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Abstract. We study the question whether the number of rounds in public-coin perfect zero-knowledge
(PZK ) proofs can be collapsed to a constant. Despite extensive research into the round complexity of
interactive and zero-knowledge protocols, there is no indication how to address this question. Furthermore,
the main tool to tackle this question is instance-dependentcommitments, but currently such schemes are
only statistically hiding, whereas we need perfectly hiding schemes.

We give the firstperfectlyhiding instance-dependent commitment scheme. This schemecan be con-
structed from any problem that has aPZK proof. We then show that obtaining such a scheme that is also
constant-roundis not only sufficient, but also necessary to collapse the number of rounds inPZK proofs.
Hence, we show an equivalence between the tasks of obtainingthe commitment, and collapsing the rounds.
Our idea also yields an elegant equivalence between zero-knowledge and commitments.

In the second part of the paper we construct a non-interactive, perfectly hiding scheme whose binding
property holds on all but an exponentially small fraction ofthe inputs. Informally, this shows that the
rounds in public-coinPZK proofs can be collapsed if we can guarantee that the prover isnot choosing its
randomness from a small set. We formalize this condition using a preamble, which we then apply to some
simple cases. An interesting consequence of independent interest is that we use the circuits from the study of
NIPZK in the commitment scheme of Naor [39], and this leads to a new perfectly-hiding instance-dependent
commitment forNIPZK problems with a small soundness error.

Key words: constant-round, perfect zero-knowledge, instance-dependent commitment schemes.

1 Introduction

Perfect zero-knowledge protocols allow aprover to prove an assertion to averifier, but without leak-
ing any information to the verifier but the validity of the assertion [27]. Unlike other variants of zero-
knowledge protocols, which allow the prover to leak information, these protocols guarantee the highest
level of privacy to the prover. Many problems that admit perfect zero-knowledge proofs, like QUADRATIC-
RESIDUOUSITY [27] and DISCRETE-LOG [50], play a central role in cryptography, and they are used in
key agreement, encryption schemes, digital signatures, and identification schemes (c.f., [15, 17, 19]). In ad-
dition to their value to cryptography, perfect zero-knowledge protocols are intriguing also from a complexity
theoretic perspective. This is so because all theknownproblems admitting perfect zero-knowledge proofs,
like GRAPH-ISOMORPHISM[22], are inNP, but not known to beNP-complete or inP. Furthermore, all of
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these problems admit3-round public-coinPZK proofs, and have a very simple combinatorial characteriza-
tion [29]. This raises fascinating questions. For example,is PZK contained inNP? Can we show that all
the problems inPZK admit perfect zero-knowledge proofs with a constant-number of rounds?

Although many problems admit perfect zero-knowledge proofs, most of the research so far focused on
statistical and computational zero-knowledge proofs (SZK andCZK , respectively). Unlike perfect zero-
knowledge, these variants allow the prover to leak a small amount of information to the verifier. Thus, they
can be studied with a wide variety of tools, even if these tools have a side effect that they cause the prover to
leak information. Indeed, such tools were used to prove general results about statistical and computational
zero-knowledge proofs, including complete problems, equivalence between public and private coins, equiv-
alence between honest and malicious verifier, and the more recent result of Ong and Vadhan, which shows
thatSZK proofs have a constant number of rounds ([47, 52, 43, 25, 23, 45]). Unfortunately, these results do
not apply to the perfect setting, and the lack of tools in the study of perfect zero-knowledge proofs makes
them very difficult to study. Consequently, many basic questions aboutPZK remain open.

1.1 Motivation

In this paper we are interested in the question whether the number of rounds in perfect zero-knowledge
proofs can be collapsed to a constant. That is, if a problem admits a public-coinPZK proof, does it also
admit a constant-roundPZK proof? This question is important because the number of rounds in a protocol is
perhaps one of the its most expensive resources. Also, recall that all theknownPZK proofs are public-coin
and require3-rounds. Thus, studying the round complexity of perfect zero-knowledge proofs may explain
this phenomenon, or alternatively, lead to the discovery ofa problem that admits aPZK proof with more
than3 rounds. Finally, recall thatSZK proofs have a constant number of rounds [45]. Hence, if it turns out
thatPZK proofs do not have a constant number of rounds, thenPZK 6= SZK, which would resolve a long
standing open question.

A reasonable starting point is to consider the popular tool of commitment schemes. Such schemes enable
a senderto commit to a bitb such that thereceivercannot learnb from the commitment (this property is
calledhiding), and at the same time the sender cannot change the commitment to another value (this property
is calledbinding). Goldreich, Micali, and Wigderson [22] were the first to show that if bit commitments
exist, then anyNP language has aCZK proof. Ben-Oret. al [8] extended this to any language admitting a
public-coin proof (equivalently, any language inIP [26]). These results apply also to problems.1

It is not clear whether commitment schemes can be useful for the study of perfect zero-knowledge
proofs. This is so because they cannot be both perfectly hiding and binding against a computationally un-
bounded sender. However, this limitation does not apply toinstance-dependentcommitment schemes [6,
28]. Such schemes take an instancex of a problem as an input, and the hiding and the binding properties de-
pend on whetherx is aYES or aNO instance. For example, GRAPH-ISOMORPHISMhas such a scheme [22]:
given a pair of graphsx = 〈G0, G1〉, a commitment to a bitb is a random isomorphic copy ofGb (this hides
b when the graphs are isomorphic, and binds tob otherwise).

Instance-dependent commitment-schemes were formalized by Itoh, Ohta and Shizuya [28], who ob-
served that such schemes can replace the bit commitment-scheme in the protocol of [22] forNP. This obser-
vation was later extended by Vadhan [52] to the protocol of [8], and it turned out to have far reaching conse-
quences ([28, 36, 35, 42, 41, 29, 44, 45, 11]). As was shown by Vadhan [52], what makes instance-dependent

1A problem is a pair〈ΠY , ΠN〉 of disjoint sets, whereΠY contains theYES instances, andΠN contains theNO instances [18].
Any language can be defined as a problem〈L, L〉.
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commitment schemes so attractive is that they facilitate the unconditional study of zero-knowledge proofs.
Furthermore, since their hiding and the binding propertiesare not required to hold simultaneously, they can
achieve perfect hiding and binding against a computationally unbounded sender. Hence, such schemes may
be useful to collapse the number of rounds inPZK proofs.

