
Two Query PCP with Sub-Constant Error

Dana Moshkovitz∗ Ran Raz†

July 28, 2008

Abstract

We show that theNP-Complete language 3SAT has a PCP verifier that makes two queries
to a proof of almost-linear size and achieves sub-constant probability of erroro(1). The verifier
performs only projection tests, meaning that the answer to the first query determines at most one
accepting answer to the second query. Previously, by the parallel repetition theorem, there were
PCP Theorems with two-query projection tests, but only (arbitrarily small) constanterror and
polynomialsize [29]. There were also PCP Theorems withsub-constanterror andalmost-linear
size, but a constant number of queries that islarger than2 [26].

As a corollary, we obtain a host of new results. In particular, our theorem improves many
of the hardness of approximation results that are proved using the parallel repetition theorem. A
partial list includes the following:

1. 3SAT cannot be efficiently approximated to within a factor of7
8 + o(1), unlessP = NP.

This holds even under almost-linear reductions. Previously, the best knownNP-hardness
factor was7

8 + ε for any constantε > 0, under polynomial reductions (Håstad, [18]).

2. 3LIN cannot be efficiently approximated to within a factor of1
2 + o(1), unlessP = NP.

This holds even under almost-linear reductions. Previously, the best knownNP-hardness
factor was1

2 + ε for any constantε > 0, under polynomial reductions (Håstad, [18]).

3. A PCP Theorem with amortized query complexity1+o(1) and amortized free bit complex-
ity o(1). Previously, the best known amortized query complexity andfree bit complexity
were1+ ε andε, respectively, for any constantε > 0 (Samorodnitsky and Trevisan, [32]).

One of the new ideas that we use is a new technique for doing thecompositionstep in the
(classical) proof of the PCP Theorem, without increasing the number of queries to the proof.
We formalize this as a composition of new objects that we callLocally Decode/Reject Codes
(LDRC). The notion of LDRC was implicit in several previous works, and we make it explicit in
this work. We believe that the formulation of LDRCs and theirconstruction are of independent
interest.

∗dana.moshkovitz@weizmann.ac.il. Department of Computer Science and Applied Mathematics, The
Weizmann Institute, Rehovot, Israel. Research supported by an Adams Fellowship of the Israel Academy of Sciences
and Humanities and by an ISF grant.

†ran.raz@weizmann.ac.il. Department of Computer Science and Applied Mathematics, The Weizmann
Institute, Rehovot, Israel. Research supported by ISF and BSF grants.

1

Electronic Colloquium on Computational Complexity, Report No. 71 (2008)

ISSN 1433-8092

1 Introduction

1.1 Probabilistic Checking of Proofs

The PCP Theorem [2, 1] states that any mathematical proof canbe converted to a form that can
be checkedprobabilisticallyby reading only aconstantnumber of places in the proof. Moreover,
the check can be performed by anefficientverifier. If the mathematical theorem, supposedly being
proven, is correct, then there exists a proof in the new form that the verifier always (or almost
always) accepts. On the other hand, if the mathematical theorem is false, then no matter which
proof is provided, the verifier rejects with at least some constant probability. Note that soundness
holds even though the verifier queries the proof only in a constant number of places.

A PCP verifier has several important parameters (ideally, wewould like all parameters, except
the completeness, to be as small as possible):

1. Completeness(c) : The minimal probability that the verifier accepts a correct proof. An
almost perfect completenessc ≈ 1 is usually required. In most cases, a perfect completeness
c = 1 can be obtained.

2. Soundness (or, Error) (ε) : The maximal probability that the verifier accepts a proof for an
incorrect theorem. An error of at most1 − δ for some constantδ > 0 is usually required. In
some cases, a sub-constant errorε = o(1) can be obtained.

3. Queries(q) : The number of queries to the proof. A constant number of queriesq = O(1) is
usually required. In some cases,q = 2 can be obtained.

4. Size(m) : The size of a proof in the new form, with respect to the sizen of the original proof.
A polynomial sizem = poly(n) is usually required. In some cases, an almost linear size
m = n1+o(1) can be obtained.

5. Randomness(r) : The number of random bits used by the verifier. The randomness upper
bounds the size bym ≤ 2r · q. Thus,r = O(log n) corresponds to polynomial size and
r = (1 + o(1)) · log n corresponds to almost linear size.

6. Alphabet (Σ) : The alphabet used for the proof in the new form. It is sometimes more
convenient to consider theanswer-sizelog |Σ| (i.e., the number of bits required to represent an
alphabet symbol), rather than the alphabet size|Σ| itself. An alphabet size of at mostpoly(n)
(i.e., answer-size ofO(log n)) is usually required. In some cases, answer-size ofO(log 1

ε
) can

be obtained.

We denote byPCPc,s[r, q]Σ the class of languages that have a PCP verifier with completenessc,
soundnesss, randomnessr, andq queries to a proof over alphabetΣ. (When we omitΣ, it should
be understood thatΣ = {0, 1}.)

We think of all the parameters as functions ofn.

2

1.2 Hardness of Approximation and Two-Query Projection Tests

Feige et al [15] discovered that there is a close and simple connection between PCP Theorems and
hardness of approximation. The PCP Theorem can be formalized as stating that approximating the
number of satisfiable clauses in a3SAT formula to within some constant factor isNP-hard. This
formulation enabled a vast body of hardness of approximation results via further reductions.

A reduction can be viewed as proving a PCP Theorem in which thetype of check corresponds to
the problem to which one reduces. Consider, for instance,3L IN, i.e., the problem of computing the
maximal number of equations that can be satisfied simultaneously in a system of linear equations,
where each equation is on three variables overGF (2). To prove the hardness of approximating
3L IN , it is sufficient to prove a PCP Theorem in which the verifier’stests consist of querying three
bits and comparing their XOR to predefined values (0 or 1).

For many optimization problems, this research direction produced hardness results that match
(or almost match) the approximation factors obtained by thebest existing algorithms. Thus, one is
able to explain our lack of success in finding better efficientapproximation algorithms. For other
problems, tight hardness results are not known, or are knownonly under assumptions.

A generic type of tests that was discovered to be especially useful as a starting point for further
reductions is atwo-query projection test. In a system of two-query projection tests, the proof consists
of two partsA andB. The verifier makes one query to theA part and one query to theB part.
Upon seeing the answer to theA query, the verifier either immediately rejects, or it has a uniquely
determined answer to theB query on which it accepts1.

1.3 Existing PCP Theorems

The basic PCP Theorem that was proved by [2, 1] based on previous work [25, 5, 4, 15, 31] is:
Theorem 1 (Basic PCP, [2, 1]).NP ⊆ PCP1, 1

2
[O(log n), O(1)].

One can convert Theorem 1 to the following equivalent formulations.
Theorem 2 (Equivalent formulations, [7]). Theorem 1 is equivalent to each of the following:

1. Low error: For anyε > 0, NP ⊆ PCP1,ε[O(logn), O(log 1
ε
)].

2. Two-query projection tests: There exist a constantδ > 0 and an alphabetΣ of constant
size, such thatNP ⊆ PCP1,1−δ[O(log n), 2]Σ. Moreover, the PCP verifier makes two-query
projection tests.

The first item follows from sequential repetition of the basic PCP test (the repetition can be done
in a randomness efficient way by using hitters; see, e.g., in [26]). For a constant errorε, the number
of queries isO(1), but for sub-constant errorε, the number of queries becomes super-constant. The

1In contrast, in UNIQUE-GAMES [23], each of the two answers determines uniquely a single satisfying answer to the
other.

3

second item transforms the number of queries to2 at the cost of enlarging the error to a fraction not
much smaller than1.

Low error can also be obtained while preserving two-query projection tests. This is done via
parallel repetition. The parallel repetition transformation increases the randomness considerably,
but decreases the error probability exponentially. This was first shown in [29]. (Recently, several
improvements and simplifications were obtained by Holenstein [20] and Rao [28]).
Theorem 3 (Parallel repetition PCP, [29]). There exists an alphabetΣ of constant size, such that
for anyε > 0, NP ⊆ PCP1,ε[O(log n · log 1

ε
), 2]

ΣO(log 1
ε). Moreover, the PCP verifier makes two-

query projection tests.

For a constant errorε, the randomness isO(log n), and the size ispoly(n). For sub-constant er-
ror ε, however, the randomness becomes super-logarithmic, and the size becomes super-polynomial.
Interestingly, by a result of Feige et al [16], when applyingparallel repetition to “natural” verifiers
in order to decrease the error from1

2
to a small constant errorε, it is necessaryto usec · log n random

bits, wherec > 1 depends onε.

Sub-constant error PCP Theorems are also known. In these theorems, the error is decreased
below a constant while preserving polynomial size [30, 3, 13]. The state of the art in terms of the
probability of error was proved in [13].
Theorem 4 (Sub-constant error PCP, [30, 3, 13]).For any constantα > 0, there existε ≤
2−(log n)1−α

and alphabetΣ of size|Σ| ≤ 2
ε
, such thatNP ⊆ PCP1,ε[O(log n), O(1)]Σ.

Theorem 4 gives a low error PCP Theorem with constant number of queries. However, the
number of queries is strictly larger than2.

We note also that one can use known algebraic techniques to obtain very low error with two-
query projection tests. However, the alphabet size of this construction is always super-polynomial.
The following theorem is folklore and follows from low degree testing theorems with sub-constant
error [30, 3, 27].
Theorem 5 (Two-query projection tests PCP, [30, 3, 27]).Fix any constantβ > 0. Then, for every
ε ≤ 1

(log n)β there exists an alphabetΣ of size|Σ| ≤ 2poly(1
ε
), such thatNP ⊆ PCP1,ε[O(log n), 2]Σ.

Moreover, the PCP verifier makes two-query projection tests.

Note that the alphabet size is super-polynomial in this construction, no matter what the error is.

The randomness complexity of the verifier in the basic PCP Theorem can be improved, yielding
a PCP Theorem with almost-linear size. Various papers achieved that [17, 10, 8, 12]. The state of
the art is by Dinur [12], based on a result by Ben-Sasson and Sudan [9]:
Theorem 6 (Almost-linear size PCP, [9, 12]).3SAT ∈ PCP1, 1

2
[log n + O(log log n), O(1)].

Note that the result is phrased for a specificNP-Complete language 3SAT , rather than for all
NP. The reason is that the reduction from an arbitraryNP language to 3SAT may not preserve
almost-linear size.

The transformations from Theorem 2 can be adapted to preserve almost-linear size:
Theorem 7 (Equivalent formulations, almost-linear size).Theorem 6 is equivalent to each of the
following:

4

1. Low error: For anyε > 0, 3SAT ∈ PCP1,ε[log n + O(log log n) + O(log 1
ε
), O(log 1

ε
)].

2. Two query projection tests: There exist a constantδ > 0 and an alphabetΣ of constant size,
such that3SAT ∈ PCP1,1−δ[log n + O(log log n), 2]Σ. Moreover, the PCP verifier makes
two-query projection tests.

The first item follows from randomness efficient sequential repetition via hitters (see, e.g., in
[26]). The second item is along the same lines as the second item in Theorem 2.

Recently, sub-constant error was achieved simultaneouslywith almost-linear size:
Theorem 8 (Sub-constant error PCP of almost-linear size, [27, 26]). There exists a constant
α > 0, as well asε ≤ 2−(log n)α

and an alphabetΣ of size|Σ| ≤ 2(log n)1−α

, such that3SAT ∈
PCP1,ε[log n + O((log n)1−α), O(1)]Σ.

Like Theorem 4, Theorem 8 gives a constant number of queries that is strictly larger than2.

In light of the results described above, the following questions arise (see, e.g., [3]): Are there
PCP Theorems withtwoqueries and sub-constant error ? How about two-query projection tests and
sub-constant error ? Are there such PCPs with almost-linearsize ?

1.4 Our Results

We prove a PCP Theorem with two-query projection tests, sub-constant error and almost-linear size.
More precisely, for any errorε > 0 (that can be any function ofn), we obtain a construction with
soundnessε, answer-sizepoly(1

ε
) and sizen1+o(1) · poly(1

ε
). Our main theorem is as follows.

Theorem 9 (Main theorem). For everyε > 0, there exists an alphabetΣ with log |Σ| ≤ poly(1
ε
),

such that3SAT ∈ PCP1,ε[(1 + o(1)) · log n + O(log 1
ε
), 2]Σ. Moreover, the PCP verifier makes

two-query projection tests.

In particular, if ε ≥ 1
(log n)β , whereβ is a sufficiently small constant, the answer-size is loga-

rithmic and the size is almost-linear. We note that for errorε ≤ 1
(log n)β , Theorem 9 follows from

Theorem 5 (the PCP Theorem that is based on Low Degree Testing), but this is exactly the less
interesting case where the alphabet size is super-polynomial. The new part is the construction for
ε ≥ 1

(log n)β .

The previous work that is most related to Theorem 9 is Theorem3 (the PCP Theorem obtained
from the Parallel Repetition Theorem). Theorem 9 is incomparable to Theorem 3. While Theorem 9
obtains two-query projection tests with sub-constant error, and polynomial (even almost-linear) size,
which cannot be obtained by Theorem 3, the answer-size in Theorem 9 ispoly(1

ε
), rather than

O(log 1
ε
) in Theorem 3. Note that forε = O(1), poly(1

ε
) = O(log 1

ε
) = O(1) and hence in this

range Theorem 9 gives the same answer-size as the one in Theorem 3 (up to a constant), but with
better size parameter (almost-linear size, rather than polynomial size).

5

1.5 Hardness of Label-Cover

We can also formalize our main result in terms of the optimization problem LABEL-COVER. The
problem captures two-query projection tests and serves as the starting point for many of the existing
hardness of approximation results.
Definition 1.1 (Label-Cover). An instance ofLABEL-COVER contains a regular bipartite multi-
graph G = (A, B, E) and two finite setsΣA and ΣB, where|ΣA| ≥ |ΣB|. Every vertex inA is
supposed to get a label inΣA, and every vertex inB is supposed to get a label inΣB . For each edge
e ∈ E there is a projectionπe : ΣA → ΣB which is a partial function.

Given a labeling to the vertices of the graph, i.e., functionsϕA : A → ΣA andϕB : B → ΣB,
an edgee = (a, b) ∈ E is said to be “satisfied” ifπe(ϕA(a)) = ϕB(b) (it might be thatπe(ϕA(a)) is
undefined; in which caseπe(ϕA(a)) 6= ϕB(b)).

The goal is to find a labeling that maximizes the number of satisfied edges. We say thatγ fraction
of the edges are satisfiable if there exists a labeling that satisfiesγ fraction of the edges.

In the LABEL-COVER notation, thesizecorresponds to the number of vertices|A| + |B|. The
alphabetcorresponds to the (larger) set of labelsΣA. Therandomnessis log |E|.

Sometimes LABEL-COVER is defined with projectionsπe that are functions, rather than partial
functions. However, the more general definition of partial functions is convenient for us, and works
just as well for the applications. In the literature one can find a variety of different problems that are
named LABEL-COVER and are incomparable to Definition 1.1. However, today, the name LABEL-
COVER usually refers to the problem defined in Definition 1.1.

Our main theorem can be restated as follows.
Theorem 10 (Main theorem). For everyn, and everyε > 0 (that can be any function ofn) the
following holds. Solving 3SAT on inputs of sizen can be reduced to distinguishing between the case
that aLABEL-COVER instance of sizen1+o(1) · poly(1

ε
) and parameters|ΣA|, |ΣB | s.t. log |ΣA| ≤

poly(1
ε
) andlog |ΣB | ≤ O(log 1

ε
), is completely satisfiable and the case that at mostε fraction of its

edges are satisfiable.

1.6 Some Implications of Our Main Theorem

In this section we demonstrate some of the prominent implications of Theorem 10. The presentation
follows Khot’s survey [24], and the reader is referred to this survey for more details.

The following scheme is used to prove hardness of approximation results:

1. Start with a two-query projection tests PCP Theorem with low error (the PCP based on parallel
repetition, given in Theorem 3).

2. Apply Long Code [6, 18] and other techniques to convert thetest performed by the verifier to
the desired form.

6

This scheme has been successful in proving hardness of approximation results for many opti-
mization problems. A prominent example is the work of Håstad [18] proving, among other results,
the hardness of approximating 3SAT and 3LIN.

Theorem 10 can many times replace Theorem 3 in step 1. When oneis interested inNP-
hardness results, this will usually give better results than what parallel repetition gives: almost-
linear reductions, rather than polynomial or super-polynomial reductions, and sub-constant error,
rather than constant error. This is true as long as step 2 doesnot use specific properties of parallel
repetition other than two-query projection tests, and as long as the number of repetitions used is
relatively small. (We note that when one is interested in hardness results under stronger assumptions
such asNP 6⊆ DTIME(2poly log n), one usually obtains better results using parallel repetition, i.e.,
using Theorem 3 rather than Theorem 10). In this section we demonstrate a few cases in which
Theorem 10 can indeed be used to give better results in this scheme.

3SAT :

Håstad followed the above mentioned scheme to prove hardness results for many optimization prob-
lems, including the classical 3SAT [18]. Note that any3CNF formula has an assignment satisfying
at least7

8
fraction of its clauses. Thus, the best we can hope for is to show that it isNP-hard to

distinguish between the case that the formula is satisfiableand the case that only7
8

fraction of the
clauses are satisfiable.
Corollary 11 (3SAT hardness).Solving 3SAT on inputs of sizen can be reduced to distinguishing
between the case that a3CNF formula of sizen1+o(1) is satisfiable and the case that only7

8
+ o(1)

fraction of its clauses are satisfiable.

This corollary improves over Håstad’s result in two respects: First, it shows a hardness result
based on an almost-linear size reduction, rather than a polynomial size reduction. Second, it shows
that approximating the number of satisfiable clauses to within a factor of 7

8
+ o(1) is NP-hard,

and not only that approximating that number to within a factor of 7
8

+ ε for any constantε > 0
is NP-hard (as in Håstad’s original result). Theo(1) term is roughly(log log n)−Ω(1) because of
Håstad’s test construction that is based on the Long Code. We note that if we could have achieved
in Theorem 10 the alphabet/error tradeoff of Theorem 3,|ΣA| ≤ poly(1

ε
), theo(1) term would have

been(log n)−Ω(1). We note also that Håstad does obtain hardness of approximation results to within
a factor of 7

8
+ o(1) where theo(1) term is(log n)−Ω(1) (using the above mentioned scheme), but

these are notNP-hardness results and are based on stronger assumptions.

3L IN :

To obtain an optimal completeness/soundness gap for3 query bits, we can follow Håstad [18] and
consider the problem of solving linear equations on3 variables overGF (2). For this problem, one
can efficiently check whether all the equations can be satisfied simultaneously by Gauss elimination.
Hence, we give up perfect completeness.
Corollary 12 (3L IN hardness).Solving 3SAT on inputs of sizen can be reduced to distinguishing

7

between the case that in a set ofn1+o(1) linear equations, each depending on3 variables overGF (2),
a fraction of1 − o(1) of the equations can be satisfied, and the case that only1

2
+ o(1) fraction of

the equations are satisfiable.

Again, this corollary improves over Håstad’s result in tworespects: First, it shows a hardness
result based on an almost-linear size reduction, rather than a polynomial size reduction. Second, it
shows that approximating the number of satisfiable equations to within a factor of1

2
+ o(1) isNP-

hard, and not only that approximating that number to within afactor of 1
2
+ ε for any constantε > 0

isNP-hard (as in Håstad’s original result). Theo(1) term is the same as the one for 3SAT. Once
again, we note also that Håstad does obtain hardness of approximation results to within a factor of
1
2
+ o(1) (where theo(1) term is better than the one we obtain here), but these are notNP-hardness

results and are based on stronger assumptions.

Amortized query complexity and free bit complexity:

Assume for simplicity that the alphabet isΣ = {0, 1}. Roughly speaking,amortized query complex-
ity is the ratio betweenlog of the soundness and the number of queries. There are severalsimilar
and essentially equivalent definitions. Here, we refer by amortized query complexity toq+log(1/c)

log(1/s)
,

following [24]. “Free” queries are queries to which the answer can be arbitrary. The satisfying
answers to the other queries are determined uniquely by the answers to the free queries. Roughly
speaking,amortized free bit complexityis the ratio betweenlog of the soundness and the number
of free queries. Formally, we refer by amortized free bit complexity to f+log(1/c)

log(1/s)
, wheref is the

number of free queries.

Samorodnitsky and Trevisan used the 3LIN test (and the abovementioned scheme) to obtain
PCP Theorems in which the amortized query complexity is1 + ε and the amortized free bit com-
plexity isε (for any constantε > 0) [32]. Using a similar approach, our results imply a similarPCP
Theorem with amortized query complexity1 + o(1) and free bit complexityo(1). Moreover, this is
done by analmost-linearsize reduction from 3SAT, rather than a polynomial size reduction in [32].
Corollary 13 (Nearly-optimal amortized query complexity and free bit complexity). There ex-
ists a functionkmax(n) ≥ ω(1), such that, for any natural numberω(1) ≤ k ≤ kmax(n), 3SAT on
inputs of sizen has a verifier that uses(1 + o(1)) · log n random bits to pickq = k2 + 2k queries
to a binary proof, such that onlyf = 2k of the queries are free. The verifier has completeness
c = 1− o(1) and soundness at mosts = 2−k2+1, implying amortized query complexity1 + o(1) and
amortized free bit complexityo(1).

1.7 Techniques

In the literature there are two main approaches for proving the PCP Theorem. The classical ap-
proach [2, 1] and Dinur’s approach [12]. The classical approach starts with a PCP verifier with
small error but very large alphabet, and gradually reduces the alphabet size. Dinur’s approach starts
with a PCP verifier with small alphabet but very large error, and gradually reduces the error. Our
proof is more related to the first approach.

8

One of the main new ideas that we use can be viewed as a new technique for doing the compo-
sition step in the PCP Theorem, without increasing the number of queries to the proof.

Proof composition is what enabled the PCP theorem [2, 1], andis an important part of all PCP
constructions since. In the literature, there are several different (but very related) ways to do the
composition step (see for example [2, 34, 14, 8]). However, all these methods are either restricted to
constant error, or require a large number of queries. For example, each application of the standard
way of doing the composition step in the classical proof of the PCP Theorem, increases the number
of queries to the proof by 1.

To formalize our techniques, we define the notion ofLocally Decode/Reject Code(LDRC). Very
roughly speaking, LDRCs are codes such that there exists a decoding algorithm that performs a local
test on a codeword and based on the test either rejects or outputs the value of several positions in
the encoded message. The decoding algorithm should satisfythe following two properties: 1) If it
is given as an input a correct codeword then it always acceptsand always returns the correct values
of the encoded message. 2) Given any word as an input (not necessarily a correct codeword), with
very high probability, if the algorithm does accept then thereturned values agree with one of a small
list of codewords (a list decoding of the word that is given asan input).

The notion of LDRC and variants of it were implicit, or even semi-explicit, in many previous
works (e.g., [3, 30, 33, 13, 26]). We believe that the explicit formulation of LDRCs and their
construction are of independent interest.

Our new composition technique is a composition of LDRCs, rather than a composition of veri-
fiers. The difference between a verifier and an LDRC is that a verifier checks a predicate, while an
LDRC checks a predicate and – provided that the predicate is satisfied – returns values. By using
LDRCs, rather than verifiers, we deviate from the path taken in works such as [2, 1, 3, 10, 9, 8], and
proceed in the path taken in [13, 26].

Our entire proof is presented as a construction of LDRCs withcertain properties, rather than
a construction of PCPs. We then use the new LDRCs to reduce thenumber of queries in existing
constructions of PCPs. Thus, our proof can be viewed as a reduction that reduces the number of
queries in PCP constructions. More precisely, the reduction converts a PCP with a large number of
queries into a PCP with two-query projection tests, while not increasing the error by much.

We note however that for the construction of our LDRCs, we do use many of the techniques that
were developed for constructions of PCPs, and our proof contains several steps that are similar to
corresponding steps in the classical approach for proving the PCP Theorem. For example, we use
the Reed-Muller and Hadamard codes and their local testing and self-correction properties. We do
have several new techniques that we need in order to achieve aconstruction with two queries and
sub-constant error.

As in the classical approach for proving the PCP Theorem, ourconstruction starts with an LDRC
with low error but large alphabet, and gradually reduces thealphabet size. The construction is by
performing various transformations, including compositions of the Reed-Muller and Hadamard con-
structions, and other transformations. Our proof relies onalgebraic constructions, yet the construc-
tion involves several combinatorial steps that are quite generic and may find other applications. The

9

combinatorial steps use expanders with a very large spectral gap. The use is different from the use
of expanders of constant spectral gap in the work of Dinur [12] (although it bears some similarity to
it). More details appear in Section 3 where we outline our construction.

The formal definition of LDRC, as well as more details and applications, appear in Section 2.
We wish to emphasize that LDRCs are different from existing notions such as Relaxed Locally
Decodable Codes (RLDCs) [8]. A comparison and a construction of RLDCs and locally testable
codes from LDRCs appears in Section 2.3. The use of LDRCs to query reduction for PCPs appears
in Section 2.2.

2 Locally Decode/Reject Codes fork-Tuples

A Locally Decode/Reject Code is an encodingE : {0, 1}n → Σm that maps messagesx ∈ {0, 1}n
to codewordsE(x) ∈ Σm. Σ is the alphabet of the code andm is its length. Underlying an LDRC
there is a list ofk-tuples of positions in[n]:

〈i1,1, . . . , i1,k〉, . . . , 〈iN,1, . . . , iN,k〉 ∈ [n]k

The code is associated with a local testing/decoding algorithmA. The purpose of the algorithm is to
decode a randomk-tuple from the list. The algorithm is probabilistic and mayonly query a constant
number of positions inΣm. Based on the answers to the queries it should either reject,or return a
k-tuple from the list together with a decoding ofk bits for it (see Figure 1). Note that the alphabetΣ
needs to be large enough to allow that. In our setting, the algorithm makes two queries and performs
a projection test. If the test passes, then based on the answer to the first query (that also gives the
satisfying answer to the second query), the algorithm should decode ak-tuple.

Let x ∈ {0, 1}n and fix some randomness for the algorithmA. This fixing determines ak-tuple
〈i1, . . . , ik〉 ∈ [n]k in the hard-wired list. Let us say that the algorithmA on the fixed randomness
decodesx if the algorithmA does not reject and does outputb1 = x(i1), . . . , bk = x(ik), where
x(ij) for j ∈ [k] denotes theij ’th symbol inx.

In Definition 2.1 below we state the properties of the local tester/decoder. Given access to a
codewordy = E(x), the algorithm must always decodex. The requirement from the algorithm
when given as input a non-codeword is more subtle. In existing definitions of local decoders, the
input y is assumed to be at least close (in Hamming distance) to some codewordE(x), and the
requirement is to decodex. In the definition of LDRCs, we will not assume thaty is close to a
codeword. That is, we allowy to be an arbitrary string inΣm. In this case,y may be far from
all codewords. Hence, we allow the algorithm to reject if it cannot decode. Nonetheless, the list of
codewords that are somewhat close toy cannot be large (whenE defines a code with good distance).
We require that with high probability, ifA does not reject,A decodes one of a short list of messages
x1, . . . , xl ∈ {0, 1}n. It does not matter whichxi the algorithm decodes, but allk bits must be
consistent with the samexi (note that this is non-trivial whenl � 2k).
Definition 2.1 (Locally decode/reject code fork-tuples). Let 0 < δmin < 1. Let lmax : (0, 1) →
R

+ be a decreasing function. An encodingE : {0, 1}n → Σm together with a testing/decoding

10

Local Tester/Decoder

Hard-wired: A collection of sizeN of k-tuples of positions in[n]:

〈i1,1, . . . , i1,k〉, . . . , 〈iN,1, . . . , iN,k〉 ∈ [n]k

Input: y ∈ Σm.

Goal: Test whethery locally agrees with a codeword, and, if so, decodek positions in
the message, where the positions are chosen uniformly at random from the hard-wired list.

Output: Either reject, or a k-tuple of indices〈i1, . . . , ik〉 that is uniformly distributed in
the hard-wired list, as well ask bits b1, . . . , bk ∈ {0, 1}.

Process:

1. Pick in some randomized manner a constant number of queries to y (in our case, two
queries), as well as ak-tuple 〈i1, . . . , ik〉 that is uniformly distributed in the hard-wired
list.

2. Perform some test on the queried positions iny (in our case, a projection test). If the test
rejects,reject.

3. Use the queried positions to computek bits b1, . . . , bk ∈ {0, 1}.

Figure 1: Local tester/decoder

algorithmA as in Figure 1 is called a(δmin, lmax)-locally decode/reject codefor the hard-wired
k-tuples, if the following holds:

1. Completeness:For everyx ∈ {0, 1}n, on inputE(x), the algorithm always decodesx.

2. Soundness:For everyy ∈ Σm, for every realδ such thatδmin ≤ δ < 1, there existl ≤
lmax(δ) messagesx1, . . . , xl ∈ {0, 1}n, such that the following holds: the probability that the
algorithm does not reject, yet does not decode any ofx1, . . . , xl, is at mostO(δ).

The parameterδmin lower bounds the error of the LDRC, i.e., the probability that the tester/decoder
accepts although it should not. The parameterlmax gives the list size as a function of the error we
are willing to tolerate. Typically,lmax(δ) ≤ δ−O(1).

2.1 Bipartite Locally Decode/Reject Codes

For our setting, let us also explicitly define the LABEL-COVER version of LDRCs. The notion of
bipartite LDRCsimposes the two query projection tests structure on the local tester/decoder. The

11

notion is stronger than the notion in Definition 2.1. The encoding consists of two partsA andB.
The list-decoding is determined solely by theB part.
Definition 2.2 (Bipartite locally decode/reject code fork-tuples). Consider a list ofk-tuples

〈i1,1, . . . , i1,k〉, . . . , 〈iN,1, . . . , iN,k〉 ∈ [n]k

A Bipartite LDRC for thek-tuples isG = 〈G = (A, B, E), ΣA, ΣB, {πe}e∈E, {τe}e∈E, {ρe}e∈E〉,
whereG′ = 〈G = (A, B, E), ΣA, ΣB, {πe}e∈E〉 is an instance ofLABEL-COVER, and every edge
e ∈ E carries ak-tuple τe from the list and an evaluation functionρe : ΣA → {0, 1}k. For each
j ∈ [N], the tuple〈ij,1, . . . , ij,k〉 appears on the same number of edges.

Given a labeling to the vertices of the graph, i.e., functionsCA : A → ΣA andCB : B → ΣB,
an edgee = (a, b) ∈ E is said to be “satisfied” if it is satisfied inG′. For a messagex ∈ {0, 1}n,
the edgee is said to “decode”x if ρe(CA(a)) = 〈xi1 , . . . , xik〉 whereτe = 〈i1, . . . , ik〉 is the tuple
associated withe.

Let 0 < δmin < 1. Let lmax : (0, 1)→ R
+ be a decreasing function. We say that the LDRC is a

(δmin, lmax)-bipartite LDRC if it satisfies the following conditions:

1. Completeness:For everyx ∈ {0, 1}n, one can efficiently compute assignmentsCA : A→ ΣA

andCB : B → ΣB, such that all edgese ∈ E are satisfied and decodex.

2. Soundness:For everyCB : B → ΣB, for every realδ such thatδmin ≤ δ < 1, there existl ≤
lmax(δ) messagesx1, . . . , xl ∈ {0, 1}n, such that the following holds for anyCA : A → ΣA:
when picking uniformly at random an edgee ∈ E, the probability thate is satisfied but does
not decode any one ofx1, . . . , xl, is at mostO(δ).

Note that for decoding to be possible, the alphabet must satisfy log |ΣA| ≥ k.

In the LABEL-COVER notation, the length of the code corresponds to the number ofvertices
|A|+ |B|, and the alphabet of the code corresponds to the (larger) setof labelsΣA. The randomness
of the local tester/decoder islog |E|. For any interesting list ofk-tuples (where we refrain from
defining “interesting” explicitly; an “uninteresting” list may be one that does not even contain most
possible indices in[n]), the length must be at leastΩ(N + n). We refer to the size of the graphG,
|G| = |A| + |B| + |E|, as thesizeof the bipartite LDRC. The size measures both the length of the
LDRC and the number of possible tests of its local tester/decoder. We say that the construction is of
almost-linearsize, if the size is(N + n) · no(1).

We show a construction of an almost-linear size bipartite LDRCs as follows:
Theorem 14 (Construction of bipartite LDRC). There exists a constant0 < α < 1

2
such that the

following holds. Letk be such thatk ≤ (log n)α. Let 1
(log n)α ≤ ε < 1. Then, there is an efficient

algorithm that given a collection of sizeN of k-tuples, outputs a(δmin = ε, lmax(δ) = δ−O(1))-
bipartite LDRC for these tuples. Its size is almost linear(N + n) · no(1), and its alphabets satisfy
log |ΣA| = k · poly(1

ε
) and log |ΣB| = O(log 1

ε
). The degree of theA vertices is(1

ε
)O(k), and the

degree of theB vertices is(1
ε
)O(1).

12

2.2 Query Reduction For PCPs Via LDRCs

Bipartite LDRCs allow us to convert a PCP with a low error and alarge number of queries, e.g., the
one appearing in Theorem 7 (item 1), to a PCP with low error andtwo query projection tests. Using
the bipartite LDRC construction of Theorem 14, we get our PCPtheorem, Theorem 10.
Definition 2.3 (Construction algorithm). A (kmax, δmin)-construction algorithm for bipartite LDRCs
with parameters〈size, blockA, blockB〉 is an efficient algorithm that given a collection ofk-tuples,
wherek ≤ kmax, outputs a(δmin, lmax)-bipartite LDRC for the tuples, wherelmax(δ) ≤ δ−O(1). The
size of the output issize, the alphabet size of theA vertices is2blockA and the alphabet size of theB
vertices is2blockB .
Theorem 15 (Query reduction). If there is a(q, ε)-construction algorithm for bipartite LDRCs
with parameters〈size ≤ (N + n) · no(1), blockA, blockB〉, then for someε0 ≥ εO(1),

PCP1,ε0[(1 + o(1)) · log n, q] ⊆ PCP1,O(ε)[(1 + o(1)) · log n, 2]{0,1}blockA

Moreover, the PCP verifier performs two query projection tests, and the answer to the second query
consists ofblockB bits.

Proof. Denote byC a (q, ε)-construction algorithm for bipartite LDRCs with parameters 〈size ≤
(N + n) · no(1), blockA, blockB〉. Assume thatC outputs(ε, lmax)-bipartite LDRCs. Let us choose
ε0

.
= ε/lmax(ε) ≥ εO(1).

Let L ∈ PCP1,ε0[(1 + o(1)) · log n, q]. Denote the implied PCP verifier byV1. Denote the set
of randomness strings the verifierV1 uses byR, where|R| ≤ n1+o(1). On randomnessr ∈ R, the
verifier V1 performsq queries to a binary proof of sizem ≤ n1+o(1); denote theq-tuple of queries
thatV1 performs byV1(r) ∈ [m]q.

Invoke the construction algorithmC on the collection of sizen1+o(1) of q-tuples{V1(r)}r∈R to
obtain a bipartite LDRC:

G = 〈G = (A, B, E), ΣA, ΣB, {πe}e∈E , {τe}e∈E , {ρe}e∈E〉

Identify ΣA with {0, 1}blockA andΣB with {0, 1}blockB . Note that the size ofG is n1+o(1).

Consider the following PCP verifierV2 for L. Assume that the verifierV2 is given inputx. The
verifier V2 has oracle access to a proof which it interprets as labels〈CA, CB〉, whereCA : A →
{0, 1}blockA andCB : B → {0, 1}blockB . Supposedly,CA andCB encode a proof that would have
convinced the verifierV1 thatx ∈ L. The verifierV2 proceeds as follows:

1. Pick uniformly at random an edgee = (a, b) ∈ E. LetV1(r) for a uniformly distributedr ∈ R
be such thatτe = V1(r).

2. If πe(CA(a)) 6= CB(b), reject.

3. Otherwise, accept or reject, depending onV1’s verdict on inputx, randomnessr and answers
ρe(CA(a)) to its queries.

13

Note thatV2 is efficient, uses only(1+o(1))·logn random bits to make two queries to a proof, where
the answer to the first query consists ofblockA bits, and the answer to the second query consists of
blockB bits, and performs a projection test on the answers.

Let us argue completeness and soundness.

Completeness. Assume thatx ∈ L. By the completeness ofV1, there exists a proofπ ∈ {0, 1}m
thatV1 always accepts. LetCA : A → {0, 1}blockA andCB : B → {0, 1}blockB be labels for which
all edges are satisfied and decodeπ. For these labels, the verifierV2 always accepts.

Soundness. Assume thatx /∈ L. Consider labelsCA : A → {0, 1}blockA and CB : B →
{0, 1}blockB . Let π1, . . . , πl ∈ {0, 1}m be thel ≤ lmax(ε) strings that follow from the definition
of the LDRCG for the assignmentsCA, CB and the parameterε.

Let us show that the probability thatV2 accepts on inputx and proof〈CA, CB〉 is at mostO(ε):

By the soundness of the LDRCG, the probability that the edgee is satisfied inG, but does not
decode any ofπ1, . . . , πl, is at mostO(ε).

For everyi ∈ [l], whenV1 is given inputx and proofπi, the probability over the randomness of
V1 thatV1 accepts is at mostε0. Thus, the probability that given inputx, the verifierV1 accepts when
given as proof one ofπ1, . . . , πl, is at mostl · ε0 ≤ O(ε).

Corollary 16. Theorem 10 holds.

Proof. Let ε > 0. Let us assume that for some constantβ > 0 it holds thatε ≥ 1
(log n)β . Otherwise,

the conclusion of Theorem 10 follows from Theorem 5. We will chooseε′ ≥ εO(1) shortly. By
Theorem 7 (item 1),

3SAT ∈ PCP1,ε′[(1 + o(1)) · log n, O(log
1

ε
)]

Apply the query reduction theorem (Theorem 15) using the LDRC construction algorithm given in
Theorem 14. Deduce that for someε0 ≥ εO(1),

PCP1,ε0[(1 + o(1)) · log n, O(log
1

ε
)] ⊆ PCP1,ε[(1 + o(1)) · log n, 2]

{0,1}poly(1
ε)

Moreover, the PCP verifier performs two query projection tests, and the answer to the second query
consists ofO(log 1

ε
) bits. Letε′

.
= ε0. Therefore, solving 3SAT on inputs of sizen can be reduced

to distinguishing between the case that a LABEL-COVER instance of sizen1+o(1) · poly(1
ε
) and pa-

rameters|ΣA|, |ΣB| s.t. log |ΣA| ≤ poly(1
ε
) andlog |ΣB| ≤ O(log 1

ε
), is completely satisfiable and

the case that at mostε fraction of its edges are satisfiable.

2.3 Relaxed Locally Decodable Codes

In this section we recite the notion of Relaxed Locally Decodable Codes (RLDC) [8]. RLDCs are
codes with local testing and decoding algorithm that are different from LDRCs. The notions are

14

incomparable: in one sense, the requirement of an RLDC isstrongerthan the requirement for an
LDRC, while in another sense, the requirement of an RLDC isweakerthan the requirement for an
LDRC. In the sequel we compare the two notions.

To motivate Relaxed Locally Decodable Codes (RLDC), we revisit the definition of Locally
Decodable Codes (LDCs) [21]. LDCs are encodingsC : {0, 1}n → Σm that are associated with a
local decoding algorithmA. The algorithm gets as input an indexi ∈ [n] and has oracle access to
a wordy ∈ Σm that isclose(in Hamming distance) to some encoding, i.e., there existsx ∈ {0, 1}n
such that∆(y, C(x)) ≤ δ, whereδ is a small constant. The purpose ofA is to decodexi. The
algorithm is probabilistic and is allowed to query a constant number of positions iny. Wheny =
C(x), the algorithm should always outputxi. The soundness requirement is thatfor anyi ∈ [n] and
anyy such that∆(y, C(x)) ≤ δ, the algorithmA decodesxi with probability at least≈ 1− δ. The
probability is only taken over the randomness of the algorithmA, and not over the choice ofi ∈ [n].

The Hadamard code is locally decodable with two queries, butits length is exponentialm = 2n.
The best constructions known today (under the assumption that there are infinitely manyMersenne
primes) are slightly sub-exponential2no(1)

and obtain a local decoder that queries3 bits [35]. For two
queries, an exponential lower bound is known [22]. For more queries, a super-linear lower bound is
known [21].

Motivated by this state of affairs, Ben-Sasson et al [8] relaxed the notion of LDCs as to enable
succinct constructions. Their idea was to allow the decodernot to decode a position. In this case,
the decoder should declare that it cannot decode andreject. Of course, the decoder must not use this
privilege too often: it may declare it cannot decode only fewpositions, depending on the distance of
the received word from the code. The key point is that,for every positioni ∈ [n], the algorithmA
may err, i.e., not reject yet return a wrong value, with only asmall probability over its random coin
tosses. There must not be even onei ∈ [n] for which algorithmA err with large probability (unlike
for LDRCs).
Definition 2.4 (Relaxed locally decodable code).Let 0 < δ < 1 and let0 < ρ < 1. An encoding
E : {0, 1}n → Σm together with a decoding algorithmA as in Figure 2 is called a(δ, ρ)-relaxed
locally decodable code, if the following holds:

1. Completeness: For everyx ∈ {0, 1}n and everyi ∈ [n], on inputE(x) and i, the algorithm
A outputsxi.

2. Soundness: Given a wordy ∈ Σm with ∆(y, E(x)) ≤ δ,

(a) For every positioni ∈ [n], the probability thatA does not reject, yet outputsb 6= xi, is
at most2

3
.

