarhof information to the verifier. Thus, they
can be studied with a wide variety of tools, even if thesesbalve a side effect that they cause the prover to
leak information. Indeed, such tools were used to provemgnesults about statistical and computational
zero-knowledge proofs, including complete problems, ejance between public and private coins, equiv-
alence between honest and malicious verifier, and the moeateesult of Ong and Vadhan, which shows
thatSZK proofs have a constant number of rounds ([47, 52, 43, 25,5}, Unfortunately, these results do
not apply to the perfect setting, and the lack of tools in tiuelys of perfect zero-knowledge proofs makes
them very difficult to study. Consequently, many basic qoastaboufZK remain open.

1.1 Motivation

In this paper we are interested in the question whether tigbeu of rounds in perfect zero-knowledge
proofs can be collapsed to a constant. That is, if a problemitach public-coinPZK proof, does it also
admit a constant-roundZK proof? This question is important because the number ofd®ima protocol is
perhaps one of the its most expensive resources. Also] teathll theknownPZK proofs are public-coin
and require3-rounds. Thus, studying the round complexity of perfecbzerowledge proofs may explain
this phenomenon, or alternatively, lead to the discoverg pfoblem that admits BZK proof with more
than3 rounds. Finally, recall tha®ZK proofs have a constant number of rounds [45]. Hence, if itswaut
thatPZK proofs do not have a constant number of rounds, @K # SZK, which would resolve a long
standing open question.

A reasonable starting point is to consider the popular tbobonmitment schemeSuch schemes enable
a senderto commit to a bith such that theeceivercannot learrb from the commitment (this property is
calledhiding), and at the same time the sender cannot change the commitmagmother value (this property
is calledbinding. Goldreich, Micali, and Wigderson [22] were the first to shthat if bit commitments
exist, then an\NP language has @ZK proof. Ben-Oret. al[8] extended this to any language admitting a
public-coin proof (equivalently, any languageli [26]). These results apply also to problefs.

It is not clear whether commitment schemes can be usefulhforstudy of perfect zero-knowledge
proofs. This is so because they cannot be both perfectiydpidnd binding against a computationally un-
bounded sender. However, this limitation does not applinstance-dependermommitment schemes [6,
28]. Such schemes take an instanagf a problem as an input, and the hiding and the binding ptigsede-
pend on whether is aYES or aNOinstance. For example,i3PH-ISOMORPHISMhas such a scheme [22]:
given a pair of graphs = (G, G1), a commitment to a bii is a random isomorphic copy 6f, (this hides
b when the graphs are isomorphic, and binds étherwise).

Instance-dependent commitment-schemes were formaligdtbh, Ohta and Shizuya [28], who ob-
served that such schemes can replace the bit commitmestrgcinm the protocol of [22] foNP. This obser-
vation was later extended by Vadhan [52] to the protocol hfd8d it turned out to have far reaching conse-
qguences ([28, 36, 35, 42, 41, 29, 44, 45, 11]). As was showraloih&h [52], what makes instance-dependent

A problem is a paifIly, ITy) of disjoint sets, wherély- contains therES instances, andlly contains theNOinstances [18].
Any language can be defined as a probldmL).



commitment schemes so attractive is that they facilitageuticonditional study of zero-knowledge proofs.
Furthermore, since their hiding and the binding propesdigsnot required to hold simultaneously, they can
achieve perfect hiding and binding against a computatipmgibounded sender. Hence, such schemes may
be useful to collapse the number of round$K proofs.

As awarm up, suppose that public-c#lZK problems admit instance-dependent commitment-schemes,
and that the schemes are perfectly hiding and constantrdsince any°ZK problem has aAM proof [20,

2, 47], we could plug the scheme into the zero-knowledgeopwoitof [8] for AM and get a constant-round
PZK proof. That is, we would collapse the rounds in public-deiZK proofs to a constant.

However, there are a few difficulties. Firstly, current donstions of instance-dependent commitment
schemes are only statistically or computationally hidiBg,[52, 42, 45, 113. Thus, it is not clear at all
whether perfectly hiding schemes can be constructed frobtiggooin PZK proofs. Secondly, even if
such schemes exist, we need to construct ones that are alstagbround. Finally, obtaining constant-
round perfectly hiding instant-dependent commitment se®from public-coirPZK problems might be
too strong of a requirement. That is, we do not know if a weakadition may suffice to collapse the rounds
in public-coinPZK proofs to a constant.

1.2 Our results

We give the firsperfectlyhiding instance-dependent commitment scheme, and ouitaefinses the same
requirements as the scheme of Vadhan [52]: we require hidingES instances and binding dRO in-
stances, we consider the honest-verifier case (as was danie §2, 45]), and since the sender is inefficient,
we require that the scheme be simulatable.

Theorem 1.1 If a problem admits an honest-verifier perfect zero-knogdetHVPZK) proof, then it has
perfectly hiding instance-dependent commitment schefrtbe proof is constant-round (or public-coin),
then so is the scheme. The scheme is secure against horgigerscand the sender is inefficient. If the
proof isHVSZK or HVCZK, then the scheme is statistically (respectively, commurtally) hiding.

We remark that there are various definitions for commitmants instance-dependent commitments in
the literature, each tailored to a specific application. un case the difficulty is in achieving a perfectly
hiding scheme. Thus, in our definition we observe that uritikeommitments schemes, where the sender
always succeeds in producing a commitmeninstance-dependergbmmitment schemes this is only nec-
essary orYES instances, but not oNOinstances. This allows us to achieve perfect hiding.