As a warm up, suppose that public-coinPZK problems admit instance-dependent commitment-schemes,
and that the schemes are perfectly hiding and constant-round. Since anyPZK problem has anAM proof [20,
2, 47], we could plug the scheme into the zero-knowledge protocol of [8] for AM and get a constant-round
PZK proof. That is, we would collapse the rounds in public-coinPZK proofs to a constant.

However, there are a few difficulties. Firstly, current constructions of instance-dependent commitment
schemes are only statistically or computationally hiding [36, 52, 42, 45, 11].2 Thus, it is not clear at all
whether perfectly hiding schemes can be constructed from public-coin PZK proofs. Secondly, even if
such schemes exist, we need to construct ones that are also constant-round. Finally, obtaining constant-
round perfectly hiding instant-dependent commitment schemes from public-coinPZK problems might be
too strong of a requirement. That is, we do not know if a weakercondition may suffice to collapse the rounds
in public-coinPZK proofs to a constant.

1.2 Our results

We give the firstperfectlyhiding instance-dependent commitment scheme, and our definition uses the same
requirements as the scheme of Vadhan [52]: we require hidingon YES instances and binding onNO in-
stances, we consider the honest-verifier case (as was done also in [42, 45]), and since the sender is inefficient,
we require that the scheme be simulatable.

Theorem 1.1 If a problem admits an honest-verifier perfect zero-knowledge (HVPZK) proof, then it has
perfectly hiding instance-dependent commitment scheme. If the proof is constant-round (or public-coin),
then so is the scheme. The scheme is secure against honest receivers, and the sender is inefficient. If the
proof isHVSZK or HVCZK, then the scheme is statistically (respectively, computationally) hiding.

We remark that there are various definitions for commitmentsand instance-dependent commitments in
the literature, each tailored to a specific application. In our case the difficulty is in achieving a perfectly
hiding scheme. Thus, in our definition we observe that unlikein commitments schemes, where the sender
always succeeds in producing a commitment, ininstance-dependentcommitment schemes this is only nec-
essary onYES instances, but not onNO instances. This allows us to achieve perfect hiding.

Since our scheme inherits its round complexity from the protocol, it does not collapse the round com-
plexity of public-coinPZK proofs to a constant. Hence, the difficulty in collapsing therounds of public-coin
PZK proofs isnot in obtaining a perfectly hiding instance-dependent commitment scheme, but rather in ob-
taining such a scheme that is also constant-round. But do we have to obtain such a scheme in order to achieve
this goal? Using the idea behind the zero-knowledge proof for GRAPH-ISOMORPHISM [22], we show that
indeed, the two questions are equivalent. That is,constant-round, perfectly hiding instance-dependent com-
mitment schemes are not only sufficient, but also necessary to collapse the round complexity of public-coin
PZK proofs to a constant.

Corollary 1.2 A problem admits aconstant-round, perfectly (respectively, statistically) hiding instance-
dependent commitment scheme if and only if it admits aconstant-roundHVPZK (respectively,HVSZK)
proof. The same applies toHVCZK if the problem admits a constant-round interactive proof.

2a perfectly hiding scheme was given in [29] using the technique of [14], but it only applies toV -bit zero-knowledge protocols.
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This corollary yields a simple and elegant equivalence between zero-knowledge and instance-dependent
commitments. Such an equivalence was first given by Vadhan [52], and it was recently improved by Ong and
Vadhan [45] to constant rounds schemes with an efficient sender. The difference between our equivalence
to that of [45] is that the later only applies to the statistical and the computational setting, but it yields a
scheme with additional properties. In contrast, our equivalence applies in all settings (including the perfect),
but since our scheme inherits its properties from the protocol, it does not have any additional properties.

In the second part of this paper we construct a non-interactive, perfectly hiding instance-dependent
scheme (with an efficient sender) for the class of problems admitting public-coinPZK proofs. Unfortu-
nately, the scheme is not binding, but for any polynomialp, the fraction of random inputs to the scheme that
violates the binding property can be made as small as1/2p(n), wheren is the input length.

Lemma 1.3 If a problem admits a public-coinHVPZK proof, then it has anon-interactive, perfectly hiding
instance-dependent commitment scheme with an efficient sender. Given common inputx of lengthn, the
scheme is binding on all but1/2n fraction of its random inputs.

Informally, this lemma shows that we can collapse the roundsof public-coin PZK proofs if we can
make sure that the prover does not choose its randomness froma small set. This relationship might be
implicit in other works [33, 45], but here we show that it holds for the case of public-coinPZK proofs.
Also, there is a variety of techniques that allow two partiesto choose random strings (e.g., hashing [26, 13],
interactive hashing [46, 12, 40], and random selection [9, 48]), and our lemma provides an avenue where
such techniques might be used.

To address the binding property of our scheme, we defined apreamble. Informally, the preamble pro-
vides a framework for choosing randomness for the sender, while at the same time making sure that perfect
hiding is maintained. It can be thought of as aninstance-dependent randomness selection protocol(because
the randomness is chosen jointly, and depends on instance)

We tested the preamble idea on the simple cases of3-round public-coinPZK proofs and non-interactive
perfect zero-knowledge (NIPZK ) proofs. Although we could only construct the preamble under assump-
tions on the soundness of the underlying problem, our investigation yielded some consequences of indepen-
dent interest. For example, we used the circuits of UNIFORM (the NIPZK -complete problem of [34]) in
the commitment scheme of Naor [39], and obtained a new (essentially, non-interactive) instant-dependent
commitment scheme with an efficient sender forNIPZK problems admitting a small soundness error.

1.3 Related Work

For a long time, the only general result aboutPZK proofs was the transformation of Damgård, Goldreich,
and Wigderson [13] fromconstant-round, public-coinhonest-verifier perfect zero-knowledge (HVPZK )
proofs to ones that arePZK . Recently, anerror shifting techniquewas discovered [34], leading to new
complete and hard problems for the perfect setting, and we use these results here.