(b) For at leastρ fraction of the positionsi ∈ [n], the probability thatA does not reject, and
does outputxi, is at least2

3
.

The main differences between RLDCs and LDRCs are as follows:

• List decoding vs. unique decoding.In RLDCs, the guarantee is that the word is very close to

15

Relaxed Local Decoder

Input: y ∈ Σm andi ∈ [n].

Goal: Find xi for x ∈ {0, 1}n such thatE(x) is the closest codeword (in Hamming dis-
tance) toy.

Output:Eitherreject, or a bitb ∈ {0, 1}.

Process:

1. Pick in some randomized manner a constant number of queries toy.

2. Perform some test on the queried positions iny. If the test rejects,reject.

3. Use the queried positions to compute the bitb ∈ {0, 1}.

Figure 2: Relaxed local decoder

a (unique) codeword. In LDRCs there is no such guarantee. Thelocal decoder has to perform
well in the list decoding region.

• Average case vs. worst case.In RLDCs, the local decoder has to perform well forall indices
with high probability over its randomness. In LDRCs, the local decoder has to perform well
for almost all indices with high probability over its randomness. There might be very few
indices, on which the algorithm always returns an incorrectvalue.

• k-tuple vs. one position.In RLDCs (as in LDCs), the requirement is to decode one position.
In LDRCs, the requirement is to decodek positions.

3 Construction Outline

In this section we outline our LDRC construction, i.e., the proof of Theorem 14. We present a simpli-
fied construction, taking the liberty of ignoring several issues. In particular, in this outline we ignore
the almost-linear size guarantee. The reason is that the ideas involved in handling almost-linear size
appear in previous works [27, 26] and introduce many technical difficulties. A full account of issues
we ignore in this outline appears in Section 3.12. Recall that obtaining a PCP Theorem with two
query projection tests and sub-constant error, even with polynomial size, was unknown prior to our
work.

16

3.1 Encoding codewords

The first conceptual step is as follows: Instead of LDRCs encoding binary strings as in Defini-
tion 2.2, we will construct LDRCs encoding codewords in somecodeC ⊆ Γn. The formal definition
appears in Section 3.2. The differences from Definition 2.1 are as follows:

• Given a codewordx ∈ C, we would like assignmentsCA, CB “encoding” x (the encoding
does not need to work for all possible strings, only for codewords inC; this is a relaxation of
Definition 2.1).

• Given assignmentsCA, CB we would like a “list decoding” of codewordsx1, . . . , xl ∈ C (the
list decoding cannot use any string in the decoding, only codewords inC; this is a strengthen-
ing of Definition 2.1).

Note that constructing LDRCs for an infinite family of efficiently encodablelinear codesC = {Cn}
yields, in particular, LDRCs as in Definition 2.1. The reasonis that given a binary stringx ∈ {0, 1}n
we can first encode it using a codeCn′ for a sufficiently largen′, and obtain a codewordx′ ∈ Cn′

such thatx is a prefix ofx′ (by linearity, we can assume, without loss of generality, that the code is
systematic, i.e., an encoding contains the message bits and a sequence of linear functions of these
bits). Then, we can use an LDRC for the codeCn′. The positions we wish to decode inx also appear
in x′.

For the final construction of Theorem 14, we use as our linear codeC the concatenation of Reed-
Muller and Hadamard. The reason is that both for the Reed-Muller code and for the Hadamard code,
we canlocally decode/reject. For the Reed-Muller code – bylow degree testingand using curves.
For the Hadamard code – bylinearity testingand using linear subspaces.

Nonetheless, the Reed-Muller code and the Hadamard code have apparent caveats. For the
Reed-Muller code – while the length can be made almost-linear, the alphabet size is too large. For
the Hadamard code – while the alphabet size is small, the length is exponential.

Our methods allow us to gain from the advantages of the two codes, while not losing much from
their shortcomings. By composing the respective LDRCs, we obtain locally decode/reject codes
with almost-linear length and small alphabet.

3.2 New Notion of LDRC and Its Parameters

Next we formulate the new notion of LDRCs we use. In this new notion we make an additional
“technical” change.

We associate satisfiability constraints with theA vertices, rather than with the edges. Recall that
the projections on the edges are partial functions. That is,on some values of theA endpoint, an edge
may never be satisfied. Instead, we define the projections to be functions and define sets{χa}a∈A,
where for everya ∈ A we haveχa ⊆ ΣA is the set of satisfying values fora. A label to the vertexa
projects on all the neighbors ofa. The satisfiability constraint ona may check consistency between
the different projections.

17

Definition 3.1 (Bipartite locally decode/reject code fork-tuples; new notion). Fix a codeC ⊆
Σn. Consider a list ofk-tuples

〈i1,1, . . . , i1,k〉, . . . , 〈iN,1, . . . , iN,k〉 ∈ [n]k

A Bipartite LDRC for thek-tuples is〈G = (A, B, E), ΣA, ΣB, {χa}a∈A, {πe}e∈E, {τe}e∈E, {ρe}e∈E〉,
where〈G = (A, B, E), ΣA, ΣB, {πe}e∈E〉 is an instance ofLABEL-COVER, and every edgee ∈ E
carries a tupleτe from the list and an evaluation functionρe : ΣA → Σk. For eachj ∈ [N], the
tuple〈ij,1, . . . , ij,k〉 appears on the same number of edges.

Given a labeling to the vertices of the graph, i.e., functionsCA : A→ ΣA andCB : B → ΣB, a
vertexa ∈ A is said to be “satisfied” ifCA(a) ∈ χa. An edgee = (a, b) ∈ E is said to be “satisfied”
if a is satisfied andπe(CA(a)) = CB(b). Given a messagex ∈ C, an edgee = (a, b) ∈ E is said to
“decode” x, if ρe(CA(a)) = 〈xi1, . . . , xik〉 whereτe = 〈i1, . . . , ik〉 is the tuple associated withe.

Let 0 < δmin < 1. Let lmax : (0, 1)→ R
+ be a decreasing function. We say that the LDRC is a

(δmin, lmax)-bipartite LDRC if it satisfies the following conditions:

1. Completeness:For everyx ∈ C, there are assignmentsCA : A → ΣA andCB : B → ΣB,
such that all edgese ∈ E are satisfied and decodex.

2. Soundness:For everyCB : B → ΣB, for every realδ such thatδmin ≤ δ < 1, there exist
l ≤ lmax(δ) messagesx1, . . . , xl ∈ C, such that the following holds for anyCA : A → ΣA:
when picking uniformly at random an edgee ∈ E, the probability thate is satisfied but does
not decode any one ofx1, . . . , xl, is at mostO(δ).

We will be interested in various properties of an LDRC. One ofthem is the form of the satisfia-
bility constraints of theA vertices. Another is the alphabetsΣA andΣB. The alphabets will usually
be codes themselves.

We will also be interested in the following parameters:

1. Size. The size of the LDRC, i.e.,|A| + |B| + |E|. The size combines the length of the code
|A| + |B| and the randomness of the tester/decoderlog |E|. As we mentioned earlier, in this
outline we will focus on polynomial size.

2. Block length. The block length of theA vertices islog |ΣA|. The block length of theB
vertices islog |ΣB|.

3. Left degree. In this outline we focus on graphs that are left regular, i.e., all theA vertices
have the same degree. The left degree is this degree.

4. Right degree. In this outline we focus on graphs that are right regular, i.e., all theB vertices
have the same degree. The right degree is this degree.

18

3.3 Locally Decode/Reject Code for Reed-Muller

In this section we describe a locally decode/reject code forthe Reed-Muller code. The construction
is (a variant of) the folklore construction that yields Theorem 5.

Let the parameters of the Reed-Muller code be: a finite fieldF, a dimensionm and a degree
d. The code consists of allm-variate polynomials of degree at mostd over the fieldF. It will be
convenient to identify positions in the code with points inF

m. Thus, thek-tuples we wish to decode
are given as tuples of points:

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

The size of the LDRC is polynomial in|Fm|. The left degree is|F|O(1), and the right degree is
polynomial in|Fm|. The alphabet of theA vertices is a Reed-Muller code itself, but of much reduced
parameters: the dimension and the degree areO(log kd) (independent of the initial dimensionm).
Still, the block length is largepoly(k, d) · log |F| (compare it to the lower boundk · log |F|; note
the dependence on the degreed), and this is the main disadvantage of this construction. Tosee how
severe this disadvantage is, recall that the degreed must be taken to be large if we want a good rate:

The number of codewords in the Reed-Muller code is|F|(
m+d

m). Thus, the rate is
(

m+d
m

)
/n, where

n = |Fm|. To get large distance and polynomial length, we need to taked such thatm · |F|Ω(1) ≤
d � |F|. Hence, the alphabet is at best super-polynomial2poly log n. If we wish the length to be
almost linear, the alphabet becomes even larger, slightly sub-exponential.

What allows local testing/decoding for the Reed-Muller code is a principle that we loosely state
as follows:

Low degree testing principle: Fix a functionf : F
m → F. There are a few low degree

polynomialsq1, . . . , ql : F
m → F as follows. Pick uniformly at random a linèin F

m. “Almost
surely, whenf agrees with some low degree polynomial on a non-negligible fraction of the
points oǹ (local test), it agrees on these points with one ofq1, . . . , ql (global conclusion)”.

Herenon-negligiblemeans a sufficiently large fractionmO(1) · (d
|F|

)Ω(1).

Proofs of variants of the above principle appear in [3, 30, 13, 27]. They rely on the distance
property of the Reed-Muller code and on its recursive structure: any low degree subset ofF

m defines
a Reed-Muller sub-code. The “line” in the above principle can be replaced by any low degree curve
or manifold inF

m. In particular, we replace the “line” with a low degree manifold that goes through
ak-tuple we wish to decode.

We will refer to our LDRC as the Manifold vs. Point construction, and define it as follows:

• TheA vertices are4-dimensional manifolds of degree at mostk+1 in F
m: there is a manifold

for everyk-tuple we wish to decode and three dimensional subspace inF
m (where we use

three-dimensional subspaces because we apply the low degree testing of [27]). The manifold
contains thek points and the subspace.

19

• TheB vertices are the points inFm.

• Every manifold is connected to all the points on it, except for a few points that are removed to
ensure right regularity.

• A label to aB vertex is a field element.

• A label to anA vertex is a4-variate polynomial of degree at most(k + 1) · d. The projections
{πe}e∈E are such that for an edgee = (a, b) ∈ E, the projectionπe(σa) is the value of the
polynomialσa on the point corresponding tob ona.

• To encode a Reed-Muller codeword, we view it as a labeling of theB vertices (i.e., the points
in F

m) with field elements. We label theA vertices with the restrictions of the codeword to
the manifolds on theA side.

• There are no satisfiability constraints, i.e., for every vertex a ∈ A, we have thatχa is the set
of all possible labels.

• For an edgee = (a, b) ∈ E, the tupleτe is thek-tuple contained ina. The evaluationρe(σa)
is the value of the polynomialσa on thek points corresponding toτe.

Note that the labels to theA vertices are Reed-Muller codewords, but not Reed-Muller code-
words with the parameters we declared. Yet, we can representevery polynomial with constant
dimension and degreeO(kd) as a polynomial with dimension and degreeO(log kd).

3.4 Why Composition is Hard – The Two-Prover Game Perspective

It will be useful to think of the LDRC construction above in terms of a game between a verifier and
two provers: proverA and proverB. The verifier asks proverA about a manifold inFm. The verifier
asks proverB about a point on the manifold. ProverA knows that proverB is asked about one of
the points on the manifold that proverA got, but proverA does not know which point. ProverB
knows that proverA is asked about one of the manifolds that contain the point that proverB got,
but proverB does not know which manifold. The low degree testing principle assures us that this
missing information is sufficient to force the provers to adhere to the same low degree polynomials.

Unfortunately, the alphabet of this Manifold vs. Point construction is large, because proverA
needs to describe a polynomial for its manifold. A natural solution is to usecomposition. Prover
A needs to provide a polynomial for the entire manifold, but, in fact, the verifier is only interested
in the value of this polynomial onk + 1 points: thek-tuple it decodes and the point that proverB
got (on which the verifier compares the answers). The idea is to view the verifier’s task as decoding
k + 1 symbols from a Reed-Muller code, and use an LDRC for this purpose.

Let us demonstrate the idea by taking the Manifold vs. Point construction of Section 3.3 as
a concrete instance of an LDRC. Instead of proverA, we will have two provers: proverA.A and
proverA.B. ProversA.A andA.B will convince the verifier ink + 1 values that are all evaluations

20

of one low degree polynomial for the manifold on the relevantpoints. The verifier will send prover
A.A a sub-manifold within the manifold forA that goes through thek + 1 points. The verifier will
send proverA.B a point in the sub-manifold. The proversA.A andA.B are expected to reply with
consistent evaluations.

The composition we described increases the number of provers/queries from two:A andB, to
three:A.A, A.B andB. When composition is applied several times, the number of queries increases
even further. Indeed, this is what happened in previous works that applied composition for similar
needs [3, 30, 13, 26].

A-priori, it seems that we could insist on using only two provers by, in addition toB’s original
role, letting each of proversA, B simulate one of proversA.A, A.B. However, this fails, no matter
how we attempt to splitA.A andA.B betweenA andB. The reason is that the questions in the
inner protocol reveal information on the questions of the outer protocol, in a way that some prover
will always gain information about the outer question of theother prover. To see this, let us check
the two splitting alternatives:

1. First alternative: A.A→ A | A.B→ B. ProverA gets the sub-manifold. ProverB gets the
outer point (on the manifold) and the inner point (on the sub-manifold). In this case, proverA
gains information about the point ofB from knowing the sub-manifold that contains it.

2. Second alternative: A.A→ B | A.B→ A. ProverA gets the inner point (on the sub-
manifold). ProverB gets the outer point (on the manifold) and the sub-manifold.In this
case, proverB gains information about the manifold from knowing the sub-manifold.

The question that arises is whether one can devise a composition protocol for two provers in which
the questions of the inner protocol do not give (enough) information on the questions of the outer
protocol.

3.5 The Key Idea: Confusing the Provers

The problem with implementing composition is that we cannotafford thatany of the provers will
learn the sub-manifold. We saw that once any of the provers learns the sub-manifold, that prover
gets information that may allow the provers to fool the outerverifier.

What we do instead is letbothprovers learn the sub-manifold. The key idea is that proverA will
also get many other sub-manifolds to confuse it. ProverA will not know which of the sub-manifolds
that it got is the one that proverB got. ProverB will not know which of the possible questions
to proverA proverA actually got (where each question to proverA is a collection of manifolds
containing the manifold that proverB got).

In the next few sections we will show that the two prover game can indeed be transformed into
a form in which the question to proverA consists of a few manifolds, and the question to proverB
consists of a single manifold. Since we wish the alphabet to be as small as possible, the question to
proverA should consist of as few manifolds as possible.

21

3.6 Reducing Right Degree

For the presentation, we will go back to viewing the Manifoldvs. Point LDRC of Section 3.3 as a
bipartite graph. Our first step is to decrease the right degree of the graph to some smallD.

For right degree reduction, we use a regular expander graphH = (VH , EH) with number of
vertices that equals the original right degree of the graph,degreeD and second eigenvalueDα for a
constant1

2
≤ α < 1.

The construction is as follows (see Figure 3):

• TheA vertices are as before. The labels to theA vertices are as before.

• For every vertexb ∈ B and every expander vertexv ∈ VH , create a copy〈b, v〉. The labels to
the copies are as the labels to the originalB vertices.

• For every edge(a, b) ∈ E in the original graph, where(a, b) is theu’th edge coming intob,
and every expander edge(u, v) ∈ EH , create an edge(a, 〈b, v〉). The projectionπ, the tuple
τ and the evaluation functionρ that this edge carries are the same as the projection, tuple and
evaluation of(a, b).

Figure 3: Right degree reduction.

It turns out that choosingD = d1
ε
e, whereε is the error we aim for, suffices for soundness. Note

that the left degree, as well as (essentially) the size, are multiplied by a factor ofD.

The construction uses in an essential way the fact that we only decrease the right degree, and not
the left degree. It works because each left vertex determines a labeling for all the copies of each of
its neighbors. More than that, it is unreasonable to expect any construction of this kind to reduce left
degree: Revealing to proverA a short list of points in it, among them the point that proverB got,
allows proverA to choose a polynomial that agrees with proverB on all these points. This can be
done even when proverB’s answers do not correspond to any low degree polynomial.

22

3.7 The Sunflowers Construction

To transform our LDRC into the form described in Section 3.5,we switch the roles of proverA and
proverB. When the right degree is small, we can do that while preserving the projection property:
we can ask proverB to answer about a vertexa ∈ A, and ask proverA to answer about all the
neighbors of a vertexb ∈ B.

Here is where we pay in the alphabet size. Recall that in Theorem 14, and hence in our PCP
construction (Theorem 10), the block length depends polynomially on 1

ε
, rather than onlog 1

ε
. The

reason is that the block length depends linearly on the degree, rather than on the logarithm of the
degree: we keep separate information about each neighbor.

The construction is as follows:

• The newA vertices are the oldB vertices, and the newB vertices are the oldA vertices. The
edges are flipped, but otherwise remain the same.

• The alphabet of the newB vertices is the alphabet of the oldA vertices. A label of a newA
vertex consists ofD labels for the newB vertices, one per neighbor.

• For every old vertexb ∈ B, for every i ∈ [D], assuming thate = (a, b) is the i’th edge
touchingb, for a label~p = 〈p1, . . . , pD〉 to b in the new graph,πe(~p) = pi.

• Each edgee is associated with the same tupleτe as before. The evaluation function thate
carries follows from the previous evaluation function: Assume that the input to the new eval-
uation function is~p = 〈p1, . . . , pD〉. Then, the evaluation is obtained using the old evaluation
ρe onpi wheree is thei’th edge according to the ordering we defined.

• The newA vertices have a satisfiability constraint: for every oldb vertex, which corresponds
to a point inF

m, all theD labels must agree on the point.

It is instructive to think of a newA vertexa as a sunflower, composed of its neighboringB
vertices as petals (as in Figure 4). The neighboringB vertices intersect on a point given bya. A
satisfying label toa is composed of labels to the neighboringB vertices that are consistent on the
intersection.

3.8 Right Degree Reduction on the Sunflowers Construction

The Sunflowers construction gives a graph with small left degree and large right degree, rather than
a graph with small right degree and large left degree. We can apply right degree reduction on this
graph, and get a graph with small left and right degrees.

In the two prover game terminology, proverA getsD different manifolds that have a common
“center” in their intersection. ProverB gets one of these manifolds. ProverA does not know which
manifold proverB got. ProverB does not know which sunflower containing its manifold, among

23

Figure 4: The Sunflowers construction.

D possible sunflowers, proverA actually got. Yet, although each of the provers only has a small
amount of uncertainty regarding the question that the otherprover was asked, both provers should
prefer to adhere to the prescribed strategy.

In addition, the satisfiability constraints on proverA’s answer can be checked by querying its
manifolds on a few points. To see that, note that the satisfiability constraints in the Sunflowers
construction in fact check: (i) agreement on “centers”; (ii) identity between copies of the same
manifold. The (ii) checks come from the right degree reduction, and can be done by comparison on
a random point.

The new structure of the Sunflowers construction is what allows composition in the next section.

3.9 Composition

In this section we start with the Sunflowers LDRC we constructed in Section 3.8, and show how to
perform composition of this LDRC with inner LDRCs of the sametype. The purpose of composition
is to obtain an LDRC with lower alphabet. The block length of the composed LDRC is proportional
to the left degree of the outer construction and the block length of the inner construction (and inde-
pendent of the block length of the outer construction). The composition preserves the structure of
Section 3.8.

ProverA in the outer LDRC needs to provide for each manifold that is a petal in its sunflower,
a polynomial for the entire manifold. However, in reality, we are only interested in the value of
this polynomial onk + 1 points2: thek-tuple we wish to decode and the point in the center of the
sunflower (on which we compare the answers from all petals). Note that, this time, proverB already
knows the manifold that proverA got, because proverB also got the exact same manifold.

The idea is to use an inner Sunflowers LDRC to decode thek + 1 positions in the Reed-Muller
codeword corresponding to a polynomial on the manifold. Instead of proverB, we will have two
provers: proverB.A and proverB.B. ProversB.A andB.B can convince the verifier ink + 1

2To simplify the presentation, we ignore the random point needed for the (ii) checks. In Section 3.12 we remark how
this matter is solved.

24

values that are all evaluations of one low degree polynomialfor the manifold on the relevant points.
We insist on using only two provers by letting proverA simulate proverB.A and proverB simulate
proversB.B. We have to make sure that the questions in the inner protocols reveal no information
on the questions of the outer protocol.

ProverA does not get information, because proverA simulates proverB.A for every petal in its
sunflower. Hence, proverA does not know which petal is the one that proverB was asked about.
(The picture is completely symmetric from proverA’s point of view).

However, proverB does gain information about the outer question of proverA, because thek+1
points that the inner LDRC decodes, reveal the outer center,and hence give information about the
outer question thatA got. For that reason we change the protocol a little bit. In order to confuse
proverB, each inner LDRC on an outer edge(a, b) decodes not only thek + 1 points that need to
be decoded but also thek + 1 points that every other neighbor ofb needs to decode. Since the right
degree of the outer LDRC is small, this is possible. Now the picture is completely symmetric from
the point of view of proverB and hence proverB gets no information about the outer question of
proverA.

In the composed two prover game, the verification is as follows:

1. Outer sunflower:Pick at random a sunflower containingD manifolds, as well as one of these
manifolds.

2. Inner sunflower: For every manifold, pick at random a sub-sunflower containing D sub-
manifolds. For the manifold that was picked, pick a sub-manifold in it.

3. Ask proverA aboutall theD sub-sunflowers (one for each manifold). Ask proverB about
the sub-manifold. Check the consistency between their answers.

Why does this protocol work? ProverA does not know which of theD2 sub-manifolds is the one
that proverB was asked about. ProverB does not know which of the sunflowers (that contain the
sub-manifold that proverB got) is the one that proverA was asked about. Hence, both provers
would better off adhere to their prescribed strategy.

The composed graph is as shown in Figure 5. There is anA vertex in the composed graph for
every pair〈a, ain〉 of an outerA vertexa and an innerA vertexain. It should be thought of as taking
the sunflowerain for each of the petals of the sunflowera. There is aB vertex in the composed
graph for every pair〈b, bin〉 of an outerB vertexb and an innerB vertexbin. It should be thought of
as taking the sub-manifoldbin inside the manifoldb. Every outer edge(a, b) is replaced by an inner
graph for decoding all the(k + 1)-tuples for neighbors ofb.

Composition essentially multiplies the size of the outer construction and the inner construction.
The inner construction is typically smaller, and hence the dominant factor is the size of the outer
construction. Composition multiplies the outer and inner left degrees, as well as the outer and inner
right degrees. Nonetheless, the degrees remain polynomialin 1

ε
. By a single composition, we can

get the block length down frompoly(k, d) · log |F| to poly(k, log d, 1
ε
) · log |F|. This block length is

25

Figure 5: Composed graph.

small, but not as small as we want (recall that we wish to eliminate the dependence ond and|F|).
We solve this in the next section.

3.10 Locally Decode/Reject Code for Hadamard and The Concatenation of
Reed-Muller and Hadamard

We solve the still-too-large-alphabet problem the same wayas all PCP constructions since [1]: com-
pose our construction with a construction for the Hadamard code. This results in arbitrarily small
alphabet at the cost of a larger size. First, let us describe the Hadamard construction. In the next
section we describe the composition with it.

We let the Hadamard code be over a small finite fieldL. The fieldL may beGF (2), but for low
error we use larger fields|L| = (1

ε
)O(1). We use the letterL to distinguish the field from the fieldF

we used for the Reed-Muller code. It will be convenient to take L to be a subfield ofF. Let w be
such that we can identify theB alphabet of the construction of Section 3.9 withL

w. Thisw will be
the dimension of the Hadamard code we take. The length of the Hadamard code is|Lw|, which is
exponential inw, but sincew is relatively small, this is tolerable.

It will be convenient to identify positions in the Hadamard code with points inLw. Thus, a list
of k-tuples we wish to decode can be thought of as a list ofk-tuples of points:

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Lw)k

We can construct an LDRC for the Hadamard code similarly to the way we constructed LDRCs for
the Reed-Muller code in Section 3.3. The difference from theReed-Muller LDRC is that we consider
(k + 2)-dimensional linear subspaces inL

w instead of degree-(k + 1) manifolds. In addition, the
correctness of the construction now follows from linearitytesting theorems (e.g., of [19]), rather
than from the more difficult low degree testing theorems.

26

Importantly, the Hadamard construction also gives an LDRC for the concatenation of Reed-
Muller and Hadamard: Not only that we can locally decode/reject thew symbols of a label (where
the label corresponds to a Reed-Muller codeword), but we canalso locally decode/reject anyL-
linear functionof the w symbols. In particular, we can locally decode/reject any symbol in the
concatenation of the Reed-Muller codeword with Hadamard.

3.11 Composition of Locally Decode/Reject Code for Reed-Muller with Lo-
cally Decode/Reject Code for Concatenation of Reed-Mullerand Hadamard

To design an LDRC of reasonable rate for the concatenation ofReed-Muller and Hadamard, we
compose the LDRC for Reed-Muller obtained in Section 3.9 with the low rate LDRCs for the con-
catenation of Reed-Muller and Hadamard obtained in Section3.10. The composition is along the
same lines as the composition of LDRCs for Reed-Muller described in Section 3.9.

The major difference is as follows. We cannot ask the inner LDRCs to decode the evaluation of
a manifold on the center of a sunflower as we could earlier. This is because the inner LDRCs can
return symbols inL, and not symbols in (the much too large)F. However, the inner LDRCs may
return symbols of the Hadamard encoding of the evaluation. We show that this is sufficient to ensure
consistency on the centers.

In the composed construction of Section 3.9, the satisfiability constraints of theA vertices take
the form of atreeof comparisons: each petal in an outer sunflower introduces an inner sunflower of
its own. All the sub-manifolds of this inner sunflower intersect on the center of the outer sunflower,
as well as on a new center. This can be described by a tree in which theD2 sub-manifolds are leaves
and the inner nodes correspond to centers. Each inner node hasD children in the tree: one for each
petal that intersects on the inner node’s center (see Figure6). Any two sub-manifolds have to be
consistent on all the centers that are common ancestors.

Figure 6: Comparisons tree.

Since the satisfiability constraints of the construction ofSection 3.9 are given in the form of
a comparisons tree, the analysis of the composition of the construction of Section 3.9 with the
construction of Section 3.10 boils down to analyzing the following two-prover game:

The Tree-Path Game. Underlying a tree-path game there is a fixed tree. Each node inthe tree
may be labeled by a value inF. L is a subfield ofF. The purpose of the verifier is to check whether

27

two provers agree on a labeling of the nodes. Thetree provergets an indexi and replies, for each of
the nodes in the tree, with thei’th symbol of the Hadamard encoding overL of a label to the node.
Thepath provergets a leaf in the tree and replies, for each of the nodes on thepath from the leaf to
the root, with a label inF to the node. The verifier checks the consistency of the answers it got from
the two provers.

3.12 Some Technical Difficulties and Non-technical Subtleties [Or: Why Is
The Formal Proof So Long?]

In this section we list some complications that arise in the construction.

Codes and domains. The algebraic construction in Section 3.3 is such that the list decoding may
contain polynomials of a slightly larger degree than the Reed-Muller code permits (degree(k+1) ·d
rather thand). Yet, the set of polynomials of degree at most(k + 1) · d is also a Reed-Muller code.
To allow the construction to go through, we consider LDRCs that havetwo codesunderlying them,
instead of one. To facilitate that, we introduce the notion of a domain. A domain is composed of
two codes of the same length and over the same alphabet: theencoded codeand thedecoded code.
The decoded code contains the encoded code as a subset. The LDRC has to encode codewords of
the encoded code. The LDRC is allowed to use in its list decoding codewords from the decoded
code. When we compose, the outer LDRC has to work just as well with labels over the decoded
code of the inner LDRC, as it would with labels over the encoded code of the inner LDRC. Hence,
our definition of LDRCs needs to be extended to alphabets thatare themselves domains.

Consistency between copies.The presentation of composition in Section 3.9 ignored the issue
of checking consistency between copies of the same petal. While for different copies we wish to
decode different tuples, their labels should be the same. This issue arises from the right degree
reduction in Section 3.8. It complicates the construction and its analysis considerably:

1. We change the inner Sunflowers LDRC construction so that the centers of the sunflowers are
uniformly distributed inF

m, independently of the tuples being decoded. More on this is in
Regularity and uniformitybelow.

2. We change the composition so that copies are compared on the inner centers (which are uni-
formly distributed on the manifolds, independently of the tuples being decoded).

3. In the analysis of the composition, we show that the comparisons on the inner centers suffice
for the consistency check of the outer test.

Regularity and uniformity. The adaptation of the Manifold vs. Point LDRC to almost-linear
size results in LDRCs that are justalmost-right regular, rather then right regular. Crucially, the
right degrees depend on the tuples we wish to decode. As a result, when performing right degree

28

reduction as in Section 3.6 and then when obtaining the Sunflowers construction in Section 3.7,
the distribution of the centers of the sunflowers,depends on the tuples we wish to decode. This
dependence is problematic in an inner construction of a composition.

Hence, for the inner construction we consider a uniform right-regular, but polynomial size (rather
than almost-linear size), Manifold vs. Point LDRC construction. The inefficiency is tolerable in the
context of an inner construction. We go through the construction steps in Sections 3.3, 3.6, 3.7
and 3.8 to prove that uniformity and independence are preserved.

4 Organization of the Construction

We start with some preliminaries about expanders and codes.In Section 6 we define several variants
of locally decode/reject codes that are needed for our construction and prove some useful lemmas
about them. In Section 7 we define our building blocks, which are locally decode/reject codes
with special structure for specific codes (e.g., Reed-Muller, Hadamard). These building blocks lend
themselves to various manipulations as described in Section 8. Those manipulations, put in the right
order, allow us to construct the locally decode/reject codes we are after in Section 9. The rest of the
paper is devoted to implementing and analyzing the different manipulations.

5 Preliminaries

The set of real numbers isR. The set of positive real numbers isR
+ = {x ∈ R | x > 0}. The set of

natural numbers isN = {0, 1, 2, . . .}. The set of positive natural numbers isN
+ = {1, 2, . . .}. For a

natural numbern, we denote[n] = {1, . . . , n}. For a stringx or a vector~x of lengthn and an index
i ∈ [n], we letxi denote thei’th coordinate ofx. All the logarithms in this work are base2.

5.1 Bipartite Graphs

In this work we refer to bipartite (multi-)graphsG = (A, B, E). Thesizeof G is |G| = |A|+ |B|+
|E| (where|E| is counted with multiplicities). Theleft degreeof G is the maximal degree ofA
vertices, and theright degreeof G is the maximal degree ofB vertices. If all the degrees of theA
vertices are equal to the left degree, we say that the graph isleft regular. If all the degrees of theB
vertices are equal to the right degree, we say that the graph is right regular. If the graph is both left
and right regular with the same degree∆, we say that it is∆-regular. We use the notation∆G(v) to
denote the degree of a vertexv ∈ A∪B. It will be convenient to think of the edges touching a vertex
as being ordered. For a vertexv ∈ A∪B and an indexi ∈ [∆G(v)], let eG(v, i) ∈ E denote thei’th
edge touchingv. For two setsX ⊆ A andY ⊆ B, let E(X, Y)

.
= {(x, y) ∈ E | x ∈ X, y ∈ Y }.

29

5.2 Expanders

For an undirected (multi-)graphG = (V, E) and two sets of verticesX, Y ⊆ V , let E(X, Y)
.
=

{(x, y) ∈ E | x ∈ X, y ∈ Y } (we use the convention that an edge(x, y) ∈ E with bothx, y ∈ X, Y
is taken to the multi-set twice). Roughly speaking, anexpanderis a∆-regular undirected (multi-
)graphG = (V, E) in which the number of edges (with multiplicities) between any two sets of
verticesX, Y ⊆ V , i.e., |E(X, Y)|, is approximately the expected number in arandom∆-regular
undirected (multi-)graph.

It can be shown that any∆-regular undirected (multi-)graph whose adjacency matrixhas low
second largest eigenvalue (in absolute value)λ satisfies this property:
Lemma 5.1 (Expander mixing lemma).LetG = (V, E) be a∆-regular undirected (multi-)graph,
whose adjacency matrix has second largest eigenvalue (in absolute value)λ. Then, for any two sets
X, Y ⊆ V , ∣∣∣∣

|E(X, Y)|
∆ |V | − |X||V | ·

|Y |
|V |

∣∣∣∣ ≤
λ

∆
·
√
|X|
|V | ·

|Y |
|V |

We will use the explicit constructions guaranteed by the following lemma (for a proof see Ap-
pendix A):
Lemma 5.2 (Explicit construction of expanders).There is a constantα < 1 and a function
T : N → N

+ with T (∆) = Θ(∆), such that given two natural numbersn and ∆, one can find
in time polynomial inn and in ∆ an undirected (multi-)graphG = (V, E) with |V | = n, which
is T (∆)-regular and whose adjacency matrix has second largest eigenvalue (in absolute value)
λ ≤ (T (∆))α.

In this work we will refer to the bipartite versions of expander graphs. Given a (multi-)graph
G = (V, E), we define its bipartite version, or itsdouble cover, G′ = (V ×{out}, V ×{in}, E ′) by
taking for every edgee = (x, y) ∈ E the edges(〈x, out〉, 〈y, in〉) ∈ E ′ and(〈y, out〉, 〈x, in〉) ∈ E ′.
Note that ifG is ∆-regular, then so isG′. Combining Lemma 5.1 and Lemma 5.2 we have the
following:
Lemma 5.3 (Bipartite expanders).There is a constantα < 1 and a functionT : N → N

+ with
T (∆) = Θ(∆), such that given two natural numbersn and∆, one can find in time polynomial inn
and in∆ a T (∆)-regular undirected bipartite (multi-)graphG = (V1, V2, E) with |V1| = |V2| = n
as follows. For every two setsX ⊆ V1 andY ⊆ V2,

∣∣∣∣
|E(X, Y)|
T (∆) · |V1|

− |X||V1|
· |Y ||V2|

∣∣∣∣ ≤
1

T (∆)1−α
·
√
|X|
|V1|
· |Y ||V2|

5.3 Codes

Let Σ be a finite alphabet and letn be a natural number. The(relative) Hamming distancebetween
two stringsx, y ∈ Σn is the fraction of positions on whichx andy differ, i.e.,Pri∈[n] [xi 6= yi]. Let
0 < ε < 1. A codewith (relative) distance1 − ε is a setC ⊆ Σn such that every two elements

30

x, y ∈ C have (relative) Hamming distance at least1 − ε. In other words, every two elements
x, y ∈ C agreeon at mostε fraction of the positions. The numbern is called thelengthof the code.
The elements ofC are called thecodewordsof the code. For a setM of size|M | = |C|, anencoding
of M via C is a one-to-one functionEC : M → Σn that takes messages fromM to codewords inC.
WhenΣ is a field andM is a linear space overΣ, we say that the encoding islinear if it is a linear
transformation fromM to the linear spaceΣn.

Given a stringx ∈ Σn and a real number0 < δ ≤ 1, theδ-list decodingof x with respect to
C is the set of all codewordsc ∈ C that agree withx on at least aδ fraction of the positions, i.e.,
Pri∈[n] [ci = xi] ≥ δ. We have the following useful proposition:
Proposition 5.4 (List decoding).Let C ⊆ Σn be a code with (relative) distance1 − ε. Assume
δ ≥ 2

√
ε. Then, for everyx ∈ Σn, theδ-list decoding ofx with respect toC contains at most2

δ

codewords.

Proof. Let x ∈ Σn. Assume towards a contradiction that theδ-list decoding ofx with respect to
C containsl

.
= b2

δ
c + 1 different codewords. Then, when picking a positioni ∈ [n] uniformly

at random, the probability thatx agrees with one of the codewords on thei’th position is at least
δl −

(
l
2

)
· ε > 1. Contradiction!

5.3.1 Some Specific Codes

Some examples of codes that we will use are:

The Reed-Muller Code. TheReed-Muller Code(RM) is defined by a finite fieldF and two natural
numbersm andd. The code is of lengthn = |Fm| over alphabetF. Let us identify the positions
1, . . . , n with the points inFm. Then, for everym-variate polynomialQ of degree at mostd overF
we have a codewordcQ ∈ F

n. The symbol in the position corresponding to~x ∈ F
m in cQ is Q(~x).

This code is of distance1− d
|F|

.

We identify the following encoding with the Reed-Muller code: letW
.
=
(

m+d
m

)
be the number

of monomials in anm-variate polynomial of degree at mostd over F. Let ERM : F
W → F

n be
the transformation taking a vector inFW , representing coefficients for theW monomials, to the
evaluations of the induced polynomial on the points inF

m. Note that this encoding is linear overF.

The Hadamard Code. The Hadamard Code(Had) is defined by a finite fieldF and a natural
numberm. The code is of lengthn = |Fm| over alphabetF. Let us identify the positions1, . . . , n
with the points inF

m. Then, for every linear functionL : F
m → F, i.e., a function of the form

L(x1, . . . , xm) =
∑m

i=1 aixi for some coefficients vector~a = (a1, . . . , am) ∈ F
m, we have a code-

word cL ∈ F
n. The symbol in the position corresponding to~x ∈ F

m in cL is L(~x). This code is of
distance1− 1

|F|
.

We identify the following encoding with the Hadamard code: Let EHad : F
m → F

n be the
transformation taking a vector inFm, which is the coefficients vector of a linear function, to the

31

evaluations of the linear function on the points inF
m. Note that this encoding is linear overF.

5.3.2 Transformation on Codes

We can produce new codes from existing ones by using transformations such as repetition or con-
catenation:

Repetition. Assume thatC ⊆ Σn is a code. Letl be a natural number. Then, thel-repetitionof C
is the codeC l ⊆ Σn·l defined by takingl copies of each symbol in a codeword. In other words, for
every codewordc = c1 · · · cn ∈ C we have the codeword

c1 · · · c1︸ ︷︷ ︸
l

· · · cn · · · cn︸ ︷︷ ︸
l

∈ C l

If C has (relative) distance1− ε, then so doesC l.

Concatenation. Assume thatC1 ⊆ Σn is a code and thatC2 ⊆ Γk is a code that has|C2| = |Σ|
codewords. Assume thatC1 is associated with an encodingEC1 : M → Σn and thatC2 is associated
with an encodingEC2 : Σ → Γk. The concatenation ofC1 andC2, denotedC1 � C2 ⊆ Γn·k, is
the code obtained when encoding each symbol of aC1 codeword byEC2 , i.e., we defineEn

C2
:

Σn → Γn·k such thatEn
C2

(σ1 · · ·σn)
.
= EC2(σ1) · · ·EC2(σn). The encoding associated with the

concatenationC1 � C2 is En
C2
◦ EC1 : M → Γk·n. C1 is calledthe outer code, andC2 is calledthe

inner code. If C1 has (relative) distance1 − ε1 andC2 has (relative) distance1 − ε2, thenC1 � C2

has (relative) distance1 − (ε1 + ε2 − ε1ε2). Code concatenation is used to reduce the alphabet of a
codeC1 (from Σ to the typically much smallerΓ) at the cost of slightly enlarging the length (from
n to n · k) and damaging the distance.

If EC1 is linear andEC2 is linear, then we can viewM as a linear space overΓ (by defining for
λ ∈ Γ andv ∈ M , the scalar multiplication to beλ · v .

= (λ · 1) · v where1 ∈ Σ (recall thatΣ is
a field). Note thatλ · 1 ∈ Σ is well-defined, and so is(λ · 1) · v ∈ M). Using this perspective, the
encodingEn

C2
◦EC1 corresponding to the concatenationC1 � C2 becomes linear overΓ.

6 Graph Theoretic Formulation

6.1 Bipartite Constraint Graphs

We formalize two query constraint graphs with projection property as bipartite graphsG = (A, B, E),
where vertices inA determine values for vertices inB. Vertices inA are assigned values from an al-
phabetΣA, while vertices inB are assigned values from an alphabetΣB. Every edgee = (a, b) ∈ E
is associated with an elementξ from some setΩ, whereξ is called thelabel of the edge. Every as-
signmentσa ∈ ΣA for a determines a single assignment forb given byproj(a, σa, ξ) ∈ ΣB. The test

32

associated with the edgee consists of comparing whether the assignment forb equalsproj(a, σa, ξ),
as well as of a satisfiability checksat(a, σa) that checks the validity ofσa. In particular,sat(a, σa)
may check some consistency condition betweenproj(a, σa, ξ) for differentξ’s.
Definition 6.1 (Bipartite constraint graph). G = 〈G, Ω, ΣA, ΣB, sat, label, proj〉 is called abi-
partite constraint graph, if

1. G = (A, B, E) is a bipartite (multi-)graph,Ω is a finite set andΣA, ΣB are finite sets.

2. sat : A×ΣA → {true, false} is a function (sat determines for each vertexa ∈ A whether it
is satisfied under the given assignment).

3. label : E → Ω is a function (label assigns every edge some element inΩ).

4. proj : A×ΣA×Ω→ ΣB is a function (for every vertexa ∈ A and assignment for itσa ∈ ΣA,
proj gives, for everyξ ∈ Ω, the “projection” of σa to ξ).

We say that an edgee = (a, b) ∈ E is satisfiedin G under assignmentsσa ∈ ΣA andσb ∈ ΣB, if
sat(a, σa) = true andproj(a, σa, label(e)) = σb.

We say that an edgee = (a, b) ∈ E is satisfiedin G under assignmentsCA : A → ΣA and
CB : B → ΣB, if e is satisfied inG under the assignmentsCA(a) andCB(b).