Since our scheme inherits its round complexity from the gwotk, it does not collapse the round com-
plexity of public-coinPZK proofs to a constant. Hence, the difficulty in collapsingrihnds of public-coin
PZK proofs isnotin obtaining a perfectly hiding instance-dependent commaiit scheme, but rather in ob-
taining such a scheme that is also constant-round. But daweetb obtain such a scheme in order to achieve
this goal? Using the idea behind the zero-knowledge praoGapPH-1SOMORPHISM[22], we show that
indeed, the two questions are equivalent. Thatasstant-roungdperfectly hiding instance-dependent com-
mitment schemes are not only sufficient, but also necessamltapse the round complexity of public-coin
PZK proofs to a constant.

Corollary 1.2 A problem admits aonstant-roundperfectly (respectively, statistically) hiding inst@ac
dependent commitment scheme if and only if it admit®rstant-roundHVPZK (respectively HVSZK)
proof. The same applies t&VCZK if the problem admits a constant-round interactive proof.

2a perfectly hiding scheme was given in [29] using the teatmaiaf [14], but it only applies td -bit zero-knowledge protocols.
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This corollary yields a simple and elegant equivalence betwzero-knowledge and instance-dependent
commitments. Such an equivalence was first given by Vadrgndhd it was recently improved by Ong and
Vadhan [45] to constant rounds schemes with an efficienteserithe difference between our equivalence
to that of [45] is that the later only applies to the statitiand the computational setting, but it yields a
scheme with additional properties. In contrast, our edeinee applies in all settings (including the perfect),
but since our scheme inherits its properties from the padtéicdoes not have any additional properties.

In the second part of this paper we construct a non-integcperfectly hiding instance-dependent
scheme (with an efficient sender) for the class of problenmsittidg public-coinPZK proofs. Unfortu-
nately, the scheme is not binding, but for any polynomidhe fraction of random inputs to the scheme that
violates the binding property can be made as small/a&™), wheren is the input length.

Lemma 1.3 If a problem admits a public-coiklVPZK proof, then it has aon-interactive perfectly hiding
instance-dependent commitment scheme with an efficiedeseGiven common input of lengthn, the
scheme is binding on all bdt/2™ fraction of its random inputs.

Informally, this lemma shows that we can collapse the rowfdgublic-coin PZK proofs if we can
make sure that the prover does not choose its randomnessafimmall set. This relationship might be
implicit in other works [33, 45], but here we show that it helfbr the case of public-coiRZK proofs.
Also, there is a variety of techniques that allow two parteeshoose random strings (e.g., hashing [26, 13],
interactive hashing [46, 12, 40], and random selection §),4nd our lemma provides an avenue where
such technigues might be used.

To address the binding property of our scheme, we definmgamble Informally, the preamble pro-
vides a framework for choosing randomness for the sendele whthe same time making sure that perfect
hiding is maintained. It can be thought of asiastance-dependent randomness selection protthemause
the randomness is chosen jointly, and depends on instance)

We tested the preamble idea on the simple cas8gs@find public-coinPZK proofs and non-interactive
perfect zero-knowledgeN(PZK ) proofs. Although we could only construct the preamble uragsump-
tions on the soundness of the underlying problem, our iflyetstn yielded some consequences of indepen-
dent interest. For example, we used the circuits airdRM (the NIPZK -complete problem of [34]) in
the commitment scheme of Naor [39], and obtained a new (gabgnnon-interactive) instant-dependent
commitment scheme with an efficient senderNbPZK problems admitting a small soundness error.

1.3 Related Work

For a long time, the only general result ab®ZK proofs was the transformation of Damgard, Goldreich,
and Wigderson [13] frontonstant-round, public-coimonest-verifier perfect zero-knowledgd\(PZK )
proofs to ones that areZK. Recently, arerror shifting techniquevas discovered [34], leading to new
complete and hard problems for the perfect setting, and wehese results here.

The round complexity of interactive protocols has beenrsitely studied. In the context &P, Gold-
wasser and Sipser [26] showed that any interactive proobeanansformed into public-coin proof with
essentially the same number of rounds. The famous collé@eseem of Babai and Moran [4, 33] showed
that for anyAM problem (i.e., any problem with @nstant-rouncpublic-coin proof) the number of rounds
can be collapsed to two. Informally, the idea is to let thefigrsend its randomness in advance, but at the
same time play many copies of the protocol with the provepérallel). To prevent an exponential growth
in the size of the game tree, after each four rounds the vectfieoses one branch on which the game will



continue. We cannot use this idea to collapse the roundgereictive zero-knowledge proofs because it is
not known how to simulate different branches of the intéoactFor the relationship betweé&M andNP

we refer the reader to [10, 3, 32, 38], and we mention thautit®undedevels of the public-coin proof
hierarchy are not believed to be contained inttbendedevels of the polynomial-time hierarchy [1].

The round complexity of zero-knowledge protocols has atasen of great interest (c.f., [31, 5], and
the recent works of [30, 37]). Fortnow [20], and Aiello andsgtidd [2] showed th&8ZK C AM, and an
alternative proof was given in [47]. Siné&ZK C SZK, this means thaPZK C AM. As for CZK, if one
way functions exist, then an¥? proof can be turned into @ZK proof with essentially the same number of
rounds [8]. Thus, collapsing the rounds@ZK proofs essentially boils down to collapsing the rounds of
IP (equivalently,PSPACE[49]). We note that Goldreich and Krawczyk [21] showed thatblj-coin CZK
proofswith a negligible soundness errexist only for trivial problems (i.e., problems BPP). This result
extends tdPZK proofs (becaus®zZK C CZK), but it does not apply here because we consider general
public-coin proofs. A review on constant-round zero-knedgeargumentgor NP can be found in [7].