The round complexity of interactive protocols has been extensively studied. In the context ofIP, Gold-
wasser and Sipser [26] showed that any interactive proof canbe transformed into apublic-coinproof with
essentially the same number of rounds. The famous collapse theorem of Babai and Moran [4, 33] showed
that for anyAM problem (i.e., any problem with aconstant-roundpublic-coin proof) the number of rounds
can be collapsed to two. Informally, the idea is to let the verifier send its randomness in advance, but at the
same time play many copies of the protocol with the prover (inparallel). To prevent an exponential growth
in the size of the game tree, after each four rounds the verifier chooses one branch on which the game will
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continue. We cannot use this idea to collapse the rounds in interactive zero-knowledge proofs because it is
not known how to simulate different branches of the interaction. For the relationship betweenAM andNP
we refer the reader to [10, 3, 32, 38], and we mention that theunboundedlevels of the public-coin proof
hierarchy are not believed to be contained in theboundedlevels of the polynomial-time hierarchy [1].

The round complexity of zero-knowledge protocols has always been of great interest (c.f., [31, 5], and
the recent works of [30, 37]). Fortnow [20], and Aiello and H˚astad [2] showed thatSZK ⊆ AM , and an
alternative proof was given in [47]. SincePZK ⊆ SZK, this means thatPZK ⊆ AM . As for CZK , if one
way functions exist, then anyIP proof can be turned into aCZK proof with essentially the same number of
rounds [8]. Thus, collapsing the rounds ofCZK proofs essentially boils down to collapsing the rounds of
IP (equivalently,PSPACE[49]). We note that Goldreich and Krawczyk [21] showed that public-coinCZK
proofswith a negligible soundness errorexist only for trivial problems (i.e., problems inBPP). This result
extends toPZK proofs (becausePZK ⊆ CZK ), but it does not apply here because we consider general
public-coin proofs. A review on constant-round zero-knowledgeargumentsfor NP can be found in [7].

2 Definitions

This paper uses standard definitions. We start with the notion of an interactive protocol, originally due
to Goldwasser, Micali, and Rackoff [27]. Informally, an interactive protocol is simply a pair of functions
sending messages to each other until one of the functions terminate. Formally,

Definition 2.1 (Interactive Protocols) An interactive protocol is a pair〈P, V 〉 of functions. Theinteraction
betweenP andV on common inputx is the following random process.

1. LetrP andrV be random inputs toP andV , respectively.

2. repeat the following fori = 1, 2, . . .

(a) If i is odd, letmi = P (x,m1, . . . ,mi−1; rP ).

(b) If i is even, letmi = V (x,m1, . . . ,mi−1; rV ).

(c) If mi ∈ {accept,reject,fail}, then exit loop.

We say thatV acceptsx if mi = accept for an eveni. Interactions yieldtranscripts〈x,m1, . . . ,mp; rV 〉,
and we call the stringsmi messages. The probability space containing all the transcripts is called the view
of V on x, and is denoted〈P, V 〉(x). Theround complexityof 〈P, V 〉 is a functionp such that for anyx,
and any interaction on inputx, the number of messages exchanged is at mostp(|x|). We say that〈P, V 〉 is
constant roundif p is a constant.

We say that〈P, V 〉 is public coinif V always sends independent portions ofrV , and its last message is
a deterministic function of the messages exchanged.

Now we can define interactive proofs [27]. Informally, a problem has an interactive proof if it has an
interactive protocol in which acommon inputx is given to the prover and the verifier, the verifier runs in
time polynomial in|x|, and it accepts ifx is aYES instance, and rejects ifx is aNO instance. The distance
between the probabilities to accept and rejectx is 1/p(|x|), wherep is a polynomial (e.g.,na). Formally,

Definition 2.2 (Interactive proofs and arguments) LetΠ = 〈ΠY ,ΠN 〉 be a problem, and let〈P, V 〉 be an
interactive protocol. We say that〈P, V 〉 is aninteractive prooffor Π if there isa, andc(n), s(n) : N → [0, 1]
such that1 − c(n) > s(n) + 1/na for anyn, and the following conditions hold.
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• Efficiency: V is a probabilistic Turing machine whose running time over the entire interaction is
polynomial in|x| (this implies that the number of messages exchanged is polynomial in |x|).

• Completeness: ifx ∈ ΠY , thenV accepts in〈P, V 〉(x) with probability at least1 − c(|x|). The
probability is overrP andrV (the randomness forP andV , respectively).

• Soundness: ifx ∈ ΠN , then for any functionP ∗ it holds thatV accepts in〈P ∗, V 〉(x) with probability
at mosts(|x|). The probability is over the randomnessrV for V .

If the soundness condition holds with respect to non-uniform polynomial-size circuits, then we say that
〈P, V 〉 is an interactive argumentfor Π.

The functionc is thecompleteness error, and the functions is thesoundness error. We say that〈P, V 〉
hasperfect completeness(respectively,perfect soundness) if c ≡ 0 (respectively,s ≡ 0).

We denote byIP the class of problems admitting interactive-proofs [27], and byAM the class of problems
admittingpublic-coin, constant-roundinteractive-proofs [4, 33].

Definition 2.3 (Efficient prover) Let 〈P, V 〉 be an interactive proof or argument for anNP problemΠ =
〈ΠY ,ΠN 〉. We say thatP is anefficient proverif given an arbitraryNP witnessw for x ∈ ΠY the prover
runs in time polynomial in|x|.

2.1 Indistinguishability

The notion of zero-knowledge is based on indistinguishability between two ensembles: the output of the
simulator, and interactions between the prover and the verifier.

A probability ensembleis a sequence{Yx}x∈I of random variables, whereI is countable set of strings.
Indistinguishability is defined in terms of distance between ensembles. A functionf(n) is negligibleif all of
its outputs are small when the inputs are large enough. Formally, f is negligible onI if for any polynomial
p there isN such that for allx ∈ I of length at leastN it holds thatf(|x|) < 1/p(|x|). WhenI is clear
from the context we simply say thatf(n) is negligible.

We define three notions of indistinguishability: perfect (which will be our main focus), statistical, and
computational. Computational indistinguishability is defined in terms of advantage of adistinguisherD.
Given two distributionsYx andZx, and a circuitD whose output is0 or 1, theadvantageof D to distinguish
Yx from Zx is defined as

adv(D,Yx, Zx)
def
= |Pr[D(Yx) = 1] − Pr[D(Zx) = 1]|,

wherePr[D(X) = 1] is the probability thatD outputs1 given an element chosen according to the distribu-
tion X. Notice that ifD is probabilistic, then according to our convention this probability is also over the
uniform distribution on the randomness ofD.