When there are several constraint graphs involved we sometimes use subscripts to distinguish
between functions corresponding to different graphs. E.g., we writesatG to refer tosat of G.

6.2 Bipartite Locally Decode/Reject Codes

We formulate locally decode/reject codes that make two queries with a projection property as bipar-
tite graphs. But, before we do that, let us definedomains. Domains capture the sets of messages we
encode and decode. It is not a standard notion, but it will be very convenient for us in the sequel.

6.2.1 Domains

The messages we encode will sometimes be strings inΣn for a finite alphabetΣ and a lengthn, and
sometimes be codewords themselves, e.g., Reed-Muller codewords or Hadamard codewords. We let
Denc denote the set of messages we encode.

For the decoding we allow to use messages from a set that is possibly larger than the set of
messages we encode. For example, suppose we encode Reed-Muller codewords corresponding to
polynomials of degree at mostd for some natural numberd. Then, we may consider as an appropriate
decoding a codeword that corresponds to a polynomial of a slightly larger degreed′. In general, we
letDdec be the set of possible decodings, whereDdec ⊇ Denc. EqualityDenc = Ddec may hold, but
is not required.

For notational convenience we refer to messages as functions, rather than strings. Strings inΣn

can be thought of as functions[n]→ Σ, while the codes we use naturally give rise to functions. For

33

instance, the Reed-Muller code gives rise to low degree polynomials, and the Hadamard code gives
rise to linear functions.

Formally, adomainis defined as follows:
Definition 6.2 (Domain). A domainD is a tuple〈D, R,Denc,Ddec〉, whereD andR are finite sets,
andDenc ⊆ Ddec are sets of functionsD → R. Denc is called the encoded domain, andDdec is
calledthe decoded domain.

Some particular domains of interest in this work are:

Σ. With any finite setΣ we associate a domainD = 〈D, R,Denc,Ddec〉 that corresponds to en-
coding and decoding symbols inΣ. The domain consists ofD = {1}, R = Σ andDenc = Ddec =
{f | f : {1} → Σ}.

Σ
n. With any setΣn for a finite setΣ and a natural numbern, we associate a domainD =
〈D, R,Denc,Ddec〉 that corresponds to encoding and decoding of strings inΣn. The domain consists
of D = [n], R = Σ andDenc = Ddec = {f | f : [n]→ Σ} (the previous item is a special case for
n = 1).

Reed-Muller Code. A Reed-Muller domainD = 〈D, R,Denc,Ddec〉 corresponds to encoding and
decoding of Reed-Muller codewords, where the code we use forthe decoding contains the code
used for the encoding. The domain is defined by a finite fieldF, a natural numberm and two natural
numbers0 < d ≤ d′ < |F|. We takeD = F

m andR = F. Denc is the set of allm-variate
polynomials of degree at mostd overF, whileDdec is the set of allm-variate polynomials of degree
at mostd′ overF. The numberm is called thedimension. The degreed is called theencoding degree
and the degreed′ is called thedecoding degree.

Hadamard Code. A Hadamard domainD = 〈D, R,Denc,Ddec〉 corresponds to encoding and
decoding of Hadamard codewords. The domain is defined by a finite fieldF and a natural number
m. We takeD = F

m andR = F. The encoded and decoded domains are the sameDenc = Ddec and
equal to the set of all linear functionsL : F

m → F. The numberm is called thedimension.

Concatenation of Reed-Muller and Hadamard Codes. A RM�Had domainD = 〈D, R,Denc,Ddec〉
corresponds to encoding and decoding codewords in a code which is a concatenation of a Reed-
Muller code and a Hadamard code. The domain is defined by a finite fieldF, a subfieldL of F, a
natural numberm and two natural numbers0 < d ≤ d′ < |F|. Denote the extension degree ofF

overL by τ = [F : L]. Let φ be a linear bijection fromF (viewed as a linear space over the field
L) to the linear space of linear functionsL

τ → L (note that there are|Lτ | = |F| linear functions
L

τ → L). The domain will correspond to encoding each symbol in a Reed-Muller codeword byφ.
We takeD = F

m × L
τ andR = L.

34

• The encoded domainDenc is the set of all functionsf : F
m×L

τ → L of the formf(~x1, ~x2) =
φ(Q(~x1))(~x2) for some polynomialQ : F

m → F of degree at mostd.

• The decoded domainDdec is the set of all functionsf : F
m×L

τ → L of the formf(~x1, ~x2) =
φ(Q(~x1))(~x2) for some polynomialQ : F

m → F of degree at mostd′.

6.2.2 Bipartite Evaluation Graphs

Fix a domainD = 〈D, R,Denc,Ddec〉 that defines the messages we encode and decode. Letk and
N be natural numbers. Fix a collection ofk-tuples of positions in a message we wish to decode:

〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk

We formulate a bipartite evaluation graph as a bipartite constraint graphG = (A, B, E), in
which tuples〈xi,1, . . . , xi,k〉 are associated with vertices that are “responsible” for evaluatingf on
them. Either theA vertices or theB vertices get associated with tuples. The set of vertices that are
associated with tuples is denotedV ∈ {A, B}, and we refer to them asthe evaluating vertices. The
tuple that is associated with a vertexv ∈ V is denotedtup(v). For an evaluating vertexv ∈ V and
an assignmentσv ∈ ΣV to v, an evaluation on the tupletup(v), namely,k values inR, is given by
a functioneval(v, σv). All tuples should be associated with the same number of evaluating vertices,
and all evaluating vertices must have the same degree in the graph.

Formally we define bipartite evaluation graphs as follows:
Definition 6.3 (Bipartite evaluation graph). LetD = 〈D, R,Denc,Ddec〉 be a domain. Letk and
N be natural numbers. Assume a collection ofk-tuples:

〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk

G = 〈G = (A, B, E), V, Ω, ΣA, ΣB, sat, label, proj, tup, eval〉 is called abipartite evaluation graph
for thek-tuples, if

1. G′ = 〈G, Ω, ΣA, ΣB, sat, label, proj〉 is a bipartite constraint graph.

2. V ∈ {A, B} is a set ofevaluating vertices. All the V vertices have the same degree in the
graphG.

3. tup : V → Dk is a function mapping each evaluating vertex to ak-tuple 〈xi,1, . . . , xi,k〉 for
i ∈ [N]. Eachi ∈ [N] must have the same (positive) number of verticesv ∈ V mapped to
〈xi,1, . . . , xi,k〉.

4. eval : V ×ΣV → Rk is a function, mapping each evaluating vertexv ∈ V with an assignment
for it to assignments for the elements oftup(v).

We say that a vertexv ∈ V with tup(v) = 〈xi,1, . . . , xi,k〉 ∈ Dk readsf ∈ Ddec in G under an
assignmentσv ∈ ΣV , if eval(v, σv) = 〈f(xi,1), . . . , f(xi,k)〉. We say that an edgee = (a, b) ∈ E

35

readsf ∈ Ddec in G under assignmentsσa ∈ ΣA andσb ∈ ΣB , if the evaluating vertex it touches
v ∈ {a, b} ∩ V readsf in G under the assignmentσv. We say that an edgee = (a, b) ∈ E reads
f ∈ Ddec in G under assignmentsCA : A → ΣA andCB : B → ΣB, if e readsf in G under the
assignmentsCA(a) andCB(b).

We say that an edgee ∈ E is satisfiedin G under assignmentsCA : A→ ΣA andCB : B → ΣB,
if e is satisfied inG′ underCA andCB.

If V = A, we say thatG is a left evaluator. Otherwise, we say that it is aright evaluator.

6.2.3 Bipartite Locally Decode/Reject Codes fork-Tuples

Fix a bipartite evaluation graph as in Definition 6.3. An encoding of a message is given by assign-
ments to the verticesCA : A → ΣA andCB : B → ΣB. Given assignmentsCA andCB, local
decode/reject is done as follows:

1. Pick an edgee = (a, b) ∈ E uniformly at random. Letv ∈ {a, b}∩V be the evaluating vertex
thate touches.

2. Check the satisfiability constraint on the edge. Ife is not satisfied underCA andCB, reject.

3. Otherwise, return “the evaluation oftup(v) is eval(v, CV (v))”.

Note thattup(v) is 〈xi,1, . . . , xi,k〉 for a uniformly distributedi ∈ [N].

For every messagef ∈ Denc one should be able to efficiently compute assignments to theA and
B vertices such that the local decode/reject procedure neverrejects and always evaluatesf . That is,
all edges are satisfied and readf .

Given an assignment to theB vertices, there should be a short list decodingf1, . . . , fl ∈ Ddec,
such that, for every assignment to theA vertices, with high probability, the local decode/reject
procedure either rejects or evaluates one off1, . . . , fl. That is, for almost all edges, either the edge
is not satisfied, or the edge reads one off1, . . . , fl.

Note that we require the list decodingf1, . . . , fl ∈ Ddec to depend only on the assignment
to theB vertices, and not on the assignment to theA vertices. That is, given the assignment to
the B vertices, there is a single list decodingf1, . . . , fl that worksfor all assignments to theA
vertices. Conceptually, one can give this requirement the following meaning: The assignment to the
B vertices alone is already an encoding of the message (and thus sufficient for decoding), while the
assignment to theA vertices provides additional information that is needed for the purpose oflocal
decode/reject.

Two parameters determine the quality of list decoding in thecodes. One isδmin which lower
bounds the error of the decoding, namely, the probability that the decoding procedure does not
reject, yet its evaluation does not correspond to the elements of the list decoding. The other islmax

which upper bounds the size of the list decoding. This size isa (decreasing) function of the error
δ ≥ δmin we are willing to settle for.

36

The formal definition is as follows:
Definition 6.4 (Bipartite locally decode/reject code).LetD = 〈D, R,Denc,Ddec〉 be a domain.
Letk andN be natural numbers. Assume a collection ofk-tuples:

〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk

Let 0 < δmin < 1. Let lmax : (0, 1) → R
+ be a decreasing function. A bipartite evaluation

graphG = 〈G = (A, B, E), V, Ω, ΣA, ΣB, sat, label, proj, tup, eval〉 for the k-tuples is called a
(δmin, lmax)-bipartite locally decode/reject codefor thek-tuples, if the following holds:

1. Encoding: There is an efficient algorithm that given a messagef ∈ Denc, computes assign-
mentsCA : A→ ΣA andCB : B → ΣB, such that every edgee = (a, b) ∈ E is satisfied and
readsf in G underCA, CB.

2. List Decoding: For every assignmentCB : B → ΣB, for every realδ such thatδmin ≤ δ < 1,
there existl ≤ lmax(δ) elementsf1, . . . , fl ∈ Ddec, such that for every assignmentCA : A →
ΣA the following holds: when picking uniformly at random an edge e = (a, b) ∈ E, the
probability that inG underCA, CB, the edgee is satisfied, althoughe does not read any of
f1, . . . , fl, is at mostO(δ).

6.2.4 Composable Bipartite Locally Decode/Reject Codes

We strengthen the definition of bipartite locally decode/reject codes (Definition 6.4) with the in-
tent of allowing composition of codes. In the strengthened definition the alphabets are domains
themselves,

ΣA = 〈DA, RA, ΣA,enc, ΣA,dec〉 ΣB = 〈DB, RB, ΣB,enc, ΣB,dec〉
Encoding of a message comprises assignments over the encoded domains of the alphabetsΣA,enc and
ΣB,enc. On the other hand, the list decoding property should hold even given assignments over the
decoded domains of the alphabetsΣA,dec andΣB,dec. The previous definition can be seen as a special
case in which the encoded and decoded domains of the alphabets are equal, namelyΣA,enc = ΣA,dec

andΣB,enc = ΣB,dec.

Adding elements to the decoded domains of the alphabets makes the task of the decoder harder,
since it needs to succeed on more assignments. In contrast, adding elements to the decoded domain
Ddec makes the task of the decoder easier, since it can use these elements in the decoding as well.
Usually there will be a correspondence between the decoded domains of the alphabets and the de-
coded domainDdec, so whenever the decoder needs to succeed in decoding more assignments, it has
more elements it can use in the decoding.
Definition 6.5 (Composable bipartite locally decode/reject code). LetD = 〈D, R,Denc,Ddec〉 be
a domain. Letk andN be natural numbers. Assume a collection ofk-tuples:

〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk

Let0 < δmin < 1. Let lmax : (0, 1)→ R
+ be a decreasing function.

37

G = 〈G = (A, B, E), V, Ω, ΣA, ΣB, sat, label, proj, tup, eval〉 is called a(δmin, lmax)-composable
bipartite locally decode/reject codefor thek-tuples, if:

• ΣA = 〈DA, RA, ΣA,enc, ΣA,dec〉 andΣB = 〈DB, RB, ΣB,enc, ΣB,dec〉 are domains.

• G′ = 〈G = (A, B, E), V, Ω, ΣA,dec, ΣB,dec, sat, label, proj, tup, eval〉 is a bipartite evaluation
graph for thek-tuples. We say that an edgee ∈ E is satisfied inG under assignmentsCA :
A → ΣA,dec andCB : B → ΣB,dec, if e is satisfied inG′ under the assignmentsCA andCB.
We say that an edgee ∈ E readsf ∈ Ddec in G under assignmentsCA : A → ΣA,dec and
CB : B → ΣB,dec, if e readsf ∈ Ddec in G′ under the assignmentsCA andCB.

• The following holds:

1. Encoding: There is an efficient algorithm that given a messagef ∈ Denc, computes
assignmentsCA : A→ ΣA,enc andCB : B → ΣB,enc, such that every edgee = (a, b) ∈
E is satisfied and readsf in G underCA, CB.

2. List Decoding: For every assignmentCB : B → ΣB,dec, for every realδ such that
δmin ≤ δ < 1, there existl ≤ lmax(δ) elementsf1, . . . , fl ∈ Ddec, such that for any
assignmentCA : A → ΣA,dec, the following holds: when picking uniformly at random
an edgee = (a, b) ∈ E, the probability that, inG underCA, CB, the edgee is satisfied,
althoughe does not read any off1, . . . , fl, is at mostO(δ).

We sometimes omit the specification ofδmin andlmax, when we do not wish to relate to them.

Properties. We consider the following properties ofG:

Size. Thesizeof G is the size ofG.

Alphabet size and block length. Thealphabet sizeof theA vertices is|ΣA,enc|. Thealphabet size
of theB vertices is|ΣB,enc|. Theblock lengthof theA vertices islog |ΣA,enc|. Theblock lengthof
theB vertices islog |ΣB,enc|. Thealphabet sizeof G is the maximum between the alphabet size of
theA vertices and the alphabet size of theB vertices (which is typically the alphabet size of theA
vertices). Theblock lengthof G is the maximum between the block length of theA vertices and the
block length of theB vertices (which is typically the block length of theA vertices).

Graph degrees. The left degreeof G is the left degree ofG. The right degreeof G is the right
degree ofG. G is left regular if G is. G is right regular if G is.

38

6.2.5 Construction Algorithms for Composable Bipartite Locally Decode/Reject Codes

LetD = 〈D, R,Denc,Ddec〉 be a domain. Letk andN be natural numbers. A(D, k, N)-construction
algorithm for composable bipartite locally decode/reject codes is a procedure that given as input a
collection of sizeN of k-tuples of points

〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk

outputs a composable bipartite locally decode/reject codefor those tuples. The construction algo-
rithm is said to beefficient, if its running time is polynomial in|D|, |R|, k andN .

We define severaluniformityproperties that construction algorithms may or may not have. By
uniformitywe refer to properties that are common to all outputs of a construction algorithm, inde-
pendently of thek-tuples given as input to the algorithm.

Uniform in structure. Fix finite setsA, B andV ∈ {A, B}. Fix a finite setΩ. Fix domainsΣA

andΣB. A (D, k, N)-construction algorithm is said to beuniform in structure〈A, B, V, Ω, ΣA, ΣB〉,
if on all inputs its output has the same vertex setA, the same vertex setB, the same evaluating
verticesV , the same label setΩ and the same alphabet domainsΣA andΣB.

When the identity ofA, B, V , Ω, ΣA andΣB is inessential, we simply say that the algorithm is
uniform in structurewithout specifying them.

Uniform in tuple association. Fix finite setsA, B andV ∈ {A, B}. Fix a finite setΩ. Fix
domainsΣA andΣB. Let tupi : V → [N] be a function (called auniform tuple associator). The
functiontupi assigns every evaluating vertex an index of an input tuple.

A (D, k, N)-construction algorithm is said to beuniform in the tuple associationtupi, if it is
uniform in structure〈A, B, V, Ω, ΣA, ΣB〉 and on all input tuples, thetup function of its output is as
follows: for every vertexv ∈ V , the tupletup(v) is thei’th input tuple for indexi = tupi(v).

When the identity of the uniform tuple associatortupi is inessential, we simply say that the
algorithm isuniform in the tuple association, without specifyingtupi.

Uniform in encoding and list decoding. Fix finite setsA, B andV ∈ {A, B}. Fix a finite setΩ.
Fix domainsΣA andΣB . Assume the following:

• E : an efficient algorithm (called auniform encoder) that given a messagef ∈ Denc computes
an assignmentCB : B → ΣB,enc.

• L: an algorithm (called auniform list decoder) that given an assignmentCB : B → ΣB,dec

and a real parameterδ computes a sequence of messagesf1, . . . , fl ∈ Ddec.

Notably, bothE andL are independent of the tuples on which we evaluate.

A (D, k, N)-construction algorithm is said to beuniform in the encodingE and in the list decod-
ingL, if:

39

1. It is uniform in structure〈A, B, V, Ω, ΣA, ΣB〉.

2. There is an efficient algorithmE ′ that given a messagef ∈ Denc and a collection ofk-tuples of
points〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk, computes an assignmentCA : A→ ΣA,enc.

3. Given as input a collection ofk-tuples of points〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk,
the outputG of the construction algorithm for those tuples is a(δmin, lmax)-composable bipar-
tite locally decode/reject code that satisfies the following encoding and list decoding proper-
ties:

Uniform Encoding: Letf ∈ Denc. InvokeE ′ onf and〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉
to compute an assignmentCA : A → ΣA,enc. InvokeE on f to compute an assignment
CB : B → ΣB,enc (independent of the input tuples). Then, every edgee = (a, b) ∈ E is
satisfied and readsf underCA andCB.

Uniform List Decoding: Let CB : B → ΣB,dec and letδ be a real parameter such that
δmin ≤ δ < 1. InvokeL on CB andδ to computel ≤ lmax(δ) messagesf1, . . . , fl ∈
Ddec (independent of the input tuples). Then, for every assignment CA : A → ΣA,dec

the following holds: When picking uniformly at random an edge e = (a, b) ∈ E, the
probability that, inG underCA, CB, the edgee is satisfied, althoughe does not read any
of f1, . . . , fl, is at mostO(δ).

When the identities of the uniform encoderE and the uniform list decoderL are inessential, we
simply say that the algorithm isuniform in encoding and list decoding, without specifyingE andL.

6.2.6 Point Variant of Composable Bipartite Locally Decode/Reject Codes

We define a variant of composable bipartite locally decode/reject codes (see Definition 6.5). In this
variant, not only theV vertices are meant to evaluate a function onk-tuples of points inD, but also
the vertices on the other side (which will be denotedW ∈ {A, B}) are meant to evaluate the same
function on points inD. Each vertexv ∈ W has a pointpnt(v) ∈ D associated with it. For an
assignmentσv to v, the evaluation ofv on the point is given byevalp(v, σv) ∈ R. All the points in
D have the same number ofW vertices associated with them. We require nothing about thejoint
distribution of the tuples and the points.

Each edge touches oneV vertex and oneW vertex. We strengthen the definition of reading,
so for an edge to read a functionf ∈ Ddec, theV vertex must evaluatef on its tuple and theW
vertex must evaluatef on its point. We require all the vertices inW to be of the same degree, so a
uniformly distributed edge touches a vertex associated with a uniformly distributed pointp ∈ D.

Analogous to a bipartite evaluation graph we define:
Definition 6.6 (Bipartite tuple-point evaluation graph). LetD = 〈D, R,Denc,Ddec〉 be a domain.
Letk andN be natural numbers. Assume a collection ofk-tuples:

〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk

40

G = 〈G = (A, B, E), V, Ω, ΣA, ΣB, sat, label, proj, tup, eval, pnt, evalp〉 is called abipartite tuple-
point evaluation graphfor thek-tuples, if

1. G′ = 〈G, V, Ω, ΣA, ΣB, sat, label, proj, tup, eval〉 is a bipartite evaluation graph for thek-
tuples.

2. Denote the vertices on the other side ofV byW
.
= (A∪B) \V ∈ {A, B}. All theW vertices

must have the same degree inG.

3. pnt : W → D is a function mapping each vertex inW to a point inD. Each pointp ∈ D
must have the same (positive) number of verticesv ∈W mapped to it.

4. evalp : W ×ΣW → R is a function, mapping each vertexv ∈W with an assignment for it to
an assignment forpnt(v).

We say that a vertexv ∈ W with pnt(v) = p ∈ D readsf ∈ Ddec in G under an assignment
σv ∈ ΣW , if evalp(v, σv) = f(p). We say that an edgee = (a, b) ∈ E readsf ∈ Ddec in G under
assignmentsσa ∈ ΣA and σb ∈ ΣB, if e readsf in G′ under the assignmentsσa and σb (as in
Definition 6.3) andv ∈ {a, b} ∩ W readsf in G under the assignmentσv. We say that an edge
e = (a, b) ∈ E readsf ∈ Ddec in G under assignmentsCA : A→ ΣA andCB : B → ΣB, if e reads
f in G under the assignmentsCA(a) andCB(b).

We say that an edgee ∈ E is satisfiedin G under assignmentsCA : A→ ΣA andCB : B → ΣB,
if e is satisfied inG′ underCA andCB.

The point variant of composable bipartite locally decode/reject codes is defined similarly to
Definition 6.5, with the bipartite tuple-point evaluation graph underlying it.
Definition 6.7 (Composable bipartite locally decode/reject code (point variant)). Let
D = 〈D, R,Denc,Ddec〉 be a domain. Letk and N be natural numbers. Assume a collection of
k-tuples:

〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk

Let0 < δmin < 1. Let lmax : (0, 1)→ R
+ be a decreasing function.

G = 〈G = (A, B, E), V, Ω, ΣA, ΣB, sat, label, proj, tup, eval, pnt, evalp〉 is called a(δmin, lmax)-
composable bipartite locally decode/reject code (point variant) for thek-tuples, if we have that:

• ΣA = 〈DA, RA, ΣA,enc, ΣA,dec〉 andΣB = 〈DB, RB, ΣB,enc, ΣB,dec〉 are domains.

• G′ = 〈G, V, Ω, ΣA,dec, ΣB,dec, sat, label, proj, tup, eval, pnt, evalp〉 is a bipartite tuple-point
evaluation graph for thek-tuples. We say that an edgee ∈ E is satisfied inG under assign-
mentsCA : A→ ΣA,dec andCB : B → ΣB,dec, if e is satisfied inG′ under the assignmentsCA

andCB. We say that an edgee ∈ E readsf ∈ Ddec in G under assignmentsCA : A→ ΣA,dec

andCB : B → ΣB,dec, if e readsf ∈ Ddec in G′ under the assignmentsCA andCB.

• The following holds:

41

1. Encoding: There is an efficient algorithm that given a messagef ∈ Denc, computes
assignmentsCA : A→ ΣA,enc andCB : B → ΣB,enc, such that every edgee = (a, b) ∈
E is satisfied and readsf in G underCA, CB.

2. List Decoding: For every assignmentCB : B → ΣB,dec, for every realδ such that
δmin ≤ δ < 1, there existl ≤ lmax(δ) elementsf1, . . . , fl ∈ Ddec, such that for every
assignmentCA : A → ΣA,dec the following holds: when picking uniformly at random
an edgee = (a, b) ∈ E, the probability that, inG underCA, CB, the edgee is satisfied,
althoughe does not read any off1, . . . , fl, is at mostO(δ).

Note thatG− = 〈G, V, Ω, ΣA, ΣB, sat, label, proj, tup, eval〉 is a composable bipartite locally de-
code/reject code. We refer to it as the composable bipartite locally decode/reject code induced by
G.

6.2.7 Construction Algorithms for The Point Variant of Composable Bipartite Locally De-
code/Reject Codes

LetD = 〈D, R,Denc,Ddec〉 be a domain. Letk andN be natural numbers. A(D, k, N)-construction
algorithm for composable bipartite locally decode/reject codes (point variant) is a procedure that
given as input a collection of sizeN of k-tuples of points

〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk

outputs a composable bipartite locally decode/reject code(point variant) for those tuples. Efficiency
and uniformity in structure of such algorithms are as for construction algorithms for composable
bipartite locally decode/reject codes.

For the point variant we are interested in an additional uniformity property that construction
algorithms may or may not have:

Uniform in point association. Fix finite setsA, B andV ∈ {A, B}. Fix a finite setΩ. Let
W = (A ∪ B) \ V . Fix domainsΣA andΣB. Let pnt : W → D be a function (called auniform
point associator).

A (D, k, N)-construction algorithm for bipartite locally decode/reject codes (point variant) is
said to beuniform in the point associationpnt, if it is uniform in structure〈A, B, V, Ω, ΣA, ΣB〉 and
on all input tuples, the output of the algorithm has as itspnt function the uniform point associator
pnt.

When the identity of the uniform point associatorpnt is inessential, we simply say that the
algorithm isuniform in the point association, without specifyingpnt.

6.2.8 List Decoding Based on Point Evaluations

Recall thatDdec defines a code as follows: for everyf ∈ Ddec there is a codeword with|D| co-
ordinates, where the symbol in positionx ∈ D is f(x). Provided thatDdec defines a code with

42

large (relative) distance, a list decoding can be computed based solely on the point evaluations.
The following lemma shows that and relates the list decodingto the list decoding guaranteed in the
definition of the codes:
Lemma 6.8 (List decoding for point evaluations).Let0 < ε < 1. Fix a domainD = 〈D, R,Denc,Ddec〉.
Suppose thatDdec defines a code with (relative) distance1 − ε. Let k andN be natural numbers.
Let 0 < δmin < 1. Let lmax : (0, 1) → R

+ be a decreasing function. LetA be a (D, k, N)-
construction algorithm that outputs(δmin, lmax)-composable bipartite locally decode/reject codes
(point variant). Assume thatA is uniform in structure〈A, B, V, Ω, ΣA, ΣB〉 and in the point as-
sociationpnt : W → D, whereW

.
= (A ∪ B) \ V . DenoteΣA = 〈DA, RA, ΣA,enc, ΣA,dec〉 and

ΣB = 〈DB, RB, ΣB,enc, ΣB,dec〉.
Assume that there is0 < δ′min < 1, such that for every realδ satisfyingδ′min ≤ δ < 1 it holds

that δ
lmax(δ)

≥ 2
√

ε.

Then, for every assignmentpe : W → R and every realδ such thatmax {δmin, δ
′
min} ≤ δ < 1,

there existl′ ≤ 2
δ
· lmax(δ) elementsg1, . . . , gl′ ∈ Ddec, for which the following holds.

Assume the algorithmA is invoked on some inputk-tuples. Denote the output by

G = 〈G = (A, B, E), V, Ω, ΣA, ΣB, sat, label, proj, tup, eval, pnt ≡ pnt, evalp〉

Let CB : B → ΣB,dec be an assignment, and letf1, . . . , fl ∈ Ddec be thel ≤ lmax(δ) elements
guaranteed by the list decoding property ofG for CB andδ. LetCA : A→ ΣA,dec be an assignment.

When picking uniformly at random an edgee = (a, b) ∈ E, the probability that, inG under
CA, CB, (i) the edgee is satisfied, (ii) for the vertexv ∈ W ∩ {a, b} it holdsevalp(v, CW (v)) =
pe(v), and (iii) e does not read an element from{f1, . . . , fl} ∩ {g1, . . . , gl′}, is at mostO(δ).

Proof. Define a codeC ⊆ R|W | as follows: for everyg ∈ Ddec define a codeword with|W | co-
ordinates by letting the symbol in the positionv ∈ W beg(pnt(v)). Note that by the definition of
bipartite tuple-point evaluation graphs, this code is a repetition of the code defined byDdec. Hence,
its relative distance is1− ε as well.

Fix an assignmentpe : W → R. Fix a realδ such thatmax {δmin, δ
′
min} ≤ δ < 1. Setδ′

.
=

δ
lmax(δ)

, and note thatδ′ ≥ 2
√

ε. Let g1, . . . , gl′ ∈ Ddec be all functionsg ∈ Ddec that agree with the
point evaluationpe on at leastδ′ fraction of the vertices, that is,|{v ∈W | g(pnt(v)) = pe(v)}| ≥
δ′ · |W |. Note that there are at most2

δ′
= 2

δ
· lmax(δ) such functions by applying Proposition 5.4 on

C.

Assume the algorithmA is invoked on some inputk-tuples. Denote the output byG as above.
Let CB : B → ΣB,dec be an assignment, and letf1, . . . , fl ∈ Ddec be thel ≤ lmax(δ) elements
guaranteed by the list decoding property ofG for CB andδ. Let CA : A→ ΣA,dec be an assignment.

Pick an edgee = (a, b) ∈ E uniformly at random. Denote theW vertex touchinge by v ∈
{a, b} ∩W , and note thatv is uniformly distributed inW . We will bound the probability that the
following badevents happen byO(δ) and be done:

43

• BAD1: In G under the assignmentsCA andCB, the edgee is satisfied but does not read any
of f1, . . . , fl.

• BAD2: In G under the assignmentsCA and CB, for somej ∈ [l], the edgee readsfj ,
evalp(v, CW (v)) = pe(v), yetfj /∈ {g1, . . . , gl′}.

The bound onBAD1 follows directly from Definition 6.7. Let us boundBAD2: Fix j ∈ [l].
Whenevere readsfj andevalp(v, CW (v)) = pe(v), it holds thatfj(pnt(v)) = pe(v). Whenfj /∈
{g1, . . . , gl′}, this can happen with probability less thanδ′. The probability that this happens for
somej ∈ [l] is at mostl ·O(δ′) = O(δ).

6.2.9 Generic Framework for Composable Bipartite Locally Decode/Reject Codes

We define a generic framework for handling both composable bipartite locally decode/reject codes
and their point variants.
Definition 6.9 (Generic bipartite evaluation graph). Let D = 〈D, R,Denc,Ddec〉 be a domain.
G = 〈G = (A, B, E), Ω, ΣA, ΣB, sat, label, proj, read〉 is called ageneric bipartite evaluation
graph, if G = 〈G = (A, B, E), Ω, ΣA, ΣB, sat, label, proj〉 is a bipartite constraint graph and
read ⊆ E×ΣA×ΣB ×Ddec is a relation. We say that an edgee = (a, b) ∈ E readssomef ∈ Ddec

in G under assignmentsCA : A→ ΣA andCB : B → ΣB, if (e, CA(a), CB(b), f) ∈ read.
Definition 6.10 (Generic bipartite locally decode/reject code). LetD = 〈D, R,Denc,Ddec〉 be a
domain. Let0 < δmin < 1. Let lmax : (0, 1)→ R

+ be a decreasing function.

G = 〈G = (A, B, E), Ω, ΣA, ΣB, sat, label, proj, read〉 is called a(δmin, lmax)-generic bipartite
locally decode/reject code, if:

• ΣA = 〈DA, RA, ΣA,enc, ΣA,dec〉 andΣB = 〈DB, RB, ΣB,enc, ΣB,dec〉 are domains.

• G′ = 〈G = (A, B, E), Ω, ΣA,dec, ΣB,dec, sat, label, proj, read〉 is a generic bipartite evalua-
tion graph. We say that an edgee ∈ E is satisfied inG under assignmentsCA : A → ΣA,dec

andCB : B → ΣB,dec, if e is satisfied inG′ underCA, CB. We say that an edgee ∈ E reads
somef ∈ Ddec in G under assignmentsCA : A → ΣA,dec andCB : B → ΣB,dec, if e readsf
in G′ underCA, CB.

• The following holds:

1. Encoding: There is an efficient algorithm that given a messagef ∈ Denc, computes
assignmentsCA : A→ ΣA,enc andCB : B → ΣB,enc, such that every edgee = (a, b) ∈
E is satisfied and readsf in G underCA, CB.

2. List Decoding: For every assignmentCB : B → ΣB,dec, for every realδ such that
δmin ≤ δ < 1, there existl ≤ lmax(δ) elementsf1, . . . , fl ∈ Ddec, such that for any
assignmentCA : A → ΣA,dec, the following holds: when picking uniformly at random
an edgee = (a, b) ∈ E, the probability that, inG underCA, CB, the edgee is satisfied,
althoughe does not read any off1, . . . , fl, is at mostO(δ).

44

In this generic framework, we can prove the following usefulproposition, stating that not only
that every assignment to theB vertices defines a list decoding, but also every assignment to theA
vertices defines a list decoding. The list decoding may be larger than the list decoding defined by
the assignment to theB vertices and may incur a larger error.
Proposition 6.11 (List decoding for assignment toA vertices). Let D = 〈D, R,Denc,Ddec〉
be a domain. Let0 < δmin < 1. Let lmax : (0, 1) → R

+ be a decreasing function. Let
G = 〈G = (A, B, E), Ω, ΣA, ΣB, sat, label, proj, read〉 be a (δmin, lmax)-generic bipartite lo-
cally decode/reject code. Then, for every assignmentCA : A → ΣA,dec, for every realδ such that√

δmin ≤ δ < 1, there existl′ ≤ 1
δ
· lmax(δ

2) elementsg1, . . . , gl′ ∈ Ddec satisfying the following. Let
CB : B → ΣB,dec be an assignment. When picking uniformly at random an edgee = (a, b) ∈ E,
the probability that, inG underCA, CB, the edgee is satisfied althoughe does not read an element
fromg1, . . . , gl′, is at mostO(δ).

Proof. Fix an assignmentCA : A→ ΣA,dec and a realδ such that
√

δmin ≤ δ < 1.

Fix s
.
= b1

δ
c. Let b ∈ B. Let σ1(b), . . . , σs(b) ∈ ΣB,dec be all elementsσ ∈ ΣB,dec that at leastδ

fraction of the edges coming intob in G “vote” for them according toCA, i.e.,

|{i ∈ [∆G(b)] | eG(b, i) = (a, b) ∧ proj(a, CA(a), label(eG(b, i))) = σ}| ≥ δ ·∆G(b)

Note that indeed there are at mosts such elementsσ ∈ ΣB,dec (there might be less thans elements,
in which case we pad the list arbitrarily). Defines assignments forB, CB,1, . . . , CB,s : B → ΣB,dec,
by letting, for everyj ∈ [s] andb ∈ B, CB,j(b)

.
= σj(b).

Fix a confidence parameterδ∗
.
= δ2 ≥ δmin. For everyj ∈ [s], let gj,1, . . . , gj,l∗ ∈ Ddec denote

the list decoding ofl∗ ≤ lmax(δ
∗) elements corresponding toCB,j for confidence parameterδ∗, as

follows from the list decoding property ofG. Note that the total number of elements we define
(possibly with repetitions) isl′

.
= s · l∗ ≤ 1

δ
· lmax(δ

2).

Let CB : B → ΣB,dec be an assignment. Pick uniformly at random an edgee = (a, b) ∈ E. We
will bound the probability that the followingbadevents happen byO(δ) and be done:

• BAD1: The edgee is satisfied inG under the assignmentsCA andCB, howeverCB(b) /∈
{CB,1(b), . . . , CB,s(b)}.

• BAD2: The edgee is satisfied inG under the assignmentsCA andCB, and for somej ∈ [s],
it holds thatCB(b) = CB,j(b), however,e does not read one ofgj,1, . . . , gj,l∗.

Bounding BAD1. Let b ∈ B such thatCB(b) /∈ {CB,1(b), . . . , CB,s(b)}. Then, for less thanδ
fraction of thei ∈ [∆G(b)] we have thateG(b, i) = (a, b) ∈ E is satisfied inG under the assignments
CA andCB: it cannot hold thatproj(a, CA(a), label(eG(b, i))) = CB(b) for δ fraction of thei ∈
[∆G(b)]. The bound onBAD1 follows.

45

Bounding BAD2. On the eventBAD2, for j ∈ [s] it holds thate is satisfied inG underCA, CB,j,
yet e does not read any ofgj,1, . . . , gj,l∗. By the list decoding property ofG, the probability that this
happens is at mosts ·O(δ∗) = O(δ).

6.3 Edge Reading Bipartite Locally Decode/Reject Code

In this section we define another instance of generic bipartite locally decode/reject code. In this
instance, the edges evaluate tuples.
Definition 6.12 (Edge reading bipartite locally decode/reject code).LetD = 〈D, R,Denc,Ddec〉
be a domain. Letk andN be natural numbers. Assume a collection ofk-tuples:

〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk

Let0 < δmin < 1. Let lmax : (0, 1)→ R
+ be a decreasing function.

G = 〈G = (A, B, E), Ω, ΣA, ΣB, sat, label, proj, tup, eval〉 is called a(δmin, lmax)-edge read-
ing bipartite locally decode/reject code, if:

• ΣA = 〈DA, RA, ΣA,enc, ΣA,dec〉 andΣB = 〈DB, RB, ΣB,enc, ΣB,dec〉 are domains.

• tup : E → Dk is a function mapping each edge to ak-tuple〈xi,1, . . . , xi,k〉 for i ∈ [N]. Each
i ∈ [N] must have the same (positive) number of edgese ∈ E that are associated with thei’th
k-tuple, i.e.,tup(e) = 〈xi,1, . . . , xi,k〉.

• eval : E × ΣA,dec → Rk is a function, mapping each edgee ∈ E with an assignment to the
edge’sA endpoint (which determines an assignment to the edge’sB endpoint) to assignments
for the elements oftup(e).

• For an edgee ∈ E, assignmentsσa ∈ ΣA,dec andσb ∈ ΣB,dec andf ∈ Ddec, let (e, σa, σb, f) ∈
read if and only ifeval(e, σa) = 〈f(xi,1), . . . , f(xi,k)〉 wheretup(e) = 〈xi,1, . . . , xi,k〉. Then,
G′ = 〈G = (A, B, E), Ω, ΣA, ΣB, sat, label, proj, read〉 is a (δmin, lmax)-generic bipartite
locally decode/reject code.

• We say thate is satisfied inG under assignmentsCA : A→ ΣA,dec andCB : B → ΣB,dec, if e
is satisfied inG′ underCA andCB. We say thate readsf in G underCA andCB, if e readsf
in G′ underCA andCB.

A (D, k, N)-construction algorithm for edge reading bipartite locally decode/reject codes is a
procedure that given as input a collection of sizeN of k-tuples of points

〈x1,1, . . . , x1,k〉, . . . , 〈xN,1, . . . , xN,k〉 ∈ Dk

outputs an edge reading bipartite locally decode/reject code for those tuples. Efficiency and uni-
formity in structure of such algorithms are as for construction algorithms for composable bipartite
locally decode/reject codes.

46

7 Building Blocks

We will devise construction algorithms for various types ofcomposable bipartite locally decode/reject
codes and point variants of them. These types will differ in the type of domains they work with
(Reed-Muller domain, Hadamard domain,etc), in whether they are left or right evaluators and in the
specific form of theirsat, label, proj, eval andevalp functions. These specifics would later allow us
to transform construction algorithms for one type of codes to construction algorithms for others and
to compose construction algorithms. In this section we survey the different types of building blocks
we use. In the next section we give a full account of the different manipulations on the building
blocks.

7.1 Reed-Muller Left Reader

A Reed-Muller Left Reader (RM-LR) is a composable bipartitelocally decode/reject code. It works
for a Reed-Muller domainD defined by some finite fieldF, a dimensionm, an encoding degreed
and a decoding degreed′. It is a left evaluator (meaning that the set of evaluating vertices isA),
and the alphabet domain for theA verticesD̃ is also a Reed-Muller domain with the same finite
field F, but with different (hopefully reduced) dimension and degree parameters, denotedw, dw and
d′

w, respectively. No additional satisfiability constraints are imposed on the assignments to theA
vertices. Assignments to theB vertices are over the domain associated with the fieldF.

The edges are labeled by points inF
w, i.e.,Ω

.
= F

w. The projection of a vertexa ∈ A, assigned
some polynomial, is given by evaluating the polynomial on the point given as label. A vertexa ∈
A evaluates its tupletup(a) by evaluating the polynomial assigned to it onk pre-defined points
~p1, . . . , ~pk ∈ F

w. This way we reduce the problem of evaluatingk-tuples inD to evaluatingk-tuples
in D̃. It is convenient – and does not restrict us – to have the same points~p1, . . . , ~pk for all vertices
a ∈ A.

Formally,
Definition 7.1 (Reed-Muller Left Reader (RM-LR)). Assume domains as follows:

• LetD = 〈Fm, F,Denc,Ddec〉 be a Reed-Muller domain defined by a finite fieldF, a dimension
m, an encoding degreed and a decoding degreed′.

• Let D̃ = 〈Fw, F, D̃enc, D̃dec〉 be a Reed-Muller domain defined by the fieldF, a dimensionw,
an encoding degreedw and a decoding degreed′

w.

• Let F̃ = 〈{1}, F, F̃enc, F̃dec〉 be the domain associated withF. Recall that we associate a
domain with a finite set by taking̃Fenc = F̃dec = {f | f : {1} → F}.

Letk andN be natural numbers. Assume a collection ofk-tuples:

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

47

Let0 < δmin < 1. Let lmax : (0, 1)→ R
+ be a decreasing function.