2 Definitions

This paper uses standard definitions. We start with the maifoan interactive protocol, originally due
to Goldwasser, Micali, and Rackoff [27]. Informally, anénactive protocol is simply a pair of functions
sending messages to each other until one of the functiomértate. Formally,

Definition 2.1 (Interactive Protocols) An interactive protocol is a paifP, V') of functions. Thénteraction
betweenP andVV on common input: is the following random process.

1. Letrp andry be random inputs t@ and V, respectively.
2. repeat the following fof = 1,2, ...

(@) If iisodd, letm; = P(x,mq,...,m;—1;7p).
(b) If iiseven, letn; = V(z,my,...,mi_1;7v).
(c) If m; € {accept, reject, fail}, then exit loop.

We say thal” accepts if m; = accept for an eveni. Interactions yieldranscripts(z, m1, ..., mp;rv),
and we call the stringsn; messagesThe probability space containing all the transcripts idled the view
of V onz, and is denotedP, V')(x). Theround complexityof (P, V') is a functionp such that for anyz,
and any interaction on input, the number of messages exchanged is at p(asf). We say thatP, V') is
constant roundf p is a constant.

We say that P, V') is public coinif V' always sends independent portions-pf and its last message is
a deterministic function of the messages exchanged.

Now we can define interactive proofs [27]. Informally, a gesb has an interactive proof if it has an
interactive protocol in which aommon input: is given to the prover and the verifier, the verifier runs in
time polynomial in|z|, and it accepts it is a YES instance, and rejects if is aNOinstance. The distance
between the probabilities to accept and rejeis 1/p(|z|), wherep is a polynomial (e.gx?). Formally,

Definition 2.2 (Interactive proofs and arguments) LetIl = (IIy, II) be a problem, and lgtP, V') be an
interactive protocol. We say thaP, V') is aninteractive proofor II if there isa, andc(n), s(n) : N — [0, 1]
such thatl — ¢(n) > s(n) 4+ 1/n® for anyn, and the following conditions hold.
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e Efficiency: V' is a probabilistic Turing machine whose running time oveg @ntire interaction is
polynomial in|z| (this implies that the number of messages exchanged isguolghin |z|).

e Completeness: if: € Ily, thenV accepts in(P,V)(x) with probability at leastl — ¢(|z|). The
probability is overrp andry (the randomness faP andV, respectively).

e Soundness: if € Iy, then for any functiorP* it holds thatV” accepts in P*, V')(x) with probability
at mosts(|z|). The probability is over the randomness for V.

If the soundness condition holds with respect to non-umf@olynomial-size circuits, then we say that
(P, V) is aninteractive argumerfor II.

The functionc is thecompleteness errpand the functiors is thesoundness erroWe say thatP, 1)
hasperfect completeneggespectivelyperfect soundnes#f ¢ = 0 (respectivelys = 0).

We denote byP the class of problems admitting interactive-proofs [2T7i[] &y AM the class of problems
admittingpublic-coin, constant-rounthteractive-proofs [4, 33].

Definition 2.3 (Efficient prover) Let (P, V') be an interactive proof or argument for &P problemII =
(ITy, I x). We say thai is anefficient proverif given an arbitraryNP witnessw for x € IIy the prover
runs in time polynomial inz|.

2.1 Indistinguishability

The notion of zero-knowledge is based on indistinguishtgbiletween two ensembles: the output of the
simulator, and interactions between the prover and théieeri

A probability ensemblés a sequencéY, }, ., of random variables, whetkis countable set of strings.
Indistinguishability is defined in terms of distance betweasembles. A functiofi(n) is negligibleif all of
its outputs are small when the inputs are large enough. Hlyrnfas negligible on! if for any polynomial
p there isN such that for allz € I of length at leastV it holds thatf(|x|) < 1/p(|z|). WhenI is clear
from the context we simply say thgtn) is negligible

We define three notions of indistinguishability: perfech{gh will be our main focus), statistical, and
computational. Computational indistinguishability ifided in terms of advantage ofdistinguisherD.
Given two distributions’, and Z,., and a circuitD whose output i§ or 1, theadvantageof D to distinguish
Y, from Z, is defined as

adv(D,Y,, Z,) £ |Pr[D(Y;) = 1] — Pr[D(Z,) = 1],

wherePr[D(X) = 1] is the probability thafD outputsl given an element chosen according to the distribu-
tion X. Notice that if D is probabilistic, then according to our convention thislyadaility is also over the
uniform distribution on the randomness Bf

Statistical indistinguishability makes no reference touits. Given two discrete distributions andY’,
the statistical distancédetween them is

AX,Y)Z1/2-> [Pr[X =o] - Pr[Y =0 = max([Pr[X € 5] - Pr[y € §])).

e

The formal definition of the three notions of indistinguibhigy follows.



Definition 2.4 (Indistinguishability) Two probability ensemblegY, }, ., and{Z,},; are computation-
ally indistinguishablef adv (D, Y., Z,) is negligible on! for all non-uniform polynomial-size circuitd.

They arestatistically identica(respectivelystatistically indistinguishab)af A(Yy, Z) is identically0 (re-

spectively, negligible) on.

Variants of the problem BTISTICAL-DISTANCE (SD) will play a central role in this paper. This
problem originated from the study &ZK [47], and its instances are pairs of circuits that can be ssen
distributions (under the convention that the inputs ardoumily chosen). Instances 8D are statistically
close asYES instances, and statistically far Bi®instances. Formally,

Definition 2.5 The problen8D? [47] is the pair(SDS, SD§>, where

SD% - {<X07X1>‘ A(X()’Xl) < Oé}, and
SDY = {(Xo, X1)| A(Xo,X1) > 8}, and

X and X are circuits (treated as distributions).

