
3-Query Locally Decodable Codes of Subexponential Length

Klim Efremenko ∗

August 5, 2008

Abstract

Locally Decodable Codes (LDC) allow one to decode any particular symbol of the
input message by making a constant number of queries to a codeword, even if a con-
stant fraction of the codeword is damaged. In recent work [Yek08] Yekhanin constructs
a 3-query LDC with sub-exponential length of size exp(exp(O(log n

log log n
))). However, this

construction requires a conjecture that there are infinity many Mersenne primes. In
this paper we give an unconditional 3-query LDC construction with shorter codeword
length of exp(exp(O(

√
log n log log n))). We also give a 2r-query LDC with length of

exp(exp(O(
r

√

log n log logr−1 n))). The main ingredient in our construction is the exis-
tence of super-polynomial size set-systems with restricted intersections [Gro00] which
holds only over composite numbers.

1 Introduction

Locally decodable codes (LDCs) are codes that allow to retrieve any symbol of the original
message by reading only a constant number of symbols from the codeword. Formally a code
C is said to be locally decodable with parameters (q, δ, ε) if it is possible to recover any bit
xi of message x by making at most q queries to C(x). Such that if up to a δ fraction of C(x)
is corrupted then the decoding algorithm will return the correct answer with probability at
least 1 − ε.

Locally decodable codes have many applications in cryptography and complexity theory,
see surveys in [Tre04] and [Gas04]. The first formal definition of locally decodable codes
was given by Katz and Trevisan in [KT00]. The Hadamard code is the most famous 2-
query locally decodable code of length 2n. For two queries LDC tight lower bounds of
2θ(n) were given for linear codes in [GKST02] and for arbitrary codes in [KdW03]. The
Katz and Trevisan [KT00] establish lower bounds of Ω̃(n2) for LDC with 3 queries and
Ω̃(n1+1/(dq/2e−1)) for any number of queries q, and [Woo07] gives a slightly improves this
bound.

For many years it was conjectured that LDCs should have an exponential dependence
on n for any constant number of queries, until Yekhanin’s recent breakthrough [Yek08].

∗Weizmann Institute of Science, Rehovot 76100, Israel, Bar-Ilan University, 52900 Ramat-Gan, Israel;

klimefrem@gmail.com

1

Electronic Colloquium on Computational Complexity, Report No. 69 (2008)

ISSN 1433-8092

Yekhanin obtained 3-query LDCs with sub-exponential length of exp(exp(O(log n
log log n))) un-

der a highly believable conjecture that there are infinitely many Mersenne primes. Using
known Mersenne primes, Yekhanin also obtains unconditional results significantly improv-
ing previous results on LDC’s(i.e. length of exp(n10−7

)). In [KY08] Kedlaya and Yekhanin
proved that infinitely many Mersenne numbers with large prime factors are essential for
Yekhanin’s construction.

In this paper we give an unconditional construction of 3-query LDC with sub-exponential
codeword length. The length that we achieve for 3 queries is exp exp(O(

√
log n log log n)) .

We also give a 2r-query LDC with codeword length exp exp(O(r
√

log n log logr−1 n)).

Our construction is a kind of a generalization and simplification of [Yek08]. We extend
Yekhanin’s construction to work not only with primes but also with composite numbers.
Raghavendra in [Rag07] gives a nice presentation of Yekhanin’s construction using homo-
morphisms, and we follow this approach. The main ingredient in our construction is the
existence of super-polynomial size set-systems with restricted intersections [Gro00], which
holds only over composite numbers. The codes we have constructed have a perfectly smooth
decoder and thus they immediately imply 3-server Private Information Retrieval with com-
munication complexity exp(O(

√
log n log log n)). This is a preliminary version. We hope to

post a revision in a couple of months.

2 Definitions and Basic Facts

We will use the following standard mathematical notation:

• [s] = {1, . . . s};

• Fq = GF (q) is a finite field of q elements;

• F
∗ is a multiplicative group of the field.

• ZN = Z/NZ;

• dH(x, y) denotes the Hamming distance between vectors x, y ∈ Σn, i.e. number of
indices where xi 6= yi .

Definition 2.1. A code C over a field F, C : F
n 7→ F

N is said to be (q, δ, ε) locally
decodable if there exist randomized decoding algorithms di for i = 1, 2, . . . n such that for
all i = 1, 2, . . . n the following holds

1. For every message ~x = (x1, x2, . . . xn) ∈ F
n and for every ~y ∈ F

N such that dH(C(~x), ~y) ≤
δN it holds that Pr(di(~y) = xi) ≥ 1−ε; i.e. the decoding algorithm succeeds to recover
the relevant symbol even if up to δ fraction of the codeword is damaged.