A (δmin, lmax)-composable bipartite locally decode/reject code for thek-tuples

G = 〈G = (A, B, E), V = A, Ω, D̃, F̃, sat, label, proj, tup, eval〉
is called a(δmin, lmax)-Reed-Muller Left Reader (RM-LR) reducingD 7→ D̃ for thek-tuples, if the
following holds:

1. Satisfaction: For every vertexa ∈ A and assignmentσa ∈ D̃dec, it holds thatsat(a, σa) =
true.

2. Projection: Ω
.
= F

w, and for every vertexa ∈ A, assignmentσa ∈ D̃dec and label~p ∈ F
w, we

have thatproj(a, σa, ~p) is the element iñFdec corresponding toσa(~p).

3. Tuple Evaluation: There are points~p1, . . . , ~pk ∈ F
w, such that for every vertexa ∈ A and

assignmentσa ∈ D̃dec, we haveeval(a, σa) = 〈σa(~p1), . . . , σa(~pk)〉.

A (D, k, N)-RM-LR construction algorithm with structural parameters(size, block, degleft, degright)

reducingD 7→ D̃ is an efficient(D, k, N)-construction algorithm that given a collection of sizeN of
k-tuples, outputs an RM-LR reducingD 7→ D̃ for thek-tuples that has sizesize, block lengthblock,
left degreedegleft and right degreedegright.

7.2 Reed-Muller Left+Point Reader

A Reed-Muller Left+Point Reader (RM-LPR) is the point variant of a Reed-Muller Left Reader.
Every vertexb ∈ B is associated with a pointpnt(b). An assignmentσb to b corresponds to a field
element, which is also the evaluation on the associated point evalp(b, σb).
Definition 7.2 (Reed-Muller Left+Point Reader (RM-LPR)). LetD and D̃ be Reed-Muller do-
mains. Let0 < δmin < 1. Let lmax : (0, 1)→ R

+ be a decreasing function.

A (δmin, lmax)-composable bipartite locally decode/reject code (point variant)G for some collec-
tion of tuples is called a(δmin, lmax)-Reed-Muller Left+Point Reader (RM-LPR) reducingD 7→ D̃
for the tuples, if:

1. The composable bipartite locally decode/reject code induced byG is a (δmin, lmax)-Reed-
Muller Left Reader reducingD 7→ D̃ for the tuples.

2. Denote the alphabet domain of theB vertices bỹF = 〈{1}, F, F̃enc, F̃dec〉. For every vertexb ∈
B and assignmentσb ∈ F̃dec, it should hold thatevalp(b, σb) is the field element corresponding
to σb.

A (D, k, N)-RM-LPR construction algorithm with structural parameters(size, block, degleft, degright)

reducingD 7→ D̃ is an efficient(D, k, N)-construction algorithm that given a collection of sizeN

of k-tuples, outputs an RM-LPR reducingD 7→ D̃ for thek-tuples that has sizesize, block length
block, left degreedegleft and right degreedegright.

48

7.3 Hadamard Left Reader

A Hadamard Left Reader (Had-LR) is a composable bipartite locally decode/reject code that works
for a Hadamard domain and is a left evaluator. Since we will use Hadamard Left Readers only as
inner constructions, we make very few restrictions on theirstructure.
Definition 7.3 (Hadamard Left Reader (Had-LR)). Let F be a finite field and letm be a natural
number. LetD = 〈Fm, F,Denc,Ddec〉 be a Hadamard domain. Letk andN be natural numbers.
Assume a collection ofk-tuples:

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

Let0 < δmin < 1. Let lmax : (0, 1)→ R
+ be a decreasing function.

A (δmin, lmax)-composable bipartite locally decode/reject code for thek-tuples

G = 〈G = (A, B, E), V = A, Ω, ΣA, ΣB, sat ≡ true, label, proj, tup, eval〉
is called a(δmin, lmax)-Hadamard Left Reader (Had-LR)for thek-tuples.

A (D, k, N)-Had-LR construction algorithm with structural parameters(size, block, degleft, degright)
is an efficient(D, k, N)-construction algorithm that given a collection of sizeN of k-tuples, outputs
a Had-LR for thek-tuples that has sizesize, block lengthblock, left degreedegleft and right degree
degright.

7.4 RM � Had Left Reader

An RM � Had Left Reader (RM�Had-LR) is any composable bipartite locally decode/rejectcode
that works for a RM� Had domain and is a left evaluator. Since we will use RM� Had Left Readers
only as inner constructions, we make very few restrictions on their structure.
Definition 7.4 (RM � Had Left Reader (RM � Had-LR)). Let F be a finite field, and letL be a
subfield ofF, where the extension degree ofF overL is τ = [F : L]. Letm be a natural number. Let
D = 〈Fm × L

τ , L,Denc,Ddec〉 be a RM�Had Domain. Letk andN be natural numbers. Assume a
collection ofk-tuples:

〈(~x1,1, ~y1,1), . . . , (~x1,k, ~y1,k)〉, . . . , 〈(~xN,1, ~yN,1), . . . , (~xN,k, ~yN,k)〉 ∈ (Fm × L
τ)k

Let0 < δmin < 1. Let lmax : (0, 1)→ R
+ be a decreasing function.

A (δmin, lmax)-composable bipartite locally decode/reject code for thek-tuples

G = 〈G = (A, B, E), V = A, Ω, ΣA, ΣB, sat ≡ true, label, proj, tup, eval〉
is called a(δmin, lmax)-RM�Had Left Reader (RM� Had-LR) for thek-tuples.

A (D, k, N)-RM� Had-LR construction algorithm with structural parameters
(size, block, degleft, degright) is an efficient(D, k, N)-construction algorithm that given a collection
of sizeN of k-tuples, outputs an RM� Had-LR for thek-tuples that has sizesize, block lengthblock,
left degreedegleft and right degreedegright.

49

7.5 Reed-Muller Right Reader

A Reed-Muller Right Reader (RM-RR) is a composable bipartite locally decode/reject code. It
works for a Reed-Muller domain defined by some finite fieldF, dimensionm, encoding degreed
and decoding degreed′. It is a right evaluator (meaning that the set of evaluating vertices isB), and
the alphabet domaiñD for theB vertices is also a Reed-Muller domain with the same finite field
F, but with different (hopefully reduced) dimension and degree parameters, denotedw, dw andd′

w,
respectively. A vertexb ∈ B evaluates its tupletup(b) by evaluating the polynomial assigned to it
on k pre-defined points~p1, . . . , ~pk ∈ F

w. Assignments to theA vertices contain assignments to the
neighboringB vertices, by specifying a polynomial per labelξ ∈ Ω. Satisfiability constraints on the
a vertices compare the evaluations of the polynomials on different points. The constraints are in a
tree structure as explained next.

Tree satisfiability constraints. Tree satisfiability constraints for a vertexa ∈ A are given by
a (rooted) treeTa = (Ua ∪ Ω, Ea) and functions{Pa,ξ}ξ∈Ω, calledancestors point specification
functions:

1. The leaves of the treeTa are the elements inΩ. The set of inner nodes in the tree isUa.

2. For every depth in the tree, all the nodes in this depth havethe same number of children. In
particular, all the leaves have the same depth inTa, denoteddepth(Ta).

3. Every leafξ ∈ Ω specifies a point inFw for each of its ancestors. The specification is given
by the functionPa,ξ : {0, . . . , depth(Ta)− 1} → F

w, where the ancestors are represented by
their depth in the tree.

A polynomialQξ ∈ D̃dec assigned to a leafξ ∈ Ω defines an assignment of field elements to the an-
cestors ofξ in the tree by evaluating the polynomial on the points associated with themQξ(Pa,ξ(i))
for i = 0, . . . , depth(Ta)− 1. The tree satisfiability constraints are said to besatisfiedby an assign-
mentσa : Ω → D̃dec of polynomials to the leaves, if there is an assignment of field elements to all
the inner nodes of the treeσ : Ua → F that is consistent with the evaluations of all the leaves. I.e.,
if u ∈ Ua is in depthi ∈ {0, . . . , depth(Ta)− 1} in the tree, the leafξ ∈ Ω is a descendent of it and
Qξ = σa(ξ) is the polynomial assigned toξ, then it should hold thatσ(u) = Qξ(Pa,ξ(i)). Intuitively,
each leafξ ∈ Ω “has an opinion” on all the vertices on the path from it to the root. The satisfiability
constraints are satisfied if all the leaves agree.

In addition, we require an RM-RR to be left regular (note thatsince it is a right evaluator, it is
necessarily right regular), and require that for every vertexa ∈ A, there would be the same number
of edges coming out ofa for each label.
Definition 7.5 (Reed-Muller Right Reader (RM-RR)). Assume domains as follows:

• LetD = 〈Fm, F,Denc,Ddec〉 be a Reed-Muller domain defined by a finite fieldF, a dimension
m, an encoding degreed and a decoding degreed′.

50

• Let D̃ = 〈Fw, F, D̃enc, D̃dec〉 be a Reed-Muller domain defined by the fieldF, a dimensionw,
an encoding degreedw and a decoding degreed′

w.

• Let ΣA = 〈Ω, D̃dec, ΣA,enc, ΣA,dec〉, whereΣA,enc =
{

f
∣∣∣ f : Ω→ D̃enc

}
and ΣA,dec =

{
f
∣∣∣ f : Ω→ D̃dec

}
.

Letk andN be natural numbers. Assume a collection ofk-tuples:

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

Let0 < δmin < 1. Let lmax : (0, 1)→ R
+ be a decreasing function.

A (δmin, lmax)-composable bipartite locally decode/reject code for thek-tuples

G = 〈G = (A, B, E), V = B, Ω, ΣA, D̃, sat, label, proj, tup, eval〉

is called a(δmin, lmax)-Reed-Muller Right Reader (RM-RR) reducingD 7→ D̃ for thek-tuples, if
the following holds:

1. Satisfaction: For every vertexa ∈ A there are tree satisfiability constraints given by a tree
Ta and ancestors point specification functions{Pa,ξ}ξ∈Ω, such that for every assignmentσa :

Ω → D̃dec, it holds thatsat(a, σa) = true if and only if the tree satisfiability constraints are
satisfied byσa.

2. Labeling: Let a ∈ A be a vertex. For all labelsξ ∈ Ω, there is the same number of edges
e ∈ E coming out ofa with label(e) = ξ.

3. Projection: For every vertexa ∈ A, assignmentσa : Ω→ D̃dec and labelξ ∈ Ω, we have that
proj(a, σa, ξ) = σa(ξ).

4. Tuple Evaluation: There are points~p1, . . . , ~pk ∈ F
w, such that for every vertexb ∈ B and

assignmentσb ∈ D̃dec, we haveeval(b, σb) = 〈σb(~p1), . . . , σb(~pk)〉.

5. Regularity: G is left regular.

A (D, k, N)-RM-RR construction algorithm with structural parameters(size, block, degleft, degright, depth)

reducingD 7→ D̃ is an efficient(D, k, N)-construction algorithm that given a collection of sizeN of
k-tuples, outputs an RM-RR reducingD 7→ D̃ for thek-tuples that has sizesize, block lengthblock,
left degreedegleft, right degreedegright, and whoseA vertices all have tree satisfiability constraints
of depthdepth.

51

7.6 Reed-Muller Right+Point Reader

A Reed-Muller Right+Point Reader (RM-RPR) is the point variant of a Reed-Muller Right Reader.
Each vertexa ∈ A is associated with a pointpnt(a). We think of this point as associated with the
root of the satisfiability tree ofa, namely, the point that all the leavesξ ∈ Ω “have an opinion on”.
Given an assignmentσa to a, we let the point evaluation functionevalp(a, σa) be the opinion of an
arbitrary leafξ0 ∈ Ω. Recall that ifσa is satisfying, i.e.,sat(a, σa) = true, then all the leaves agree
on the assignment to the root.
Definition 7.6 (Reed-Muller Right+Point Reader (RM-RPR)). Let D and D̃ be Reed-Muller
domains. Let0 < δmin < 1. Let lmax : (0, 1)→ R

+ be a decreasing function.

A (δmin, lmax)-composable bipartite locally decode/reject code (point variant)G for some collec-
tion of tuples is called a(δmin, lmax)-Reed-Muller Right+Point Reader (RM-RPR) reducingD 7→ D̃
for the tuples, if:

1. The composable bipartite locally decode/reject code induced byG is a (δmin, lmax)-Reed-
Muller Right Reader reducingD 7→ D̃ for the tuples.

2. Denote the alphabet domain of theA vertices byΣA = 〈Ω, D̃dec, ΣA,enc, ΣA,dec〉. Fix some
arbitrary ξ0 ∈ Ω. For every vertexa ∈ A, for every assignmentσa : Ω → D̃dec, we have
thatevalp(a, σa) = σa(ξ0)(Pa,ξ0(0)) (wherePa,ξ0 is the ancestors point specification function
associated witha’s satisfiability tree).

A (D, k, N)-RM-RPR construction algorithm with structural parameters
(size, block, degleft, degright, depth) reducingD 7→ D̃ is an efficient(D, k, N)-construction algo-
rithm that given a collection of sizeN of k-tuples, outputs an RM-RPR reducingD 7→ D̃ for the
k-tuples that has sizesize, block lengthblock, left degreedegleft, right degreedegright, and whose
A vertices all have tree satisfiability constraints of depthdepth.

8 Manipulations on Building Blocks

In this section we survey the different manipulations we have on building blocks: generation, change
of domains, right degree reduction, transformation of leftreaders into right readers and composition.

8.1 Generation of Left Readers

We will be able to devise construction algorithms for left readers.

8.1.1 Construction of Reed-Muller Left and Left+Point Readers

The first algorithm we show is an RM-LPR construction algorithm that is uniform in the point
association. This algorithm works for Reed-Muller domainsD in which the field is sufficiently

52

large with respect to the dimensionm, the decoding degreed′ and the numberk of points in a tuple
we wish to evaluate. It reduces the evaluation inD to evaluation in a Reed-Muller domaiñD with
a constantdimension. On the downside,̃D has an encoding degree that – not only is not smaller
than the encoding degreed of D – but is slightly larger. In addition, thesize, block, degleft and
degright parameters of the algorithm are all very large. Since we willuse this algorithm as an inner
construction, we can put up with the large size and block length. As to the left and right degrees –
subsequent manipulations would allow us to reduce them.
Lemma 8.1 (Construction of RM-LPR). Setw

.
= 4. LetD be a Reed-Muller domain defined by a

finite fieldF, a dimensionm > w, an encoding degreed and a decoding degreed′. Letk < |F| and
N be natural numbers. We assume that the following condition holds:

• d′ ≥ (k + 1) · d.

Let D̃ be a Reed-Muller domain defined by a finite fieldF, a dimensionw, an encoding degree
(k + 1) · d and a decoding degreed′.

Then, there is a(D, k, N)-RM-LPR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD 7→ D̃ for size ≤ N · |F|O(m), block ≤ poly(k, d) · log |F|,
degleft ≤ |F|O(1) anddegright ≤ N · |F|O(m). The algorithm is uniform in the point association and
outputs(δmin, lmax)-RM-LPRs for

δmin
.
= max

{√
d′(k + 1)

|F| − k
, m

(
8

√
1

|F| +
4

√
md′

|F|

)}

andlmax(δ)
.
= 2

δ
.

We will also show a construction algorithm for (the weaker) RM-LR with much smaller size
parameter. With the right choice of parameters, this size would be almost-linear(N + |Fm|)1+o(1),
rather than polynomial in|Fm| andN . In particular, to save in the size we need the fieldF to have
a subfieldK of an appropriate size. The smaller the subfield – the smallerthe size. The larger the
subfield – the lowerδmin. Specifically, forδmin to be small we require|K| ≥ Ω(m8), while the
influence of|K| on the size is a factor of|K|O(m). When the dimensionm is sufficiently small, we
can get lowδmin at a reasonable increase in the size.

The other structural parametersblock, degleft anddegright would remain large, and subsequent
manipulations are required for reducing them.
Lemma 8.2 (Construction of RM-LR). Setw

.
= 4. LetD be a Reed-Muller domain defined by a

finite fieldF, a dimensionm > w, an encoding degreed and a decoding degreed′. LetK ⊆ F be a
subfield ofF. Letk < |F| andN be natural numbers. We assume that the following condition holds:

• d′ ≥ (k + 1) · d.

Let D̃ be a Reed-Muller domain defined by a finite fieldF, a dimensionw, an encoding degree
(k + 1) · d and a decoding degreed′.

53

Then, there is a(D, k, N)-RM-LR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD 7→ D̃ for size ≤ (N + |F|m) · |F|O(1) · |K|2m, block ≤
poly(k, d) · log |F|, degleft ≤ |F|O(1) anddegright ≤ (N + |F|m) · |F|O(1) · |K|2m. The algorithm
outputs(δmin, lmax)-RM-LRs for

δmin
.
= max

{√
d′(k + 1)

|F| − k
, m

(
8

√
1

|K| +
4

√
md′

|F|

)}

andlmax(δ)
.
= 2

δ
.

8.1.2 Construction of Hadamard Left Reader

We show a Had-LR construction algorithm that is uniform in the tuple association and in the encod-
ing and list decoding. The size, block length, left and rightdegrees are all large, but as we use this
algorithm only as an inner construction, their influence on the overall construction is minor.

We require that the field underlying the Hadamard domain is prime. In the overall construction,
this field will be a small subfield of the field we are using for the outer construction.
Lemma 8.3 (Construction of Had-LR). LetD be a Hadamard domain defined by a prime finite
fieldF and a dimensionm. Letk ≤ m− 2 andN be natural numbers.

Then, there is a(D, k, N)-Had-LR construction algorithm with structural parameters
(size, block, degleft, degright) for size ≤ N · |F|O(m), block ≤ O(k) · log |F|, degleft ≤ |F|O(k) and
degright ≤ N · |F|O(m). The algorithm is uniform in the tuple association and in theencoding and

list decoding. It outputs(δmin, lmax)-Had-LRs forδmin
.
= 2 6

√
1
|F|

and lmax(δ)
.
= 2

δ3 . Moreover, the

right degrees of the vertices in the Had-LR do not depend on the input to the algorithm.

8.2 Power Reduction

Suppose that we have construction algorithms for RM-LRs or RM-LPRs reducingD 7→ D1, where
the dimension of the RM domainD1 is small, but the encoding degree is large (Indeed we have such
algorithms by Lemmata 8.1 and 8.2). Then, we can transform these algorithms into construction
algorithms reducingD 7→ D2, whereD2 is a domain in which both the dimension and the encoding
degree are relatively small. Specifically, the dimension and encoding degree parameters are loga-
rithmic in the encoding degree ofD1. Note that this means that the block length becomes larger
(although not by much if the dimension ofD1 is constant).

The only pre-requirement for the transformation is that there is a large enough gap to begin with
between the encoding degree ofD1 and its decoding degree.
Lemma 8.4 (Power reduction).Assume the following:

• LetD = 〈Fm0 , F,Denc,Ddec〉 be a Reed-Muller domain defined by a finite fieldF, a dimension
m0, an encoding degreed0 and a decoding degreed′

0.

54

• LetD1 = 〈Fm1 , F,D1,enc,D1,dec〉 be a Reed-Muller domain defined by the fieldF, a dimension
m1, an encoding degreed1 and a decoding degreed′

1.

Fix b1
.
= dlog(d1 + 1)e, and assume thatd′

1 ≥ m1b1d1. Let m2 = d2
.
= m1 · b1. Let

d′
2

.
= bd′

1/d1c.

• LetD2 = 〈Fm2 , F,D2,enc,D2,dec〉 be the Reed-Muller domain defined by the fieldF, dimension
m2, encoding degreed2 and decoding degreed′

2.

Let0 < δmin < 1. Let lmax : (0, 1)→ R
+ be a decreasing function. Then,

1. If there is a(D, k, N)-RM-LR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD 7→ D1, then there is also a(D, k, N)-RM-LR con-
struction algorithm with structural parameters(size, block′, degleft, degright) reducingD 7→
D2, whereblock′ = d

O(m1)
1 · log |F|. If the former algorithm outputs(δmin, lmax)-RM-LRs, then

so does the latter algorithm.

2. If there is a(D, k, N)-RM-LPR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD 7→ D1 that is uniform in the point association,
then there is also a(D, k, N)-RM-LPR construction algorithm with structural parameters
(size, block′, degleft, degright) reducingD 7→ D2 that is uniform in the point association,
whereblock′ = d

O(m1)
1 · log |F|. If the former algorithm outputs(δmin, lmax)-RM-LPRs, then

so does the latter algorithm.

8.3 Right Degree Reduction

We can transform construction algorithms that produce readers with large right degree into construc-
tion algorithms that produce right regular readers with small right degree. This comes at the cost of
enlarging the size of the construction and the left degree. Yet, the increase in the size and the left
degree is proportional to the new right degree which is small. Right degree reduction also causes
some deterioration in the error and list size parameters of the readers.

Right degree reduction is possible due to the projection property of the readers. We do not have
a similar lemma for left degree reduction. Instead we will use a transformation presented in the next
subsection that swaps between the left and right degrees.
Lemma 8.5 (Right degree reduction).There is a constantα < 1 and a functionT : N → N

+

with T (∆) = Θ(∆) as in Lemma 5.3, such that the following holds for every natural number∆:
Let D and D̃ be Reed-Muller domains. LetD� be a RM�Had domain. Let0 < δmin < 1. Let

lmax : (0, 1) → R
+ be a decreasing function. Setδ∗min

.
= max

{√
δmin, 1

(T (∆))1−α

}
and l∗max(δ)

.
=

1
δ
· lmax(δ

2).

55

1. If there is a(D, k, N)-RM-LR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD 7→ D̃, then there is also a(D, k, N)-RM-LR con-
struction algorithm with structural parameters(O(∆ · size), block, T (∆) · degleft, T (∆)) re-
ducingD 7→ D̃. If the former algorithm outputs(δmin, lmax)-RM-LRs, then the latter algo-
rithm outputs(δ∗min, l∗max)-RM-LRs. Moreover, the output of the algorithm is always right
regular.

2. If there is a(D�, k, N)-RM�Had-LR construction algorithm with structural parameters
(size, block, degleft, degright) that is uniform in the tuple association and in the encoding and
list decoding and outputs RM�Had-LRs, in which the right degrees of the vertices do not de-
pend on the input to the algorithm, then there is also a(D�, k, N)-RM�Had-LR construction
algorithm with structural parameters(O(∆ ·size), block, T (∆) ·degleft, T (∆)) that is uniform
in the tuple association and in the encoding and list decoding. If the former algorithm out-
puts(δmin, lmax)-RM�Had-LRs, then the latter algorithm outputs(δ∗min, l∗max)-RM�Had-LRs.
Moreover, the output of the algorithm is always right regular.

3. If there is a(D, k, N)-RM-LPR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD 7→ D̃ that is uniform in the point association,
then there is also a(D, k, N)-RM-LPR construction algorithm with structural parameters
(O(∆ · size), block, T (∆) · degleft, T (∆)) reducingD 7→ D̃ that is uniform in the point as-
sociation. If the former algorithm outputs(δmin, lmax)-RM-LPRs, then the latter algorithm
outputs(δ∗min, l∗max)-RM-LPRs.

4. If there is a(D, k, N)-RM-RR construction algorithm with structural parameters
(size, block, degleft, degright, depth) reducingD 7→ D̃, then there is also a(D, k, N)-RM-RR
construction algorithm with structural parameters(O(∆·size), block, T (∆)·degleft, T (∆), depth)

reducingD 7→ D̃. If the former algorithm outputs(δmin, lmax)-RM-RRs, then the latter algo-
rithm outputs(δ∗min, l∗max)-RM-RRs.

5. If there is a(D, k, N)-RM-RPR construction algorithm with structural parameters
(size, block, degleft, degright, depth) reducingD 7→ D̃ that is uniform in the point association,
then there is also a(D, k, N)-RM-RPR construction algorithm with structural parameters
(O(∆ · size), block, T (∆) · degleft, T (∆), depth) reducingD 7→ D̃ that is uniform in the point
association. If the former algorithm outputs(δmin, lmax)-RM-RPRs, then the latter algorithm
outputs(δ∗min, l∗max)-RM-RPRs.

8.4 Transforming Reed-Muller Left Readers Into Reed-Muller Right Read-
ers

Construction algorithms that produce RM-LRs that are rightregular with small right degree can
be transformed into construction algorithms for RM-RRs. Construction algorithms that produce
RM-LPRs that have small right degree (they are right regularby definition) can be transformed into

56

construction algorithms for RM-RPRs. Moreover, the lattertransformation preserves uniformity in
point association. The cost is enlarging the block length bya factor equal to the right degree. If the
right degree is small, then this cost is small as well. Additional costs are enlarging the error and list
size parameters.

The transformation swaps the left and right degrees. If the original left reader has left degree
degleft and right degreedegright, then the new right reader has left degreedegright and right degree
degleft. In particular, if the original left reader has small right degree, then the new right reader has
small left degree.

The transformation sets the depth parameter of the right reader construction algorithms to1.
Lemma 8.6 (Switching sides).Let D and D̃ be Reed-Muller domains. Let0 < δmin < 1. Let
lmax : (0, 1)→ R

+ be a decreasing function. Setδ∗min
.
=
√

δmin andl∗max(δ)
.
= 1

δ
· lmax(δ

2).

1. If there is a(D, k, N)-RM-LR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD 7→ D̃ that outputs right regular RM-LRs, then there
is also a(D, k, N)-RM-RR construction algorithm with structural parameters
(size, degright · block, degright, degleft, 1) reducingD 7→ D̃. If the former algorithm outputs
(δmin, lmax)-RM-LRs, then the latter algorithm outputs(δ∗min, l∗max)-RM-RRs.

2. If there is a(D, k, N)-RM-LPR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD 7→ D̃ that is uniform in the point association, then
there is also a(D, k, N)-RM-RPR construction algorithm with structural parameters
(size, degright · block, degright, degleft, 1) reducingD 7→ D̃ that is uniform in the point as-
sociation. If the former algorithm outputs(δmin, lmax)-RM-LPRs, then the latter algorithm
outputs(δ∗min, l∗max)-RM-RPRs.

8.5 Transforming Hadamard Left Readers Into RM�Had Left Readers

Construction algorithms for Had-LRs can be transformed into construction algorithms for RM�Had-
LRs. The cost is a huge blow-up in the parameters of the Hadamard domain compared to the
parameters of the RM�Had domain. Hence, this transformation is useful only when the parameters
of the RM�Had domain are very small to begin with.
Lemma 8.7 (From Had-LRs to RM�Had-LRs). LetD be a RM�Had domain defined by a finite
field F, a prime subfieldL of F, a dimensionm, an encoding degreed and any decoding degreed′.
Let τ = [F : L]. SetM

.
=
(

m+d
m

)
(the number of monomials in anm-variate polynomial of degree at

mostd). LetH be a Hadamard domain defined by the finite fieldL and the dimensionM · τ .

Letk andN be natural numbers.

If there is a(H, k, N)-Had-LR construction algorithm with structural parameters
(size, block, degleft, degright) that is uniform in the tuple association and in the encoding and list
decoding and outputs Had-LRs, in which the right degrees of the vertices do no depend on the
input to the algorithm, then there is a(D, k, N)-RM�Had-LR construction algorithm with the same
structural parameters(size, block, degleft, degright) that is uniform in the tuple association and in

57

the encoding and list decoding and outputs RM�Had-LRs, in which the right degrees of the vertices
do no depend on the input to the algorithm.

If the former algorithm outputs(δmin, lmax)-Had-LRs, then the latter algorithm outputs(δmin, lmax)-
RM�Had-LRs.

8.6 Composition of Reed-Muller Right Reader and Reed-Muller Right+Point
Reader Construction Algorithms

For Reed-Muller domainsD, D1 andD2, we can compose an RM-RR construction algorithm re-
ducingD 7→ D1 (“outer algorithm”) and an RM-RPR construction algorithm reducingD1 7→ D2

that is uniform in the point association (“inner algorithm”) into an RM-RR construction algorithm
reducingD 7→ D2 (“composed algorithm”).

Through composition we can reduce the block length. Assume that the outer algorithm produces
RM-RRs that have left degreedegleftout. Assume that the inner algorithm produces RM-RPRs that
have block lengthblockin. The block length of the RM-RRs produced by the composed algorithm
is degleftout · blockin (independent of the block length of the outer algorithm). Assume that the left
degreedegleftout is small (this can be taken care of by the previous manipulations). Since the inner
construction algorithm should work only for the domainD1, and not the domainD, the block length
blockin can be made small, thus making the block length of the composed construction small.

For composition to be possible, the right degree and the depth parameters of the outer algorithm,
denoteddegrightout anddepthout respectively, should be small. This is because the inner algorithm
should be able to handle tuples withk + degrightout · depthout points.

The costs of composition are an increase in the size, in the left and right degrees and in the depth
parameter, as well as a deterioration of the error and list size parameters.

The size parameter of the composed algorithm is typically dominated by the size parameter of
the outer algorithm. If the outer algorithm outputs RM-RRs of sizesizeout, and the inner construction
algorithm outputs RM-RPRs of sizesizein, then the composed algorithm outputs RM-RRs of size
roughlysizeout ·sizein. Even if the sizesizein is relatively large with respect to the domain parameters,
since the domain is onlyD1, and notD, the contribution ofsizein is typically minor.
Lemma 8.8 (Composition of RM-RR and RM-RPR construction algorithms). LetD, D1 and
D2 be Reed-Muller domains with a finite fieldF. Denote the decoding degree ofD1 byd′

1.

Letk andN be natural numbers. Let0 < δmin,out, δmin,in < 1. Letlmax,out, lmax,in : (0, 1)→ R
+

be decreasing functions. Assume that for some constantsb1, b2 ≥ 1 for every0 < δ < 1 it holds that
lmax,in(δ) ≤ b1

δb2
. Set

δmin
.
= max



δmin,in, (2b

2
1 · δmin,out)

1/(2b2+3),

(
2b1 ·

√
d′

1

|F|

)1/(b2+1)




58

and

lmax(δ)
.
=

b1

δb2
· lmax,out(

1

2b2
1

· δ2b2+3)

Assume thatδmin < 1. Given:

• A (D, k, N)-RM-RR construction algorithmAout with structural parameters
(sizeout, blockout, degleftout, degrightout, depthout) reducingD 7→ D1, with depthout ≤ d′

1.

• A (D1, k + degrightout · depthout, 1)-RM-RPR construction algorithmAin with structural pa-
rameters(sizein, blockin, degleftin, degrightin, 1) reducingD1 7→ D2 that is uniform in the point
association.

One can obtain a(D, k, N)-RM-RR construction algorithmA with structural parameters
(size, block, degleft, degright, depth) reducingD 7→ D2 for size ≤ sizeout · sizein, block = degleftout ·
blockin, degleft = degleftout · degleftin, degright = degrightout · degrightin anddepth = depthout +1.

If Aout outputs(δmin,out, lmax,out)-RM-RRs, andAin outputs(δmin,in, lmax,in)-RM-RPRs, thenA
outputs(δmin, lmax)-RM-RRs.

8.7 Composition of Reed-Muller Right Reader and RM�Had Left Reader
Construction Algorithms

Let D� be a RM�Had domain. We wish to obtain an edge reading bipartite locally decode/reject
code forD� with small block length.

Let D be a Reed-Muller domain corresponding to the outer code ofD� and suppose that we
have a RM-RR construction algorithm reducingD 7→ D1 for some Reed-Muller domainD1. From
this algorithm we can rather easily obtain an edge reading bipartite locally decode/reject code for
D� whose block length depends onlog |F|. Our aim, however, is to achieve a much smaller block
length. In particular, block length that does not depend on the field size, which is inevitably large in
a Reed-Muller code.

We show how to compose the RM-RR construction algorithm reducingD 7→ D1 (“outer algo-
rithm”) with a RM�Had-LR construction algorithm for the domainD�

1 corresponding to concatena-
tion ofD1 and Hadamard (“inner algorithm”). For the composition to work the inner algorithm must
be uniform in the tuple association and in the encoding and list decoding. The composition results
in an algorithm whose block length parameter depends only onthe left degree of the outer algorithm
and the block length of the inner algorithm.

The costs of this composition, namely the increase in the size and graph degree parameters, are
similar to the costs of the composition described in Subsection 8.6.
Lemma 8.9 (Composition of RM-RR and RM�Had-LR construction algorithms). LetD andD1

be Reed-Muller domains with a finite fieldF. LetD� andD�
1 be the RM�Had domains associated

with D andD1, respectively, where the subfield isL ⊆ F. Denote the decoding degree ofD by d′

and the decoding degree ofD1 byd′
1. Denote the dimension ofD1 byw.

59

Letk andN be natural numbers. Let0 < δmin,out, δmin,in < 1. Letlmax,out, lmax,in : (0, 1)→ R
+

be decreasing functions. Assume thatlmax,in(δ), lmax,out(δ) ≤ δ−O(1).

For a sufficiently small constantc > 0, set

δmin
.
= max

{
δc
min,in, δ

c
min,out,

(
d′

|F|

)c

,

(
1

|L|

)c}

Given:

• A (D, k, N)-RM-RR construction algorithmAout with structural parameters
(sizeout, blockout, degleftout, degrightout, depthout) reducingD 7→ D1, where the depthdepthout

is constant and smaller thand′
1.

• A (D�
1, degleftout · k + depthout + 1, |F|w+1)-RM�Had-LR construction algorithmAin with

structural parameters(sizein, blockin, degleftin, degrightin) that is uniform in the tuple asso-
ciation and in the encoding and list decoding. The output of the algorithm is always right
regular.

One can obtain a(D�, k, N)-construction algorithmA that outputs (left and right) regular edge
reading bipartite locally decode/reject codes. The algorithm has structural parameters
(size, block, degleft, degright) for size ≤ sizeout · sizein, block ≤ degleftout · blockin, degleft ≤
degleftout · degleftin anddegright ≤ degrightout · degrightin.

If Aout outputs(δmin,out, lmax,out)-RM-RRs, andAin outputs(δmin,in, lmax,in)-RM�Had-LRs, then
A outputs(δmin, lmax)-edge reading bipartite locally decode/reject codes for somelmax(δ) ≤ δ−O(1).

9 Putting The Pieces Together

In this section we show how to put the pieces together to construct a bipartite locally decode/reject
code fork-tuples that has small block length and almost-linear size.We start by outlining our plan.
Then we construct each of the components. Finally, we set theparameters and get the final code.

Our plan is to construct an edge reading bipartite locally decode/reject code with small block
length and small size, and then derive from it the code we want. The construction is as follows:

1. Devise outer RM-RR construction algorithm: We devise an RM-RR construction algorithm
that has small size parameter, small left and right degree parameters, small depth parameter,
but large block length parameter. Specifically, the block length is polynomial ink, d, log |F|
and the left and right degrees.

2. Devise inner RM-RPR construction algorithm: We devise an RM-RPR construction algo-
rithms that is uniform in the point association and has largesize parameter, small left and right
degree parameters, small depth parameter and large block length parameter.

60

We will invoke the inner construction algorithm only on the alphabet domain of outer RM-
RRs, and hence the large size and block length would be small in the context of the global
construction.

3. Compose the RM-RR and RM-RPR construction algorithms:We compose the outer RM-
RR construction algorithm from Step 1 with an appropriate inner RM-RPR construction algo-
rithm from Step 2 to get an RM-RR construction algorithm withsmaller block length.

Specifically, the block length would be polynomial ink, log d, log |F| and the left and right
degrees. Notably, the dependence ond is much smaller than in the block length of the outer
RM-RR.

4. Devise inner RM�Had-LR construction algorithm: We devise an RM�Had-LR construc-
tion algorithm that is uniform in the tuple association and in the encoding and list decoding.
It has very large size parameter and large left and right degrees.

We will invoke the inner construction algorithm only on the alphabet domain of composed
RM-RRs, and hence the large parameters would be small in the context of the global con-
struction.

5. Compose the RM-RR and RM�Had-LR construction algorithms: We compose the RM-
RR construction algorithm from Step 3 with an appropriate inner RM�Had-LR construc-
tion algorithm from Step 4 to get an RM�Had-LR construction algorithm with smaller block
length.

Specifically, the block length would not depend at all on the degreed or the fieldF of the outer
Reed-Muller code.

Figure 7: The outline of the construction.

9.1 Outer RM-RR Construction Algorithm

The outer RM-RR construction algorithm is as follows:
Lemma 9.1 (Outer RM-RR construction algorithm). There is a global constantc0 ≥ 1, as well
as a functionT : N→ N

+ with T (∆) = Θ(∆) (as in Lemma 8.5) as follows.

61

LetD be a Reed-Muller domain defined by a finite fieldF, a dimensionm > 4, an encoding
degreed and a decoding degreed′. Let K ⊆ F be a subfield ofF. Let 1 ≤ k ≤ |F|

2
, N and∆ be

natural numbers. We assume that the following condition holds:

• d′ ≥ c0(k + 1)d log((k + 1)d).

There is a Reed-Muller domaiñD defined by the fieldF, a dimension4 < m̃ ≤ c0 · log((k +
1)d), an encoding degreẽm and a decoding degreebd′/((k + 1)d)c, as well as a(D, k, N)-RM-
RR construction algorithm with structural parameters(size, block, degleft, degright, depth) reducing
D 7→ D̃ for size ≤ (N + |Fm|) · |F|O(1) · |K|2m ·∆2, block ≤ poly(k, d, ∆) · log |F|, degleft = T (∆)2,
degright = T (∆) anddepth = 1. The algorithm outputs(δmin, lmax)-RM-RRs for

δmin ≤ max

{(
d′k

|F|

)Ω(1)

, mO(1)

((
1

|K|

)Ω(1)

+

(
d′

|F|

)Ω(1)
)

,

(
1

∆

)Ω(1)
}

andlmax(δ)
.
= 2

δ15 .

Proof. The algorithm is obtained as follows:

1. Generation of RM-LRs: LetD1 be the Reed-Muller domain defined by the fieldF, dimension
4, encoding degree(k+1)·d and decoding degreed′. Invoke Lemma 8.2 to obtain a(D, k, N)-
RM-LR construction algorithmA1 with structural parameters(size1, block1, degleft1, degright1)

reducingD 7→ D1 for size1 ≤ (N + |F|m) · |F|O(1) · |K|2m, block1 ≤ poly(k, d) · log |F|,
degleft1 ≤ |F|O(1) anddegright1 ≤ (N + |F|m) · |F|O(1) · |K|2m. The lemma guarantees that
A1 outputs(δmin,1, lmax,1)-RM-LRs for

δmin,1
.
= max

{√
d′ · (k + 1)

|F| − k
, m

(
8

√
1

|K| +
4

√
md′

|F|

)}

andlmax,1(δ)
.
= 2

δ
.

2. Power reduction: Define b
.
= dlog((k + 1) · d + 1)e and m̃

.
= 4b. Let c0 ≥ 1 be such

that m̃ ≤ c0 log((k + 1)d). By assumption,d′ ≥ 4b(k + 1) · d. Let D̃ be the Reed-
Muller domain defined by the fieldF, dimensionm̃, encoding degreẽm and decoding de-
gree bd′/((k + 1)d)c. Invoke Lemma 8.4 (1) onA1 to obtain a(D, k, N)-RM-LR con-
struction algorithmA2 with structural parameters(size2, block2, degleft2, degright2) reduc-
ing D 7→ D̃, wheresize2 = size1, block2 = poly(k, d) · log |F|, degleft2 = degleft1 and
degright2 = degright1. The lemma guarantees thatA2 outputs(δmin,2, lmax,2)-RM-LRs, where
δmin,2 = δmin,1 andlmax,2 ≡ lmax,1.

3. Right degree reduction: Let α < 1 and T : N → N
+ with T (∆) = Θ(∆) be as in

Lemma 8.5. Invoke Lemma 8.5 (1) onA2 to obtain a(D, k, N)-RM-LR construction al-
gorithmA3 with structural parameters(size3, block3, degleft3, degright3) reducingD 7→ D̃,

62

wheresize3 = (N + |F|m) · |F|O(1) · |K|2m · ∆, block3 = poly(k, d) · log |F|, degleft3 =
T (∆) · degleft1 anddegright3 = T (∆). The lemma guarantees that the algorithmA3 outputs
right regular(δmin,3, lmax,3)-RM-LRs, for

δmin,3
.
= max

{
4

√
d′ · (k + 1)

|F| − k
,
√

m

(
16

√
1

|K| +
8

√
md′

|F|

)
,

1

T (∆)1−α

}

andlmax,3(δ)
.
= 2

δ3 .

4. Switching sides: Invoke Lemma 8.6 (1) onA3 to obtain a(D, k, N)-RM-RR construction
algorithmA4 with structural parameters(size4, block4, degleft4, degright4, depth4) reducing
D 7→ D̃, wheresize4 = (N + |F|m) · |F|O(1) · |K|2m · ∆, block4 = poly(k, d, ∆) · log |F|,
degleft4 = T (∆), degright4 = T (∆) · degleft1 anddepth4 = 1. The lemma guarantees that
the algorithmA4 outputs(δmin,4, lmax,4)-RM-RRs, for

δmin,4
.
= max

{
8

√
d′ · (k + 1)

|F| − k
, 4
√

m

(
32

√
1

|K| +
16

√
md′

|F|

)
,

1

T (∆)
1−α

2

}

andlmax,4(δ)
.
= 2

δ7 .

5. Right degree reduction: Invoke Lemma 8.5 (4) onA4 to obtain a(D, k, N)-RM-RR con-
struction algorithmA5 with structural parameters(size5, block5, degleft5, degright5, depth5)

reducingD 7→ D̃, wheresize5 = (N+|F|m)·|F|O(1)·|K|2m·∆2, block5 = poly(k, d, ∆)·log |F|,
degleft5 = T (∆)2, degright5 = T (∆) anddepth5 = 1. The lemma guarantees that the algo-
rithmA5 outputs(δmin,5, lmax,5)-RM-RRs, for

δmin,5
.
= max

{
16

√
d′ · (k + 1)

|F| − k
, 8
√

m

(
64

√
1

|K| +
32

√
md′

|F|

)
,

1

T (∆)
1−α

4

}

andlmax,5(δ)
.
= 2

δ15 .