Statistical indistinguishability makes no reference to circuits. Given two discrete distributionsX andY ,
thestatistical distancebetween them is

∆(X,Y)
def
= 1/2 ·

∑

α

|Pr[X = α] − Pr[Y = α]| = max
S

(|Pr[X ∈ S] − Pr[Y ∈ S]|).

The formal definition of the three notions of indistinguishability follows.
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Definition 2.4 (Indistinguishability) Two probability ensembles{Yx}x∈I and{Zx}x∈I are computation-
ally indistinguishableif adv(D,Yx, Zx) is negligible onI for all non-uniform polynomial-size circuitsD.
They arestatistically identical(respectively,statistically indistinguishable) if ∆(Yx,Zx) is identically0 (re-
spectively, negligible) onI.

Variants of the problem STATISTICAL -DISTANCE (SD) will play a central role in this paper. This
problem originated from the study ofSZK [47], and its instances are pairs of circuits that can be seenas
distributions (under the convention that the inputs are uniformly chosen). Instances ofSD are statistically
close asYES instances, and statistically far asNO instances. Formally,

Definition 2.5 The problemSDα,β [47] is the pair〈SDα
Y,SDβ

N〉, where

SDα
Y = {〈X0,X1〉| ∆(X0,X1) ≤ α} , and

SDβ
N = {〈X0,X1〉| ∆(X0,X1) ≥ β} , and

X0 andX1 are circuits (treated as distributions).

Notice thatSD
def
= SD1/3,2/3 is SZK-complete, and sinceSZK is closed under complement [43, 47],SD

is alsoSZK-complete. Since we are dealing with the perfect setting, wewill be working only withSD0,1/2.

2.2 Zero-Knowledge

Informally, an interactive proof (or an interactive argument) is zero-knowledgeif there is a simulator such
that the view of the verifier and the output of the simulator are indistinguishable.

Recall that [13] introduced a relaxed definition of perfect zero-knowledge where the simulator is allowed
to fail with probability at most1/2, and conditioned on not failing the output of the simulator is required
to be indistinguishable from the view of the verifier. We remark that all of our results hold regardless of
whether the simulator is allowed to fail or not (indeed, we consider the honest-verifier case, where the two
notions are equivalent [34]). Thus, to simplify the presentation we use a definition where the simulator is
not allowed to fail. We useSV to denote a Turing machineS with oracle access to Turing machineV .

Definition 2.6 (Zero-knowledge protocols)A protocol 〈P, V 〉 for a problemΠ = 〈ΠY ,ΠN 〉 is perfect
(respectively,statistical, computational) zero-knowledgeif there is a probabilistic, polynomial-time Turing
machineS, calledthe simulator, such that for any probabilistic, polynomial-time Turing machineV ∗,

{〈P, V ∗〉(x)}x∈ΠY
and

{

SV ∗

(x)
}

x∈ΠY

are statistically-identical (respectively, statistically indistinguishable, computationally indistinguishable.)
The class of problems admitting perfect (respectively, statistical, computational) zero-knowledge protocols
is denotedPZK (respectively,SZK, CZK.) When the above ensembles are indistinguishable forV ∗ = V we
say that〈P, V 〉 is honest-verifier, perfect(respectively,statistical, computational) zero-knowledge, and we
denote the respective classes byHVPZK,HVSZK, andHVCZK.
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3 Trivial Instance-Dependent Commitment Schemes

In this section we prove Theorem 1.1 by showing how to obtain aperfectly hidinginstance-dependent
commitment scheme from anyHVPZK proof. Our idea also applies toHVSZK andHVCZK proofs. As
a consequence, we get an equivalence between zero-knowledge and instance dependent commitments, thus
proving Corollary 1.2.

We start with our definition of instance-dependent commitment schemes. This definition has the same re-
quirements as the scheme of Vadhan [52]: we require hiding onYES instances and binding onNO instances,
we consider the honest-verifier case (as was done also in [42,45]), and since the sender is inefficient, we
require that the scheme be simulatable. Notice that we do notcare if the prover fails to produce commit-
ments onNO instances (because whenx is aNO instance we only care about soundness). Thus, we allow the
sender to fail in the commit phase, and require that the failure probability be negligible onYES instances.

Definition 3.1 An instance-dependent commitment schemefor a problemΠ = 〈ΠY ,ΠN 〉 is a protocol
〈S,R〉 between asenderS (with input a bitb) and areceiverR. The randomness ofR andS is denotedrS

andrR, respectively. The running time ofR is polynomial in|x|, wherex is thecommon input. The protocol
has two parts:

• The commit phase.This is the first part of the protocol. If bothS andR follow their instructions, then
with probability at least1−2−|x| over their randomness this stage ends successfully. Thecommitment
of S to b is denoted by〈Sb, R〉(x). It containsx, the messages exchanged in this phase, andrR.

• The reveal phase.This is the second part of the protocol. In this partS opens the commitment tob
by sendingb andrS to R. The receiver either accepts or rejectsb. In this stage the view of the receiver
is simply denoted〈rS , b〉.

The protocol satisfies three properties:

Hiding . 〈S,R〉 is perfectly (respectively, statistically, computationally) hiding onΠY if {〈S0, R〉(x)}x∈ΠY

and{〈S1, R〉(x)}x∈ΠY
are identical (respectively, statistically indistinguishable, computationally indistin-

guishable).
Biding. 〈S,R〉 is statistically bindingon ΠN if for any functionS∗ and common inputx ∈ ΠN , the
probability overrR thatR accepts both0 and1 in the reveal phase is at most1/2|x|.
Simulation (against an honest receiver).〈S,R〉 is perfectly (respectively, statistically, computationally)
simulatable against the honest receiverif there is a probabilistic Turing machineM that runs in time poly-
nomial inx such that for anyb it holds that{M(x, b)}x∈ΠY

and{〈〈Sb, R〉(x), 〈rS , b〉〉}x∈ΠY
are identical

(respectively, statistically indistinguishable, computationally indistinguishable).

We start with the forward direction of Corollary 1.2.

Lemma 3.2 If a problem admits a perfectly hiding instance-dependent commitment scheme, then it has a
HVPZK proof. If the scheme is constant-round (or public-coin), then so is theHVPZK proof.