2. The algorithm di makes at most q queries to y.

A code C is called linear if C is a linear transformation over F. A locally decodable code is
called nonadaptive if, di makes all its queries simultaneously. Our constructions of locally
decodable codes are linear and nonadaptive.

2

Definition 2.2. A code C is said to have a perfectly smooth decoder if di(C(~x)) = xi for
every ~x and each query of di is uniformly distributed over [N].

Fact 2.3 (from [Tre04]). Any code with a perfectly smooth decoder which makes q queries
is also (q, δ, qδ) locally decodable.

We will use the following fact.

Fact 2.4. For every odd m there exists a finite field F = GF (2t) ,where t ≤ m, and an
element γ ∈ F that is a generator of a multiplicative group of size m i.e. γm = 1 and γi 6= 1
for i = 1, 2, . . . m − 1.

Proof. Since m is odd 2 ∈ Z
∗
m. Therefore there exists t < m such that 2t ≡ 1 mod m. Let

us set F = GF (2t). The size of the multiplicative group F
∗ is 2t − 1 is divisible by m. Let g

be a generator of F
∗, then γ = g

2
t
−1

m is a generator of a multiplicative group of size m.

3 Locally Decodable Codes

In this construction we follow Yekhanin’s general framework. Our construction consists of
two parts. The first part is a construction of matching sets of vectors that correspond to
“combinatorially nice” sets. The second part is a construction of an S-decoding polynomial
with a small number of monomials, which correspond to “algebraically nice” sets. Let us fix
some composite number m for our construction. We give general scheme for construction
of LDCs, followed by a concrete example of a 3-query LDC.

3.1 Matching sets of vectors

All inner products 〈x, y〉 in this section are done mod m.

Definition 3.1. The family of vectors {ui}n
i=1 is said to be S-matching if:

1. 〈ui, ui〉 = 0 for i ∈ [n].

2. 〈ui, uj〉 ∈ S for i 6= j.

The main advantage of working with composite numbers comes from the following lemma
from [Gro00], which holds only for composite numbers.

Lemma 3.2 (Theorems 1.2 and 1.4 from [Gro00]). Let m = p1p2 . . . pr be a product of r
distinct primes pi. Then there exists c = c(m) > 0, such that for every integer h > 0, there
exists an explicitly constructible set-system H over a universe of h elements such that

• |H| ≥ exp(c (log h)r

log logr−1 h
),

• Size of every set H in set-system H: divisible by m i.e. |H| ≡ 0 mod m,

3

• Size of intersection of every two sets G,H is set-system H modulo m is in set S. i.e.
∀G,H ∈ H G 6= H |G ∩ H| ∈ S mod m, where S is a set of size 2r − 1 and 0 /∈ S.

• ∀s ∈ S for all i = 1, 2, . . . r s mod pi is 0 or 1.

From this lemma it easily follows that:

Corollary 3.3. For every h, r, there exists a set S of size 2r − 1 and a family of S-matching
vectors {ui}n

i=1, ui ∈ (Zm)h such that n ≥ exp(c (log h)r

log logr−1 h
).

Proof. For each set H ∈ H we will have one vector ui which is the indicator vector of H.

Note that in this construction, in contrast to [Yek08], we can take m to be constant and
h → ∞. For 3-query LDC’s we will be mainly interested in the case r = 2 and S of size 3.

3.2 S-decoding polynomials

Let us fix any odd number m. Recall from Fact 2.4 that there exists t, F = GF (2t) and an
element γ ∈ F such that γ is a generator of a multiplicative group of size m. For constructing
a 3-query LDC we will set m = 511 = 29 − 1 = 7 · 73, F = GF (29) and γ is any generator
of the multiplicative group F

∗. We will first construct a linear code over the field F. We
will show in the next section how to reduce the alphabet size to 2.
We will need the following definition.

Definition 3.4. A polynomial P ∈ F[x] is called an S-decoding polynomial if

• ∀s ∈ S P (γs) = 0,

• P (γ0) = P (1) = 1.

Claim 3.1. For any S such that 0 /∈ S there exists an S-decoding polynomial P with at
most |S| + 1 monomials.

Proof. Let us take P̃ =
∏

s∈S(x−γs) then P (x) = P̃ (x)/P̃ (1) is an S decoding polynomial.
The degree of P is |S|. Thus P has at most |S| + 1 monomials.