9.2 Inner RM-RPR Construction Algorithm

The inner RM-RPR construction algorithm is obtained similarly to the way the outer RM-RR con-
struction algorithm is obtained. The parameters resemble those of Lemma 9.1, except for the size
parameter which is larger.
Lemma 9.2 (Inner RM-RPR construction algorithm). There is a global constantsc0 ≥ 1, as well
as a functionT : N→ N

+ with T (∆) = Θ(∆) (same as in Lemma 9.1) as follows.

LetD be a Reed-Muller domain defined by a finite fieldF, a dimensionm > 4, an encoding
degreed and a decoding degreed′. Let1 ≤ k ≤ |F|

2
, N and∆ be natural numbers. We assume that

the following condition holds:

63

• d′ ≥ c0(k + 1)d log((k + 1)d).

There is a Reed-Muller domaiñD defined by the fieldF, a dimensioñm ≤ c0 · log((k + 1)d), en-
coding degreẽm (wherem̃ is as in Lemma 9.1) and decoding degreebd′/((k + 1)d)c, as well as a
(D, k, N)-RM-RPR construction algorithm with structural parameters(size, block, degleft, degright, depth)

reducingD 7→ D̃ for size ≤ N · |F|O(m) · ∆2, block ≤ poly(k, d, ∆) · log |F|, degleft = T (∆)2,
degright = T (∆) and depth = 1. The algorithm is uniform in the point association and outputs
(δmin, lmax)-RM-RPRs for

δmin ≤ max

{(
d′k

|F|

)Ω(1)

, mO(1) ·
(

d′

|F|

)Ω(1)

,

(
1

∆

)Ω(1)
}

andlmax(δ)
.
= 2

δ15 .

Proof. The algorithm is obtained as follows:

1. Generation of RM-LPRs: LetD1 be the Reed-Muller domain defined by the fieldF, dimen-
sion4, encoding degree(k + 1) · d and decoding degreed′. Invoke Lemma 8.1 to obtain a
(D, k, N)-RM-LPR construction algorithmA1 with structural parameters
(size1, block1, degleft1, degright1) reducingD 7→ D1 for size1 ≤ N · |F|O(m), block1 ≤
poly(k, d) · log |F|, degleft1 ≤ |F|O(1) anddegright1 ≤ N · |F|O(m). The lemma guarantees that
A1 is uniform in the point association and outputs(δmin,1, lmax,1)-RM-LPRs for

δmin,1
.
= max

{√
d′ · (k + 1)

|F| − k
, m

(
8

√
1

|F| +
4

√
md′

|F|

)}

andlmax,1(δ)
.
= 2

δ
.

2. Power reduction: Define b
.
= dlog((k + 1) · d + 1)e and m̃

.
= 4b. Let c0 ≥ 1 be such

that m̃ ≤ c0 log((k + 1)d). By assumption,d′ ≥ 4b(k + 1) · d. Let D̃ be the Reed-
Muller domain defined by the fieldF, dimensionm̃, encoding degreẽm and decoding de-
greebd′/((k + 1)d)c. Invoke Lemma 8.4 (2) onA1 to obtain a(D, k, N)-RM-LPR con-
struction algorithmA2 with structural parameters(size2, block2, degleft2, degright2) reduc-
ing D 7→ D̃, wheresize2 = size1, block2 = poly(k, d) · log |F|, degleft2 = degleft1 and
degright2 = degright1. The lemma guarantees thatA2 is uniform in the point association and
outputs(δmin,2, lmax,2)-RM-LPRs, whereδmin,2 = δmin,1 andlmax,2 ≡ lmax,1.

3. Right degree reduction: Invoke Lemma 8.5 (3) onA2 to obtain a(D, k, N)-RM-LPR con-
struction algorithmA3 with structural parameters(size3, block3, degleft3, degright3) reducing
D 7→ D̃, wheresize3 = N · |F|O(m) ·∆, block3 = poly(k, d) · log |F|, degleft3 = T (∆) ·degleft1

64

anddegright3 = T (∆). The lemma guarantees that the algorithmA3 is uniform in the point
association and outputs(δmin,3, lmax,3)-RM-LPRs, for

δmin,3
.
= max

{
4

√
d′ · (k + 1)

|F| − k
,
√

m

(
16

√
1

|F| +
8

√
md′

|F|

)
,

1

T (∆)1−α

}

andlmax,3(δ)
.
= 2

δ3 .

4. Switching sides: Invoke Lemma 8.6 (2) onA3 to obtain a(D, k, N)-RM-RPR construction
algorithmA4 with structural parameters(size4, block4, degleft4, degright4, depth4) reducing
D 7→ D̃, wheresize4 = N · |F|O(m) · ∆, block4 = poly(k, d, ∆) · log |F|, degleft4 = T (∆),
degright4 = T (∆) · degleft1 anddepth4 = 1. The lemma guarantees that the algorithmA4 is
uniform in the point association and outputs(δmin,4, lmax,4)-RM-RPRs, for

δmin,4
.
= max

{
8

√
d′ · (k + 1)

|F| − k
, 4
√

m

(
32

√
1

|F| +
16

√
md′

|F|

)
,

1

T (∆)
1−α

2

}

andlmax,4(δ)
.
= 2

δ7 .

5. Right degree reduction: Invoke Lemma 8.5 (5) onA4 to obtain a(D, k, N)-RM-RPR con-
struction algorithmA5 with structural parameters(size5, block5, degleft5, degright5, depth5)

reducingD 7→ D̃, wheresize5 = N · |F|O(m) ·∆2, block5 = poly(k, d, ∆) · log |F|, degleft5 =
T (∆)2, degright5 = T (∆) anddepth5 = 1. The lemma guarantees that the algorithmA5 is
uniform in the point association and outputs(δmin,5, lmax,5)-RM-RPRs, for

δmin,5
.
= max

{
16

√
d′ · (k + 1)

|F| − k
, 8
√

m

(
64

√
1

|F| +
32

√
md′

|F|

)
,

1

T (∆)
1−α

4

}

andlmax,5(δ)
.
= 2

δ15 .

9.3 Composition of The RM-RR and RM-RPR Construction Algorithms

Composing the outer RM-RR construction algorithm of Lemma 9.1 with the inner RM-RPR con-
struction algorithm of Lemma 9.2 we get the following:
Lemma 9.3 (Final RM-RR construction algorithm). LetT : N→ N

+ with T (∆) = Θ(∆) (as in
Lemma 8.5). There is a polynomialq(·, ·, ·) as follows.

LetD be a Reed-Muller domain defined by a finite fieldF, a dimensionm > 4, an encoding
degreed and a decoding degreed′. Let K ⊆ F be a subfield ofF. Let k, N and ∆ be natural
numbers, where1 ≤ k ≤ |F|

2
− T (∆).

We assume that the following conditions hold:

65

• d′ ≥ d · q(k, log d, ∆).

• log kd ≤ mo(1).

There is a Reed-Muller domaiñD with fieldF and the same dimension and encoding degree which
is at mostO(log(k + ∆) + log log d), as well as a(D, k, N)-RM-RR construction algorithm with
structural parameters(size, block, degleft, degright, depth) reducingD 7→ D̃ for size ≤ (N + |Fm|) ·
|F|mo(1) · |K|2m · ∆4, block ≤ poly(k, log d, ∆) · log |F|, degleft = T (∆)4, degright = T (∆)2 and
depth = 2. The algorithm outputs(δmin, lmax)-RM-RRs where

δmin ≤ max

{(
d′k

|F|

)Ω(1)

,

(
d′∆

|F|

)Ω(1)

, mO(1) ·
(

1

|K|

)Ω(1)

, mO(1) ·
(

d′

|F|

)Ω(1)

,

(
1

∆

)Ω(1)
}

andlmax(δ) ≤ 1
δO(1) .

Proof. Let c0 be the global constant from Lemma 9.1. Let us chooseq such that:

d′ ≥ c0(k + 1)d log((k + 1)d) (1)

(q should also satisfy requirement (2) below).

Invoke Lemma 9.1 on the domainD, the subfieldK and the natural numbersk, N and ∆.
Let D1 be the Reed-Muller domain guaranteed in the lemma. The domain D1 has dimension and
encoding degree4 < m1 ≤ c0 log((k + 1)d). Its decoding degree isbd′/((k + 1)d)c. LetAout be
the(D, k, N)-RM-RR construction algorithm with structural parameters
(sizeout, blockout, degleftout, degrightout, depthout) reducingD 7→ D1 for sizeout ≤ (N + |Fm|) ·
|F|O(1) · |K|2m ·∆2, blockout ≤ poly(k, d, ∆) · log |F|, degleftout = T (∆)2, degrightout = T (∆) and
depthout = 1. The algorithm outputs(δmin,out, lmax,out)-RM-RRs for

δmin,out ≤ max

{(
d′k

|F|

)Ω(1)

, mO(1) ·
(

1

|K|

)Ω(1)

+ mO(1) ·
(

d′

|F|

)Ω(1)

,

(
1

∆

)Ω(1)
}

andlmax,out(δ)
.
= 2

δ15 .

We chooseq such that

b d′

(k + 1)d
c ≥ c0(k + T (∆) + 1) ·m1 log((k + T (∆) + 1) ·m1) (2)

Invoke Lemma 9.2 on the domainD1 and the natural numbersk + T (∆), 1 and∆. Let D̃ be the
Reed-Muller domain guaranteed in the lemma. The domainD̃ has the same dimension and encoding
degree which is at mostc0 log((k + T (∆) + 1)m1) = O(log(k + ∆) + log log d). LetAin be the
(D1, k + T (∆), 1)-RM-RPR construction algorithm with structural parameters
(sizein, blockin, degleftin, degrightin, depthin) reducingD1 7→ D̃, for sizein ≤ |F|O(m1) ·∆2, blockin ≤

66

poly(k, log d, ∆) · log |F|, degleftin = T (∆)2, degrightin = T (∆) anddepthin = 1. The algorithm is
uniform in the point association and outputs(δmin,in, lmax,in)-RM-RPRs for

δmin,in ≤ max

{(
d′∆

d |F|

)Ω(1)

, m
O(1)
1 ·

(
d′

kd |F|

)Ω(1)

,

(
1

∆

)Ω(1)
}

andlmax,in(δ)
.
= 2

δ15 .

Apply the composition lemma (Lemma 8.8) onAout andAin. LetA be the(D, k, N)-RM-RR
construction algorithm reducingD 7→ D̃ obtained from the lemma. The algorithmA has structural
parameters(size, block, degleft, degright, depth) for:

• size ≤ sizeout · sizein ≤ (N + |Fm|) · |F|mo(1) · |K|2m ·∆4.

• block = degleftout · blockin ≤ poly(k, log d, ∆) · log |F|.

• degleft = degleftout · degleftin = T (∆)4.

• degright = degrightout · degrightin = T (∆)2.

• depth = depthout + 1 = 2.

The algorithm outputs(δmin, lmax)-RM-RRs where

δmin ≤ max

{(
d′k

|F|

)Ω(1)

,

(
d′∆

|F|

)Ω(1)

, mO(1) ·
(

1

|K|

)Ω(1)

+ mO(1) ·
(

d′

|F|

)Ω(1)

,

(
1

∆

)Ω(1)
}

andlmax(δ) = 1
δO(1) · lmax,out(δ

O(1)) ≤ 1
δO(1) .

9.4 Inner RM�Had-LR Construction Algorithm

The inner RM�Had-LR construction algorithm is obtained from the Had-LR construction in Lemma 8.3
and the transformation to RM�Had-LRs in Lemma 8.7. It is transformed to a construction algorithm
that outputs right regular RM�Had-LRs via the transformation of Lemma 8.5.
Lemma 9.4 (Inner RM�Had-LR construction algorithm). LetD� be an RM�Had domain defined
by a finite fieldF, a dimensionm, an encoding degreed, a decoding degreed′ and a prime subfield
L, where the extension degree isτ = [F : L]. SetM

.
=
(

m+d
m

)
. Let 1 ≤ k ≤ M · τ − 2 andN be

natural numbers. Let∆ be a natural number.

There is a(D�, k, N)-RM�Had-LR construction algorithm with structural parameters
(size, block, degleft, degright) for size ≤ N · |F|O(M) ·∆, block ≤ O(k) · log |L|, degleft ≤ ∆ · |L|O(k)

anddegright ≤ O(∆). The algorithm is uniform in the tuple association and in theencoding and list

decoding and outputs right regular(δmin, lmax)-RM�Had-LRs forδmin ≤ max
{

(1
|L|

)Ω(1), (1
∆

)Ω(1)
}

andlmax(δ) ≤ 1
δO(1) .

67

Proof. The algorithm is obtained as follows:

1. Generation of Had-LRs. Let H be the Hadamard domain defined by the fieldL and the
dimensionM · τ . Let A1 be the(H, k, N)-Had-LR construction algorithm guaranteed by
Lemma 8.3. The algorithmA1 has structural parameters(size1, block1, degleft1, degright1) for
size1 ≤ N · |F|O(M), block1 ≤ O(k) · log |L|, degleft1 ≤ |L|O(k) anddegright1 ≤ N · |F|O(M).
The algorithm is uniform in the tuple association and in the encoding and list decoding. It

outputs(δmin,1, lmax,1)-Had-LRs forδmin,1
.
= 2 6

√
1
|L|

andlmax,1(δ)
.
= 2

δ3 . The right degrees of

the vertices in the output do not depend on the input to the algorithm.

2. Transformation to RM �Had-LRs. Invoke Lemma 8.7 onA1 to obtain a(D�, k, N)-RM�Had-
LR construction algorithmA2. The algorithmA2 has structural parameters
(size2, block2, degleft2, degright2) for size2 ≤ N · |F|O(M), block2 ≤ O(k) · log |L|, degleft2 ≤
|L|O(k) anddegright2 ≤ N · |F|O(M). The algorithm is uniform in the tuple association and in

the encoding and list decoding. It outputs(δmin,2, lmax,2)-RM�Had-LRs forδmin,2
.
= 2 6

√
1
|L|

andlmax,2(δ)
.
= 2

δ3 . The right degrees of the vertices in the output do not dependon the input
to the algorithm.

3. Right degree reduction. Invoke Lemma 8.5 (2) onA2 to obtain a(D�, k, N)-RM�Had-LR
construction algorithmA3 that outputs right regular RM�Had-LRs. The algorithmA3 has
structural parameters(size3, block3, degleft3, degright3) for size3 ≤ N · |F|O(M) ·∆, block3 ≤
O(k) · log |L|, degleft3 ≤ ∆ · |L|O(k) anddegright3 ≤ O(∆). The algorithm is uniform in the
tuple association and in the encoding and list decoding. It outputs(δmin,3, lmax,3)-RM�Had-

LRs for δmin,3 ≤ max
{

(1
|L|

)Ω(1), (1
∆

)Ω(1)
}

andlmax,3(δ) ≤ 1
δO(1) .

9.5 Composition of The RM-RR and RM�Had-LR Construction Algorithms

Composing the composed RM-RR construction algorithm of Lemma 9.3 with the inner RM�Had-
LR construction algorithm of Lemma 9.4 we get the following:
Lemma 9.5 (Final RM�Had-LR construction algorithm). LetT : N → N

+ with T (∆) = Θ(∆)
(as in Lemma 8.5). Letq(·, ·, ·) be the polynomial from Lemma 9.3.

Let D� be an RM�Had domain defined by a finite fieldF, a dimensionm > 4, an encoding
degreed, a decoding degreed′ and a prime subfieldL ⊆ F. LetK ⊆ F be a subfield ofF. Letk, N
and∆ be natural numbers, where1 ≤ k ≤ |F|

2
− T (∆).

We assume that the following conditions hold:

• d′ ≥ d · q(k, log d, ∆).

• log kd ≤ mo(1).

68

There is a(D�, k, N)-construction algorithm with structural parameters(size, block, degleft, degright)

for size ≤ (N + |Fm|) · |F|mo(1)+poly(k,∆,log d) · |K|2m, block ≤ ∆O(1) · k · log |L|, degleft ≤ |L|∆O(1)·k,
degright ≤ ∆O(1). The algorithm outputs left and right regular(δmin, lmax)-edge reading bipartite
locally decode/reject codes, where

δmin ≤ max

{(
1

|L|

)Ω(1)

, mO(1) ·
(

d′k∆

|F|

)Ω(1)

, mO(1) ·
(

1

|K|

)Ω(1)

,

(
1

∆

)Ω(1)
}

andlmax(δ) ≤ 1
δO(1) .

Proof. LetD be the Reed-Muller domain associated withD�. Invoke Lemma 9.3 on the domainD,
the subfieldK and the natural numbersk, N and∆, to obtain a Reed-Muller domainD1 with field
F and dimension and encoding degreew = O(log(k+∆)+log log d), as well as a(D, k, N)-RM-RR
construction algorithmAout with structural parameters(sizeout, blockout, degleftout, degrightout, depthout)

reducingD 7→ D1 for sizeout ≤ (N + |Fm|) · |F|mo(1) · |K|2m · ∆4, blockout ≤ poly(k, log d, ∆) ·
log |F|, degleftout = T (∆)4, degrightout = T (∆)2 and depthout = 2. The algorithm outputs
(δmin,out, lmax,out)-RM-RRs where

δmin,out ≤ max

{(
d′k

|F|

)Ω(1)

,

(
d′∆

|F|

)Ω(1)

, mO(1) ·
(

1

|K|

)Ω(1)

, mO(1) ·
(

d′

|F|

)Ω(1)

,

(
1

∆

)Ω(1)
}

andlmax,out(δ) ≤ 1
δO(1) .

Let D�
1 be the RM�Had domain associated withD1 for the subfieldL. Denoteτ = [F : L].

Denotek′ .
= degleftout ·k+depthout+1. Let us assume without loss of generality thatk′ ≤

(
2w
w

)
·τ−2

and thatw > 2 (so, in particular, the decoding degree ofD1 is larger than2).

Invoke Lemma 9.4 on the domainD�
1 and the natural numbersk′ and|F|w+1 to obtain a(D�

1, k
′, |F|w+1)-

RM�Had-LR construction algorithmAin with structural parameters(sizein, blockin, degleftin, degrightin)

for sizein ≤ |F|poly(k,∆,log d), blockin ≤ ∆O(1) · k · log |L|, degleftin ≤ ∆ · |L|∆O(1)·k anddegrightin ≤
O(∆). The algorithm is uniform in the tuple association and in theencoding and list decoding, and

outputs right regular(δmin,in, lmax,in)-RM�Had-LRs whereδmin,in ≤ max
{

(1
|L|

)Ω(1), (1
∆

)Ω(1)
}

and

lmax,in(δ) ≤ 1
δO(1) .

Apply Lemma 8.9 on the outer algorithmAout and the inner algorithmAin to obtain a(D�, k, N)-
construction algorithmA with structural parameters(size, block, degleft, degright) for size ≤ (N +

|Fm|)·|F|mo(1)+poly(k,∆,log d) ·|K|2m, block ≤ ∆O(1) ·k ·log |L|, degleft ≤ |L|∆O(1)·k, degright ≤ ∆O(1).
The algorithm outputs left and right regular(δmin, lmax)-edge reading bipartite locally decode/reject
codes, where

δmin ≤ max

{(
1

|L|

)Ω(1)

, mO(1) ·
(

d′k∆

|F|

)Ω(1)

, mO(1) ·
(

1

|K|

)Ω(1)

,

(
1

∆

)Ω(1)
}

andlmax(δ) ≤ 1
δO(1) .

69

9.6 Setting Parameters

In this section we construct the bipartite locally decode/reject code we want:
Corollary 17 (Edge reading bipartite locally decode/reject code). Let n be a natural number.
Let D be the domain associated with the set of binary strings{0, 1}n. There exists a constant
0 < α < 1

2
such that the following holds. Letk andN be natural numbers such thatk ≤ (log n)α.

Let 1
(log n)α ≤ ε < 1. Then, for every collection ofk-tuples

〈i1,1, . . . , i1,k〉, . . . , 〈iN,1, . . . , iN,k〉 ∈ [n]k

there is a (left and right) regular(δmin, lmax)-bipartite locally decode/reject code, whereδmin ≤ ε
andlmax(δ) ≤ δ−O(1). The size of the code is(N + n) · no(1) and the block length isk · poly(1

ε
). The

left degree is at most2k·poly(1
ε
). The right degree is at mostpoly(1

ε
). Moreover, the alphabet of the

right vertices is of sizepoly(1
ε
).

Proof. We will choose a constant0 < α < 1
2

later. Let us choose the parameters of the RM�Had
code we will use with respect toα. In all that follows we omit ceil and floor notation when we refer
to natural numbers in order to ease the reading.

Let h
.
= 2(log n)α

andm
.
= (log n)1−α so thathm ≥ n. Assume without loss of generality that

m > 4. Let d
.
= (h− 1)m. Setd′ .

= d · q(k, log d, ∆) whereq is as in Lemma 9.5.

Set∆ ≤ (1
ε
)O(1) large enough so that the term

(
1
∆

)Ω(1)
appearing in the expression forδmin in

Lemma 9.5 is at mostε. Let L = GF (p) wherep ≤ (1
ε
)O(1) is a prime number which is large

enough so the term(1
|L|

)Ω(1) appearing in the expression forδmin in Lemma 9.5 is at mostε. Let

K = GF (pg1) whereg1 is large enough so that the termmO(1) ·
(

1
|K|

)Ω(1)

appearing in the expression

for δmin in Lemma 9.5 is at mostε. Let F
.
= GF (pg1·g2) whereg2 is large enough so that the term

mO(1) ·
(

d′k∆
|F|

)Ω(1)

appearing in the expression forδmin in Lemma 9.5 is at mostε andk ≤ |F|
2
−T (∆)

(whereT is as in Lemma 9.5). Denoteτ = g1 · g2. Let D� = 〈Fm × L
τ , L,D�

enc,D�
dec〉 be the

determined RM�Had domain. Note that we can do all the above and have:

• m ≤ (log n)1−α

• d ≤ d′ ≤ 2(log n)α+O(log log n)

• |F| ≤ 2(log n)α+O(log log n)

• |K| ≤ 2O(log log n)

• |L| , ∆ ≤ poly(1
ε
)

From Lemma 9.5 we get a construction algorithmAwith structural parameters(size, block, degleft, degright)
for:

70

• size ≤ (N + n) · no(1) · 2(log n)O(α)

• block ≤ k · poly(1
ε
)

• degleft ≤ 2k·poly(1
ε
)

• degright ≤ poly(1
ε
)

Let us chooseα so that the2(log n)O(α)
term appearing in the expression for the size isno(1).

The construction algorithm outputs left and right regular(δmin, lmax)-edge reading bipartite lo-
cally decode/reject codes, forδmin ≤ ε andlmax(δ) ≤ δ−O(1). Looking into the construction reveals
that the alphabet of the right vertices isL.

Fix a setH ⊆ F of size|H| = h such thatHm ⊆ F
m and|Hm| ≥ n. Pick an arbitrary vector

~α ∈ L
τ . Let us identify[n] with distinct elements〈~x, ~α〉 ∈ Hm × L

τ . Let us consider the encoding
of {0, 1}n that sends stringsx ∈ {0, 1}n to codewordsf ∈ D�

enc such that for everyi ∈ [n] we have
f(i) = xi. Note that this is possible by our choice ofd.

Given a collection of sizeN of k-tuples

〈i1,1, . . . , i1,k〉, . . . , 〈iN,1, . . . , iN,k〉 ∈ [n]k

we invokeA on the corresponding collection ofk-tuples inF
m × L

τ to obtain the bipartite locally
decode/reject code we want.

10 Construction of RM-LRs and RM-LPRs

In this section we present algorithms for constructing RM-LPRs and RM-LRs proving Lemma 8.1
and Lemma 8.2. The idea of the construction algorithms is to create a bipartite graph, in which
sideA corresponds to low degree manifolds inF

m, each passing through an input tuple, and sideB
consists of all the points inFm. This way eachA vertex has a tuple that is associated with it, and
eachB vertex has a point that is associated with it. We put edges betweenA vertices corresponding
to manifolds andB vertices corresponding to points on them. Assignments toA vertices naturally
project onto assignments to their neighboringB vertices.

A correct encoding of a polynomialQ : F
m → F assigns eachB vertex the value ofQ on the

point associated with theB vertex, and assigns eachA vertex the restriction ofQ to the manifold
associated with theA vertex. This way eachA vertex can evaluateQ on the tuple associated with it,
and eachB vertex can evaluateQ on the point associated with it. Note that the restriction ofQ to
any manifold of a low degree is a polynomial of low degree.

To show that the construction has a list decoding property, we use alow degree testingtheorem
for sub-constant error. Specifically, we use the low degree testing theorem of [27], and choose the
manifolds through the input tuples as to satisfy the conditions of this theorem. The advantage of

71

the theorem of [27] is that it can be used (together with an additional idea from [26]) to yield con-
structions of small size, as required in Lemma 8.2. For Lemma8.1 that does not require particularly
small size, we could have used other low degree testing theorems as well [3, 30].

10.1 A Low Degree Testing Theorem

We specify the variant of the low degree testing theorem of [27] we use. Details on the relation
between this variant and the original test of [27] can be found in Appendix B.

The Randomness-Efficient Subspace vs. Point test.Let F be a finite field. Letm andd′ be
natural numbers, where degree at mostd′ is considered “low degree”. LetK be a subfield ofF.

Fix a functionf : F
m → F we wish to test. Iff were a polynomial of degree at mostd′, then for

any~z, ~y1, ~y2 ∈ F
m, the functionp(t0, t1, t2) = f(t0~z + t1~y1 + t2~y2) would have been a polynomial

in three variables of degree at mostd′ overF.

Assume access to an oracleA whose goal is to convince us thatf is of degree at mostd′. For
every~z ∈ F

m and~y1, ~y2 ∈ K
m, the oracleA provides a three-variate polynomial of degree at most

d′, which is supposedlyp(t0, t1, t2). The oracleA may be probabilistic, meaning that its answer
may depend not only on~z, ~y1, ~y2, but also on additional randomness.

A test for checking thatf is consistent with a polynomial of degree at mostd′ is described in
Figure 8.

LDT f,A :

1. Pick uniformly at random three vectors〈~z, ~y1, ~y2〉 ∈ F
m × K

m × K
m. Using the oracle

access toA, obtain a three-variate polynomialp∗(t0, t1, t2) overF of degree at mostd′

for 〈~z, ~y1, ~y2〉 [p∗ is supposedly the restrictionp(t0, t1, t2) = f(t0~z + t1~y1 + t2~y2)] .

2. Pick uniformly at randomt0 6= 0, t1, t2 ∈ F. Set~z0 = t0~z + t1~y1 + t2~y2. If indeed
p∗(t0, t1, t2) = f(~z0), accept. Otherwise,reject.

Figure 8: Randomness-Efficient Subspace vs. Point Low Degree Tester
This test is similar to the test in [27]. The following follows from a slight strengthening of the

statement of [27] appearing in [26] (see Appendix B):

Theorem 18 (Analysis of low degree test, [27, 26]).For δ ≥ m
(

8

√
1
|K|

+ 4

√
md′

|F|

)
, for any function

f : F
m → F, there arel ≤ 2

δ
polynomialsQ1, . . . , Ql : F

m → F of degree at mostd′, such
that for any oracleA the following holds: the probability, over the randomness of A and over
the randomness of the tester, thatLDT f,A accepts, althoughf(~z0) /∈ {Q1(~z0), . . . , Ql(~z0)} (where
~z0 ∈ F

m is picked by the tester; see Figure 8), is at mostO(δ).

72

10.2 The Manifold vs. Point RM-LPR Construction Algorithm

The purpose of this section is to prove Lemma 8.1. We describean RM-LPR construction algo-
rithm that is uniform in the point association, called the Manifold vs. Point RM-LPR construction
algorithm. We specify the properties of the algorithm in Subsection 10.2.1 and analyze it in Subsec-
tion 10.2.2.

The description of the algorithm will start with specifyingthe uniform part of the construction
(i.e., the part that is common to all outputs of the algorithm), and proceed by presenting the compo-
nents that are input-specific.
Construction 1 (Manifold vs. Point RM-LPR algorithm). We use the notation and assume the
restrictions appearing in Lemma 8.1.

We define a uniform structure and uniform point association as follows:

A vertices. The vertex setA consists of quadruplets〈i, ~x, ~y1, ~y2〉 for i ∈ [N] (indicating an input
tuple) and~x, ~y1, ~y2 ∈ F

m (needed for the low degree test). We setV
.
= A (for left evaluators) and

Ω
.
= F

w (recall that we setw
.
= 4).

B vertices. The vertex setB consists of all points~x ∈ F
m. For everyb ∈ B, we setpnt(b)

.
= b.

Alphabets. The alphabetΣA is the domainD̃ defined by the finite fieldF, the dimensionw, the
encoding degree(k + 1) · d and the decoding degreed′. The alphabetΣB is the domain associated
with the setF. Let us denoteΣA = 〈Fw, F, ΣA,enc, ΣA,dec〉 andΣB = 〈{1}, F, ΣB,enc, ΣB,dec〉.

Given as input a collection of sizeN of k-tuples:

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

The construction algorithm constructs an RM-LPR

G = 〈(A, B, E), V, Ω, ΣA, ΣB, sat
.≡ true, label, proj, tup, eval, pnt, evalp〉

for thek-tuples as follows:

AssociatingA vertices with manifolds. A vertexa = 〈i, ~x, ~y1, ~y2〉 ∈ A is associated with thei’th
input tupletup(a)

.
= 〈~xi,1, . . . , ~xi,k〉, and corresponds to a manifold through thei’th tuple defined

as follows. Fix arbitrarilyk + 1 different scalars in the fieldq1, . . . , qk, qk+1 ∈ F. Letci,~x : F→ F
m

denote the single curve of degreek that goes through~xi,1, . . . , ~xi,k and~x at q1, . . . , qk, qk+1:

ci,~x(q1) = ~xi,1, . . . , ci,~x(qk) = ~xi,k, ci,~x(qk+1) = ~x

The vertexa is associated with the manifold of degree at mostk + 1

µa(t, t0, t1, t2) = t0 · ci,~x(t) + t1 · ~y1 + t2 · ~y2

where we also denoteµa
.
= {µa(t, t0, t1, t2) | t, t0, t1, t2 ∈ F}. Note that eachi ∈ [N] has the same

number ofa ∈ A with tup(a) = 〈~xi,1, . . . , ~xi,k〉.

73

Edges. We connect every vertexa = 〈i, ~x, ~y1, ~y2〉 ∈ A to points inB that are on the manifold
µa. The choice of the points is done as to match the low degree test in Subsection 10.1: for every
t ∈ F \ {q1, . . . , qk} andt0 6= 0, t1, t2 ∈ F, there is an edgee = (a, b) ∈ E connectinga to the point
b = t0 · ci,~x(t) + t1 · ~y1 + t2 · ~y2 ∈ F

m onµa. We setlabel(e)
.
= (t, t0, t1, t2) ∈ Ω.

Projection. For every vertexa ∈ A, assignmentσa ∈ ΣA,dec (which is aw-variate polynomial
over the fieldF) and labelξ ∈ Ω (which is a point inF

w), we letproj(a, σa, ξ) be the element in
ΣB,enc = ΣB,dec corresponding to the field elementσa(ξ).

Point evaluation. For every vertexb ∈ B and assignmentσb ∈ ΣB,dec, we letevalp(b, σb) be the
field element corresponding toσb.

Tuple evaluation. Denote~p1
.
= (q1, 1, 0, 0), . . . , ~pk

.
= (qk, 1, 0, 0) ∈ F

w. For every vertexa ∈ A,
the tupletup(a) is on the manifoldµa in positions~p1, . . . , ~pk, i.e., tup(a) = 〈µa(~p1), . . . , µa(~pk)〉.
For every vertexa ∈ A and assignmentσa ∈ ΣA,dec (which is a polynomial on the manifoldµa),
the evaluation ofa on its tuple is given by the evaluation ofσa on the points~p1, . . . , ~pk, i.e., we let
eval(a, σa)

.
= 〈σa(~p1), . . . , σa(~pk)〉.

10.2.1 Properties of The Manifold vs. Point RM-LPR Construction Algorithm

Note that the algorithm is uniform in the point association.Additionally, the algorithm is efficient,
and runs in time polynomial in|Fm| andN .

• Size.On all inputs, the output is of sizesize = N ·|F|3m+|Fm|+N ·|F|3m·|F|O(1) = N ·|F|O(m).

• Block length.On all inputs, the output has block lengthblock = log |ΣA,enc| = poly(k, d) ·
log |F|, since the number of monomials in a polynomial withO(1) variables of degree at most
(k + 1)d is poly(k, d), and for polynomials over a fieldF, there are|F| possible coefficients
for each monomial.

• Left degree.On all inputs, the output is left regular with left degreedegleft = (|F|−k) · (|F|−
1) · |F|2 = |F|O(1).

• Right degree.On all inputs, the output is right regular, and its right degree isdegright =
|A|
|B|
·degleft = N ·|F|O(m). To see why right regularity holds, notice that the distribution induced

on B by picking uniformly and independently at random a vertexa ∈ A and a neighbor of
a in the output graph, is uniform: this is the distribution defined onF

m by picking uniformly
and independently at randomi ∈ [N], ~x, ~y1, ~y2 ∈ F

m, t ∈ F \ {q1, . . . , qk}, t0 6= 0, t1, t2 ∈ F,
and computingt0 · ci,~x(t) + t1 · ~y1 + t2 · ~y2. By definition of the curvesci,~x, for everyi ∈ [N],
for any t ∈ F \ {q1, . . . , qk}, for a uniformly distributed~x ∈ F

m, we have thatci,~x(t) is
uniform in F

m. Hence, for anyt0 6= 0, t1, t2 ∈ F and any~y1, ~y2 ∈ F
m, the distribution of

t0 · ci,~x(t) + t1 · ~y1 + t2 · ~y2 is uniform onF
m.

74

10.2.2 Analysis of The Manifold vs. Point RM-LPR Algorithm. Completing The Proof of
Lemma 8.1

To complete the proof of Lemma 8.1 it remains to prove that thealgorithm outputs(δmin, lmax)-RM-
LPRs for theδmin andlmax stated in the lemma.

Fix an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

Denote the output of the algorithm by

G = 〈(A, B, E), V, Ω, ΣA, ΣB, sat
.≡ true, label, proj, tup, eval, pnt, evalp〉

Let us prove encoding and list decoding:

For a functionf : F
m → F and a vertexa = 〈i, ~x, ~y1, ~y2〉 ∈ A, let the restriction off to µa be

f|µa
: F

w → F defined by assigning every(t, t0, t1, t2) ∈ F
w

f|µa
(t, t0, t1, t2)

.
= f(t0 · ci,~x(t) + t1 · ~y1 + t2 · ~y2)

DenoteD = 〈Fm, F,Denc,Ddec〉.

Encoding. Assume a polynomialf ∈ Denc. For every vertexb ∈ B, takeCB(b) to be the element
in ΣB,enc corresponding tof(b). Define an assignmentCA : A → ΣA,enc by letting every vertex
a ∈ A be assignedCA(a)

.≡ f|µa
∈ ΣA,enc. Note that bothCA, CB can be constructed efficiently

givenf , and that every edgee ∈ E is satisfied and readsf in G underCA andCB.

List Decoding. Fix an assignmentCB : B → ΣB,dec. Fix a realδ such thatδmin ≤ δ < 1.

Invoke the low degree testing theorem given in Theorem 18 (whereK = F) for the function
fB : F

m → F defined for every~x ∈ F
m by letting fB(~x) be the field element corresponding to

CB(~x). Let f1, . . . , fl ∈ Ddec be thel ≤ lmax(δ) polynomials guaranteed by the theorem.

Fix an assignmentCA : A→ ΣA,dec.
Proposition 10.0.1.When picking uniformly and independently at random a vertexa ∈ A and an
edge coming out of ite = (a, b) ∈ E, the probability thate is satisfied inG underCA, CB, although
fB(b) /∈ {f1(b), . . . , fl(b)} is at mostO(δ).

Proof. There is a probabilistic oracleA, such that picking uniformly at random a vertexa ∈ A and
an edge coming out of ite = (a, b) ∈ E and checking whethere is satisfied inG underCA andCB is
equivalent to performingLDT fB ,A for the oracleA. To see this, considerLDT fB ,A when replacing
its step 1 by the following procedure (that implicitly defines the oracleA):

• Pick uniformly at random a vertexa = 〈i, ~x, ~y1, ~y2〉 ∈ A.

75

• Pick uniformly at random a scalart ∈ F \ {q1, . . . , qk}.

• Output the three vectors〈~z .
= ci,~x(t), ~y1, ~y2〉 together with the polynomialp∗(t0, t1, t2)

.
=

CA(a)(t, t0, t1, t2) of degree at mostd′.

For everyt ∈ F \ {q1, . . . , qk}, for a uniformly distributed~x ∈ F
m, the distribution of the point

ci,~x(t) is uniform inF
m. Hence, the distribution of〈~z .

= ci,~x(t), ~y1, ~y2〉 is uniform inF
m×F

m×F
m.

The lemma follows from Theorem 18 forK = F.

[of Proposition 10.0.1]
Proposition 10.0.2.Let a ∈ A such thatCA(a) /∈

{
f1|µa

, . . . , fl|µa

}
. When picking uniformly at

random an edge coming out ofa, e = (a, b) ∈ E, the probability thate is satisfied inG under
CA, CB andfB(b) ∈ {f1(b), . . . , fl(b)} is at mostO(δ).

Proof. Write a = 〈i, ~x, ~y1, ~y2〉. For everyj ∈ [l], the polynomialsCA(a) andfj|µa
aredifferent

w-variate polynomials of degree at most(k + 1) · d′ overF. Thus, by the Schwartz-Zippel lemma,
they can agree on at most a fraction of(k+1)·d′

|F|
of the points inF

w. Hence,CA(a)(t, t0, t1, t2) ∈{
f1|µa

(t, t0, t1, t2), . . . , fl|µa
(t, t0, t1, t2)

}
for at most a fraction of2

δ
· (k+1)·d′

|F|
of the scalarst, t0, t1, t2 ∈

F.

By construction, picking uniformly an edge coming out ofa is equivalent to picking uniformly
and independently at randomt ∈ F \ {q1, . . . , qk}, t0 6= 0, t1, t2 ∈ F and takinge = (a, b) ∈ E for
b = t0ci,~x(t)+t1~y1+t2~y2. Moreover, whenevere = (a, b) is satisfied inG underCA, CB andfB(b) ∈
{f1(b), . . . , fl(b)}, it follows thatCA(a)(t, t0, t1, t2) = fB(b) ∈

{
f1|µa(t, t0, t1, t2), . . . , fl|µa(t, t0, t1, t2)

}
.

We conclude that, when picking uniformly at random an edge coming out ofa, e = (a, b) ∈ E,
the probability thate is satisfied inG underCA, CB and fB(b) ∈ {f1(b), . . . , fl(b)} is at most
2
δ
· (k+1)·d′

|F|−k
· |F|
|F|−1

= O(δ) (for δ ≥
√

d′·(k+1)
|F|−k

). [of Proposition 10.0.2]

By Proposition 10.0.1 and Proposition 10.0.2 and using left-regularity, when picking uniformly
at random an edgee = (a, b) ∈ E, the probability thate is satisfied inG underCA, CB, although
CA(a) /∈

{
f1|µa

, . . . , fl|µa

}
is at mostO(δ). The list decoding property follows noticing that when

the edgee is satisfied inG underCA andCB, andCA(a) ∈
{
f1|µa , . . . , fl|µa

}
, we have thate reads

one off1, . . . , fl in G underCA, CB.

This concludes the proof of Lemma 8.1.

10.3 The Manifold vs. Point RM-LR Construction Algorithm

The purpose of this section is to prove Lemma 8.2. We describean RM-LR construction algorithm,
called the Manifold vs. Point RM-LR construction algorithm. The algorithm is along the same lines
as the Manifold vs. Point RM-LPR construction algorithm. The difference between the two comes
from savings in the size parameter of the RM-LR algorithm. These savings are obtained by reducing
the number of manifolds using ideas from [27, 26].

We will need the following lemma from [26]:

76

Lemma 10.1 (Balancing curves, Lemma 7.1 in [26]).For a finite fieldF, a natural numberm,
natural numbersN andk < |F|, an accuracy parameter0 < ε < 1 and a collection of sizeN of
k-tuples:

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

there is an algorithm that runs in time polynomial in|Fm|, N and 1
ε
, and constructsN · C curves

c1,1, . . . , cN,C : F → F
m of degree at mostk, whereC

.
= d |Fm|

ε2N
e (i.e., there are at mostN + |Fm|

ε2

curves). The curves have the following properties for fixed (distinct) scalarsq1, . . . , qk ∈ F:

1. (“Curves pass through given points”) For everyi ∈ [N], j ∈ [C], ci,j(q1) = ~xi,1, . . . , ci,j(qk) =
~xi,k.

2. (“Curves coverFm almost uniformly”) The probability distribution induced on F
m by picking

uniformly and independently at randomi ∈ [N], j ∈ [C] and t ∈ F \ {q1, . . . , qk}, and
computingci,j(t) is ε-close in thel1-norm to uniform overFm.

The presentation of the RM-LR algorithm and its analysis closely follow the presentation of the
RM-LPR algorithm.
Construction 2 (Manifold vs. Point RM-LR algorithm). We use the notation and assume the
restrictions appearing in Lemma 8.2.