Proof: We use the idea behind the proof systems for GRAPH-ISOMORPHISM [22]. That is, the prover
commits to the bit0, and the verifier replies with a random bitb. The verifier accepts only if the prover
opens the commitment to the bitb. Soundness follows from the fact that the commitment is binding onNO
instances. The hiding property of the scheme guarantees that the same commitment can be opened to both
0 and1, and thus the protocol is complete. The protocol isHVPZK because the simulator can guessb, and
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then simulate a commitment tob with the honest receiver by executingM(x, b), whereM is guaranteed by
the simulation requirement from Definition 3.1. Notice thatthe fact that the scheme may fail does not affect
the perfect simulation because, just like the prover, the simulator will fail in the commit phase.

The above proof also applies toHVSZK problems, but it may not applyHVCZK because the prover
may not be able to open commitments to both0 and1. Instead, we can plug the instance-dependent commit-
ment scheme in the protocol of [8] forAM , and if the underlying problem has a constant round interactive
proof, then we get a constant-round public-coinHVCZK proof. Notice that in all cases we can apply the
transformation of [13] to the constant-round honest-verifier zero-knowledge proof, and obtain a constant-
round zero-knowledge proof (against malicious verifiers).

We proceed to prove Theorem 1.1 by showing how to construct instance-dependent commitment schemes
from zero-knowledge protocols. Combining this with the above lemma, we obtain Corollary 1.2. Again, we
deal withHVPZK , but the proof easily extends toHVSZK andHVCZK .

Proof of Theorem 1.1: Let Π be a problem admitting a constant-roundHVPZK proof 〈P, V 〉. Since
we deal with the honest verifier, the completeness and soundness error can be reduced to1/2n. We use
〈P, V 〉 to construct an instance-dependent commitment scheme forΠ. The idea is to use the soundness
property of〈P, V 〉 to obtain binding, the completeness and zero-knowledge properties to obtain hiding, and
the zero-knowledge property to obtain simulation.

Formally, letSb denote the sender with a bitb, let R to denote the receiver, and letx denote the input.
In the commit phaseS andR executeP andV on inputx, respectively. There are two cases.

• If V accepts, then the sender does not sendb, and the commit phase terminates successfully. Notice
that the bitb takes no part in the execution of the commit phase. In the reveal phase the sender simply
revealsb (without sending its randomness), and the receiver accepts.

• If V rejects, then both the commit and the reveal phases terminate. That is, in the commit phase the
sender sendsfail, and in the reveal phase the sender does not send anything andthe receiver rejects.

We verify the properties of the scheme. Letn
def
= |x|. If x is aNO instance, then the scheme is binding

becauseR rejects with probability at least1− 2−n overrR. If x is aYES instance and bothS andR follow
their instructions, then the commit phase terminates successfully becauseV acceptsx with probability at
least1 − 2n over the randomness ofS andR. SinceS does not sendb in the commit phase, the scheme
is perfectly hiding. Notice that with probability at most1/2n the sender fails in the commit phase, but the
bit b is still hidden. The simulatorM for 〈S,R〉 simply mimics the sender, and it can be easily constructed
from theHVPZK simulatorS of 〈P, V 〉. Formally,M(x, b) obtains a transcript〈x,m1,m2, . . . ,mv; rV 〉
of S(x), and ifV accepts in this transcript, thenM outputs〈〈x,m1,m2, . . . ,mv; rV 〉, 〈ε, b〉〉, whereε is the
empty string, andb is the bit of the sender. Otherwise, just like the prover, it adds thefail message to the
transcript, and outputs〈〈x,m1,m2, . . . ,mv,fail; rV 〉, ε〉. �

Notice that in the above proofS is aHVPZK simulator, and thusM perfectly simulates the commitment.
However, althoughb is not involved in the commit phase, ifS is aHVSZK or aHVCZK simulator, then
M will only statistically or computationally simulate the commit phase, and thus the hiding property will
be statistical or computational, respectively.
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4 Instance-Dependent Commitments from Hard Problems

In this section we prove Lemma 1.3 by constructing a perfectly hiding instance-dependent commitment
scheme. Although our scheme is not binding, the binding property holds on almost all the inputs, and this
shows that we can collapse the rounds of public-coinPZK proofs if we can make sure that the prover does
not choose its randomness from a small set.

We build on IDENTICAL DISTRIBUTIONS (ID), the hard problem of [34] for the class of problems ad-
mitting public-coinHVPZK proofs. This problem originated from the reduction of Sahaiand Vadhan [47].
Instances ofID are triplets〈X0,X1, Z〉 of circuits, where the circuitZ can be ignored (because in any zero-
knowledge proof or an instance-dependent commitment scheme for ID, the verifier can sampleZ and reject
immediately ifPr[Z = 1] ≤ 1/3). Thus, throughout this paper, when we refer toID, we actually refer to
instances〈X0,X1〉 of SD0,1/2. That is, asYES instancesX0 andX1 represent the same distribution, and as
NO instances they represent statistically far distributions.

Definition 4.1 The problemIDENTICAL DISTRIBUTIONS is ID
def
= 〈IDY, IDN〉, where

IDY = {〈X0,X1, Z〉| ∆(X0,X1) = 0 and Pr[Z = 1] ≥ 2/3} , and

IDN = {〈X0,X1, Z〉| ∆(X0,X1) ≥ 1/2 or Pr[Z = 1] ≤ 1/3} .

4.1 A Perfectly Hiding Scheme That is Almost Binding

Our goal is to construct a constant-round, perfectly hidinginstance-dependent commitment scheme forID.
Micciancio and Vadhan [36] showed thatSD0,1 has such a scheme: a commitment to the bitb is a random
sample ofXb. With respect toID, this idea guarantees perfect hiding onYES instance becauseX0 and
X1 represent the same distribution, and thus it is impossible to determineb from y. However, this idea
does not guarantee binding when〈X0,X1〉 is aNO instance ofID because there could ber andr′ such that
X0(r) = X1(r

′), which may allow the sender to openy as a commitment to both0 or 1 .

Our idea is to usemultiple intertwined samples. That is, we usen = |〈X0,X1〉| additional samples, and
the stringr appears in all of them. Formally, to commit to a bitb the prover choosesn + 1 random strings
r, r1, . . . , rn, and it sends to the verifier the commitment~y = 〈Xb(r),Xb(r ⊕ r1), . . . ,Xb(r ⊕ rn)〉. As
before, in the reveal phase the prover sendsb andr, r1, . . . , rn, and the verifier checks that~y was computed
correctly. This scheme is described in Figure 1.