3.3 The code and its decoding algorithms

Now we are ready to present the construction of our locally decodable codes.
In order to construct our code we will fix some set S and construct S-matching vectors
{ui}n

i=1, ui ∈ (Zm)h and an S-decoding polynomial P . We define a code C : F
n 7→ F

mh

where we think of a codeword as a function from (Zm)h to F. Let ei ∈ F
n be the i’th unit

vector. We define C by defining C(ei) for all i and the general definition, by the linearity
of C, is C(

∑

ciei) ,
∑

ciC(ei). The encoding of ei is

C(ei) , (γ<ui,x>)x∈(Zm)h . (1)

4

One can think of C(ei) as a homomorphism from the additive group (Zm)h to the multi-
plicative group F

∗. Equivalently we can write

C((c1, c2, . . . cn)) ,

n
∑

i=1

cifi, (2)

where fi(x) , γ<ui,x>.

We now describe how to retrieve the i’th coordinate of the message.

Since P is an S-decoding polynomial and {ui} are S-matching vectors, 〈uj , ui〉 ∈ S for i 6= j,
and therefore it follows that P (γ<ui,ui>) = 1 and P (γ<uj ,ui>) = 0 for all i, j ∈ [n], i 6= j.
Write P (x) = a0 + a1x

b1 + a2x
b2 . . . ak−1x

bk−1.
Let us now define the decoding algorithm di(w), where w is a codeword with up to δ fraction
damaged coordinates.

• Choose v ∈ (Zm)h at random.

• Query w(v), w(v + b1ui), . . . w(v + bk−1ui).

• Output

ci = γ−<ui,v> (a0w(v) + a1w(v + b1ui) . . . ak−1w(v + bk−1ui)) . (3)

Algorithm 1: The Decoding Algorithm

Lemma 3.5. The decoding algorithm di is a Perfectly Smooth Decoder.

Proof. The algorithm di chooses v uniformly at random, each of the queries v, v+b1ui, . . . v+
bk−1ui is uniformly distributed. Therefore, in order to prove that di is a Perfectly Smooth
Decoder it is enough to prove that di(C(x)) = xi. Note that di is a linear mapping , so it
is enough to prove that di(C(ei)) = 1 and di(C(ej)) = 0 for j 6= i.

di(C(ei)) = (γ−<ui,v>)(a0γ
<ui,v> + a1γ

<ui,v+b1ui> + . . . + ak−1γ
<ui,v+bk−1ui>).

But 〈ui, v + cui〉 = 〈ui, v〉 + c〈ui, ui〉 = 〈ui, v〉. So we have,

di(C(ei)) = γ−<ui,v>(a0γ
<ui,v> + a1γ

<ui,v> + . . . + ak−1γ
<ui,v>) =

= a0 + a1 . . . + ak−1 = P (1) = 1.

Now let us prove that
∀i 6= j di(C(ej)) = 0.

We need to show that

a0γ
<ui,v> + a1γ

<ui,v+b1uj> + . . . + ak−1γ
<ui,v+bk−1uj> = 0.

Recall that P (γ<ui,uj>) = 0. Therefore,

γ<ui,v>(a0 + a1γ
b1<ui,uj> + . . . + ak−1γ

bk−1<ui,uj>) = γ<ui,v>P (γ<ui,uj>) = 0.

5

The dimension of the code is n - the number of S-matching vectors. The codeword
length is

∣

∣(Zm)h
∣

∣ = mh and the number of queries is equal to the number of monomi-
als of P . An immediate corollary from Corollary 3.3 and Claim 3.1 is that we can choose
n ≥ exp(c (log h)r

log logr−1 h
) and an S-decoding polynomial with less than 2r monomials. Thus we

have the following theorem.

Theorem 3.6. For any r there exists a (k, δ, kδ) locally decodable code C : Fn 7→ FN with

rate exp(exp(O(r
√

log n log logr−1 n))) and k ≤ 2r.

Proof. Let m = p1 . . . pr be the product of r primes. Fix h = exp
((

O(r
√

log n log logr−1 n)
))

.

From Corollary 3.3 there exists a set S of size 2r − 1 and n = exp(c (log h)r

log logr−1 h
) S-matching

vectors. Using the construction above we get a code C with codeword length mh and
message length n. Fix m to be a constant then mh = exp(O(h)). Therefore,

mh = exp(O(h)) = exp

(

exp

(

O

(

r

√

log n log logr−1 n

)))

.

From Claim 3.1 there exists an S-decoding polynomial with k ≤ 2r monomials. Using
this polynomial for our decoding algorithm we get from Lemma 3.5 that C has a Perfectly
Smooth Decoder which makes k queries. Thus from Fact 2.3 we have that the code C is a
(k, δ, kδ)-LDC.