Given as input a collection of sizeN of k-tuples:

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

The construction algorithm constructs an RM-LR

G = 〈(A, B, E), V, Ω, ΣA, ΣB, sat
.≡ true, label, proj, tup, eval〉

for thek-tuples as follows:

A vertices. Setε
.
= 1

|F|
andC

.
= d |Fm|

ε2N
e as in Lemma 10.1. The vertex setA consists of quadruplets

〈i, j, ~y1, ~y2〉 for i ∈ [N] (indicating an input tuple),j ∈ [C] (indicating a curve through the input
tuple) and~y1, ~y2 ∈ K

m (needed for the low degree test). We setV
.
= A (for left evaluators) and

Ω
.
= F

w (recall that we setw
.
= 4).

B vertices. The vertex setB consists of all points~x ∈ F
m.

Alphabets. The alphabetΣA is the domainD̃ defined by the finite fieldF, the dimensionw, the
encoding degree(k + 1) · d and the decoding degreed′. The alphabetΣB is the domain associated
with the setF. Let us denoteΣA = 〈Fw, F, ΣA,enc, ΣA,dec〉 andΣB = 〈{1}, F, ΣB,enc, ΣB,dec〉.

77

AssociatingA vertices with manifolds. Invoke the algorithm from Lemma 10.1 onF, m, N , k,
ε and the collection〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k. Let c1,1, . . . , cN,C : F → F

m

denote the curves outputted by the algorithm.

A vertexa = 〈i, j, ~y1, ~y2〉 ∈ A is associated with thei’th input tupletup(a)
.
= 〈~xi,1, . . . , ~xi,k〉,

and corresponds to a manifold of degree at mostk + 1 through thei’th tuple defined as follows

µa(t, t0, t1, t2) = t0 · ci,j(t) + t1 · ~y1 + t2 · ~y2

where we also denoteµa
.
= {µa(t, t0, t1, t2) | t, t0, t1, t2 ∈ F}. Note that eachi ∈ [N] has the same

number ofa ∈ A with tup(a) = 〈~xi,1, . . . , ~xi,k〉.

Edges. We connect every vertexa = 〈i, j, ~y1, ~y2〉 ∈ A to points inB that are on the manifold
µa. The choice of the points is done as to match the low degree test in Subsection 10.1: for every
t ∈ F \ {q1, . . . , qk} andt0 6= 0, t1, t2 ∈ F, there is an edgee = (a, b) ∈ E connectinga to the point
b = t0 · ci,j(t) + t1 · ~y1 + t2 · ~y2 ∈ F

m onµa. We setlabel(e)
.
= (t, t0, t1, t2) ∈ Ω.

Projection. For every vertexa ∈ A, assignmentσa ∈ ΣA,dec (which is aw-variate polynomial
over the fieldF) and labelξ ∈ Ω (which is a point inF

w), we letproj(a, σa, ξ) be the element in
ΣB,enc = ΣB,dec corresponding to the field elementσa(ξ).

Tuple evaluation. Denote~p1
.
= (q1, 1, 0, 0), . . . , ~pk

.
= (qk, 1, 0, 0) ∈ F

w. For every vertexa ∈ A,
the tupletup(a) is on the manifoldµa in positions~p1, . . . , ~pk, i.e., tup(a) = 〈µa(~p1), . . . , µa(~pk)〉.
For every vertexa ∈ A and assignmentσa ∈ ΣA,dec (which is a polynomial on the manifoldµa),
the evaluation ofa on its tuple is given by the evaluation ofσa on the points~p1, . . . , ~pk, i.e., we let
eval(a, σa)

.
= 〈σa(~p1), . . . , σa(~pk)〉.

10.3.1 Properties of The Manifold vs. Point RM-LR Construction Algorithm

The algorithm is efficient, and runs in time polynomial in|Fm| andN .

• Size.On all inputs, the output is of sizesize = N ·C · |Km|2 + |Fm|+N ·C · |Km|2 · |F|O(1) =

(N + |Fm|) · |F|O(1) · |K|2m.

• Block length.On all inputs, the output has block lengthblock = poly(k, d) · log |F|.

• Left degree.On all inputs, the output is left regular with left degreedegleft ≤ |F|O(1).

• Right degree.The output is not necessarily right regular. We bounddegright ≤ (N + |Fm|) ·
|F|O(1) · |K|2m.

78

10.3.2 Analysis of The Manifold vs. Point RM-LR Algorithm. Completing The Proof of
Lemma 8.2

To complete the proof of Lemma 8.2 it remains to prove that thealgorithm outputs(δmin, lmax)-RM-
LRs for theδmin andlmax stated in the lemma.

Fix an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

Denote the output of the algorithm by

G = 〈(A, B, E), V, Ω, ΣA, ΣB, sat
.≡ true, label, proj, tup, eval〉

Let us prove encoding and list decoding:

For a functionf : F
m → F and a vertexa = 〈i, j, ~y1, ~y2〉 ∈ A, let the restriction off to µa be

f|µa
: F

w → F defined by assigning every(t, t0, t1, t2) ∈ F
w

f|µa
(t, t0, t1, t2)

.
= f(t0 · ci,j(t) + t1 · ~y1 + t2 · ~y2)

DenoteD = 〈Fm, F,Denc,Ddec〉.

Encoding. Assume a polynomialf ∈ Denc. For every vertexb ∈ B, takeCB(b) to be the element
in ΣB,enc corresponding tof(b). Define an assignmentCA : A → ΣA,enc by letting every vertex
a ∈ A be assignedCA(a)

.≡ f|µa
∈ ΣA,enc. Note that bothCA, CB can be constructed efficiently

givenf , and that every edgee ∈ E is satisfied and readsf in G underCA andCB.

List Decoding. Fix an assignmentCB : B → ΣB,dec. Fix a realδ such thatδmin ≤ δ < 1.

Invoke the low degree testing theorem given in Theorem 18 forthe functionfB : F
m → F defined

for every~x ∈ F
m by lettingfB(~x) be the field element corresponding toCB(~x). Let f1, . . . , fl ∈

Ddec be thel ≤ lmax(δ) polynomials guaranteed by the theorem.

Fix an assignmentCA : A→ ΣA,dec.
Proposition 10.1.1.When picking uniformly and independently at random a vertexa ∈ A and an
edge coming out of ite = (a, b) ∈ E, the probability thate is satisfied inG underCA, CB, although
fB(b) /∈ {f1(b), . . . , fl(b)} is at mostO(δ).

Proof. ConsiderLDT fB ,A when replacing its step 1 by the following procedure (that implicitly
defines the oracleA):

• Pick uniformly at random a vertexa = 〈i, j, ~y1, ~y2〉 ∈ A.

• Pick uniformly at random a scalart ∈ F \ {q1, . . . , qk}.

79

• Output the three vectors〈~z .
= ci,j(t), ~y1, ~y2〉 together with the polynomialp∗(t0, t1, t2)

.
=

CA(a)(t, t0, t1, t2) of degree at mostd′.

By the properties of the curvesci,j, the distribution of the pointci,j(t) is ε-close (in thel1-norm) to
uniform onF

m. Hence, the distribution of〈~z .
= ci,j(t), ~y1, ~y2〉 is ε-close (in thel1-norm) to uniform

onF
m ×K

m ×K
m. The lemma follows from Theorem 18 noticing thatε ≤ δ.

[of Proposition 10.1.1]

Similarly to Proposition 10.0.2, relying on the low degree of the curves, we have the following:
Proposition 10.1.2.Let a ∈ A such thatCA(a) /∈

{
f1|µa

, . . . , fl|µa

}
. When picking uniformly at

random an edge coming out ofa, e = (a, b) ∈ E, the probability thate is satisfied inG under
CA, CB andfB(b) ∈ {f1(b), . . . , fl(b)} is at mostO(δ).

By Proposition 10.1.1 and Proposition 10.1.2 and using left-regularity, when picking uniformly
at random an edgee = (a, b) ∈ E, the probability thate is satisfied inG underCA, CB, although
CA(a) /∈

{
f1|µa

, . . . , fl|µa

}
is at mostO(δ). The list decoding property follows noticing that when

CA(a) ∈
{
f1|µa , . . . , fl|µa

}
, we have thate reads one off1, . . . , fl in G underCA, CB.

This concludes the proof of Lemma 8.2.

11 Construction of Hadamard Left Readers

In this section we present an algorithm for constructing Had-LRs proving Lemma 8.3. The idea
of the construction algorithm is to create a bipartite graph, in which sideA corresponds to low
dimensional linear subspaces inF

m, each passing through an input tuple, and sideB consists of
points inF

m. This way eachA vertex has a tuple that is associated with it. We put edges betweenA
vertices corresponding to subspaces andB vertices corresponding to points on them. Assignments
to A vertices naturally project onto assignments to their neighboringB vertices.

A correct encoding of a linear functionL : F
m → F assignsL to the points inB, and assigns

the restrictions ofL to the subspaces to theA vertices. This way eachA vertex can evaluateL on
the tuple associated with it. Note that the restriction ofL to any linear subspace is a linear function.

To show that the construction has a list decoding property, we use alinearity testingtheorem for
large finite fields. The linearity test we need is in the form ofa projection test. Its analysis follows
from the analysis of the more standard Blum-Luby-Rubinfeldtest [11]. Specifically, we build upon
the analysis for large finite fields by [19]. The analysis requires that the fieldF is prime and assumes
that the function isfolded(details follow).

11.1 A Linearity Testing Theorem

Folding. Let F be a finite field. Letm be a natural number. Fix a functionf : F
m → F we wish to

test. Iff were a linear function, then:

80

1. (Multiplication by scalar)For every~z ∈ F
m andt ∈ F, f(t · ~z) = t · f(~z).

2. (Addition)For every~z, ~y ∈ F
m, f(~z + ~y) = f(~z) + f(~y).

We can ensure that item 1 holds by usingfolding: consider the equivalence relation∼ onF
m, where

~z ∼ ~y if and only if ~z = t · ~y for somet 6= 0 ∈ F. Let R ⊆ F
m be a set of representatives of the

equivalence classes. For every~x ∈ F
m, let [~x] be the representative of the class that contains~x. A

foldedfunction is a function that is defined on the representativesf̃ : R → F. A folded function
f̃ defines a functionf : F

m → F that satisfies item 1 by assigning every~x ∈ F
m the appropriate

multiple of the value of its representative, i.e., if~x = t · [~x], thenf(~x)
.
= t · f̃([~x]).

Linearity Testing (projection form). Let f̃ : R → F. Assume access to an oracleA whose goal
is to convince us thatf is linear. For every~z ∈ F

m and~y ∈ F
m, the oracleA provides a bi-variate

linear function, which is supposedlyf(t1~z + t2~y). The oracleAmay be probabilistic, meaning that
its answer may depend not only on~z and~y, but also on additional randomness.

A test for checking thatf is consistent with a linear function is described in Figure 9.

LinTestf̃ ,A :

1. Pick uniformly at random two vectors〈~z, ~y〉 ∈ F
m × F

m. Using the oracle access to
A, obtain a bi-variate linear functionl∗(t1, t2) over F for 〈~z, ~y〉 [l∗ is supposedly the
restrictionf(t1~z + t2~y)] .

2. Pick uniformly at randomt1, t2 ∈ F. Set~x0 = t1~z + t2~y. If indeedl∗(t1, t2) = f(~x0),
accept. Otherwise,reject.

Figure 9: Linearity Tester (Projection form)

The following follows from the analysis of [19] (see Appendix C for details):
Theorem 19 (Analysis of linearity test, [19]).There are some naturalm0 and F0, such that for
everym ≥ m0 and a prime finite fieldF with |F| ≥ F0, the following holds. LetR ⊆ F

m be a set of
representatives needed for folding.

For δ ≥ 2 6

√
1
|F|

, for any functionf̃ : R → F, there arel ≤ 2
δ3 linear functionsL1, . . . , Ll :

F
m → F, such that for every probabilistic oracleA:

The probability, over the randomness ofA and over the randomness of the tester, thatLinTestf̃ ,A

accepts, althoughf(~x0) /∈ {L1(~x0), . . . , Ll(~x0)} (wheref : F
m → F is the function defined bỹf

and~x0 ∈ F
m is picked by the tester; see Figure 9), is at mostO(δ).

81

11.2 The Had-LR Construction Algorithm

The purpose of this section is to prove Lemma 8.3. We describea Had-LR construction algorithm
that is uniform in the tuple association and in the encoding and list decoding. We specify the prop-
erties of the algorithm in Subsection 11.2.1 and analyze it in Subsection 11.2.2.

The description of the algorithm will start with specifyingthe uniform part of the construction
(i.e., the part that is common to all outputs of the algorithm), and proceed by presenting the compo-
nents that are input-specific.
Construction 3 (Had-LR construction algorithm). We use the notation and assume the restric-
tions appearing in Lemma 8.3.

We define a uniform structure and uniform tuple association as follows:

A vertices. The vertex setA consists of triples〈i, ~z, ~y〉 for i ∈ [N] (indicating an input tuple) and
~z, ~y ∈ F

m (needed for the linearity test). We setV
.
= A (for left evaluators). The uniform tuple

associatortupi : A→ [N] assignes〈i, ~z, ~y〉 the indexi.

Setw
.
= k + 2 andΩ

.
= F

w.

B vertices. The vertex setB consists of all representatives~x ∈ R.

Alphabets. The alphabetΣA is the Hadamard domaiñD defined by the finite fieldF and the
dimensionw. The alphabetΣB is the domain associated with the setF. Let us denoteΣA =
〈Fw, F, ΣA,enc, ΣA,dec〉 andΣB = 〈{1}, F, ΣB,enc, ΣB,dec〉.

Given as input a collection of sizeN of k-tuples:

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

The construction algorithm constructs a Had-LR

G = 〈(A, B, E), V, Ω, ΣA, ΣB, sat
.≡ true, label, proj, tup, eval〉

for thek-tuples as follows:

AssociatingA vertices with manifolds. A vertexa = 〈i, ~z, ~y〉 ∈ A is associated with thei’th
input tupletup(a)

.
= 〈~xi,1, . . . , ~xi,k〉. Let us assume without loss of generality that~xi,1, . . . , ~xi,k are

linearly independent (otherwise, we find a maximal sub-tuple of linearly independent vectors inside
thek-tuple and complete it to ak-tuple〈~xi,1, . . . , ~xi,k〉 of linearly independent vectors).

Denote~xi,k+1 = ~z and ~xi,k+2 = ~y. Then, the vertexa corresponds to the following linear
subspace through thei’th tuple:

sa
.
=

{
k+2∑

j=1

tj · ~xi,j

∣∣∣∣∣ t1, . . . , tk+2 ∈ F

}

82

We also use the functional notationla : F
w → F

m, where for every~t = (t1, . . . , tk+2) ∈ F
w,

la(~t) =

k+2∑

j=1

tj · ~xi,j

Note that eachi ∈ [N] has the same number ofa ∈ A with tup(a) = 〈~xi,1, . . . , ~xi,k〉.

Edges. We connect every vertexa = 〈i, ~z, ~y〉 ∈ A to representatives inB of points on the subspace
sa. For every~t = (t1, . . . , tk+2) ∈ F

k+2 such thattk+1 6= 0, there is an edgee = (a, b) ∈ E
connectinga to the representative of the corresponding point onsa, b = [la(~t)]. We setlabel(e)

.
=

~t ∈ Ω.

Projection. For every vertexa ∈ A, assignmentσa ∈ ΣA,dec (which is aw-variate linear function
over the fieldF) and labelξ ∈ Ω (which is a point inF

w), such thatla(ξ) = t · [la(ξ)] for a scalar
t 6= 0 ∈ F, we letproj(a, σa, ξ) be the element inΣB,enc = ΣB,dec corresponding to the field element
1
t
· σa(ξ).

Tuple evaluation. For every vertexa ∈ A, we let~p1, . . . , ~pk ∈ F
w be such that thek-tupletup(a)

is on the subspacesa in positions~p1, . . . , ~pk, i.e., tup(a) = 〈la(~p1), . . . , la(~pk)〉. For example,
when the originalk-tuple 〈~xi,1, . . . , ~xi,k〉 consists of linearly independent vectors, we have~p1

.
=

(1, 0, . . . , 0, 0, 0), . . . , ~pk
.
= (0, . . . , 1, 0, 0) ∈ F

w.

For every vertexa ∈ A and assignmentσa ∈ ΣA,dec (which is aw-variate linear function over
the fieldF), the evaluation ofa on its tuple is given by the evaluation ofσa on the points~p1, . . . , ~pk,
i.e., we leteval(a, σa)

.
= 〈σa(~p1), . . . , σa(~pk)〉.

11.2.1 Properties of The Had-LR Construction Algorithm

The algorithm is efficient, and runs in time polynomial in|Fm| andN .

• Size.On all inputs, the output is of sizesize ≤ N · |F|2m+|R|+N · |F|2m · |F|k+2 = N · |F|O(m).

• Block length.On all inputs, the output has block lengthblock = log |ΣA,enc| = log |F|k+2 =
O(k) · log |F|.

• Left degree.On all inputs, the output is left regular with left degreedegleft = (1− 1
|F|

) · |Fw| ≤
|F|O(k).

• Right degree.The graph is not right regular, however, the degrees of theB vertices are the
same for all inputs, anddegright ≤ size. To see why the right degrees are independent of the
input, note that for every fixing of~xi,1, . . . , ~xi,k and~xi,k+2 = ~y, for any~t = (t1, . . . , tk+2) ∈
F

k+2 such thattk+1 6= 0 ∈ F, when ~xi,k+1 = ~z is uniformly distributed inFm, so is
∑k+2

j=1 tj ·

83

~xi,j. The vectors~y and~z are distributed uniformly inFm, independent of~xi,1, . . . , ~xi,k. Thus,
the degree of the|F

m|−1
|F|−1

representatives that are not~0 are the same, and all the right degrees
are independent of the input.

11.2.2 Analysis of The Had-LR Algorithm. Completing The Proof of Lemma 8.3

To complete the proof of Lemma 8.3 it remains to prove that thealgorithm is uniform in the encoding
and list decoding and outputs(δmin, lmax)-Had-LRs for theδmin andlmax stated in the lemma.

Fix an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

Denote the output of the algorithm by

G = 〈(A, B, E), V, Ω, ΣA, ΣB, sat
.≡ true, label, proj, tup, eval〉

Let us prove encoding and list decoding:

For a functionf : F
m → F and a vertexa = 〈i, ~z, ~y〉 ∈ A, let the restriction off to sa be

f|a : F
w → F defined by assigning every~t ∈ F

w

f|a(~t)
.
= f(la(~t))

DenoteD = 〈Fm, F,Denc,Ddec〉.

Encoding. Let us prove uniform encoding. Assume a linear functionf ∈ Denc. For every vertex
b ∈ B, takeCB(b) to be the element inΣB,enc corresponding tof(b). Define an assignmentCA :
A→ ΣA,enc by letting every vertexa ∈ A be assignedCA(a)

.≡ f|a ∈ ΣA,enc. Note that bothCA, CB

can be constructed efficiently givenf , and that every edgee ∈ E is satisfied and readsf in G under
CA andCB.

List Decoding. Fix an assignmentCB : B → ΣB,dec. Fix a realδ such thatδmin ≤ δ < 1.

Invoke the linearity testing theorem given in Theorem 19 forthe functionf̃B : R→ F defined for
every~x ∈ R by lettingf̃B(~x) be the field element corresponding toCB(~x). Let f1, . . . , fl ∈ Ddec be
the l ≤ lmax(δ) linear functions guaranteed by the theorem. Note that the construction off1, . . . , fl

is uniform: it requires onlyCB andδ.

Fix an assignmentCA : A→ ΣA,dec.
Proposition 11.0.3.When picking uniformly and independently at random a vertexa ∈ A and an
edge coming out of ite = (a, b) ∈ E, the probability thate is satisfied inG underCA, CB, although
f̃B(b) /∈ {f1(b), . . . , fl(b)} is at mostO(δ).

84

Proof. There is a probabilistic oracleA, such that picking uniformly at random a vertexa ∈ A and
an edge coming out of ite = (a, b) ∈ E and checking whethere is satisfied inG underCA and
CB is equivalent (up to a small statistical distance) to performingLinTestf̃B ,A for the oracleA. To
see this, considerLinTestf̃B ,A when replacing its step 1 by the following procedure (that implicitly
defines the oracleA):

• Pick uniformly at random a vertexa = 〈i, ~z, ~y〉 ∈ A. Denotetup(a) = 〈~xi,1, . . . , ~xi,k〉.

• Pick uniformly (and independently of the choice ofa) at random~t = (t1, . . . , tk) ∈ F
k.

• Output the two vectors〈~z +
∑k

j=1 tj · ~xi,j , ~y〉 together with the bi-variate linear function
l∗(tk+1, tk+2)

.
= CA(a)(tk+1 · t1, . . . , tk+1 · tk, tk+1, tk+2).

Note that~z +
∑k

j=1 tj · ~xi,j is uniformly distributed inFm. Moreover, the follwoing two distri-
butions are at statistical distanceO(1

|F|
):

1. LinTestf̃ ,A distribution: Pick uniformly at randomtk+1, tk+2 ∈ F. Compute

tk+1 ·
(

~z +
k∑

j=1

tj · ~xi,j

)
+ tk+2 · ~y

2. Edge distribution: Pick uniformly at randomt′1, . . . , t
′
k+2 ∈ F such thatt′k+1 6= 0. Compute

k∑

j=1

t′j · ~xi,j + t′k+1 · ~z + t′k+2 · ~y

The proposition follows from Theorem 19, recalling thatδ ≥ 1
|F|

.

[of Proposition 11.0.3]
Proposition 11.0.4.Let a ∈ A such thatCA(a) /∈

{
f1|a, . . . , fl|a

}
. When picking uniformly at

random an edge coming out ofa, e = (a, b) ∈ E, the probability thate is satisfied inG under
CA, CB and f̃B(b) ∈ {f1(b), . . . , fl(b)} is at mostO(δ).

Proof. Write a = 〈i, ~z, ~y〉. For everyj ∈ [l], CA(a) andfj|a aredifferentw-variate linear functions
overF. Thus, they can agree on at most a fraction of1

|F|
of the points inF

w. Hence,CA(a)(~t) ∈{
f1|a(~t), . . . , fl|a(~t)

}
for at most a fraction of2

δ3 · 1
|F|

of the~t ∈ F
w.

By construction, picking uniformly an edge coming out ofa is equivalent to picking uniformly
~t ∈ F

w such thattk+1 6= 0, and takinge = (a, b) ∈ E for b = [la(~t)] (where recall that we denote
~xi,k+1 = ~z and~xi,k+2 = ~y). Moreover, whenevere = (a, b) is satisfied inG underCA, CB and
f̃B(b) ∈ {f1(b), . . . , fl(b)}, it follows thatCA(a)(~t) ∈

{
f1|a(~t), . . . , fl|a(~t)

}
.

85

We conclude that, when picking uniformly at random an edge coming out ofa, e = (a, b) ∈ E,
the probability thate is satisfied inG underCA, CB and f̃B(b) ∈ {f1(b), . . . , fl(b)} is at most
2
δ3 · 1

|F|
= O(δ). [of Proposition 11.0.4]

By Proposition 11.0.3 and Proposition 11.0.4 and using left-regularity, when picking uniformly
at random an edgee = (a, b) ∈ E, the probability thate is satisfied inG underCA, CB, although
CA(a) /∈

{
f1|a, . . . , fl|a

}
is at mostO(δ). The list decoding property follows noticing that when the

edgee is satisfied inG underCA andCB, andCA(a) ∈
{
f1|a, . . . , fl|a

}
, we have thate reads one of

f1, . . . , fl in G underCA, CB.

This concludes the proof of Lemma 8.3.

12 Power Reduction

In this section we show the power reduction manipulation, proving Lemma 8.4. Our presentation
will use the notation introduced in this lemma.

The power reduction manipulation transforms constructionalgorithms reducingD 7→ D1, where
D1 is a Reed-Muller domain with a small dimensionm1 but a large encoding degreed1, to construc-
tion algorithms reducingD 7→ D2, whereD2 is a Reed-Muller domain in which both the dimension
m2 and the encoding degreed2 are logarithmic in the encoding degreed1. The manipulation is based
on thepower substitutiontechnique from [13].

12.1 A Power Reducing Embedding

The manipulation is done using the following embedding:

EmbeddingF
m1 ↪→ F

m2 . Recall thatb1 = dlog(d1 + 1)e andm2 = m1 · b1. Define an embedding
φ : F

m1 → F
m2 by mapping every(x1, . . . , xm1) ∈ F

m1 to

φ(x1, . . . , xm1)
.
= (x20

1 , x21

1 , . . . , x2b1−1

1 , · · · , x20

m1
, x21

m1
. . . , x2b1−1

m1
)

Power reduction for polynomials via the embedding. Assume that we have a polynomialQ :
F

m1 → F of degree at mostd1. For some coefficients
{
αi1,...,im1

}
i1,...,im1

whereαi1,...,im1
∈ F, the

polynomialQ can be written as

Q(x1, . . . , xm1) =
∑

i1,...,im1

αi1,...,im1
xi1

1 · · ·x
im1
m1

For a number0 ≤ i ≤ d1, denote byb(i, b1 − 1) · · · b(i, 0) the binary representation ofi. Then, we
define a polynomialQφ : F

m2 → F by mapping every(x1,0, . . . , x1,b1−1, · · · , xm1,0, . . . , xm1,b1−1) ∈
F

m2 to
Qφ(x1,0, . . . , x1,b1−1, · · · , xm1,0, . . . , xm1,b1−1)

.
=

86

∑

i1,...,im1

αi1,...,im1
· xb(i1,0)

1,0 · · ·xb(i1,b1−1)
1,b1−1 · · · · · ·xb(im1 ,0)

m1,0 · · ·xb(im1 ,b1−1)

m1,b1−1

Note thatQφ is efficiently computable and thatQ ≡ Qφ ◦ φ. The polynomialQφ is a multi-linear
polynomial inm2 variables, and henceQφ ∈ D2,enc. Moreover, sinced′

2 = bd′
1/d1c, for every

Q̃ ∈ D2,dec, it holds thatQ̃ ◦ φ ∈ D1,dec.

12.2 The Power Reduction Manipulation on RM-LRs

Given an RM-LR reducingD 7→ D1 for some tuples:

G = 〈(A, B, E), V = A, Ω,D1, F̃, satG
.≡ true, labelG, projG, tupG, evalG〉

where F̃ = 〈{1}, F, F̃enc, F̃dec〉 is the domain associated with the finite fieldF, we construct an
RM-LR reducingD 7→ D2 for the same tuples (note thatG has the sametup function asG):

G = 〈(A, B, E), V = A, Ω,D2, F̃, satG
.≡ true, labelG, projG, tupG, evalG〉

by performing the following operations:

1. LetΩ
.
= F

m2 .

2. For every edgee ∈ E, setlabelG(e)
.
= φ(labelG(e)).

3. For a vertexa ∈ A, an assignment for itσa,2 ∈ D2,dec and a label~p ∈ F
m2 , we letprojG(a, σa,2, ~p)

be the element iñFdec corresponding to the field elementσa,2(~p). Note that for every edge
e = (a, b) ∈ E it holds thatprojG(a, σa,2, labelG(e)) = projG(a, σa,2 ◦ φ, labelG(e)).

4. Assume that the points~p1, . . . , ~pk ∈ F
m1 are such that for every vertexa ∈ A and assignment

σa,1 ∈ D1,dec we have thatevalG(a, σa,1) = 〈σa,1(~p1), . . . , σa,1(~pk)〉. Then, for every vertex
a ∈ A and assignmentσa,2 ∈ D2,dec, let evalG(a, σa,2)

.
= 〈σa,2(φ(~p1)), . . . , σa,2(φ(~pk))〉 =

evalG(a, σa,2 ◦ φ).

Properties of the manipulation. G can be computed efficiently fromG. Moreover,G has the same
size and left and right degrees asG, and its block length isdO(m1)

1 · log |F|.

Analysis. We say that assignmentsCA : A → D2,dec andCA : A → D1,dec areequivalent, if for
every vertexa ∈ A, it holds thatCA(a) = CA(a) ◦ φ.
Proposition 12.1. For any two equivalent assignmentsCA : A→ D2,dec andCA : A→ D1,dec, for
any assignmentCB : B → F̃dec, for any edgee = (a, b) ∈ E, we have:

• e is satisfied inG underCA, CB if and only ife is satisfied inG underCA, CB.

87

• e reads somef ∈ Ddec in G underCA, CB if and only ife readsf in G underCA, CB.

We thus have:
Lemma 12.2. Let 0 < δmin < 1. Let lmax : (0, 1) → R

+ be a decreasing function. IfG is a
(δmin, lmax)-RM-LR reducingD 7→ D1 for some tuples, andG is obtained fromG by the power
reduction manipulation, thenG is a (δmin, lmax)-RM-LR reducingD 7→ D2 for the same tuples.

Proof. Let us prove encoding and list decoding:

Encoding. For a polynomialf ∈ Denc, let CA : A→ D1,enc andCB : B → F̃enc be the efficiently
computable assignments under which every edgee ∈ E is satisfied and readsf in G. The assignment
CA : A → D2,enc equivalent toCA, defined by assigning everya ∈ A the polynomialCA(a)φ, is
also efficiently computable. Moreover, by Proposition 12.1, all edgese ∈ E are satisfied and readf
in G underCA, CB.

List Decoding. Fix an assignmentCB : B → F̃dec. Fix a realδ such thatδmin ≤ δ < 1. Let
f1, . . . , fl ∈ Ddec be thel ≤ lmax(δ) elements guaranteed by the list decoding property ofG. Let
CA : A → D2,dec be an assignment. LetCA : A → D1,dec be its equivalent assignment. By the list
decoding property ofG, for all edgese ∈ E, but at mostO(δ) fraction,e is either not satisfied or
reads one off1, . . . , fl in G underCA, CB. Hence, by Proposition 12.1, for all edgese ∈ E, but at
mostO(δ) fraction,e is either not satisfied or reads one off1, . . . , fl in G underCA, CB.

Transforming RM-LR construction algorithms. Assume that we are given a(D, k, N)-RM-
LR construction algorithmA1 with structural parameters〈size, block, degleft, degright〉 reducing
D 7→ D1. The(D, k, N)-RM-LR construction algorithmA2 with structural parameters
〈size, block′, degleft, degright〉 reducingD 7→ D2 will be as follows: Given an input to the construc-
tion algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

InvokeA1 on the input tuples to obtain an RM-LRG reducingD 7→ D1 for the input tuples. Then
perform the power reduction manipulation on RM-LRs that is described above to obtain an RM-LR
G reducingD 7→ D2 for the input tuples, and outputG.

12.3 The Power Reduction Manipulation on RM-LPRs

Given an RM-LPRG reducingD 7→ D1 for some tuples:

G = 〈(A, B, E), V = A, Ω,D1, F̃, satG
.≡ true, labelG, projG, tupG, evalG, pntG, evalpG〉

Let G− be the RM-LR reducingD 7→ D1 for the same tuples that is induced byG. Perform the
power reduction manipulation on RM-LRs that is described above to obtain an RM-LRG− reducing

88

D 7→ D2 for the input tuples:

G− = 〈(A, B, E), V = A, Ω,D2, F̃, satG−

.≡ true, labelG− , projG−, tupG−, evalG−〉

Obtain an RM-LPR reducingD 7→ D2 by considering:

G = 〈(A, B, E), V = A, Ω,D2, F̃, satG−

.≡ true, labelG− , projG−, tupG−, evalG−, pntG, evalpG〉

Note that the RM-LR induced byG, denoted(G)−, isG−.

Properties of the manipulation. G can be obtained efficiently fromG. Moreover,G has the same
size and left and right degrees asG, and its block length isdO(m1)

1 · log |F|.

Analysis. Applying Proposition 12.1 we get:
Proposition 12.3. For any two equivalent assignmentsCA : A→ D2,dec andCA : A→ D1,dec, for
any assignmentCB : B → F̃dec, for any edgee = (a, b) ∈ E, we have:

• e is satisfied inG underCA, CB if and only ife is satisfied inG underCA, CB.

• e reads somef ∈ Ddec in G underCA, CB if and only ife readsf in G underCA, CB.

Proof. Let us prove the second item. Recall thate readsf in G underCA, CB if and only if e reads
f in G− underCA, CB andevalpG(b, CB(b)) = f(pntG(b)). Similarly,e readsf in G underCA, CB

if and only if e readsf in (G)− ≡ G− underCA, CB and evalpG(b, CB(b)) = f(pntG(b)). By
Proposition 12.1,e readsf in G− underCA, CB if and only if e readsf in G− underCA, CB.

Hence, similarly to the case of RM-LRs, we have:
Lemma 12.4. Let 0 < δmin < 1. Let lmax : (0, 1) → R

+ be a decreasing function. IfG is a
(δmin, lmax)-RM-LPR reducingD 7→ D1 for some tuples, andG is obtained fromG by the power
reduction manipulation, thenG is a (δmin, lmax)-RM-LPR reducingD 7→ D2 for the same tuples.

Transforming RM-LPR construction algorithms. Assume that we are given a(D, k, N)-RM-
LPR construction algorithmA1 with structural parameters〈size, block, degleft, degright〉 reducing
D 7→ D1 that is uniform in the point association. Consider the(D, k, N)-RM-LPR construction
algorithmA2 with structural parameters〈size, block′, degleft, degright〉 reducingD 7→ D2 defined
as follows: Given an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

InvokeA1 on the input tuples to obtain an RM-LPRG reducingD 7→ D1 for the input tuples. Then
perform the power reduction manipulation on RM-LPRs that isdescribed above to obtain an RM-
LPR G reducingD 7→ D2 for the input tuples, and outputG. Note thatA2 is uniform in the point
association.

89

13 Right Degree Reduction

In this section we show how to reduce the (graph) degree of theB vertices in the various building
blocks we consider, thus proving Lemma 8.5. We start by presenting the right degree manipulation
on bipartite constraint graphs. Then we will describe the manipulation on RM-LRs, RM�Had-LRs,
RM-LPRs, RM-RRs and RM-RPRs.

13.1 The Right Degree Reduction Manipulation on Bipartite Constraint Graphs

The idea of right degree reduction is to split each vertexb ∈ B into many copies. The number of
copies will be the original degree ofb in the graph. Each copy will have a small degree in the new
graph. This is achieved by putting an expander with small degree in the new graph between the
neighbors ofb in the original graph andb’s copies. Formally, the manipulation is defined as follows:

Given a natural number∆ and a bipartite constraint graph

G = 〈G = (A, B, E), Ω, ΣA, ΣB, satG, labelG , projG〉

we construct a bipartite constraint graph that is right regular with right degreeΘ(∆):

G = 〈G = (A, B, E), Ω, ΣA, ΣB, satG, labelG , projG〉

by performing the following operations:

1. Bipartite expanders. Letα < 1 andT : N→ N
+, whereT (∆) = Θ(∆), be as in Lemma 5.3.

For n = 1, . . . , |A|, compute as follows from Lemma 5.3 aT (∆)-regular bipartite (multi-
)graphHn = ([n], [n], En) satisfying the following expansion property: for every twosets
X ⊆ [n], Y ⊆ [n],

|En(X, Y)|
T (∆) · n ≤ |X|

n
· |Y |

n
+

1

(T (∆))1−α
·
√
|X|
n
·
√
|Y |
n

2. B vertices.For every vertexb ∈ B, for everyi ∈ [∆G(b)], there is a vertexb = 〈b, i〉 ∈ B.

In the remainder of this section we shorthand and write∆(b) to denote∆G(b).

3. Edges. For everyj ∈ [∆(b)], assuming thej’th edge coming intob is eG(b, j) = e =
(a, b) ∈ E, for every edge(j, i) ∈ E∆(b), we put an edgee = (a, 〈b, i〉) ∈ E. We set
labelG(e)

.
= labelG(e).

90

Figure 10: Right degree reduction.

Properties of the manipulation.

• Running time.G can be computed fromG efficiently.

• Size.The size ofG is
∣∣G
∣∣ = |A|+

∣∣B
∣∣+
∣∣E
∣∣ = |A|+

∑

b∈B

∆(b) +
∑

b∈B

T (∆) ·∆(b) ≤ O (∆ · |G|)

• Block length.The manipulation does not change the alphabets.

• Left degree.The degree of each of theA vertices inG is larger than its degree inG by a factor
of T (∆).

• Right degree.G is right regular with right degreeT (∆).

Analysis. Given an assignmentCB : B → ΣB to the vertices inB and a real parameter 1
(T (∆))1−α ≤

δ < 1, we define a list of sizes
.
= b1

δ
c of assignments to theB vertices corresponding toCB and

δ as follows. For every vertexb ∈ B, let σ1(b), . . . , σs(b) ∈ ΣB be all elementsσ ∈ ΣB that are
assigned to at least aδ fraction ofb’s copies, i.e.,

|{i ∈ [∆(b)] | CB(〈b, i〉) = σ}| ≥ δ ·∆(b)

Note that there are at mosts such elementsσ ∈ ΣB. If there are less thans elements, we pad the list
arbitrarily. We define the assignments to theB vertices corresponding toCB andδ, CB,1, . . . , CB,s :
B → ΣB, by letting, for everyj ∈ [s] andb ∈ B, CB,j(b)

.
= σj(b).

We prove the following proposition:
Proposition 13.1. Let CA : A → ΣA be any assignment to theA vertices. When picking uniformly
at random an edgee = (a, 〈b, i〉) ∈ E, the probability that the edgee is satisfied inG under the
assignmentsCA andCB, however,CB(〈b, i〉) /∈ {CB,1(b), . . . , CB,s(b)}, is at most2δ.

91

Proof. Let b ∈ B. Forσ ∈ ΣB, defineYb,σ ⊆ [∆(b)] to be the indices of copies ofb assignedσ by
CB,

Yb,σ
.
= {i ∈ [∆(b)] | CB(〈b, i〉) = σ}

Let us say that an edgee = (a, b) ∈ E coming intob votesfor σ ∈ ΣB, if the projection ofCA(a)
ontob is σ, i.e.,projG(a, CA(a), labelG(e)) = σ. DefineXb,σ ⊆ [∆(b)] to be the indices of the edges
coming intob that vote forσ,

Xb,σ
.
= {j ∈ [∆(b)] | eG(b, j) votes forσ}

Note that the setsXb,·, as well as the setsYb,·, are pairwise disjoint.

Let S ⊆ ΣB denote the “uncovered” elementsS
.
= ΣB \ {CB,1(b), . . . , CB,s(b)}. By definition,

for everyσ ∈ S, it holds that|Yb,σ| ≤ δ ·∆(b). Hence, by the expansion property ofH∆(b), we have
∣∣E∆(b)(Xb,σ, Yb,σ)

∣∣
T (∆) ·∆(b)

≤ δ · |Xb,σ|
∆(b)

+
1

(T (∆))1−α
·
√
|Xb,σ|
∆(b)

·
√
|Yb,σ|
∆(b)

Thus, we get the following upper bound on the fractional number of edgese = (a, 〈b, i〉) ∈ E that
are satisfied byCA, CB, althoughCB(〈b, i〉) /∈ {CB,1(b), . . . , CB,s(b)}:

∑
σ∈S

∣∣E∆(b)(Xb,σ, Yb,σ)
∣∣

T (∆) ·∆(b)
≤ δ ·

∑

σ∈S

|Xb,σ|
∆(b)

+
1

(T (∆))1−α
·
∑

σ∈S

√
|Xb,σ|
∆(b)

·
√
|Yb,σ|
∆(b)

By the Cauchy-Schwarz inequality and using the disjointness of the setsXb,· and of the setsYb,·, we
have:

∑
σ∈S

∣∣E∆(b)(Xb,σ, Yb,σ)
∣∣

T (∆) ·∆(b)
≤ δ +

1

(T (∆))1−α
·
√∑

σ∈S

|Xb,σ|
∆(b)

·
√∑

σ∈S

|Yb,σ|
∆(b)

≤ δ +
1

(T (∆))1−α

≤ 2δ

The proposition follows noticing that the probability we wish to bound is at most
∑

b∈B 2δ · T (∆) ·∆(b)∑
b∈B T (∆) ·∆(b)

= 2δ

13.2 The Right Degree Manipulation on Composable BipartiteLocally De-
code/Reject Codes that are Left Evaluators

Given a natural number∆ and a composable bipartite locally decode/reject code for some tuples:

G = 〈G = (A, B, E), V = A, Ω, ΣA, ΣB, satG, labelG , projG, tupG, evalG〉

92

We construct a composable bipartite locally decode/rejectcode for the same tuples which is right
regular with right degreeT (∆)

G = 〈G = (A, B, E), V = A, Ω, ΣA, ΣB, satG, labelG , projG, tupG, evalG〉

as follows:

1. Consider the bipartite evaluation graph underlyingG:

G′ = 〈G = (A, B, E), V = A, Ω, ΣA,dec, ΣB,dec, satG, labelG, projG, tupG, evalG〉

whereΣA,dec andΣB,dec are the decoded domains ofΣA andΣB, respectively.

2. Consider the bipartite constraint graph underlyingG′:

G′′ = 〈G = (A, B, E), Ω, ΣA,dec, ΣB,dec, satG, labelG , projG〉

3. Perform the right degree reduction manipulation on the constraint graphG′′ to compute the
bipartite constraint graphG′′:

G′′ = 〈G = (A, B, E), Ω, ΣA,dec, ΣB,dec, satG, labelG′′ , projG〉

[Note thatG is left regular]

4. Define a bipartite evaluation graph:

G′ = 〈G = (A, B, E), V = A, Ω, ΣA,dec, ΣB,dec, satG, labelG′′ , projG, tupG, evalG〉

5. Let the corresponding composable bipartite locally decode/reject code be:

G = 〈G = (A, B, E), V = A, Ω, ΣA, ΣB, satG, labelG
.≡ labelG′′ , projG, tupG, evalG〉

Properties of the manipulation. G can be obtained efficiently fromG. If G has sizesize, thenG
has sizeO(∆ · size). G has the same block length asG. It is left regular with left degree larger by a
factor ofT (∆) than the left degree ofG. It is right regular with right degreeT (∆).