Notice thatSD £ SD'/3:2/3 js SZK-complete, and sinc8ZK is closed under complement [43, 43])
is alsoSZK-complete. Since we are dealing with the perfect settingwilldoe working only withSD%1/2,

2.2 Zero-Knowledge

Informally, an interactive proof (or an interactive argun)as zero-knowledgéf there is a simulator such
that the view of the verifier and the output of the simulater iadistinguishable.

Recall that [13] introduced a relaxed definition of perfemtazknowledge where the simulator is allowed
to fail with probability at mostl /2, and conditioned on not failing the output of the simula®required
to be indistinguishable from the view of the verifier. We rekntihat all of our results hold regardless of
whether the simulator is allowed to fail or not (indeed, wasider the honest-verifier case, where the two
notions are equivalent [34]). Thus, to simplify the preatioph we use a definition where the simulator is
not allowed to fail. We us&" to denote a Turing maching with oracle access to Turing machiie

Definition 2.6 (Zero-knowledge protocols)A protocol (P, V') for a problemIl = (IIy,IIy) is perfect
(respectivelystatistical, computationpkzero-knowledgéf there is a probabilistic, polynomial-time Turing
machineS, calledthe simulatoysuch that for any probabilistic, polynomial-time TuringahineV*,

UPV) @) pen, and {$V' @)}
are statistically-identical (respectively, statistibaindistinguishable, computationally indistinguishab)!
The class of problems admitting perfect (respectivelyjstieal, computational) zero-knowledge protocols
is denotedPZK (respectivelySZK, CZK.) When the above ensembles are indistinguishabl& fo= V' we
say that(P, V') is honest-verifier, perfedrespectivelystatistical, computationpzero-knowledgeand we
denote the respective classesthyPZK,HVSZK, andHVCZK.



3 Trivial Instance-Dependent Commitment Schemes

In this section we prove Theorem 1.1 by showing how to obtapedectly hidinginstance-dependent
commitment scheme from amyWPZK proof. Our idea also applies tdVSZK andHVCZK proofs. As
a consequence, we get an equivalence between zero-kn@ndedignstance dependent commitments, thus
proving Corollary 1.2.

We start with our definition of instance-dependent commitnsehemes. This definition has the same re-
guirements as the scheme of Vadhan [52]: we require hidingeshinstances and binding a¥Oinstances,
we consider the honest-verifier case (as was done also if¥]R,and since the sender is inefficient, we
require that the scheme be simulatable. Notice that we dearetif the prover fails to produce commit-
ments orNOinstances (because wheris aNOinstance we only care about soundness). Thus, we allow the
sender to fail in the commit phase, and require that therfajwobability be negligible olYES instances.

Definition 3.1 An instance-dependent commitment schefiorea problemIl = (IIy,Ily) is a protocol
(S, R) between aenderS (with input a bitb) and areceiverR. The randomness @t and S is denoted-g

andrg, respectively. The running time &fis polynomial injz|, wherex is thecommon input The protocol
has two parts:

e The commit phase.This is the first part of the protocol. If bothiand R follow their instructions, then
with probability at least —2~*| over their randomness this stage ends successfullycdenitment
of S'to b is denoted by.Sy, R)(z). It containsz, the messages exchanged in this phase,rand

e The reveal phase.This is the second part of the protocol. In this parbpens the commitment to
by sending andrg to R. The receiver either accepts or rejedtdn this stage the view of the receiver
is simply denotedrg, b).

The protocol satisfies three properties:

Hiding. (S, R) is perfectly (respectively, statistically, computatiogghiding on Iy if {(So, R)(2)} e,
and {(S1, R)(z)},cn, are identical (respectively, statistically indistingbable, computationally indistin-
guishable).

Biding. (S, R) is statistically bindingon IT if for any functionS* and common input € Ily, the
probability overry that R accepts botl) and 1 in the reveal phase is at most2/#!.

Simulation (against an honest receiver).S, R) is perfectly (respectively, statistically, computatiogll
simulatable against the honest receifehere is a probabilistic Turing machin&/ that runs in time poly-
nomial inz such that for any it holds that{ M (z, )} ,cy;,, and{{(Ss, R)(z), (rs,b))} .11, are identical
(respectively, statistically indistinguishable, comgtdignally indistinguishable).

We start with the forward direction of Corollary 1.2.

Lemma 3.2 If a problem admits a perfectly hiding instance-depend@mmitment scheme, then it has a
HVPZK proof. If the scheme is constant-round (or public-coingrtiso is théHVPZK proof.

Proof: We use the idea behind the proof systems f&ABH-ISOMORPHISM [22]. That is, the prover
commits to the bi0, and the verifier replies with a random bit The verifier accepts only if the prover
opens the commitment to the bit Soundness follows from the fact that the commitment isibgpan NO
instances. The hiding property of the scheme guaranteeththaame commitment can be opened to both
0 and1, and thus the protocol is complete. The protocdlisPZK because the simulator can guésand



then simulate a commitment towith the honest receiver by executidg(z, b), whereM is guaranteed by
the simulation requirement from Definition 3.1. Notice ttia fact that the scheme may fail does not affect
the perfect simulation because, just like the prover, thrikitor will fail in the commit phase. L]

The above proof also applies VSZK problems, but it may not appVCZK because the prover
may not be able to open commitments to bo#nd1. Instead, we can plug the instance-dependent commit-
ment scheme in the protocol of [8] fé&iM, and if the underlying problem has a constant round intemact
proof, then we get a constant-round public-cbiWCZK proof. Notice that in all cases we can apply the
transformation of [13] to the constant-round honest-varifiero-knowledge proof, and obtain a constant-
round zero-knowledge proof (against malicious verifiers).