Let us give a concrete example which will allow us make 3-query LDC. We found it by an
exhaustive search.

Example 3.7. Let m = 511 = 7 · 73 and let S = {1, 365, 147}. By Corollary 3.3 there exists

S-matching vectors {ui}n
i=1, ui ∈ (Zm)h, where n ≥ exp(c (log h)2

log log h). Set

F = GF (29) = F2[γ]/(γ9 + γ4 + 1).

It can be verified that γ is a generator of F
∗ and that the polynomial P (x) := γ423 · x65 +

γ257 · x12 + γ342 is an S decoding polynomial with 3 monomials.

An immediate corollary from this example and Theorem 3.6 is 3-query LDC.

Theorem 3.8. There exists a (3, δ, 3δ) locally decodable code of length exp(exp(O(
√

log n log log n))).

4 Binary Locally Decodable Codes

In this section we will think of F2t as a vector space F
t
2 over F2. We will view multiplication

as a linear transformation i.e. for every a ∈ F2t exists an n by n matrix Ma over F2 such
that Max = ax.

Assume now that we have message (c1, c2, . . . , cn) ∈ F
n
2 first we will view it as a message

in (F2t)n. Now let w = C(c1, c2, . . . cn), w ∈ (F2t)m
h

be an encoding of the message as in
the previous section. Next let us extend our codeword to be a concatenation of k identical
codewords w0 ◦ w1 ◦ wk−1 = w ◦ w ◦ . . . ◦ w. Now we will ask the first query from w0, the

6

second query from w1 and so on. Note that this does not harm the probability of correct
decoding; it only decreases the rate by a factor k (which is negligible in our parameters).
The decoding algorithm from the previous section uses some linear combination over F2t .
We can make this combination to be over F2. Let P (x) = a0 + a1x

b1 + a2x
b2 . . . ak−1x

bk−1

be an S-decoding polynomial. Next let us now set our codeword to be

w̃0 ◦ w̃1 ◦ . . . ◦ w̃k−1 , a0w ◦ a1w . . . ◦ ak−1w,

where w = C(x) and aiw is a coordinate wise scalar multiplication. Recall that from
Equation 3 we can decode the i-th symbol ci using the identity:

ciγ
<ui,v> = w̃0(v) + w̃1(v + b1ui) + . . . w̃k−1(v + bk−1ui).

Now let us take some linear functional L : F2t 7→ F2 and apply it on every coordinate of our
codeword. Then

L(ciγ
<ui,v>) = L(w̃0(v)) + L(w̃1(v + b1ui)) + . . . L(w̃k−1(v + bk−1ui)).

We want that L(ciγ
<ui,v>) = ci. If ci = 0 then always L(ciγ

<ui,v>) = L(0) = 0 but the
problem is that if ci = 1 then it may happen that L(ciγ

<ui,v>) = L(γ<ui,v>) = 0. In order
to solve this problem we will not choose v completely at random; we will choose v at random
conditioned on L(γ<ui,v>) = 1, but this will hurt the smoothness of the code which in turn
affects the probability of correct decoding. In order that it will not hurt this probability
too much we need to choose L such that for every i = 1 . . . n Prv(L(γ<ui,v>) = 1) ≥ 1/2.

Lemma 4.1. There exists a linear functional L : F2t 7→ F2 such that

∀i ∈ [n] Pr
v∈(Zm)h

(L(γ<ui,v>) = 1) ≥ 1/2.

Proof. Observe that for random v, 〈ui, v〉 is a random number in Zm,since the gcd of ui’s
coordinates is 1. Thus it is enough to find L such that

Pr
j∈Zm

(L(γj) = 1) ≥ 1/2.

For a constant j and a random L, Pr(L(γj) = 1) = 1/2 thus, the expectation of Prj∈Zm(L(γj) =
1) is 1/2 i.e.

EL(Pr
j∈Zm

(L(γj) = 1)) = 1/2.

Therefore, there exists an L such that

Pr
j∈Zm

(L(γj) = 1) ≥ 1/2.

Let us describe the reduction formally.
Choose L such that Prj∈Zm(L(γj) = 1) ≥ 1/2. Since m is constant we can find it by
exhaustive search in constant time.

1. Given a message (c1, c2, . . . cn) encode it , by code from previous section w = C(c1, c2, . . . , cn).

7

2. Extend it to
w̃ , w̃0 ◦ w̃1 ◦ . . . ◦ w̃k−1 , a0w ◦ a1w . . . ◦ ak−1w.

3. Reduce the alphabet by applying L on every symbol of w̃ and return

w0 ◦ w1 ◦ . . . ◦ wk−1 , L(w̃0) ◦ L(w̃1) ◦ . . . ◦ L(w̃k−1).