Analysis.
Proposition 13.2. Let e = (a, 〈b, i〉) ∈ E be an edge, and lete = (a, b) ∈ E be its corresponding
edge. For every assignmentCA : A → ΣA,dec, for every two assignmentsCB : B → ΣB,dec and
CB : B → ΣB,dec such thatCB(b) = CB(〈b, i〉) it holds that:

• e is satisfied inG underCA, CB if and only ife is satisfied inG underCA, CB.

• e reads somef ∈ Ddec in G underCA, CB if and only ife readsf ∈ Ddec in G underCA, CB.

93

We thus have:
Lemma 13.3. Let 0 < δmin < 1. Let lmax : (0, 1) → R

+ be a decreasing function. Setδ∗min
.
=

max
{√

δmin,
1

(T (∆))1−α

}
and l∗max(δ)

.
= 1

δ
· lmax(δ

2). If G is a (δmin, lmax)-composable bipartite

locally decode/reject code for some tuples, andG is obtained fromG by the right degree reduction
manipulation, thenG is a (δ∗min, l∗max)-composable bipartite locally decode/reject code for the same
tuples.

Proof. Let us prove encoding and list decoding:

Encoding. Denote the encoded domain ofD by Denc and the encoded domains of the alphabet
domains ofG (andG) by ΣA,enc andΣB,enc. For a polynomialf ∈ Denc, let CA : A → ΣA,enc

andCB : B → ΣB,enc be the efficiently computable assignments under which everyedgee ∈ E is
satisfied and readsf in G. The assignmentCB : B → ΣB,enc, defined by assigning every〈b, i〉 ∈ B
the valueCB(b), is also efficiently computable. Moreover, by Proposition 13.2, all edgese ∈ E are
satisfied and readf in G underCA, CB.

List Decoding. Fix an assignmentCB : B → ΣB,dec. Fix a realδ such thatδ∗min ≤ δ < 1.
Let CB,1, . . . , CB,s : B → ΣB,dec be thes = b1

δ
c assignments corresponding toCB and δ as

in the analysis of the right degree reduction manipulation on bipartite constraint graphs. Fix a
real parameterδ′

.
= δ2 ≥ δmin. For everyj ∈ [s], let fj,1, . . . , fj,l ∈ Ddec be thel ≤ lmax(δ

′)
elements guaranteed by the list decoding property ofG for CB,j andδ′. In total we defined at most
1
δ
· lmax(δ

2) = l∗max(δ) elements.

Let CA : A→ ΣA,dec be an assignment.

By the list decoding property ofG, for at mostO(s · δ′) = O(δ) fraction of the edgese ∈ E, for
somej ∈ [s], the edgee is satisfied but does not read one offj,1, . . . , fj,l in G underCA, CB,j.

By Proposition 13.1, for all edgese = (a, 〈b, i〉) ∈ E, but at mostO(δ) fraction,e is not satisfied
in G underCA, CB, or CB(〈b, i〉) ∈ {CB,1(b), . . . , CB,s(b)}. Hence, by Proposition 13.2, for all
edgese = (a, 〈b, i〉) ∈ E, but at mostO(δ) fraction, eithere is not satisfied inG underCA, CB, or
for somej ∈ [s] we haveCB(〈b, i〉) = CB,j(b) and the edgee = (a, b) ∈ E is satisfied inG under
CA, CB,j.

For a uniformly distributed edgee = (a, 〈b, i〉) ∈ E, the edgee = (a, b) is uniformly distributed
in E. Hence, for all edgese = (a, 〈b, i〉) ∈ E, but at mostO(δ) fraction, eithere is not satisfied inG
underCA, CB, or for somej ∈ [s] we haveCB(〈b, i〉) = CB,j(b) and the edgee = (a, b) ∈ E reads
one offj,1, . . . , fj,l in G underCA, CB,j. Thus, by Proposition 13.2, for all edgese = (a, 〈b, i〉) ∈ E,
but at mostO(δ) fraction,e is either not satisfied or reads one off1,1, . . . , fs,l in G underCA, CB.

Transforming RM-LR construction algorithms. Assume that we are given a natural number∆
and a(D, k, N)-RM-LR construction algorithmA1 with structural parameters

94

〈size, block, degleft, degright〉 reducingD 7→ D̃. Consider the(D, k, N)-RM-LR construction al-
gorithmA2 with structural parameters〈O(∆ · size), block, T (∆) · degleft, T (∆)〉 reducingD 7→ D̃
defined as follows: Given an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

InvokeA1 on the input tuples to obtain an RM-LRG reducingD 7→ D̃ for the input tuples. Then
perform the right degree reduction manipulation on composable bipartite locally decode/reject codes
that is described above to obtain an RM-LRG reducingD 7→ D̃ for the input tuples, and outputG.

Transforming RM �Had-LR construction algorithms. Assume that we are given a natural num-
ber∆ and a(D, k, N)-RM�Had-LR construction algorithmA1 with structural parameters
〈size, block, degleft, degright〉 that is uniform in the tuple association and in the encoding and list de-
coding, and outputs RM�Had-LRs whose right degrees do not depend on the input to the algorithm.

Consider the(D, k, N)-RM�Had-LR construction algorithmA2 with structural parameters〈O(∆·
size), block, T (∆) · degleft, T (∆)〉 defined as follows: Given an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

InvokeA1 on the input tuples to obtain an RM�Had-LR G for the input tuples. Then perform
the right degree reduction manipulation on composable bipartite locally decode/reject codes that is
described above to obtain an RM�Had-LRG for the input tuples, and outputG.

Note that the algorithmA2 is uniform in the tuple association, as well as in the encoding and list
decoding.

13.3 The Right Degree Manipulation on RM-LPRs

Given a natural number∆ and an RM-LPR reducingD 7→ D̃ for some tuples:

G = 〈(A, B, E), V = A, Ω, D̃, F̃, satG
.≡ true, labelG , projG, tupG, evalG, pntG, evalpG〉

We construct an RM-LPR reducingD 7→ D̃ for the same tuples that has right degreeT (∆)

G = 〈(A, B, E), V = A, Ω, D̃, F̃, satG
.≡ true, labelG , projG, tupG, evalG, pntG, evalpG〉

as follows:

1. Consider the RM-LR induced byG:

G− = 〈(A, B, E), V = A, Ω, D̃, F̃, satG, labelG , projG, tupG, evalG〉

2. Perform the right degree reduction manipulation on the RM-LR G− to obtain the RM-LRG−:

G− = 〈(A, B, E), V = A, Ω, D̃, F̃, satG, labelG− , projG, tupG, evalG〉

95

3. Assume that the field of the Reed-Muller domainD is F and the dimension ism. Define
pntG : B → F

m by assigning every vertex〈b, i〉 ∈ B the pointpntG(b). DefineevalpG :

B × F̃dec → F by assigning every vertex〈b, i〉 ∈ B and assignmentσb ∈ F̃dec the evaluation
evalpG(b, σb) [Note that sinceG is an RM-LPR, for a uniformly distributed vertex〈b, i〉 ∈ B,
the pointpntG(〈b, i〉) is uniformly distributed inFm].

4. Let the corresponding RM-LPR be:

G = 〈(A, B, E), V = A, Ω, D̃, F̃, satG
.≡ true, labelG

.≡ labelG− , projG, tupG, evalG, pntG, evalpG〉

Properties of the manipulation. G can be obtained efficiently fromG. If G has sizesize, thenG
has sizeO(∆ · size). G has the same block length asG. It is left regular with left degree larger by a
factor ofT (∆) than the left degree ofG. It is right regular with right degreeT (∆).

Analysis. Applying Proposition 13.2, we get:
Proposition 13.4. Let e = (a, 〈b, i〉) ∈ E be an edge, and lete = (a, b) ∈ E be its corresponding
edge. For every assignmentCA : A → D̃dec, for every two assignmentsCB : B → F̃dec and
CB : B → F̃dec such thatCB(b) = CB(〈b, i〉) it holds that:

• e is satisfied inG underCA, CB if and only ife is satisfied inG underCA, CB.

• e reads somef ∈ Ddec in G underCA, CB if and only ife readsf ∈ Ddec in G underCA, CB.

Thus, similarly to Lemma 13.3, we have:
Lemma 13.5. Let 0 < δmin < 1. Let lmax : (0, 1) → R

+ be a decreasing function. Setδ∗min
.
=

max
{√

δmin,
1

(T (∆))1−α

}
andl∗max(δ)

.
= 1

δ
·lmax(δ

2). If G is a(δmin, lmax)-RM-LPR reducingD 7→ D̃
for some tuples, andG is obtained fromG by the right degree reduction manipulation, thenG is a
(δ∗min, l∗max)-RM-LPR reducingD 7→ D̃ for the same tuples.

Transforming RM-LPR construction algorithms. Assume that we are given a natural number
∆ and a(D, k, N)-RM-LPR construction algorithmA1 with structural parameters
〈size, block, degleft, degright〉 reducingD 7→ D̃. Consider the(D, k, N)-RM-LPR construction al-
gorithmA2 with structural parameters〈O(∆ · size), block, T (∆) · degleft, T (∆)〉 reducingD 7→ D̃
defined as follows: Given an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

InvokeA1 on the input tuples to obtain an RM-LPRG reducingD 7→ D̃ for the input tuples. Then
perform the right degree reduction manipulation on RM-LPRsthat is described above to obtain an
RM-LPR G reducingD 7→ D̃ for the input tuples, and outputG. Note that ifA1 is uniform in the
point association, then so isA2.

96

13.4 The Right Degree Manipulation on RM-RRs

Given a natural number∆ and an RM-RR reducingD 7→ D̃ for some tuples:

G = 〈(A, B, E), V = B, Ω, ΣA, D̃, satG, labelG , projG, tupG, evalG〉

We construct an RM-RR reducingD 7→ D̃ for the same tuples that has right degreeT (∆)

G = 〈(A, B, E), V = B, Ω, ΣA, D̃, satG, labelG , projG, tupG, evalG〉

as follows:

1. Consider the bipartite evaluation graph underlyingG:

G′ = 〈(A, B, E), V = B, Ω, ΣA,dec, D̃dec, satG, labelG, projG, tupG, evalG〉

whereΣA,dec andD̃dec are the decoded domains ofΣA andD̃, respectively.

2. Consider the bipartite constraint graph underlyingG′:

G′′ = 〈(A, B, E), Ω, ΣA,dec, D̃dec, satG, labelG , projG〉

3. Perform the right degree reduction manipulation on the constraint graphG′′ to compute the
bipartite constraint graphG′′:

G′′ = 〈(A, B, E), Ω, ΣA,dec, D̃dec, satG, labelG′′ , projG〉

[Note that: (1) For every vertexa ∈ A, for all labelsξ ∈ Ω, there is the same number of edges
e ∈ E coming out ofa with labelG′′(e) = ξ; (2) The graphG = (A, B, E) is left regular]

4. Assume that the field of the Reed-Muller domainD is F and the dimension ism. Define
tupG : B → (Fm)k by assigning every vertex〈b, i〉 ∈ B the tupletupG(b). DefineevalG :

B×D̃dec → F
k by assigning every vertex〈b, i〉 ∈ B and assignmentσb ∈ D̃dec the evaluation

evalG(b, σb) [Note that the distribution obtained by picking uniformly at random a vertex
b ∈ B and computingtupG(b) and the distribution obtained by picking uniformly at random a
vertex〈b, i〉 ∈ B and computingtupG(〈b, i〉) are identical].

5. Define a bipartite evaluation graph:

G′ = 〈(A, B, E), V = B, Ω, ΣA,dec, D̃dec, satG, labelG′′ , projG, tupG, evalG〉

6. Let the corresponding RM-RR be:

G = 〈(A, B, E), V = B, Ω, ΣA, D̃, satG, labelG′′ , projG, tupG, evalG〉

97

Properties of the manipulation. G can be obtained efficiently fromG. If G has sizesize, thenG
has sizeO(∆ · size). G has the same block length asG. It is left regular with left degree larger by a
factor ofT (∆) than the left degree ofG. It is right regular with right degreeT (∆). The depth of the
tree satisfiability constraints ofG is the same as that ofG.

Analysis.
Proposition 13.6. Let e = (a, 〈b, i〉) ∈ E be an edge, and lete = (a, b) ∈ E be its corresponding
edge. For every assignmentCA : A → ΣA,dec, for every two assignmentsCB : B → D̃dec and
CB : B → D̃dec such thatCB(b) = CB(〈b, i〉) it holds that:

• e is satisfied inG underCA, CB if and only ife is satisfied inG underCA, CB.

• e reads somef ∈ Ddec in G underCA, CB if and only ife readsf ∈ Ddec in G underCA, CB.

Thus, similarly to Lemma 13.3, we have:
Lemma 13.7. Let 0 < δmin < 1. Let lmax : (0, 1) → R

+ be a decreasing function. Setδ∗min
.
=

max
{√

δmin,
1

(T (∆))1−α

}
andl∗max(δ)

.
= 1

δ
· lmax(δ

2). If G is a(δmin, lmax)-RM-RR reducingD 7→ D̃
for some tuples, andG is obtained fromG by the right degree reduction manipulation, thenG is a
(δ∗min, l∗max)-RM-RR reducingD 7→ D̃ for the same tuples.

Transforming RM-RR construction algorithms. Assume that we are given a natural number∆
and a(D, k, N)-RM-RR construction algorithmA1 with structural parameters
〈size, block, degleft, degright, depth〉 reducingD 7→ D̃. Consider the(D, k, N)-RM-RR construc-
tion algorithmA2 with structural parameters〈O(∆ · size), block, T (∆) · degleft, T (∆), depth〉 re-
ducingD 7→ D̃ defined as follows: Given an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

InvokeA1 on the input tuples to obtain an RM-RRG reducingD 7→ D̃ for the input tuples. Then
perform the right degree reduction manipulation on RM-RRs that is described above to obtain an
RM-RRG reducingD 7→ D̃ for the input tuples, and outputG.

13.5 The Right Degree Manipulation on RM-RPRs

Given a natural number∆ and an RM-RPR reducingD 7→ D̃ for somek-tuples:

G = 〈(A, B, E), V = B, Ω, ΣA, D̃, satG, labelG , projG, tupG, evalG, pntG, evalpG〉

We construct an RM-RPR reducingD 7→ D̃ for the same tuples which has right degreeT (∆)

G = 〈(A, B, E), V = B, Ω, ΣA, D̃, satG, labelG , projG, tupG, evalG, pntG, evalpG〉
as follows:

98

1. Consider the RM-RR induced byG:

G− = 〈(A, B, E), V = B, Ω, ΣA, D̃, satG, labelG , projG, tupG, evalG〉

2. Perform the right degree reduction manipulation on the RM-RRG− to obtain the RM-RRG−:

G− = 〈(A, B, E), V = B, Ω, ΣA, D̃, satG, labelG− , projG, tupG−, evalG−〉

3. Let the corresponding RM-RPR be:

G = 〈(A, B, E), V = B, Ω, ΣA, D̃, satG, labelG− , projG, tupG−, evalG−, pntG, evalpG〉

Properties of the manipulation. G can be obtained efficiently fromG. If G has sizesize, thenG
has sizeO(∆ · size). G has the same block length asG. It is left regular with left degree larger by a
factor ofT (∆) than the left degree ofG. It is right regular with right degreeT (∆). The depth of the
tree satisfiability constraints ofG is the same as that ofG.

Analysis. Applying Proposition 13.6, we get:
Proposition 13.8. Let e = (a, 〈b, i〉) ∈ E be an edge, and lete = (a, b) ∈ E be its corresponding
edge. For every assignmentCA : A → ΣA,dec, for every two assignmentsCB : B → D̃dec and
CB : B → D̃dec such thatCB(b) = CB(〈b, i〉) it holds that:

• e is satisfied inG underCA, CB if and only ife is satisfied inG underCA, CB.

• e reads somef ∈ Ddec in G underCA, CB if and only ife readsf ∈ Ddec in G underCA, CB.

Thus, similarly to Lemma 13.3, we have:
Lemma 13.9. Let 0 < δmin < 1. Let lmax : (0, 1) → R

+ be a decreasing function. Setδ∗min
.
=

max
{√

δmin,
1

(T (∆))1−α

}
andl∗max(δ)

.
= 1

δ
· lmax(δ

2). If G is a (δmin, lmax)-RM-RPR reducingD 7→
D̃ for some tuples, andG is obtained fromG by the right degree reduction manipulation, thenG is a
(δ∗min, l∗max)-RM-RPR reducingD 7→ D̃ for the same tuples.

Transforming RM-RPR construction algorithms. Assume that we are given a natural number
∆ and a(D, k, N)-RM-RPR construction algorithmA1 with structural parameters
〈size, block, degleft, degright, depth〉 reducingD 7→ D̃. Consider the(D, k, N)-RM-RPR construc-
tion algorithmA2 with structural parameters〈O(∆ · size), block, T (∆) · degleft, T (∆), depth〉 re-
ducingD 7→ D̃ defined as follows: Given an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

InvokeA1 on the input tuples to obtain an RM-RPRG reducingD 7→ D̃ for the input tuples. Then
perform the right degree reduction manipulation on RM-RPRsthat is described above to obtain an
RM-RPRG reducingD 7→ D̃ for the input tuples, and outputG. Note that ifA1 is uniform in the
point association, then so isA2.

99

14 Transforming Reed-Muller Left Readers Into Reed-Muller
Right Readers

In this section we show how to transform RM-LR construction algorithms into RM-RR construc-
tion algorithms and RM-LPR construction algorithms into RM-RPR construction algorithms, thus
proving Lemma 8.6.

14.1 Transforming RM-LRs Into RM-RRs

To transform RM-LRs into RM-RRs we switch the roles of theA and theB vertices. After the
switch, theB vertices project onto theA vertices, instead of theA vertices projecting onto theB
vertices. This is achieved by letting assignments to each vertexb ∈ B contain assignments to all the
A vertices neighboring it. This causes the block length to increase by a factor equal to the degree of
theB vertices.

We add satisfiability constraints to theB vertices. The constraints ensure that the assignments to
A vertices contained in an assignment to a vertexb ∈ B are consistent on their projection ontob in
the original RM-LR. These constraints are formulated in terms of tree satisfiability constraints (see
the discussion before Definition 7.5).

Formally, the switching sides manipulation on RM-LRs is as follows:

Given a right regular RM-LR reducingD 7→ D̃ for some tuples that has right degreedegright:

G = 〈G = (A, B, E), V = A, Ω, D̃, F̃, satG
.≡ true, labelG, projG, tupG, evalG〉

we construct an RM-RR reducingD 7→ D̃ for the same tuples

G = 〈G = (A, B, E), V = B, Ω, ΣA, D̃, satG, labelG , projG, tupG, evalG〉

by performing the following operations:

1. SetA
.
= B andB

.
= A.

2. For every edgee = (a, b) ∈ E there is an edgee = (b, a) ∈ E. Note thatG = (A, B, E) is
left regular.

3. SetΩ
.
= [degright]. If e = (a, b) ∈ E is thei’th edge coming intob in G for i ∈ [degright]

ande = (b, a) ∈ E, then we setlabelG(e)
.
= i. Note that for every vertexb ∈ A, for all labels

i ∈ [degright] there is one edgee ∈ E coming out ofb with labelG(e) = i.

4. The alphabet domainΣA and the projection functionprojG are as in the definition of RM-RRs
(Definition 7.5).

5. SettupG
.≡ tupG andevalG

.≡ evalG.

100

6. Recall that by the definition of RM-LRs, we have thatΩ = F
w whereF is the field ofD̃,

andw is its dimension. For every vertexa = b ∈ A, define a satisfiability treeTa of depth
1 as follows. The tree contains a rootu0

.
= b that has as its children the elements inΩ =

[degright]. The elements inΩ are the leaves of the tree. To complete the description of thetree
satisfiability constraints we need to define for everyi ∈ [degright] a functionPa,i : {0} → F

w

specifying a point inFw for the rootu0. For every indexi ∈ [degright] corresponding to an
edgee = eG(b, i) ∈ E, setPa,i(0)

.
= labelG(e) ∈ F

w.

Properties of the manipulation. G can be obtained efficiently fromG. G has the same size asG.
The block length ofG is larger than the block length ofG by a factor equal to the right degree ofG.
G is left and right regular with left degree equal to the right degree ofG and right degree equal to the
left degree ofG. The depth of the tree satisfiability constraints ofG is 1.

Analysis. DenoteD = 〈Fm, F,Denc,Ddec〉, D̃ = 〈Fw, F, D̃enc, D̃dec〉, ΣA = 〈Ω, D̃dec, ΣA,enc, ΣA,dec〉
andF̃ = 〈{1}, F, F̃enc, F̃dec〉.

Let CA : A→ ΣA,dec be an assignment to theA vertices inG. We define itsprojected assignment

CB : B → F̃dec to theB vertices inG by assigning every vertexb = a ∈ B an element iñFdec as
follows: If σa

.
= CA(a) is not satisfying, i.e.,satG(a, σa) = false, letCB(b) be an arbitrary element

in F̃dec. Otherwise, denote by~x = Pa,1(0) ∈ F
w the point that the (arbitrary) leaf1 specifies for the

root ofTa. Let CB(b) be the element iñFdec corresponding toσa(1)(~x).
Proposition 14.1. Assume thatCA : A → D̃dec andCB : B → F̃dec are assignments toG. Assume
thatCA : A→ ΣA,dec andCB : B → D̃dec are assignments toG, such that the projected assignment
of CA to theB vertices isCB andCB ≡ CA. Let e = (a, b) ∈ E and lete = (b, a) ∈ E be its
corresponding edge. It holds that:

• If e is satisfied inG underCA andCB, thene is satisfied inG underCA andCB.

• e reads an elementf ∈ Ddec in G underCA andCB if and only ife readsf in G underCA

andCB.

Moreover, given assignmentsCA : A → D̃enc andCB : B → F̃enc such that all edges are satisfied
in G underCA andCB, one can efficiently compute assignmentsCA : A → ΣA,enc andCB : B →
D̃enc, such that the projected assignment ofCA to theB vertices isCB, CB ≡ CA, and it holds that
all edges are satisfied inG underCA andCB.
Lemma 14.2. Let 0 < δmin < 1. Let lmax : (0, 1) → R

+ be a decreasing function. Setδ∗min
.
=√

δmin and l∗max(δ)
.
= 1

δ
· lmax(δ

2). If G is a (δmin, lmax)-RM-LR reducingD 7→ D̃ for some tuples,
and G is obtained fromG by the switching sides manipulation, thenG is a (δ∗min, l∗max)-RM-RR
reducingD 7→ D̃ for the same tuples.

Proof. Let us prove encoding and list decoding:

101

Encoding. Let f ∈ Denc. Assume thatCA : A → D̃enc andCB : B → F̃enc are the efficiently
computable assignments guaranteed by the encoding property of G for f . By Proposition 14.1, we
can efficiently construct assignmentsCA : A→ ΣA,enc andCB : B → D̃enc, such that all edges are
satisfied and readf in G underCA andCB.

List Decoding. Fix an assignmentCB : B → D̃dec and a realδ such thatδ∗min ≤ δ < 1. Let
f1, . . . , fl ∈ Ddec be thel ≤ l∗max(δ) elements guaranteed by Proposition 6.11 invoked on the
(δmin, lmax)-generic bipartite locally decode/reject code induced byG, the assignmentCA

.≡ CB

and the parameterδ.

Let CA : A → ΣA,dec be an assignment to theA vertices inG. Let CB : B → F̃dec be the
projected assignment to theB vertices inG. When picking uniformly at random an edgee ∈ E, the
probability thate is satisfied but does not read one off1, . . . , fl in G underCA, CB, is at mostO(δ).
Hence, by Proposition 14.1, when picking uniformly at random an edgee ∈ E, the probability that
e is satisfied but does not read one off1, . . . , fl in G underCA, CB, is at mostO(δ).

Transforming RM-LR construction algorithms. Assume that we are given a(D, k, N)-RM-
LR construction algorithmA1 with structural parameters〈size, block, degleft, degright〉 reducing
D 7→ D̃ that outputs right regular RM-LRs. Consider the(D, k, N)-RM-RR construction algorithm
A2 with structural parameters〈size, degright · block, degright, degleft, 1〉 reducingD 7→ D̃ defined
as follows: Given an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

InvokeA1 on the input tuples to obtain a right regular RM-LRG reducingD 7→ D̃ for the input
tuples. Then perform the switching sides manipulation on RM-LRs that is described above to obtain
an RM-RRG reducingD 7→ D̃ for the input tuples, and outputG.

14.2 Transforming RM-LPRs Into RM-RPRs

Given an RM-LPR reducingD 7→ D̃ for some tuples that has right degreedegright:

G = 〈G = (A, B, E), V = A, Ω, D̃, F̃, satG
.≡ true, labelG , projG, tupG, evalG, pntG, evalpG〉

whereD̃ = 〈Fw, F, D̃enc, D̃dec〉 and F̃ = 〈{1}, F, F̃enc, F̃dec〉, we construct an RM-RPR reducing
D 7→ D̃ for the same tuples

G = 〈G = (A, B, E), V = B, Ω, ΣA, D̃, satG, labelG, projG, tupG, evalG, pntG, evalpG〉

by performing the following operations:

102

1. Consider the RM-LR induced byG:

G− = 〈G = (A, B, E), V = A, Ω, D̃, F̃, satG
.≡ true, labelG , projG, tupG, evalG〉

[Note that it is right regular]

2. Perform the switching sides manipulation on RM-LRs to obtain an RM-RRG−:

G− = 〈G = (A, B, E), V = B, Ω, ΣA, D̃, satG−, labelG− , projG−, tupG−, evalG−〉

SoA = B. DenoteΣA = 〈Ω, D̃dec, ΣA,enc, ΣA,dec〉.

3. SetpntG
.≡ pntG . Define a functionevalpG : A× ΣA,dec → F as in Definition 7.6.

4. Let the corresponding RM-RPRG be:

G = 〈G, V , Ω, ΣA, D̃, satG− , labelG−, projG−, tupG−evalG− , pntG, evalpG〉

Properties of the manipulation. G can be obtained efficiently fromG. G has the same size asG.
The block length ofG is larger than the block length ofG by a factor equal to the right degree ofG.
G is left and right regular with left degree equal to the right degree ofG and right degree equal to the
left degree ofG. The depth of the tree satisfiability constraints ofG is 1.

Analysis. Using Proposition 14.1, we get:
Proposition 14.3. Assume thatCA : A → D̃dec andCB : B → F̃dec are assignments toG. Assume
thatCA : A→ ΣA,dec andCB : B → D̃dec are assignments toG, such that the projected assignment
of CA to theB vertices isCB andCB ≡ CA. Let e = (a, b) ∈ E and lete = (b, a) ∈ E be its
corresponding edge. It holds that:

• If e is satisfied inG underCA andCB, thene is satisfied inG underCA andCB.

• If e is satisfied inG underCA andCB ande reads an elementf ∈ Ddec in G underCA and
CB, thene readsf in G underCA andCB.

Moreover, given assignmentsCA : A → D̃enc andCB : B → F̃enc such that all edges are satisfied
in G underCA andCB, one can efficiently compute assignmentsCA : A → ΣA,enc andCB : B →
D̃enc, such that the projected assignment ofCA to theB vertices isCB, CB ≡ CA, and it holds that
all edges are satisfied inG underCA andCB.

Similarly to Lemma 14.2, we have:
Lemma 14.4. Let 0 < δmin < 1. Let lmax : (0, 1) → R

+ be a decreasing function. Setδ∗min
.
=√

δmin andl∗max(δ)
.
= 1

δ
· lmax(δ

2). If G is a (δmin, lmax)-RM-LPR reducingD 7→ D̃ for some tuples,
andG is obtained fromG by the switching sides manipulation, thenG is a (δ∗min, l∗max)-RM-RPR
reducingD 7→ D̃ for the same tuples.

103

Transforming RM-LPR construction algorithms. Assume that we are given a(D, k, N)-RM-
LPR construction algorithmA1 with structural parameters〈size, block, degleft, degright〉 reducing
D 7→ D̃ that is uniform in the point association. Consider the(D, k, N)-RM-RPR construction
algorithmA2 with structural parameters〈size, degright ·block, degright, degleft, 1〉 reducingD 7→ D̃
defined as follows: Given an input to the construction algorithm

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

InvokeA1 on the input tuples to obtain an RM-LPRG reducingD 7→ D̃ for the input tuples. Then
perform the switching sides manipulation on RM-LPRs that isdescribed above to obtain an RM-
RPRG reducingD 7→ D̃ for the input tuples, and outputG. Note thatA2 is uniform in the point
association.

15 Transforming Hadamard Left Readers Into RM�Had Left
Readers

In this section we show how to transform a Had-LR construction algorithm into a RM�Had-LR
construction algorithm, thus proving Lemma 8.7. Recall that a Reed-Muller codeword corresponds
to a low degree polynomial. The idea is to take the coefficients of the low degree polynomial, and
encode them via a Hadamard code overL. The symbols of the concatenation of the Reed-Muller
codeword with a Hadamard code appear in the encoding (we argue that below).

This results in a very wasteful construction, and is hence used only as an inner construction.

We use the notation appearing in Lemma 8.7. Specifically,D is a RM�Had domain defined by a
finite field F, a prime subfieldL of F, a dimensionm, an encoding degreed and a decoding degree
d′. The extension degree ofF overL is τ = [F : L]. The number of monomials in anm-variate
polynomial of degree at mostd is M

.
=
(

m+d
m

)
. We consider the Reed-Muller encodingF

M → F
|Fm|

which is a linear function over the fieldF. We consider the Hadamard encodingL
τ → L which is a

linear function over the fieldL. IdentifyingF with the linear subspaceLτ , the concatenation of the
two encodings can be viewed as a linear function overL.

The linear functions corresponding to symbols of RM�Had Code. By the linearity of the con-
catenation of the Reed-Muller encoding and the Hadamard encoding, for every pair〈~x, ~y〉 ∈ F

m×L
τ

representing a position in the concatenation, there is a linear function overL mapping each vector
in L

M ·τ to the symbol of the corresponding codeword at position〈~x, ~y〉. Let ~e~x,~y ∈ L
M ·τ be the

coefficients vector of this linear function.

Transforming Had-LR construction algorithms. H is a Hadamard domain defined by the finite
field L and the dimensionM · τ . Note that there is a natural bijection between the encoded domain
of D and the encoded (and decoded) domain ofH: the bijection that maps a Reed-Muller codeword

104

in the encoded domain ofD to the Hadamard encoding of its coefficients in the encoded domain of
H.

Assume that we are given a(H, k, N)-Had-LR construction algorithmA1 with structural pa-
rameters〈size, block, degleft, degright〉 that is uniform in the tuple association and in the encoding
and list decoding. Moreover,A1 outputs Had-LRs in which the right degrees of the vertices donot
depend on the input to the algorithm.

Let us construct a(D, k, N)-RM�Had-LR construction algorithmA2 with structural parameters
〈size, block, degleft, degright〉 that is uniform in the tuple association and in the encoding and list
decoding, and outputs RM�Had-LRs, in which the right degrees of the vertices do not depend on
the input to the algorithm:

Given an input to the construction algorithm

〈(~x1,1, ~y1,1), . . . , (~x1,k, ~y1,k)〉, . . . , 〈(~xN,1, ~yN,1), . . . , (~xN,k, ~yN,k)〉 ∈ (Fm × L
τ)k

InvokeA1 on the following input:

〈~e~x1,1,~y1,1, . . . , ~e~x1,k,~y1,k
〉, . . . , 〈~e~xN,1,~yN,1

, . . . , ~e~xN,k,~yN,k
〉 ∈ (LM ·τ)k

Assume that the output ofA1 is the Had-LR

G = 〈G = (A, B, E), V = A, Ω, ΣA, ΣB, satG
.≡ true, labelG, projG, tupG, evalG〉

Let us construct a RM�Had-LR

G = 〈G = (A, B, E), V = A, Ω, ΣA, ΣB, satG
.≡ true, labelG, projG, tupG, evalG〉

as follows:

1. For every vertexa ∈ A, assuming thattupG(a) = 〈~e~xi,1,~yi,1
, . . . , ~e~xi,k,~yi,k

〉, let tupG(a)
.
=

〈(~xi,1, ~yi,1), . . . , (~xi,k, ~yi,k)〉.

Note thatA2 is uniform in the tuple association. Moreover,A2 outputs RM�Had-LRs in which the
right degrees of the vertices do not depend on the input to thealgorithm.

Assume thatG is a (δmin, lmax)-Had-LR. Let us show thatG is a (δmin, lmax)-RM�Had-LR:
DenoteD = 〈Fm × L

τ , L,Denc,Ddec〉 andH = 〈LM ·τ , L,Henc,Hdec〉. Recall thatHenc = Hdec.
DenoteΣA = 〈DA, RA, ΣA,enc, ΣA,dec〉 andΣB = 〈DB, RB, ΣB,enc, ΣB,dec〉.

Encoding. Let f ∈ Denc and denote byf ∈ Henc the corresponding element. LetCA : A →
ΣA,enc andCB : B → ΣB,dec be the assignments guaranteed by the encoding property ofG for f . In
G underCA andCB, all edges are satisfied and readf .

105

List Decoding. Fix an assignmentCB : B → ΣB,dec and a realδ such thatδmin ≤ δ < 1. Let
f 1, . . . , f l ∈ Hdec = Henc be thel ≤ lmax(δ) elements guaranteed by the list decoding property of
G. Let f1, . . . , fl ∈ Denc ⊆ Ddec be the corresponding elements. LetCA : A → ΣA,dec. In G under
CA andCB, when picking uniformly at random an edgee ∈ E, the probability thate is satisfied but
does not read one off1, . . . , fl is at mostO(δ).

SinceA1 is uniform in the encoding and list decoding, so isA2.

16 Composition of Reed-Muller Right Readers

In this section we show how to compose RM-RR and RM-RPR construction algorithms, thus proving
Lemma 8.8.

1. LetD = 〈Fm, F,Denc,Ddec〉 be a Reed-Muller domain defined by a finite fieldF, a dimension
m, an encoding degreed and a decoding degreed′.

2. LetD1 = 〈Fw, F,D1,enc,D1,dec〉 be a Reed-Muller domain defined by the fieldF, a dimension
w, an encoding degreed1 and a decoding degreed′

1.

3. LetD2 = 〈Fµ, F,D2,enc,D2,dec〉 be a Reed-Muller domain.

Assume that we have outer and inner construction algorithmsas follows:

• Aout: (D, k, N)-RM-RR construction algorithm with structural parameters
(sizeout, blockout, degleftout, degrightout, depthout) reducingD 7→ D1, with depthout ≤ d′

1.

• Ain: (D1, k + degrightout · depthout, 1)-RM-RPR construction algorithm with structural pa-
rameters(sizein, blockin, degleftin, degrightin, 1) reducingD1 7→ D2 that is uniform in the point
association.

We design a composed algorithmA. It will be a (D, k, N)-RM-RR construction algorithm with
structural parameters(size, block, degleft, degright, depth) reducingD 7→ D2 for size ≤ sizeout ·
sizein, block = degleftout · blockin, degleft = degleftout · degleftin, degright = degrightout · degrightin
anddepth = depthout + 1:

Assume that the input to the construction algorithmA is a collection ofk-tuples of points
〈~xi,1, . . . , ~xi,k〉 ∈ (Fm)k for i ∈ [N]. The construction algorithm constructs an RM-RR

G = 〈G = (A, B, E), V = B, Ω, ΣA,D2, satG, labelG , projG, tupG, evalG〉

as follows:

106

1. Outer construction. Invoke construction algorithmAout on the inputk-tuples to obtain an
RM-RR

Gout = 〈Gout, Vout = Bout, Ωout, ΣAout,D1, satGout , labelGout , projGout, tupGout, evalGout〉

whereGout = (Aout, Bout, Eout) andΣAout = 〈Ωout,D1,dec, ΣAout,enc, ΣAout,dec〉.

2. Queried points. Recall that for every vertexaout ∈ Aout there are tree satisfiability con-
straints given by a satisfiability treeTaout whose leaves are the elements inΩout and by an-
cestors point specification functions{Paout,ξout}ξout∈Ωout

(See Section 7.5). We say that an
edgeeout = (aout, bout) ∈ Eout queriesa point~x ∈ F

w, if ~x is one of the points along the
path fromξout

.
= labelGout(eout) to the root of the satisfiability treeTaout, i.e., there is a depth

i ∈ {0, . . . , depthout − 1} such thatPaout,ξout(i) = ~x.

For a vertexbout ∈ Bout we definek + degrightout · depthout queried pointsof bout (possibly
with repetitions) as follows:

• Vertex queried points (k points): If ~p1, . . . , ~pk ∈ F
w are the points such that for ev-

ery σbout ∈ D1,dec it holds thatevalGout(bout, σbout) = 〈σbout(~p1), . . . , σbout(~pk)〉, then
~p1, . . . , ~pk are the vertex queried points ofbout.

• Edge queried points (degrightout · depthout points): For every edgeeout = (aout, bout) ∈
Eout coming intobout in Gout that queries a point~x ∈ F

w, the point~x is an edge queried
point of bout.

We denote the queried points ofbout by ~x
(bout)
1 , . . . , ~x

(bout)
k+degrightout ·depthout

∈ F
w, where the firstk

points are the vertex queried points.

3. Inner construction. For every vertexbout ∈ Bout, we define an RM-RPR. The purpose of the
RM-RPR is to read the queried points ofbout.

The algorithmAin is uniform in the point association, and, in particular, uniform in struc-
ture. LetAin, Bin, Ωin andΣAin

be such thatAin is uniform in structure〈Ain, Bin, Vin =
Bin, Ωin, ΣAin

,D2〉. DenoteΣAin
= 〈Ωin,D2,dec, ΣAin,enc, ΣAin,dec〉. Let pntin : Ain → F

w be
the uniform point associator.

For bout ∈ Bout, invokeAin on the queried points ofbout to obtain the RM-RPRGbout

in :

Gbout

in = 〈Gbout

in , Vin, Ωin, ΣAin
,D2, sat

G
bout
in

, label
G

bout
in

, proj
G

bout
in

, tup
G

bout
in

, eval
G

bout
in

, pntin, evalp
G

bout
in

〉

whereGbout

in = (Ain, Bin, E
bout

in).

By definition, there arek + degrightout · depthout points~p1, . . . , ~pk+degrightout·depthout
∈ F

µ that
correspond to evaluation of the queried points inGbout

in , i.e., for everybin ∈ Bin andσbin
∈

D2,dec,
eval

G
bout
in

(bin, σbin
) = 〈σbin

(~p1), . . . , σbin
(~pk+degrightout ·depthout

)〉
We call these pointsthe evaluating points ofbout.

107

4. Composed graph. To construct the composed graphG, for each vertexaout ∈ Aout we
produce a copy ofAin, and for each vertexbout ∈ Bout, we produce a copy ofBin. That is, we
take:

A
.
= {〈aout, ain〉 | aout ∈ Aout ∧ ain ∈ Ain } , B

.
= {〈bout, bin〉 | bout ∈ Bout ∧ bin ∈ Bin }

For every two edgeseout = (aout, bout) ∈ Eout andein = (ain, bin) ∈ Ebout

in , we put an edge
e ∈ E between〈aout, ain〉 ∈ A and〈bout, bin〉 ∈ B. Note that the composed graph is left and
right regular with left degreedegleftout · degleftin and right degreedegrightout · degrightin. The
size of the composed graph is less thansizeout · sizein.

Figure 11: Composed graph.

5. Labels. We letΩ
.
= [degleftout]× Ωin. If an edgee ∈ E corresponds to the outer edgeeout =

(aout, bout) ∈ Eout and the inner edgeein ∈ Ebout

in , thenlabelG(e) is the pair〈i, ξin〉 ∈ Ω, where
i ∈ [degleftout] is the index of the outer edgeeout among the edges coming out ofaout, i.e.,
eout = eGout(aout, i), andξin is the label of the inner edgeein in Gbout

in , i.e.,ξin = label
G

bout
in

(ein).
Note that for every vertexa ∈ A, there is the same number of edges coming out ofa with each
label.

6. Alphabets. We letΣA = 〈Ω,D2,dec, ΣA,enc, ΣA,dec〉 andprojG be as in Definition 7.5. Note
that the block length isdegleftout · blockin.

7. Evaluation. For every vertexb = 〈bout, bin〉 ∈ B, we settupG(b)
.
= tupGout(bout). Note that

each tuple is associated with the same number ofB vertices.

For σb ∈ D2,dec, we let evalG(b, σb) be eval
G

bout
in

(bin, σb) truncated to the firstk positions
(corresponding to thek vertex queried points).

8. Tree satisfiability constraints. Let a = 〈aout, ain〉 ∈ A. We define tree satisfiability con-
straints fora. Their purpose is:

108

(a) To check the satisfiability constraints ofaout in Gout.

(b) To check the satisfiability constraints ofain in Gbout

in for every vertexbout ∈ Bout that
neighborsaout in Gout.

(c) To check consistency between the assignments to every two verticesb(1)
out, b

(2)
out ∈ Bout

that neighboraout in Gout such that the edgese(1)
out = (aout, b

(1)
out) ∈ Eout and e

(2)
out =

(aout, b
(2)
out) ∈ Eout have the same labellabelGout(e

(1)
out) = labelGout(e

(2)
out). The check is

by comparing them on the pointpntin(ain) (which is uniformly distributed inFw for a
uniformly distributedain ∈ Ain).