The first observation about the modified scheme is that ifr, r1, . . . , rn are uniformly chosen, then the
stringsr, r ⊕ r1, . . . , r ⊕ rn are also uniformly chosen andindependent. Thus, the modified scheme retains
the perfect hiding property. The second observation is thatthe modified scheme is not binding. However,
notice that in the previous scheme the sender could cheat using any pair〈r, r′〉 for which X0(r) = X1(r

′),
and many such pairs may exist. In contrast, in the modified scheme the sender can cheat using only a
small fraction of the stringsr1, . . . , rn, regardless of the number of pairs〈r, r′〉 for which X0(r) = X1(r

′)
(intuitively, replacingX0(r) with X1(r

′) affects the rest of the samples, which requires a cheating sender
to adjust the stringsr1, . . . , rn). Hence,~y cannot be opened as a commitment to both0 and1, except for a
small fraction of the stringsr1, . . . , rn. To formalize this, we start with one sample.

Lemma 4.2 Let X0 and X1 be circuits. Letr and r′ be stings such thatX0(r) = X0(r
′), and letα

def
=

∆(X0,X1). If r1 is uniformly chosen, then the probability thatX0(r ⊕ r1) = X1(r
′ ⊕ r1) is at most1 − α.

10



An instance-dependent scheme〈S,R〉

Common input: a pair of circuits〈X0,X1〉. Let n = |〈X0,X1〉|.
Private input for S: a bit b.

ThesenderS commits to a bitb as follows:

1. S uniformly chooses a stringr, and computesy
def
= Xb(r).

2. S uniformly chooses stringsr1, . . . , rn, and computesyi
def
=

Xb(r ⊕ ri).

3. S sends~y
def
= 〈y, y1, . . . , yn〉 to thereceiverR.

In the reveal phaseS sendsr, r1, . . . , rn to R.

Figure 1: A perfectly hiding scheme whose binding property holds on almost all the random inputs.

Proof: We use two sets in our analysis. The first set contains stringsy that are more likely to be outputted
by X0 than byX1, and the second set is defined analogously. Formally,

X+
0

def
= {y|Pr[X0 = y] ≥ Pr[X1 = y]} , and X+

1
def
= {y|Pr[X1 = y] > Pr[X0 = y]} .

Using these sets we upper bound the probability thatX0(r ⊕ r1) = X1(r
′ ⊕ r1).

Prr1
[X0(r ⊕ r1) = X1(r

′ ⊕ r1)]

= Prr1
[(X0(r ⊕ r1) = X1(r

′ ⊕ r1)) ∧ X1(r
′ ⊕ r1) /∈ X+

0 ] +

Prr1
[(X0(r ⊕ r1) = X1(r

′ ⊕ r1)) ∧ X1(r
′ ⊕ r1) ∈ X+

0 ].

Clearly, the first expression in the above sum is upper bounded by Prr1
[X1(r

′ ⊕ r1) /∈ X+
0 ]. The same

applies to the second expression, but we use the equality in this expression to replaceX1(r
′ ⊕ r1) ∈ X+

0

with X0(r ⊕ r1) ∈ X+
0 . Hence, we get that

Prr1
[(X0(r ⊕ r1) = X1(r

′ ⊕ r1)) ∧ X1(r
′ ⊕ r1) /∈ X+

0 ] +

Prr1
[(X0(r ⊕ r1) = X1(r

′ ⊕ r1)) ∧ X1(r
′ ⊕ r1) ∈ X+

0 ]

≤ Prr1
[X1(r

′ ⊕ r1) /∈ X+
0 ] + Prr1

[X0(r ⊕ r1) ∈ X+
0 ]

= 1 − Prr1
[X1(r

′ ⊕ r1) ∈ X+
0 ] + Prr1

[X0(r ⊕ r1) ∈ X+
0 ].

Now we use a fact that follows from the definition of statistical distance (see Fact3.1.9 in [51]). According
to this fact,∆(X0,X1) = Pr[X0 ∈ X+

0 ] − Pr[X1 ∈ X+
0 ]. Thus, sincer andr′ are fixed, we get that

∆(X0,X1) = Prr1
[X0(r ⊕ r1) ∈ X+

0 ] − Prr1
[X1(r

′ ⊕ r1) ∈ X+
0 ].

Since∆(X0,X1) = α, we get thatPrr1
[X0(r ⊕ r1) = X1(r

′ ⊕ r1)] ≤ 1 − α.

It follows that by taking more samples, we can reduce the number of strings that allow a cheating sender
to open commitments to both0 and1. Formally, letX0 andX1 be circuits on inputs of lengthm, and let

11



n = |〈X0,X1〉|. We claim that for anyr andr′, if r1, . . . , r2n are uniformly chosen, then with probability
at most2−n it holds that

〈X0(r),X0(r ⊕ r1), . . . ,X0(r ⊕ r2n)〉 = 〈X1(r),X1(r ⊕ r1), . . . ,X1(r ⊕ r2n)〉.

This is so because by Lemma 4.2, the probability overr1, . . . , r2n that the above equality holds is at most
(1 − α)2n ≤ 2−2n (recall thatα = ∆(X0,X1) ≥ 1/2 when〈X0,X1〉 is aNO instance ofID). Since there
are at most22m ≤ 2n pairs〈r, r′〉 for whichX0(r) = X1(r

′), our scheme is not binding with probability at
most2n · 2−2n ≤ 2−n. Lemma 1.3 follows.

5 A Preamble for Jointly Choosing Randomness

In the previous section we constructed a scheme that is not binding if the sender chooses its randomness
from a small set. In this section we define apreamblethat provides a framework for choosing randomness
for the sender, while at the same time making sure that perfect hiding is maintained. Such a preamble would
fix the binding property of our scheme, thus collapsing the round complexity of public-coinPZK proofs to
a constant. We then test the preamble on the simple cases of3-round public-coinPZK proofs (Section 5.1)
andNIPZK proofs (Section 5.2), and obtain interesting consequences.

Motivation. Since the randomness of our scheme is chosen by the sender, a cheating sender may be able
to open the commitment to both0 and1. Hence, it makes sense to restrict the randomness used by the
sender. In the statistical setting Goldreich and Vadhan [25] used the hashing technique of Goldwasser and
Sipser [26], whereby one party chooses a hash functionh, and the other party is restricted to stringsr such
that h(r) = 0. Indeed, forcing the sender to use randomness from the smallseth−1(0) will make our
scheme binding, but in the perfect setting it compromises the hiding property (a similar issue occurs in [42],
where the interactive hashing technique due to Ding, Harnik, Rosen, and Shaltiel [16] is used; interactive
hashing was introduced by Naor, Ostrovsky, Venkatesan, andYung [40]).