We proceed to prove Theorem 1.1 by showing how to constretante-dependent commitment schemes
from zero-knowledge protocols. Combining this with thewabEmma, we obtain Corollary 1.2. Again, we
deal withHVPZK , but the proof easily extends VSZK andHVCZK .

Proof of Theorem 1.1: Let II be a problem admitting a constant-rouR¥PZK proof (P, V). Since
we deal with the honest verifier, the completeness and s@ssderror can be reduced 1@2". We use
(P, V) to construct an instance-dependent commitment schemH.foFhe idea is to use the soundness
property of(P, V') to obtain binding, the completeness and zero-knowledgeepties to obtain hiding, and
the zero-knowledge property to obtain simulation.

Formally, letS, denote the sender with a Bit let R to denote the receiver, and letdenote the input.
In the commit phas& and R executeP andV on inputz, respectively. There are two cases.

e If V accepts, then the sender does not derahd the commit phase terminates successfully. Notice
that the bitb takes no part in the execution of the commit phase. In theatglease the sender simply
revealsh (without sending its randomness), and the receiver accepts

e If V rejects, then both the commit and the reveal phases temnifidtat is, in the commit phase the
sender sendsai | , and in the reveal phase the sender does not send anythitigeareteiver rejects.

We verify the properties of the scheme. ket |z|. If x is aNOinstance, then the scheme is binding
becauser rejects with probability at leadt— 2~ overrg. If z is aYES instance and botl§ and R follow
their instructions, then the commit phase terminates sstally becausd” acceptse with probability at
leastl — 2™ over the randomness & and R. SinceS does not send in the commit phase, the scheme
is perfectly hiding. Notice that with probability at mokt2™ the sender fails in the commit phase, but the
bit b is still hidden. The simulatoi/ for (S, R) simply mimics the sender, and it can be easily constructed
from theHVPZK simulatorS of (P, V). Formally, M (x,b) obtains a transcriptz, m1, ma, ..., my;rv)

of S(x), and ifV accepts in this transcript, theéd outputs((z, my,ma, ..., m,;7v), (€, b)), wheree is the
empty string, and is the bit of the sender. Otherwise, just like the proverddsathef ai | message to the
transcript, and output§z, mi, ma, ..., my,fail ;ry),e). O

Notice that in the above prodfis aHVPZK simulator, and thud/ perfectly simulates the commitment.
However, althoughb is not involved in the commit phase, #f is aHVSZK or aHVCZK simulator, then
M will only statistically or computationally simulate theromit phase, and thus the hiding property will
be statistical or computational, respectively.



4 Instance-Dependent Commitments from Hard Problems

In this section we prove Lemma 1.3 by constructing a pesfelitiing instance-dependent commitment
scheme. Although our scheme is not binding, the binding gntygholds on almost all the inputs, and this
shows that we can collapse the rounds of public-éiK proofs if we can make sure that the prover does
not choose its randomness from a small set.

We build on bENTICAL DISTRIBUTIONS (ID), the hard problem of [34] for the class of problems ad-
mitting public-coinHVPZK proofs. This problem originated from the reduction of Satral Vadhan [47].
Instances ofD are triplets( Xy, X1, Z) of circuits, where the circuif can be ignored (because in any zero-
knowledge proof or an instance-dependent commitment selieniD, the verifier can sampl& and reject
immediately ifPr[Z = 1] < 1/3). Thus, throughout this paper, when we refeillp we actually refer to
instanceg Xy, X1) of SD%1/2_ That is, asYES instancesX, and X; represent the same distribution, and as
NOinstances they represent statistically far distributions

Definition 4.1 The problem DENTICAL DISTRIBUTIONS is ID £ (IDy, IDy), where
p

IDy = {(X(),Xl,ZH A(Xo,Xl) =0 and PY[Z = 1] > 2/3}, and
IDy = {(X(),Xl,ZH A(XQ,Xl) > 1/2 or PY[Z = 1] < 1/3} .

4.1 A Perfectly Hiding Scheme That is AlImost Binding

Our goal is to construct a constant-round, perfectly hiditeance-dependent commitment schemdifar

Micciancio and Vadhan [36] showed tH&D%! has such a scheme: a commitment to the lita random
sample ofX,. With respect tdD, this idea guarantees perfect hiding ¥BS instance becaus&, and

X7 represent the same distribution, and thus it is impossibléetermineb from y. However, this idea
does not guarantee binding whek, X;) is aNOinstance offD because there could beandr’ such that
Xo(r) = X1(r"), which may allow the sender to opgras a commitment to bothor 1 .

Our idea is to usenultiple intertwined sample§ hat is, we use. = |( X, X;)| additional samples, and
the stringr appears in all of them. Formally, to commit to a bithe prover chooses + 1 random strings
r,T1,..., s, and it sends to the verifier the commitmeht= (X, (r), Xp(r @ r1),..., Xp(r @ 1)), AS
before, in the reveal phase the prover sendadr, r1, ..., r,, and the verifier checks thgtwas computed
correctly. This scheme is described in Figure 1.

The first observation about the modified scheme is that:if, . .., r, are uniformly chosen, then the
stringsr,r ® r1,...,r ® r, are also uniformly chosen aidependentThus, the modified scheme retains
the perfect hiding property. The second observation isttimmodified scheme is not binding. However,
notice that in the previous scheme the sender could cheag asly pair(r,r’) for which X, (r) = X1 (r'),
and many such pairs may exist. In contrast, in the modifiegrsehthe sender can cheat using only a
small fraction of the strings;, ..., r,, regardless of the number of paifrs ') for which X, (r) = X1 (')
(intuitively, replacingXy(r) with X (r’) affects the rest of the samples, which requires a cheatindese
to adjust the strings,, ..., r,). Hencej cannot be opened as a commitment to kbdnd 1, except for a
small fraction of the strings,, ..., r,. To formalize this, we start with one sample.