Let us define the decoding algorithm di(w):

• Choose v ∈ (Zm)h at random conditioned on L(γ<ui,v>) = 1.

• Query w0(v), w1(v + b1ui), . . . , wk−1(v + bk−1ui).

• Output ci = w0(v) ⊕ w1(v + b1ui) . . . ⊕ wk−1(v + bk−1ui).

Algorithm 2: Decoding Algorithm

Theorem 4.2. The binary code C defined above is (k, δ, 2kδ) locally decodable.

Proof. We will prove it in two steps.

First let us prove that if at most δ fraction of the codeword w = w0 ◦ w1 . . . ◦ wk−1 is
damaged then we query a damaged place with probability at most 2kδ. Let δi be a fraction
of damaged bits in wi so 1

k

∑

δi = δ. We chose L such that v is distributed uniformly among
half of all possible values. Therefore, the probability that query i will be damaged is at
most 2δi. So the probability that one of the queries will be damaged is at most

∑

2δi = 2kδ.

Next let us prove that if we query only non-damaged places then we will return a correct
answer. As before, by linearity it is enough to prove that di(C(ei)) = 1 and di(C(ej)) = 0
for i 6= j.

di(C(ei)) = L(a0γ
<ui,v>) ⊕ L(a1γ

<ui,v+b1ui>) . . . ⊕ L(ak−1γ
<ui,v+bk−1ui>) =

= L
(

∑k−1
j=0 ajγ

<ui,v+bjui>
)

= L
(

∑k−1
j=0 ajγ

<ui,v>
)

=

L(P (1)γ<ui,v>) = L(γ<ui,v>)

But we choose v such that L(γ<ui,v>) = 1. In the same way we can prove that if C = C(ej)
then ci = 0.

ci = L(a0γ
<uj ,v>) ⊕ L(a1γ

<uj ,v+b1ui>) . . . ⊕ L(ak−1γ
<uj ,v+bk−1ui>) =

L
(

γ<uj ,v>
∑k−1

t=0 atγ
bt<uj ,ui>

)

= L (P (γ<ui,uj>)γ<ui,v>) =

L(0) = 0.

8

5 Future work

In this paper we give a general construction of LDCs for any S-matching sets and S-decoding
polynomials. Any improvement in size of a set-system with restricted intersections will
immediately yield improvement in the rate of LDCs. We hope that this paper will give
a motivation for future work on set-systems with restricted intersections. We also believe
that it is possible to choose an S-decoding polynomial with less monomials as in Example
3.7.

6 ACKNOWLEDGMENTS

I am indebted to Irit Dinur for many helpful in-depth technical discussions and helping me
at all stages of this work. I would also like to thank to Venkatesan Guruswami for directing
me to [Gro00] and to Oded Goldreich, Ariel Gabizon, Omer Reingold, Shachar Lovett, and
my wife Rivka for their valuable comments.

References

[Gas04] William I. Gasarch. A survey on private information retrieval (column: Com-
putational complexity). Bulletin of the EATCS, 82:72–107, 2004.

[GKST02] Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan.
Lower bounds for linear locally decodable codes and private information re-
trieval. In IEEE Conference on Computational Complexity, pages 175–183, 2002.

[Gro00] Vince Grolmusz. Superpolynomial size set-systems with restricted intersections
mod 6 and explicit ramsey graphs. Combinatorica, 20(1):71–86, 2000.

[KdW03] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query
locally decodable codes via a quantum argument. In STOC, pages 106–115.
ACM, 2003.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures
for error-correcting codes. In STOC, pages 80–86, 2000.

[KY08] Kiran S. Kedlaya and Sergey Yekhanin. Locally decodable codes from nice sub-
sets of finite fields and prime factors of mersenne numbers. In IEEE Conference
on Computational Complexity, pages 175–186. IEEE Computer Society, 2008.

[Rag07] Prasad Raghavendra. A note on yekhanin’s locally decodable codes. Electronic
Colloquium on Computational Complexity (ECCC), 2007.

[Tre04] Luca Trevisan. Some applications of coding theory in computational complexity.
Electronic Colloquium on Computational Complexity (ECCC), (043), 2004.

[Woo07] David Woodruff. New lower bounds for general locally decodable codes. Elec-
tronic Colloquium on Computational Complexity (ECCC), 2007.

9

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential
length. J. ACM, 55(1), 2008.

10

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