Thus, we need aninstance-dependent randomness selection protocol. That is, a protocol that restricts the
randomness of the sender in a way that depends on the common input. We formalize this using apreamble.
The first part of the preamble defines a setA which is big onYES instances and small onNO instances.
Intuitively, A represents all the choices of randomness for the sender, andit contains a small subsetB of
strings that violate the binding property. The second part uses the setA to define a stringr such that onYES
instancesr can be any string inA, and onNO instancesr is unlikely to be a string inB. More formally,

1. Defining a set. Let x be an instance ofID, and letp(n) denote the length of the random input to
our scheme. The sender and the receiver execute a protocol that defines a setA ⊆ {0, 1}p(n), where
n

def
= |x|. If x is aYES instance, then|A| = 2p(n), and ifx is aNO instance, thenA � 2p(n).

2. Randomizing the set.Let B ( {0, 1}p(n) be the set of “bad” strings (those that violate the binding
property of our scheme). UsingA the parties define a stringr. If x is aYES instance, thenr can
equally be any string inA = {0, 1}p(n), and ifx is aNO instance, thenr is unlikely to be inB.

Suppose that we could construct such a preamble forID. We could then executeS andR from our
scheme in Figure 1, and haveS commit to its bitb usingr as randomness. Ifx is aYES instance, thenr can
be any string inA, and thus~y perfectly hidesb. If x is aNO instance, thenr /∈ B with high probability over
the randomness of the receiver, and thus~y binds the sender tob.
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5.1 The Case of3-round Public-Coin PZK Proofs

Our goal is to construct a preamble for any problem that admits a public-coinPZK proof. Since we do
not know how to do it, we deal with the simple case of3-round public-coinPZK proofs. Notice that the
preamble must have anefficient sender, or else we could directly apply Theorem 1.1 to the3-round public-
coin PZK proof, and obtain a constant-round, perfectly hiding instance-dependent commitment scheme.

Consider a3-round, public-coinPZK proof 〈P, V 〉 with a simulatorM , and let〈x,m1, r1,m2〉 denote
the output ofM(x). That is, on inputx the prover sendsm1, the verifier sendsr1, the prover replies
with m2, and based on these messages the verifier accepts of rejects.To simplify the presentation, we let
|r1| = n

def
= |x|, and denote bync the length of the random input to our commitment scheme〈S,R〉(x).

Preamble - Step1. The first step of our preamble is to define a setA. This can be done by having the
sender executeM(x), obtain a transcript〈x,m1, r1,m2〉, and sendm1 to the receiver. We defineA to be
the set of allr1 such thatM(x) = 〈x,m1, r1,m2〉 andV (x,m1, r1,m2) = accept. Actually, we wantA
to contain strings of lengthnc. Thus, we let the sender sampleM for nc−1 times, obtain a vector~r of nc−1

messagesr1, and send a vector ofnc−1 messagesm2 to the receiver. Suppose that〈P, V 〉 has soundness
error 1/2 and perfect completeness. Thus, ifx is a YES instance, thenA = {0, 1}nc

, and if x is a NO
instance, thenA contains at most a1/2nc−1 fraction of the strings in{0, 1}nc

.
Preamble - Step2. The second step of our preamble is to define a stringr that would later be used by
the sender in our commitment scheme. LetB be the set of all strings that violate the binding property of
our scheme. By Lemma 1.3,B contains at most a1/2n fraction of the strings in{0, 1}nc

. We remark
that if A ∩ B = ∅, then we could simply definer = ~r (i.e., the randomness forS is the concatenation
of the nc messagesr1), but of course, this may not be the case. Suppose that〈P, V 〉 has a very small
soundness error of1/2n−(n−c+2)/2. In such a case we can let the receiver send a random stringr′ to the
sender, and definer

def
= ~r ⊕ r′. Whenx is aNO instance the probability thatr ∈ B is at most|A| · 1/2n =

(2n/2n−(n−c+2)/2)n
c−1

/2n = 2−n/2.

Thus, if the sender in our scheme usesr as its randomness, then the scheme is binding onNO instances.
If x is a YES instance, thenr is hidden from the receiver, and thus our scheme is perfectlyhiding. We
can remove the assumption on perfect completeness by allowing the sender to fail (this happens with small
probability because, after executingM many times, the sender is likely to obtainnc accepting transcripts).
Unfortunately, we do not know how to remove the restriction on the soundness.

5.2 The Case of Non-Interactive Perfect Zero-Knowledge (NIPZK) Proofs

Our goal was to collapse the number of rounds in public-coinPZK proofs to a constant. We could achieve
this goal if our scheme was binding. We tried to construct a preamble that would fix the binding property,
but we were unsuccessful even for the simple case of3-round public-coinPZK proofs.

In this section we want to provide a better understanding into the difficulties involved. Thus, we try to
construct the preamble for the other simple case ofNIPZK proofs. Although we could not construct the
preamble, our investigation yields two interesting consequences. Firstly, we show how to use the circuits
from the study ofNIPZK in the commitment scheme of Naor [39]. This leads to a new perfectly-hiding
instance-dependent commitment forNIPZK problems with a small soundness error. Secondly, we show
how to use hash functions without damaging the hiding property. This is useful because, as we mentioned
earlier, most hashing techniques (e.g., [26, 16]) do not apply in the perfect setting.
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Since we are dealing with the non-interactive setting, our underlying problem will be theNIPZK -
complete problem of [34]. This problem, called UNIFORM (UN), was obtained by modifying the reductions
of Goldreich, Sahai, and Vadhan [24], originally due to De Santis, Di Crescenzo, Persiano, and Yung.
Intuitively, YES instances ofUN are circuits that represent the uniform distribution, andNO instances are
circuits that have a small range. Actually, the circuits have an additional output bit, but it can be ignored (in
the same way that we ignored the circuitZ of the problem IDENTICAL DISTRIBUTIONS). Thus, throughout
this section we will be working with a variant of STATISTICAL DISTANCE FROM UNIFORM (SDU), the
NISZK -complete problem of [24]. The definition of UNIFORM can be found in Appendix A.