Lemma 4.2 Let X, and X; be circuits. Let andr’ be stings such thaky(r) = Xo(r'), and leta =
A(Xp,Xq). If 71 is uniformly chosen, then the probability th&(r & r1) = X1 (' ©r1) is at mostl — .
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An instance-dependent scheite R)

Common input: a pair of circuit§ Xy, X1). Letn = [(Xo, X1)|.
Private input for S: a bitb.

ThesenderS commits to a bib as follows:

1. S uniformly chooses a string, and computeg & Xp(r).

2. S uniformly chooses strings,, . . ., 7, and computeg; =

Xp(r @ ry).

3. Ssendsf < (y,y1,...,yn) to thereceiverR.

In the reveal phas§ sendsr, rq,...,r, t0 R.

Figure 1: A perfectly hiding scheme whose binding propedids on almost all the random inputs.

Proof. We use two sets in our analysis. The first set contains stygjribat are more likely to be outputted
by X, than by X, and the second set is defined analogously. Formally,

Xi € {ylPr[Xo = y] > Pr[X1 = y]}, and X7 = {y|Pr[X; = y] > Pr[Xo =y}
Using these sets we upper bound the probability gt & r1) = X1 (' & rq).

Prr1 [Xo(r@r) = X1(r' @ r1)]
[(XQ(T D 7"1) = Xl(TI & 7“1)) A Xl(TI & 7“1) ¢ X(—)’—] +
an[(XO(?“ @r)=X1(r @r)) AXi(F @) € X7

Clearly, the first expression in the above sum is upper balibyePr,, [X;(r' & r1) ¢ X, ]. The same
applies to the second expression, but we use the equalibjsrexpression to replack;(r’ & ry) € Xgr
with Xo(r @ r1) € X4 . Hence, we get that

Pr. [(Xo(r@r) =X1(r ®@r)AXi(r &) ¢ X(ﬂ +
Pr [(Xo(r@®r)=X1(r"®r))AXi(r &r) € X{H

< Pr,[Xi(r@r) ¢ XS]+ Pr, [Xo(r@®r) € X{]

= 1-Pr, [Xi(" ®r) € XJ]+Pr, [ Xo(r®r) € XJ].

Now we use a fact that follows from the definition of statiatidistance (see Fagtl.9 in [51]). According
to this fact,A(Xo, X1) = Pr[X, € X | — Pr[X; € X{]. Thus, since- andr’ are fixed, we get that

A(Xo,X1) = Pro, [Xo(r @ 11) € X3~ Pro, [X1(r' @ 71) € X7 1.

SinceA(Xg, X1) = «, we get thaPr, [Xo(r & r1) = X1(r" @& 7)] <1-—a. O

It follows that by taking more samples, we can reduce the rurabstrings that allow a cheating sender
to open commitments to bothand1. Formally, letX, and X; be circuits on inputs of length:, and let
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n = [(Xo, X1)|. We claim that for any- and+”, if r1, ..., 72, are uniformly chosen, then with probability
at most2~" it holds that

<X0(7”),X0(7" &) 7“1), A ,X()(?“ (o) Tgn)> = <X1(T),X1(T &) 7"1), - ,Xl(r &) 7“2”)>.

This is so because by Lemma 4.2, the probability aver. ., o, that the above equality holds is at most
(1 — a)? < 272" (recall thate = A(Xg, X1) > 1/2 when(Xy, X;) is aNOinstance ofiD). Since there
are at mosg>™ < 2" pairs(r, r') for which X (r) = X1(r'), our scheme is not binding with probability at
most2” - 2727 < 2" Lemma 1.3 follows.

5 A Preamble for Jointly Choosing Randomness

In the previous section we constructed a scheme that is nding if the sender chooses its randomness
from a small set. In this section we defin@@amblethat provides a framework for choosing randomness
for the sender, while at the same time making sure that gdrfding is maintained. Such a preamble would
fix the binding property of our scheme, thus collapsing thencbcomplexity of public-coilPZK proofs to

a constant. We then test the preamble on the simple casesoahd public-coilPZK proofs (Section 5.1)
andNIPZK proofs (Section 5.2), and obtain interesting consequences

Motivation. Since the randomness of our scheme is chosen by the sendierating sender may be able
to open the commitment to bothand 1. Hence, it makes sense to restrict the randomness used by the
sender. In the statistical setting Goldreich and Vadhah (i8&d the hashing technique of Goldwasser and
Sipser [26], whereby one party chooses a hash funétj@nd the other party is restricted to stringsuch
that h(r) = 0. Indeed, forcing the sender to use randomness from the st~ (0) will make our
scheme binding, but in the perfect setting it compromisesitting property (a similar issue occurs in [42],
where the interactive hashing technique due to Ding, HaRRdsen, and Shaltiel [16] is used; interactive
hashing was introduced by Naor, Ostrovsky, Venkatesanyand [40]).

Thus, we need aimstance-dependent randomness selection protddwt is, a protocol that restricts the
randomness of the sender in a way that depends on the compwin We formalize this using preamble
The first part of the preamble defines a detvhich is big onYES instances and small odNO instances.
Intuitively, A represents all the choices of randomness for the sendert eodtains a small subsé? of
strings that violate the binding property. The second pegtuhe sefl to define a string such that or'YES
instances can be any string i, and onNOinstances- is unlikely to be a string iB. More formally,

1. Defining a set. Let x be an instance dfD, and letp(n) denote the length of the random input to
our scheme. The sender and the receiver execute a protetalefines a set C {0, 1}p(”), where
n £ |z|. If z is aYES instance, thend| = 2°(") and ifz is aNOinstance, theni < 2°(").