Definition 5.1 DefineSDU′
def
= 〈SDU′Y ,SDU′N 〉 as

SDU′Y = {X| ∆(X,Un) = 0} , and

SDU′N = {X| Rng(X) < 2n/3} ,

whereX is a circuit withn output bits, andUn is the uniform distribution on{0, 1}n.

Motivation. Our goal is to construct a constant-round, perfectly hidinginstance-dependent commitment
scheme, this time forSDU′. Again, the scheme must have anefficient sender, or else it trivially exists by
Theorem 1.1 (becauseNIPZK proofs are constant-roundHVPZK proofs in particular).

As a warm up, consider the commitment scheme of Naor [39], which uses a pseudo-random generator
G : {0, 1}n → {0, 1}3n. In this scheme the receiver sends a random stringr ∈ {0, 1}3n to the sender.
The sender chooses a random stringr′ ∈ {0, 1}n, and commits to0 by sendingG(r′) ⊕ r, and to1 by
sendingG(r′). To see why this scheme is binding against computationally unbounded senders, consider
a commitmentG(r′). Since the range ofG contains at most a1/22n fraction of the strings{0, 1}3n, the
probability thatG(r′)⊕ r falls back intoRng(G) (that is,G(r′)⊕ r = G(r′′) for somer′′) is at most2−2n.
Thus, the scheme is binding with probability at least|Rng(G)| · 2−2n = 2−n.

We apply this idea to instances ofSDU′. That is, on circuitX with n output bits the receiver sends
a uniformly chosenr ∈ {0, 1}n, and the sender commits to0 by sendingX(r′) ⊕ r, and to1 by sending
X(r′). The resulting instance-dependent scheme is perfectly hiding on YES instances. IfSDU′ has a
very small soundness error of2−n/4, then itsNO instances satisfy|Rng(X)| ≤ 2n/4, and by the same
argument as above, the probability overr that there arer′ andr′′ such thatX(r′) ⊕ r = X(r′′) is at most
|Rng(X)| · 2−3n/4 ≤ 2−n/2. Of course, the range ofX may be bigger, and thus we cannot use this idea.

Constructing a Preamble. We modify the scheme of Naor [39] using hash functions. Intuitively, the
sender will commit to0 by sendingh′(r), and to1 by sendingX(r0). The stringr0 is chosen by the sender,
the stringr is chosen by the receiver, andh′ is a hash function chosen jointly. The idea is that, ifX is a
NO instance, then it has a small range, and thus it is unlikely that h′(r) ∈ Rng(X). The scheme guarantees
perfect hiding onYES instances, but as we shall see it does not guarantee binding.We formally describe our
scheme using the preamble idea.

Let X be a circuit withn output bits, letc be some constant, and defineX ′
def
= ⊕nc

X as the circuit that
takesnc−1 stringsri, and outputsX(r1), . . . ,X(rnc−1). The circuitX ′ hasnc output gates. IfX is aYES
instance, thenX ′ represents the uniform distribution, and ifX is aNO instance, thenX ′ has a small range.

Preamble - Step1. In the first step the sender picks two samples ofX ′, and sends theXOR to the receiver.
That is, the sender picksr0, r1, computesh0 = X ′(r0), h1 = X ′(r1), and sendsy = h0⊕h1 to the receiver.
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Using the notation of our preamble,A is a set of hash functions. IfX is aYES instance, thenA = {0, 1}nc

,
and ifX is aNO instance, thenA contains a small fraction of{0, 1}nc

.
Preamble - Step2. In the second step the receiver replies with a uniformly chosen hash functionh and an
input r for h. The sender usesh to defineh′ = h0 ⊕ h. Informally, this ensures thath′ does not belong to
the setB of hash functions that do not evenly spread their domain overtheir range.

Now we execute the scheme. The sender commits tob = 0 by sendingh′(r), and tob = 1 by sending
X(r0). If X is aYES instance, then bothh′ andr0 are hidden from the receiver, and the scheme is hiding.
If X is aNO instance, then bothX andX ′ have small ranges. Sinceh′ is a good hash function, it is unlikely
to mapr to Rng(X), and thus the scheme should be binding. Unfortunately, thisis not the case because,
althoughh′ is likely to be a good hash function, there are|Rng(X′)| possibilities forh0. In other words,
althoughh′ is good,h′(r) may fall intoRng(X).

6 Conclusion

We initiated a preliminary investigation into the questionwhether the round complexity of public-coinPZK
proofs can be collapsed to a constant. We gave the first perfectly hiding instance-dependent commitment
scheme, and showed that obtaining such a scheme that is also constant round is equivalent to achieving
this collapse. We then tried to construct a constant-round,perfectly hiding scheme using the circuits from
the hard problem for public-coinPZK proofs [34]. Although we could not fix the binding property of
the scheme, our attempts had some interesting consequences, including a connection between choosing
the randomness of the sender and collapsing the rounds, the definition of the preamble, the difficulty in
constructing the preamble, and the use of the circuits of theNIPZK -complete problem in the scheme of
Naor [39].
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A The problem UNIFORM

We give the definition of theNIPZK -complete problem of [34], called UNIFORM (UN). Given a circuitX,
we use the convention thatn + 1 denotes the number of output bits ofX. We need the following notation.

• TX is the set of outputs ofX that end with a1. Formally,TX
def
= {x|∃r X(r) = x, and the suffix ofx

is 1}. Informally, when a problem is reduced toUN, its soundness and completeness properties imply
that the size ofTX is large forYES instances ofUN, and small forNO instances ofUN.

• X ′ is the distribution on the firstn bits thatX outputs. That is,X ′ is obtained fromX by taking a
random sample ofX, and then outputting the firstn bits. Again, when aYES instance of aNIPZK
problem is reduced to the circuitX, the distributionX ′ is uniform on{0, 1}n.

18



Now, lettingX be a circuit withn + 1 output bits, we say thatX is β-negativeif |TX | ≤ β · 2n. That is,
TX is small, and contains at mostβ ·2n strings. We say thatX is α-positiveif X ′ is the uniform distribution
on{0, 1}n andPrx←X [x ∈ TX ] ≥ α. This implies thatTX is large, and contains at leastα · 2n strings.

Definition A.1 The problemUNIFORM is defined asUN
def
= 〈UNY,UNN〉, where

UNY = {X|X is 2/3 − positive} , and

UNN = {X|X is 1/3 − negative} .

19

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