2. Randomizing the set.Let B C {0, 1}”(”) be the set of “bad” strings (those that violate the binding
property of our scheme). Usingd the parties define a string If = is a YES instance, them can
equally be any string ial = {0, 1}p(”), and ifx is aNOinstance, them is unlikely to be inB.

Suppose that we could construct such a preambldlorWe could then execut§ and R from our
scheme in Figure 1, and hagecommit to its bitb usingr as randomness. if is aYES instance, them can
be any string in4, and thugy perfectly hideg. If = is aNOinstance, them ¢ B with high probability over
the randomness of the receiver, and tiusnds the sender th
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5.1 The Case of3-round Public-Coin PZK Proofs

Our goal is to construct a preamble for any problem that almipublic-coinPZK proof. Since we do
not know how to do it, we deal with the simple case3afound public-coinPZK proofs. Notice that the
preamble must have afficient senderor else we could directly apply Theorem 1.1 to $aeund public-

coin PZK proof, and obtain a constant-round, perfectly hiding instgadependent commitment scheme.

Consider &-round, public-coinrPZK proof (P, V') with a simulatord/, and let(x, m1,r;, m2) denote
the output of M (x). That is, on inputz the prover sendsn,, the verifier sendsy, the prover replies
with msy, and based on these messages the verifier accepts of r§edanplify the presentation, we let
Ir1] = n £ |z|, and denote by the length of the random input to our commitment schéeR) ().

Preamble - Stepl. The first step of our preamble is to define a detThis can be done by having the
sender execut@/ (x), obtain a transcrip{xz, m1, 71, mo), and sendn; to the receiver. We defind to be
the set of all~; such thatM (z) = (x, my,r1, mg) andV (z, m1, 71, m2) = accept . Actually, we want4

to contain strings of length¢. Thus, we let the sender samglé for n°~! times, obtain a vectar of n°~*
messages;, and send a vector of°"! messagesn;, to the receiver. Suppose th@®, V') has soundness
error 1/2 and perfect completeness. Thusyifs a YES instance, themd = {0,1}", and if z is aNO
instance, them contains at most &/2"" ! fraction of the strings if0,1}™".

Preamble - Step2. The second step of our preamble is to define a stritigat would later be used by
the sender in our commitment scheme. Bebe the set of all strings that violate the binding property of
our scheme. By Lemma 1.3 contains at most /2" fraction of the strings in{0,1}"". We remark
that if AN B = (, then we could simply define = 7 (i.e., the randomness fdf is the concatenation
of the n® messages,), but of course, this may not be the case. Suppose(fdt’) has a very small
soundness error df/2”—(”_c+2)/2. In such a case we can let the receiver send a random striegthe

def

sender, and define= 7 ® r’. Whenx is aNOinstance the probability thatc B is at mos{A| - 1/2" =
(2n/2n—(nfc+2)/2)ncfl/2n — 9-n/2

Thus, if the sender in our scheme usess its randomness, then the scheme is bindinj®@imstances.
If = is aYES instance, them is hidden from the receiver, and thus our scheme is perféiding. We
can remove the assumption on perfect completeness by atidiwé sender to fail (this happens with small
probability because, after executing many times, the sender is likely to obtaifi accepting transcripts).
Unfortunately, we do not know how to remove the restrictiortite soundness.

5.2 The Case of Non-Interactive Perfect Zero-Knowledge (NRZK) Proofs

Our goal was to collapse the number of rounds in public-&¥# proofs to a constant. We could achieve
this goal if our scheme was binding. We tried to constructeaprble that would fix the binding property,
but we were unsuccessful even for the simple caskrotind public-coinPZK proofs.

In this section we want to provide a better understanding tin¢ difficulties involved. Thus, we try to
construct the preamble for the other simple casdliéfZK proofs. Although we could not construct the
preamble, our investigation yields two interesting conseges. Firstly, we show how to use the circuits
from the study ofNIPZK in the commitment scheme of Naor [39]. This leads to a newegdyf-hiding
instance-dependent commitment felPZK problems with a small soundness error. Secondly, we show
how to use hash functions without damaging the hiding ptygpdihis is useful because, as we mentioned
earlier, most hashing techniques (e.qg., [26, 16]) do nolyapghe perfect setting.
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Since we are dealing with the non-interactive setting, auiteulying problem will be theNIPZK -
complete problem of [34]. This problem, callea\i#orM (UN), was obtained by modifying the reductions
of Goldreich, Sahai, and Vadhan [24], originally due to Dt Di Crescenzo, Persiano, and Yung.
Intuitively, YES instances olUN are circuits that represent the uniform distribution, &@linstances are
circuits that have a small range. Actually, the circuitséham additional output bit, but it can be ignored (in
the same way that we ignored the circdiof the problem bENTICAL DISTRIBUTIONS). Thus, throughout
this section we will be working with a variant oftf8TISTICAL DISTANCE FROM UNIFORM (SDU), the
NISZK -complete problem of [24]. The definition ofNWFORM can be found in Appendix A.

Definition 5.1 DefineSDU’ £ (SDU},, SDUY%,) as

SDUYy = {X| A(X,U,) = 0}, and
SDU’% = {X| Rng(X) < 2"/3},

whereX is a circuit withn output bits, and’,, is the uniform distribution 040, 1}".

Motivation. Our goal is to construct a constant-round, perfectly hidirgance-dependent commitment
scheme, this time foBDU’. Again, the scheme must have efficient senderor else it trivially exists by
Theorem 1.1 (becauddlPZK proofs are constant-rountdVPZK proofs in particular).

As a warm up, consider the commitment scheme of Naor [39]ckwhBes a pseudo-random generator
G : {0,1}™ — {0,1}*". In this scheme the receiver sends a random strirg {0,1}*" to the sender.
The sender chooses a random strifige {0,1}", and commits td by sendingG(r') ¢ r, and tol by
sendingG(r’). To see why this scheme is binding against computationailyounded senders, consider
a commitmentG(r’). Since the range off contains at most &/22" fraction of the stringg0, 1}*", the
probability thatG (r) @ r falls back intoRng(G) (that is,G(r') ® r = G(r") for somer”) is at mos 2",
Thus, the scheme is binding with probability at ledstig(G)| - 272" = 270,

We apply this idea to instances 8DU’. That is, on circuitX with n output bits the receiver sends
a uniformly chosenr € {0,1}", and the sender commits by sendingX (r’') & r, and tol by sending
X (r"). The resulting instance-dependent scheme is perfectindhidn YES instances. IfSDU’ has a
very small soundness error @f /4, then itsNO instances satisfyRng(X)| < 2"/4, and by the same
argument as above, the probability ovethat there are’ andr” such thatX (') & » = X (r”) is at most
|Rng(X)| - 2734 < 2-7/2, Of course, the range 6f may be bigger, and thus we cannot use this idea.

Constructing a Preamble. We modify the scheme of Naor [39] using hash functions. tiviely, the
sender will commit td) by sending”’(r), and tol by sendingX (r,). The stringry is chosen by the sender,
the stringr is chosen by the receiver, aind is a hash function chosen jointly. The idea is thatXifis a
NOinstance, then it has a small range, and thus it is unlikely/t{r) € Rng(X). The scheme guarantees
perfect hiding orYES instances, but as we shall see it does not guarantee bintfmfprmally describe our
scheme using the preamble idea.

Let X be a circuit withn output bits, let: be some constant, and defié = ©"° X as the circuit that
takesn®~! stringsr;, and outputsX (r1), ..., X (r,.—1). The circuitX’ hasn® output gates. IfX is aYES
instance, therX’ represents the uniform distribution, and¥fis aNOinstance, thetX’ has a small range.

def

Preamble - Stepl. In the first step the sender picks two samplestéfand sends thEORto the receiver.
That is, the sender picks, 71, computesiy = X'(rg), h1 = X'(r1), and sendg = ho & h; to the receiver.
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Using the notation of our preambld, is a set of hash functions. K is aYES instance, theml = {0, 1}”0,
and if X is aNOinstance, them contains a small fraction dfo, 1}

Preamble - Step2. In the second step the receiver replies with a uniformly ehdsash functiork and an
input 7 for h. The sender usésto defineh’ = hy @ h. Informally, this ensures that' does not belong to
the setB of hash functions that do not evenly spread their domain thedr range.

Now we execute the scheme. The sender commits=to0 by sending?’(r), and tob = 1 by sending
X(rg). If X is aYES instance, then both’ andr( are hidden from the receiver, and the scheme is hiding.
If X is aNOinstance, then botil and X’ have small ranges. Sinééis a good hash function, it is unlikely
to mapr to Rng(X), and thus the scheme should be binding. Unfortunately,ighi®t the case because,
although?' is likely to be a good hash function, there &Rmg(X’)| possibilities forhy. In other words,
althoughh’ is good,?’ () may fall intoRng(X).

6 Conclusion

We initiated a preliminary investigation into the questiohether the round complexity of public-coRZK
proofs can be collapsed to a constant. We gave the first plgrfdading instance-dependent commitment
scheme, and showed that obtaining such a scheme that isaistast round is equivalent to achieving
this collapse. We then tried to construct a constant-ropedectly hiding scheme using the circuits from
the hard problem for public-coiPZK proofs [34]. Although we could not fix the binding property of
the scheme, our attempts had some interesting consequénclesling a connection between choosing
the randomness of the sender and collapsing the rounds effratidn of the preamble, the difficulty in
constructing the preamble, and the use of the circuits oNHRZK -complete problem in the scheme of
Naor [39].
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A The problem UNIFORM

We give the definition of th&lIPZK -complete problem of [34], called \UFORM (UN). Given a circuitX,
we use the convention that+ 1 denotes the number of output bits &t We need the following notation.

e Ty is the set of outputs ok that end with al. Formally,7x £ {z|3r X (r) = z, and the suffix ofz
is 1}. Informally, when a problem is reduced i, its soundness and completeness properties imply
that the size off'y is large forYES instances ofJN, and small foiNOinstances of/N.

e X' is the distribution on the first bits thatX outputs. That is X’ is obtained fromX by taking a
random sample oK, and then outputting the first bits. Again, when &ES instance of aNIPZK
problem is reduced to the circu, the distributionX” is uniform on{0, 1}".
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Now, letting X' be a circuit withn + 1 output bits, we say thaX' is 5-negativelf |Tx| < §-2". Thatis,
T is small, and contains at ma8t 2" strings. We say thaX is a-positiveif X’ is the uniform distribution
on{0,1}" andPr,. x|z € Tx] > a. This implies thafl'x is large, and contains at least 2" strings.

def

Definition A.1 The problemUNIFORM is defined adJN = (UNy, UNy), where

UNy = {X|X is 2/3 — positive} , and
UNy = {X|X is 1/3 — negative .
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