Let the tree satisfiability constraints ofaout in Gout be given by the treeTaout = (Uaout ∪
Ωout, Eaout) and the ancestors point specification functions{Paout,ξout}ξout∈Ωout

. To construct
the satisfiability treeTa for a we take the treeTaout and place in each leafξout ∈ Ωout a
sub-tree of depth1. The leaves of the sub-tree are the elementsξ = 〈i, ξin〉 ∈ Ω for which
the i’th edge coming out ofaout in Gout has labelξout. Let us denote these elements by
Ωξout ⊆ Ω. Then, formally we defineTa

.
= (Ua ∪ Ω, Ea) for Ua

.
= Uaout ∪ Ωout andEa

.
=

Eaout ∪{(ξout, ξ) | ξout ∈ Ωout ∧ ξ ∈ Ωξout }. Note that for every depth, all nodes in that depth
have the same number of children, since this property holds for Taout and there is the same
number of edges coming out ofaout with each labelξout ∈ Ωout.

We set the ancestors point specification functions as follows: Let ξ = 〈i, ξin〉 ∈ Ω. Let
bout ∈ Bout be the vertex touching thei’th edgeeout ∈ Eout coming out ofaout in Gout, and
let ξout = labelGout(eout) be the label of this edge. Leth ∈ {0, . . . , depth− 1} be a depth in
the treeTa. Recall thatdepth = depthout + 1. We handle the following two cases separately:

• 0 ≤ h ≤ depthout−1: Let ~x = Paout,ξout(h) ∈ F
w be the point specified in the treeTaout.

Then,~x is a queried point ofbout. Assume that it is thej’th queried point ofbout where
j ∈ [k + degrightout · depthout], and let~pj ∈ F

µ be the corresponding evaluating point of
bout. We setPa,ξ(h)

.
= ~pj .

• h = depthout: Let Pain,ξin
: {0} → F

µ be the ancestors point specification function
associated with the treeTain

in the RM-RPRGbout

in . Then,Pa,ξ(h)
.
= Pain,ξin

(0).

16.1 Analysis

Lemma 16.1 (Composition).Let 0 < δmin,out, δmin,in < 1. Let lmax,out, lmax,in : (0, 1) → R
+ be

decreasing functions. Assume that for some constantsb1, b2 ≥ 1 for every0 < δ < 1 it holds that
lmax,in(δ) ≤ b1

δb2
. Set

δmin
.
= max




δmin,in, (2b
2
1 · δmin,out)

1/(2b2+3),

(
2b1 ·

√
d′

1

|F|

)1/(b2+1)





and

lmax(δ)
.
=

b1

δb2
· lmax,out(

1

2b2
1

· δ2b2+3)

109

Assume thatδmin < 1.

Then, ifAout outputs(δmin,out, lmax,out)-RM-RRs, andAin outputs(δmin,in, lmax,in)-RM-RPRs,
thenA outputs(δmin, lmax)-RM-RRs.

Proof. We will prove encoding and list decoding:

Encoding. Let f ∈ Denc. We efficiently construct assignmentsCA : A → ΣA,enc andCB : B →
D2,enc as follows: LetCAout : Aout → ΣAout,enc andCBout : Bout → D1,enc be the assignments for
Gout following from the encoding property forf . Let bout ∈ Bout. Let CAin,bout : Ain → ΣAin,enc

andCBin,bout : Bin → D2,enc be the assignments forGbout

in following from the encoding property for
CBout(bout) ∈ D1,enc.

Let a = 〈aout, ain〉 ∈ A. Then,CA(a) is taken to be the functionσa : [degleftout]×Ωin → D2,enc

defined as follows: Fori ∈ [degleftout], let eout = (aout, bout) ∈ Eout be thei’th edge coming out of
aout in Gout. For everyξin ∈ Ωin, letσa(〈i, ξin〉) .

= CAin,bout(ain)(ξin) (Recall thatΣAin,enc is the set
of functionsΩin → D2,enc). For everyb = 〈bout, bin〉 ∈ B, let CB(b)

.
= CBin,bout(bin).

Let e = (a, b) ∈ E for a = 〈aout, ain〉 ∈ A andb = 〈bout, bin〉 ∈ B. Denote the label ofe by
label(e) = 〈i, ξin〉 ∈ Ω. Let eout = (aout, bout) ∈ Eout andein = (ain, bin) ∈ Ebout

in . We have the
following properties:

Reading. We have thatevalG(b, CB(b)) is the firstk positions ineval
G

bout
in

(bin, CBin,bout(bin)), and,

sinceein readsCBout(bout) in Gbout

in underCAin,bout andCBin,bout, it holds thatevalG(b, CB(b)) =
evalGout(bout, CBout(bout)). Sinceeout readsf in Gout underCAout andCBout, alsoe readsf in G
underCA andCB.

Projection. We haveprojG(a, CA(a), 〈i, ξin〉) = proj
G

bout
in

(ain, CAin,bout(ain), ξin) = CBin,bout(bin) =

CB(b).

Let a = 〈aout, ain〉 ∈ A, and let us show thatsatG(a, CA(a)) = true:

Satisfaction. We define an assignmentσ : Ua → F of field elements to the inner nodes ofTa;
recall thatUa = Uaout ∪ Ωout:

• Let σ1 : Uaout → F be the satisfying assignment to the inner nodes of the satisfiability tree
Taout of aout in Gout as follows fromsatGout(aout, CAout(aout)) = true. For every nodeu ∈
Uaout let σ(u)

.
= σ1(u).

• Let σ2 : Ωout → F be defined as follows. Letξout ∈ Ωout. Denote the polynomial corre-
sponding to the labelξout by Qξout

.≡ CAout(aout)(ξout) ∈ D1,enc. Then,σ2(ξout) evaluates
the polynomialQξout on the point associated withain, namely,σ2(ξout)

.
= Qξout(pntin(ain))

(recall the uniform point association). For every nodeu ∈ Ωout, let σ(u)
.
= σ2(u).

110

Next we show that this assignment is indeed consistent with the evaluationsCA(a)(ξ) for the leaves
ξ ∈ Ω of the treeTa. Letξ = 〈i, ξin〉 ∈ Ω. Denote the polynomial assigned toξ byQξ

.≡ CA(a)(ξ) ∈
D2,enc. Let eout = (aout, bout) ∈ Eout be thei’th edge coming out ofaout in Gout. Let ξout ∈ Ωout

be the label ofeout. As before, denote the polynomial assigned toξout by the outer assignment
CAout(aout) by Qξout

.≡ CAout(aout)(ξout) ∈ D1,enc.

Let h ∈ {0, . . . , depth− 1}, and letu ∈ Ua be the ancestor ofξ in depthh in the treeTa. We
handle the following two cases separately:

• 0 ≤ h ≤ depthout − 1: Let ein = (ain, bin) ∈ Ebout

in be some edge withlabel
G

bout
in

(ein) = ξin.

SinceQξ = CAin,bout(ain)(ξin) = CBin,bout(bin), Qξout = CBout(bout) andein readsCBout(bout)
in Gbout

in underCAin,bout andCBin,bout, we have thatQξ(Pa,ξ(h)) = Qξout(Paout,ξout(h)). Since
satGout(aout, CAout(aout)) = true, it holds thatQξout(Paout,ξout(h)) = σ1(u).

• h = depthout: SinceQξ = CAin,bout(ain)(ξin) andsat
G

bout
in

(ain, CAin,bout(ain)) = true and
by the definition of theevalp function in an RM-RPR (see Definition 7.6) we have that
Qξ(Pa,ξ(h)) = evalp

G
bout
in

(ain, CAin,bout(ain)). SinceQξout = CBout(bout) andein readsCBout(bout)

in Gbout

in underCAin,bout andCBin,bout, we haveQξ(Pa,ξ(h)) = Qξout(pntin(ain)) = σ2(u).

Overall, we get thatQξ(Pa,ξ(h)) = σ(u).

List decoding. Let CB : B → D2,dec. Let δmin ≤ δ < 1.

We use the list decoding properties of the inner and outer constructions to define a list decoding
for the composed construction.

Setlin
.
= b b1

δb2
c. Let bout ∈ Bout. Let CBin,bout : Bin → D2,dec be the assignment induced byCB

for Gbout

in defined by letting everybin ∈ Bin be assignedCB(〈bout, bin〉). Note thatδmin,in ≤ δ < 1.
Let fbout,1, . . . , fbout,lin ∈ D1,dec be the list decoding guaranteed by the property of the RM-RPRGbout

in

for the assignmentCBin,bout and confidence parameterδ (we pad the list arbitrarily if there are less
thanlin elements in the list decoding). Definelin assignmentsCBout,1, . . . , CBout,lin : Bout → D1,dec

by assigning, fori ∈ [lin], every vertexbout ∈ Bout to CBout,i(bout)
.
= fbout,i.

Set δout
.
= 1

2b21
· δ2b2+3, and note thatδmin,out ≤ δout < 1. Set lout

.
= blmax,out(δout)c. For

every i ∈ [lin], let fi,1, . . . , fi,lout ∈ Ddec be the list decoding guaranteed by the property of the
RM-RRGout for the assignmentCBout,i and confidence parameterδout (we pad the list arbitrarily if
there are less thanlout elements in the list decoding). In total, we defined a list decoding of size
lin · lout ≤ b1

δb2
· lmax,out(

1
2b21
· δ2b2+3) = lmax(δ).

Fix an assignmentCA : A → ΣA,dec. For every edgeeout = (aout, bout) ∈ Eout this assignment
induces an assignmentCAin,eout : Ain → ΣAin,dec to Ain in Gbout

in : Assume thateout is thei’th edge
coming out ofaout in Gout for i ∈ [degleftout], i.e.,eout = eGout(aout, i). For every vertexain ∈ Ain,
takeCAin,eout(ain) to be the function that assigns eachξin ∈ Ωin the valueCA(〈aout, ain〉)(〈i, ξin〉).

Setl∗in
.
= d 2b1

δb2+2 e. We will construct assignmentsCAout,1, . . . , CAout,l∗in
: Aout → ΣAout,dec, such

that the following holds:

111

Proposition 16.2 (Target outer assignments).Pick uniformly at random an edgee = (a, b) ∈ E.
Let a = 〈aout, ain〉 ∈ A, b = 〈bout, bin〉 ∈ B, eout = (aout, bout) ∈ Eout, ξout = labelGout(eout) and
ein = (ain, bin) ∈ Ebout

in . With probability at least1− O(δ):

Either the edgee is not satisfied inG under the assignmentsCA andCB, or there arei0 ∈ [lin]
andj0 ∈ [l∗in], for which: (i) the edgeein readsCBout,i0(bout) in Gbout

in under the assignmentsCAin,eout

andCBin,bout; (ii) the edgeeout is satisfied inGout under the assignmentsCAout,j0 andCBout,i0 .

Note that once we prove Proposition 16.2, we are done, since (using the notation of the propo-
sition): The edgeeout is uniformly distributed inEout. Thus, for everyi0 ∈ [lin] andj0 ∈ [l∗in],
the probability of the following event is at mostO(δout): (ii) holds, but not (iii)eout reads one of
fi0,1, . . . , fi0,lout in Gout under the assignmentsCAout,j0 andCBout,i0. Hence, the probability that this
event happens forsomei0 ∈ [lin] andj0 ∈ [l∗in] is at mostO(δout · lin · l∗in) = O(δ). Moreover,
whenever both (i) and (iii) hold,e reads one offi0,1, . . . , fi0,lout in G underCA andCB.

Constructing the target outer assignments. For every vertexaout ∈ Aout, we constructl∗in as-
signmentsσaout,1, . . . , σaout,l∗in

: Ωout → D1,dec to aout. The assignmentsCAout,1, . . . , CAout,l∗in
:

Aout → ΣAout,dec are defined for everyi ∈ [l∗in], by assigning the vertexaout ∈ Aout the value
CAout,i(aout)

.
= σaout,i. We construct the assignmentsσaout,1, . . . , σaout,l∗in

in two steps:

1. Projection step. Set l′in
.
= b2

δ
· lmax,in(δ)c. For everyξout ∈ Ωout, we construct a list

faout,ξout,1, . . . , faout,ξout,l′in
∈ D1,dec of candidates forξout. The list satisfies the following

property:

Proposition 16.3. Let aout ∈ Aout. Let eout = (aout, bout) ∈ Eout be an edge coming out of
aout that has labellabelGout(eout) = ξout. When picking uniformly at random an edgeein =
(ain, bin) ∈ Ebout

in and settinge = (a, b) ∈ E for a = 〈aout, ain〉 ∈ A andb = 〈bout, bin〉 ∈ B,
the probability that the following holds is at mostO(δ):

The edgee is satisfied inG under the assignmentsCA and CB, but ein does not read an
element in{fbout,1, . . . , fbout,lin}∩

{
faout,ξout,1, . . . , faout,ξout,l′in

}
in Gbout

in under the assignments
CAin,eout andCBin,bout.

2. Satisfaction step.By matching the listsfaout,ξout,1, . . . , faout,ξout,l′in
∈ D1,dec for differentξout’s,

we construct thel∗in assignmentsσaout,1, . . . , σaout,l∗in
: Ωout → D1,dec, so that the following

property is satisfied:

Proposition 16.4.Letaout ∈ Aout.

(a) For everyi ∈ [l∗in], it holds thatsatGout(aout, σaout,i) = true.

(b) Pick uniformly at random an edgeeout = (aout, bout) ∈ Eout coming out ofaout in Gout

and an edgeein = (ain, bin) ∈ Ebout

in . Sete = (a, b) ∈ E for a = 〈aout, ain〉 ∈ A and
b = 〈bout, bin〉 ∈ B. Let ξout = labelGout(eout). The probability that the following holds
is at mostO(δ):

112

The edgee is satisfied inG under the assignmentsCA andCB, butein does not read an
element in{fbout,1, . . . , fbout,lin} ∩

{
σaout,1(ξout), . . . , σaout,l∗in

(ξout)
}

in Gbout

in under the
assignmentsCAin,eout andCBin,bout.

When (in the notation of Proposition 16.4), the edgeein reads an element in{fbout,1, . . . , fbout,lin}∩{
σaout,1(ξout), . . . , σaout,l∗in

(ξout)
}

in Gbout

in under the assignmentsCAin,eout and CBin,bout, it holds
that for somei0 ∈ [lin] andj0 ∈ [l∗in], the edgeein readsCBout,i0(bout) in Gbout

in under the assign-
mentsCAin,eout andCBin,bout, and that the edgeeout is satisfied inGout underCAout,j0 andCBout,i0.
Thus, once we prove Proposition 16.4, Proposition 16.2 is proved as well, noticing that when
e = (〈aout, ain〉, 〈bout, bin〉) is uniformly distributed inE, we also have thateout = (aout, bout) is
uniformly distributed among the edges coming out ofaout in Gout andein = (ain, bin) is uniformly
distributed inEbout

in .

Let us turn to the construction.

The projection step (Proof of Proposition 16.3). We will use Lemma 6.8 and our definition of the
satisfiability tree.

Let ξout ∈ Ωout. Let us define a point evaluation functionpe : Ain → F. Let ain ∈ Ain and
denotea = 〈aout, ain〉 ∈ A. If satG(a, CA(a)) = false, let pe(ain) be an arbitrary field element.
Otherwise, letσ : Ua → F be the implied assignment to the inner nodes of the satisfiability tree
Ta. Recall thatξout is a node in this tree, and definepe(ain)

.
= σ(ξout). The decoded domainD1,dec

defines a code with (relative) distance1− d′1
|F|

, and for every realδ′ satisfying
(
2b1 ·

√
d′1
|F|

)1/(b2+1)

≤

δ′ < 1 it holds that δ′

lmax,in(δ′)
≥ 2

√
d′1
|F|

. Let faout,ξout,1, . . . , faout,ξout,l′in
∈ D1,dec be the list we get

from Lemma 6.8 for the construction algorithmAin, the functionpe and the parameterδ (we pad
the list arbitrarily if there are less thanl′in elements).

Fix an edgeeout = (aout, bout) with label labelGout(eout) = ξout. Let ein = (ain, bin) ∈ Ebout

in

ande = (a, b) ∈ E for a = 〈aout, ain〉 ∈ A andb = 〈bout, bin〉 ∈ B. Denote the label ofe by
labelG(e) = 〈i, ξin〉. By the definition of the treeTa, whensatG(a, CA(a)) = true we also have that
sat

G
bout
in

(ain, CAin,eout(ain)) = true andevalp
G

bout
in

(ain, CAin,eout(ain)) = pe(ain). In addition, when

CA(a)(〈i, ξin〉) = CB(b), we haveCAin,eout(ain)(ξin) = CBin,bout(bin). Hence, whene is satisfied
in G under the assignmentsCA andCB, we have thatein is satisfied inGbout

in under the assignments
CAin,eout andCBin,bout andevalp

G
bout
in

(ain, CAin,eout(ain)) = pe(ain). Proposition 16.3 follows from
Lemma 6.8.

The satisfaction step (Proof of Proposition 16.4). Let us say that a vertexa = 〈aout, ain〉 ∈ A
checkedan assignmentfaout,ξout,i ∈ D1,dec for ξout ∈ Ωout, if there is an edgeeout = (aout, bout) ∈
Eout with labellabelGout(eout) = ξout and an edgeein = (ain, bin) ∈ Ebout

in , such that:

1. The edgeein readsfaout,ξout,i in Gbout

in underCAin,eout andCBin,bout.

113

2. Fora = 〈aout, ain〉 ∈ A andb = 〈bout, bin〉 ∈ B, the edgee = (a, b) ∈ E is satisfied inG
underCA andCB (and, in particular,satG(a, CA(a)) = true).

Note that by the definition of the tree satisfiability constraints, if a vertexa ∈ A checked assignments
f

aout,ξ
(1)
out,i1

, . . . , f
aout,ξ

(s)
out,is

∈ D1,dec for ξ
(1)
out, . . . , ξ

(s)
out ∈ Ωout, respectively, then there is an assign-

mentσout : Uaout → F to the inner nodes of the satisfiability treeTaout that is consistent with all
these assignments. That is, for everyj ∈ [s], for every depthh ∈ {0, . . . , depthout − 1}, if u ∈ Uaout

is the ancestor of the leafξ(j)
out in depthh in the treeTaout, thenf

aout,ξ
(j)
out,ij

(P
aout,ξ

(j)
out

(h)) = σout(u).

We define assignmentsσaout,1, σaout,2, . . . , σaout,l∗in
: Ωout → D1,dec using the following proce-

dure:
for i = 1, 2, . . . , l∗in + 1 do

1. For everyξout ∈ Ωout, let theuncovered assignmentsfor ξout be

Lξout

.
=
{
faout,ξout,1, . . . , faout,ξout,l′in

}
− {σaout,1(ξout), . . . , σaout,i−1(ξout)}

2. If there is noa = 〈aout, ain〉 ∈ A such that for at leastδ fraction of theξout ∈ Ωout, the vertex
a checked an uncovered assignment forξout, halt.

3. Otherwise, leta ∈ A be such a vertex. For everyξout ∈ Ωout such thata checked an uncovered
assignmentfaout,ξout,j ∈ Lξout for ξout, let σaout,i(ξout)

.
= faout,ξout,j. Completeσaout,i into an

assignmentΩout → D1,dec such thatsatGout(aout, σaout,i) = true [Note that this is possible for
depthout ≤ d′

1].

Note that:

• When the algorithm ends, it is necessarily because it reached thehalt instruction in Step 2:

For every iterationi = 1, . . . , l∗in + 1, let Li denote the average number of uncovered assign-
ments 1

|Ωout|
·∑ξout∈Ωout

|Lξout| in thei’th iteration. We have thatL1 ≤ l′in. Moreover, for every
iterationi = 1, . . . , l∗in +1 in which the algorithm does not halt, we have thatLi+1 ≤ Li−δ ·1.
Hence, if the algorithm reaches Step 2 in iterationl∗in +1, it holds thatLl∗in+1 ≤ l′in−δ · l∗in ≤ 0

(recall thatl∗in ≥ 2b1
δb2+2 , while l′in ≤ 2b1

δb2+1). Therefore, in this iteration, for everyξout ∈ Ωout it
holds that|Lξout| = 0, and the algorithm must halt.

• Assume that the algorithm halts in Step 2 in thei’th iteration. Pick uniformly at random an
edgeeout = (aout, bout) ∈ Eout coming out ofaout in Gout and an edgeein = (ain, bin) ∈ Ebout

in .
Sete = (a, b) ∈ E for a = 〈aout, ain〉 ∈ A andb = 〈bout, bin〉 ∈ B. Let ξout = labelGout(eout).
Let us show that the probability that the edgee is satisfied inG under the assignmentsCA and
CB, andein reads an element in

{
faout,ξout,1, . . . , faout,ξout,l′in

}
−{σaout,1(ξout), . . . , σaout,i−1(ξout)}

in Gbout

in under the assignmentsCAin,eout andCBin,bout, is less thanδ:

Assume that this is not the case. For everyξout ∈ Ωout there is the same number of edges
eout = (aout, bout) ∈ Eout coming out ofaout in Gout with labelGout(eout) = ξout. Hence,

114

in the i’th iteration, there must be a vertexa = 〈aout, ain〉 ∈ A that checked an uncovered
assignment for at leastδ fraction of theξout ∈ Ωout. If this is the case, the algorithm does not
halt.

Let σaout,1, . . . , σaout,l∗in
: Ωout → D1,dec be the assignments the algorithm outputs (If there are

less thanl∗in assignments, we pad the list arbitrarily with assignmentsσaout : Ωout → D1,dec with
satGout(aout, σaout) = true). By definition, for everyi ∈ [l∗in], it holds thatsatGout(aout, σaout,i) =
true. Proposition 16.4 now follows from Proposition 16.3.

17 The Tree-Path Game

In this section we analyze a two-prover game that we call aTree-Path Game. This analysis allows
the composition of RM-RR and RM�Had-LR construction algorithms.

A Tree-Path Game is defined by the following objects:

1. Tree. A rooted treeT on a set of nodesU . We denote the depth ofT by d. The depthd should
be thought of as some small constant. Fori = 0, . . . , d, we letUi ⊆ U denote the nodes in
depthi. All the nodes inUi have the same number of children, denotedki. We assume that
the tree is directed from the root to the leaves.

2. Alphabet. A finite alphabetR, where nodes inU are assigned values fromR.

3. Code. An encodingE : R → Σm for some alphabetΣ and lengthm. The encoding corre-
sponds to a code with (relative) distance1− ε for 0 < ε < 1.

In the game a verifier interacts with two provers:the tree proverT andthe path proverP. Both
are asked about an assignment to the nodesU . Supposedly, both answer about the same assignment
σ : U → R.

The tree prover is given a positioni ∈ [m] in an encoding, and outputs foreverynodeu ∈ U
a symbol inΣ. The symbol is supposedly thei’th symbol in the encodingE(σ(u)). We denote the
answer of the prover byT (i) : U → Σ. We say that it isconsistentwith an assignmentσ : U → R,
if indeed for every nodeu ∈ U , it holds thatT (i)(u) = E(σ(u))i.

The path prover is given a leaf in the treeud ∈ Ud, and outputs assignmentsr0, . . . , rd ∈ R for
the nodesu0, . . . , ud ∈ U on the pathu0 → · · · → ud from the root to the leafud. We denote the
answer of the prover byP(ud) : {0, . . . , d} → R. We say that it isconsistentwith an assignment
σ : U → R, if indeed it holds thatP(ud)(j) = σ(uj) for j = 0, . . . , d.

The verifier in the Tree-Path game picks uniformly at random aquestion to the tree prover and a
question to the path prover and checks their consistency. See Figure 12.

We will prove that for any strategy of the tree and path provers, there exists a short list of possible
assignments to the treeσ1, . . . , σl : U → R, such that almost surely whenever the provers pass the

115

Tree-PathT ,P :

1. Pick uniformly at random a positioni ∈ [m].

2. Pick uniformly at random a leafud ∈ Ud.

3. Let u0, . . . , ud ∈ U denote the nodes on the path from the root toud. The verifier asks
for T (i) andP(ud) and tests that the two provers are consistent on the assignments to the
verticesu0, . . . , ud ∈ U , namely, it checks the following equalities:

T (i)(u0) = E(P(ud)(0))i, · · · , T (i)(ud) = E(P(ud)(d))i

Figure 12: Tree-Path Game Verifier

test, the answer of the path prover is consistent with one ofσ1, . . . , σl. Note: we could have proved
a similar assertion about the consistency of the tree proverwith σ1, . . . , σl, but it is not necessary for
us.

We use the following notation:

• TPT ,P(i, ud): For a positioni ∈ [m] and a leafud ∈ Ud, we letTPT ,P(i, ud) be 1, if the
verifier’s test in the Tree-Path game passes when the verifierasks the tree proverT questioni
and the path proverP questionud, and0 otherwise.

• conP(ud, σ): For a leafud ∈ Ud and an assignmentσ : U → R, we letconP(ud, σ) be1, if
P(ud) is consistent withσ, and0 otherwise.

The first proposition shows that from any prover strategies we can extract an assignmentσ :
U → R to the nodes of the tree. The assignment is such that we can relate the consistency of the
path prover with the assignment to the probability that the test passes.

We prove an even more general statement. In this statement, there is a weight functionw : Ud →
[0, 1] that assigns each leafud ∈ Ud a weightw(ud), and we consider the following:

• Theaverage success probabilityof the test is

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

]

• Theaverage consistencyof the path prover with an assignmentσ : U → R is

E
ud∈Ud

[conP(ud, σ) · w(ud)]

We relate the average success probability of the test and theaverage consistency of the path
prover with the assignment. The relation we show rapidly deteriorates with the depthd. However,
as we think ofd as being a small constant, it does not bother us.

116

Proposition 17.1. For any Tree-Path game as above, for any leaf weightsw : Ud → [0, 1], for any
prover strategiesT andP, there exists an assignmentσ : U → R, such that

E
ud∈Ud

[conP(ud, σ) · w(ud)] ≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2d

− (2d − 1) · ε

By applying the proposition iteratively, we can find a short list of possible assignments to the
treeσ1, . . . , σl : U → R, such that almost surely whenever the provers pass the test,the answer of
the path prover is consistent with one ofσ1, . . . , σl:
Proposition 17.2.Consider a Tree-Path game as above. Setδmin

.
= 2 · ε 1

2d and lmax(δ)
.
= 2

δ2d . For
everyδ ≥ δmin, for any prover strategiesT andP, there existl ≤ lmax(δ) assignmentsσ1, . . . , σl :
U → R, such that the following holds:

Pr
i∈[m],ud∈Ud

[
TPT ,P(i, ud) ∧ ∀j ∈ [l], conP(ud, σj) = 0

]
< δ

Proof. Fix δ ≥ δmin. We construct assignmentsσ1, . . . , σl : U → R iteratively. Each time we use
Proposition 17.1 to extract an assignment that is consistent with the path prover on a large fraction of
the leaves. Then, we set the weights associated with these leaves to0 to eliminate their contribution
to the probability that the test passes, and move to the next iteration to extract another assignment:

1. for ud ∈ Ud, setw(ud)← 1

2. j ← 1

3. while Ei∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

]
≥ δ

(a) Letσj : U → R be an assignment that satisfies

E
ud∈Ud

[conP(ud, σj) · w(ud)] ≥
δ2d

2

[note that such exists by Proposition 17.1 and the choice ofδ ≥ δmin]

(b) Ûd,j ← {ud ∈ Ud | conP(ud, σj) · w(ud) = 1}
(c) for ud ∈ Ûd,j , setw(ud)← 0

(d) j ← j + 1

First note that in Step 3, the following holds:

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

]
= Pr

i∈[m],ud∈Ud

[
TPT ,P(i, ud) = 1 ∧ ∀1 ≤ j′ ≤ j − 1, conP(ud, σj′) = 0

]

Thus, when the procedure ends, the assignmentsσ1, . . . , σj−1 satisfy the statement of the proposi-
tion. It remains to argue that the number of assignments we constructed is at mostlmax(δ) = 2

δ2d .

This follows since (i) in different iterationsj1 6= j2, we haveÛd,j1 ∩ Ûd,j2 = φ; and (ii) in every

iterationj, we have
∣∣∣Ûd,j

∣∣∣ / |Ud| ≥ δ2d

2
.

117

Let us prove Proposition 17.1:

Proof. (of Proposition 17.1) The proof will be by induction on the depth d of the tree in the Tree-
Path game. Ford = 0, letT consist of a single nodeU = {u0}. Take the assignmentσ : U → R that
is consistent with the answer of the path prover, i.e.,σ(u0) = P(u0)(0). Then,conP(u0, σ)·w(u0) =

w(u0), and we are done sinceEi∈[m]

[
TPT ,P(i, u0) · w(u0)

]20

− (20 − 1) · ε ≤ w(u0).

Assume that the proposition holds for some natural numberd− 1, and let us prove that it holds
for d. Consider a Tree-Path game as above where the tree has depthd. Let w : Ud → [0, 1] give leaf
weights. Fix prover strategiesT andP.

Observe the nodes in depthd − 1. Every such nodeud−1 ∈ Ud−1 haskd−1 childrenud ∈ Ud in
depthd. We consider the sub-game, in which the question to the path prover is chosen among the
children ofud−1 in the tree. Denoteud−1 → ud whenud is a child ofud−1 in the tree. The average
success probability of this test is given by:

E
i∈[m],ud∈Ud:ud−1→ud

[
TPT ,P(i, ud) · w(ud)

]

Averaging over theud−1 ∈ Ud−1 gives:

E
ud−1∈Ud−1

[
E

i∈[m],ud∈Ud:ud−1→ud

[
TPT ,P(i, ud) · w(ud)

]]
= E

i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

]

Or, equivalently,

E
ud−1∈Ud−1,i∈[m]

[
E

ud∈Ud:ud−1→ud

[
TPT ,P(i, ud) · w(ud)

]]
= E

i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

]

Since for any random variableX it holds thatE [X2] ≥ (E [X])2, we have that

E
ud−1∈Ud−1,i∈[m]

[(
E

ud∈Ud:ud−1→ud

[
TPT ,P(i, ud) · w(ud)

])2
]
≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

Using the notationud−1 → ud, u
′
d to indicate thatud andu′

d are both children ofud−1 (possibly the
same child) in the tree, we get

E
ud−1∈Ud−1,i∈[m]

[

E
ud,u′

d
∈Ud:ud−1→ud,u′

d

[
TPT ,P(i, ud) · w(ud) · TPT ,P(i, u′

d) · w(u′
d)
]
]

≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

Or, equivalently,

E
ud−1∈Ud−1

[
E

ud,u′

d∈Ud:ud−1→ud,u′

d

[
E

i∈[m]

[
TPT ,P(i, ud) · w(ud) · TPT ,P(i, u′

d) · w(u′
d)
]]
]

118

≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

For a path assignmentp : {0, . . . , d} → R, we denote the assignment induced on depths0 to
d − 1 by p|d−1 : {0, . . . , d− 1} → R (for j = 0, . . . , d − 1, p|d−1(j) = p(j)). We say that leaves
ud, u

′
d ∈ Ud that have the same fatherud−1 ∈ Ud−1 in the treeT agree, if on questionsud andu′

d, the
path prover answers the same on the common path from the root toud−1, i.e.,P(ud)|d−1 = P(u′

d)|d−1

(note that the equality is between twofunctions). We letagrP(ud, u
′
d) be1 if ud andu′

d agree, and0
otherwise.

By the distance of the code corresponding toE, for any leavesud, u
′
d ∈ Ud that have the same

fatherud−1 ∈ Ud−1 in the treeT but do not agree, i.e.,agrP(ud, u
′
d) = 0, it holds that:

E
i∈[m]

[
TPT ,P(i, ud) · TPT ,P(i, u′

d)
]
≤ ε

Hence,

E
ud−1∈Ud−1

[

E
ud,u′

d
∈Ud:ud−1→ud,u′

d

[
E

i∈[m]

[
TPT ,P(i, ud) · w(ud) · TPT ,P(i, u′

d) · w(u′
d) · agrP(ud, u

′
d)
]]
]

≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

− ε

Or, equivalently,

E
ud−1∈Ud−1

[

E
i∈[m],ud,u′

d
∈Ud:ud−1→ud,u′

d

[
TPT ,P(i, ud) · w(ud) · TPT ,P(i, u′

d) · w(u′
d) · agrP(ud, u

′
d)
]
]

≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

− ε

Consider the treeT ′ of depthd − 1 that is obtained from the treeT by discarding the nodes in
depthd. Let U ′ =

⋃d−1
i=0 Ui. Let T ′ be the tree prover induced byT for T ′. For a path assignment

p : {0, . . . , d− 1} → R, for a positioni ∈ [m] and a nodeud−1 ∈ Ud−1, let TPT ′,p(i, ud−1) be0 or
1, depending on whether the test of the Tree-Path game passes,when the tree isT ′, the tree prover
is T ′ and the path prover answersp. Let InP,ud

(p) be1 if p is induced by the path assignment toud,
i.e.,P(ud)|d−1 = p, and0 otherwise.

We have that

E
ud−1∈Ud−1




∑

p:{0,...,d−1}→R

E
i∈[m],ud,u′

d
∈Ud:ud−1→ud,u′

d

[
TPT ′,p(i, ud−1) · InP,ud

(p) · w(ud) · InP,u′

d
(p) · w(u′

d)
]



≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

− ε

119

Stated differently,

E
ud−1∈Ud−1




∑

p:{0,...,d−1}→R

E
i∈[m]

[
TPT ′,p(i, ud−1)

]
·
(

E
ud∈Ud:ud−1→ud

[InP,ud
(p) · w(ud)]

)2



≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

− ε

We define a path proverP ′ for the Tree-Path game onT ′ as follows: For every nodeud−1 ∈ Ud−1,
letP ′(ud−1) be an assignmentp : {0, . . . , d− 1} → R that maximizes

E
i∈[m]

[
TPT ′,p(i, ud−1)

]
· E

ud∈Ud:ud−1→ud

[InP,ud
(p) · w(ud)]

Forud−1 ∈ Ud−1, denote this maximum byMud−1
. Then, it follows from what we showed that

E
ud−1∈Ud−1



Mud−1
·

∑

p:{0,...,d−1}→R

E
ud∈Ud:ud−1→ud

[InP,ud
(p) · w(ud)]





≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

− ε

Since for everyud−1 ∈ Ud−1 it holds that
∑

p:{0,...,d−1}→R Eud∈Ud:ud−1→ud
[InP,ud

(p) · w(ud)] ≤ 1,
we have

E
ud−1∈Ud−1

[
Mud−1

]
≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

− ε

Or, equivalently,

E
i∈[m],ud−1∈Ud−1

[
TPT ′,P ′

(i, ud−1) · E
ud∈Ud:ud−1→ud

[InP,ud
(P ′(ud−1)) · w(ud)]

]

≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

− ε (3)

Define a weight functionw′ : Ud−1 → [0, 1] by assigning everyud−1 ∈ Ud−1 weight

w′(ud−1)
.
= E

ud∈Ud:ud−1→ud

[InP,ud
(P ′(ud−1)) · w(ud)]

By the induction hypothesis on the Tree-Path game on the treeT ′ of depthd − 1, we get that there
exists an assignmentσ′ : U ′ → R, such that

E
ud−1∈Ud−1

[conP ′(ud−1, σ
′) · w′(ud−1)]

≥
(

E
i∈[m],ud−1∈Ud−1

[
TPT ′,P ′

(i, ud−1) · w′(ud−1)
])2d−1

− (2d−1 − 1) · ε (4)

120

Let σ : U → R be the assignment that identifies withσ′ on U ′ and assigns eachud ∈ Ud the value
P(ud)(d). Then,

E
ud∈Ud

[conP(ud, σ) · w(ud)] ≥ E
ud−1∈Ud−1

[conP ′(ud−1, σ
′) · w′(ud−1)] (5)

Let us lower bound the right hand side of inequality (4). By inequality (3),

(
E

i∈[m],ud−1∈Ud−1

[
TPT ′,P ′

(i, ud−1) · w′(ud−1)
])2d−1

− (2d−1 − 1) · ε

≥
((

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2

− ε

)2d−1

− (2d−1 − 1) · ε

≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2d

− 2d−1 · ε− (2d−1 − 1) · ε

=

(
E

i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2d

− (2d − 1) · ε

Therefore, from inequality (4) and equality (5), we get

E
ud∈Ud

[conP(ud, σ) · w(ud)] ≥
(

E
i∈[m],ud∈Ud

[
TPT ,P(i, ud) · w(ud)

])2d

− (2d − 1) · ε

The inductive claim follows.

18 Composition of Reed-Muller Right Reader and RM�Had Left
Reader Construction Algorithms

In this section we show how to compose RM-RR and RM�Had-LR construction algorithms, thus
proving Lemma 8.9.

1. LetD = 〈Fm, F,Denc,Ddec〉 be a Reed-Muller domain defined by a finite fieldF, a dimension
m, an encoding degreed and a decoding degreed′.

2. LetD1 = 〈Fw, F,D1,enc,D1,dec〉 be a Reed-Muller domain defined by the fieldF, a dimension
w, an encoding degreed1 and a decoding degreed′

1.

3. LetD� = 〈Fm × L
τ , L,D�

enc,D�
dec〉 be a RM�Had domain associated withD, whereL is a

subfield ofF and the extension degree isτ = [F : L].

4. LetD�
1 = 〈Fw × L

τ , L,D�
1,enc,D�

1,dec〉 be a RM�Had domain associated withD1.

121

Assume that we have outer and inner construction algorithmsas follows:

• Aout: (D, k, N)-RM-RR construction algorithm with structural parameters
(sizeout, blockout, degleftout, degrightout, depthout) reducingD 7→ D1, where the depthdepthout

is constant and smaller thand′
1.

• Ain: (D�
1, degleftout ·k+depthout+1, |F|w+1)-RM�Had-LR construction algorithm with struc-

tural parameters(sizein, blockin, degleftin, degrightin) that is uniform in the tuple association
and in the encoding and list decoding. The algorithm outputsright regular RM�Had-LRs.

We design a composed algorithmA. The algorithmA is a (D�, k, N)-construction algorithm that
outputs edge reading bipartite locally decode/reject codes. The algorithm has structural parame-
ters(size, block, degleft, degright) for size ≤ sizeout · sizein, block ≤ degleftout · blockin, degleft ≤
degleftout · degleftin, degright ≤ degrightout · degrightin:

Assume that the input to the construction algorithmA is a collection ofk-tuples of points
〈〈~xi,1, ~yi,1〉, . . . , 〈~xi,k, ~yi,k〉〉 ∈ (Fm × L

τ)k for i ∈ [N]. The construction algorithm constructs
an edge reading bipartite locally decode/reject code

G = 〈G = (A, B, E), Ω, ΣA, ΣB, satG, labelG , projG, tupG, evalG〉

as follows:

1. Outer construction. Invoke construction algorithmAout on the input:

〈~x1,1, . . . , ~x1,k〉, . . . , 〈~xN,1, . . . , ~xN,k〉 ∈ (Fm)k

Obtain an RM-RR

Gout = 〈Gout, Vout = Bout, Ωout, ΣAout,D1, satGout , labelGout , projGout, tupGout, evalGout〉

whereGout = (Aout, Bout, Eout) andΣAout = 〈Ωout,D1,dec, ΣAout,enc, ΣAout,dec〉.

2. Queried points. Set k′ .
= (degleftout · k + depthout + 1). For a vertex-label pairI =

〈aout, ξout〉 ∈ Aout×Ωout we define a collection of size|F|w+1 of k′-tuples of points inFw×L
τ .

We call these pointsqueried points. Eachk′-tuple is indexed by a pair〈~x, ~y〉 ∈ F
w × L

τ . The
tuple consists of the followingk′ points inF

w × L
τ :

• Vertex queried points (degleftout · k points;k points for every neighbor ofaout): These
points depend only on the vertexaout. Let eout = (aout, bout) ∈ Eout be an edge coming
out ofaout. The vertex queried points associated with this edge are as follows.
Assume that the tuple associated withbout is tupGout(bout) = 〈~xi,1, . . . , ~xi,k〉 for i ∈ [N].
If ~p1, . . . , ~pk ∈ F

w are the points such that for every vertexbout ∈ Bout and assignment
σbout ∈ D1,dec it holds thatevalGout(bout, σbout) = 〈σbout(~p1), . . . , σbout(~pk)〉 (such points
exist by the definition of RM-RRs), then〈~p1, ~yi,1〉, . . . , 〈~pk, ~yi,k〉 ∈ F

w×L
τ are the vertex

queried points of〈aout, ξout〉 associated witheout. Note that these points do not depend
on 〈~x, ~y〉 or onξout.

122

• Path queried points (depthout points): Recall that for every vertexaout ∈ Aout there are
satisfiability constraints inGout given by a treeTaout whose leaves are the elements inΩout

and by ancestors point specification functions{Paout,ξout}ξout∈Ωout
(see the discussion in

Section 7.5). A pair〈~p, ~y〉 ∈ F
w ×L

τ is a path queried point of〈aout, ξout〉, if ~p is one of
the points along the path fromξout to the root of the satisfiability treeTaout, i.e., there is
a depthi ∈ {0, . . . , depthout − 1} such thatPaout,ξout(i) = ~p.

• Random point (1 point): the point〈~x, ~y〉 ∈ F
w × L

τ .

We assume that eachk′-tuple is ordered as above.

3. Inner construction. Let I = 〈aout, ξout〉 ∈ Aout × Ωout. We define a RM�Had-LR whose
purpose is to read the queried points ofI.

The algorithmAin is uniform in the tuple association, and, in particular, uniform in structure.
Let Ain, Bin, Ωin, ΣAin

andΣBin
be such thatAin is uniform in structure〈Ain, Bin, Vin =

Ain, Ωin, ΣAin
, ΣBin

〉.
InvokeAin on the collection of queried points ofI. Obtain the RM�Had-LRGI

in:

GI
in = 〈GI

in, Vin, Ωin, ΣAin
, ΣBin

, satGI
in
≡ true, labelGI

in
, projGI

in
, tupGI

in
, evalGI

in
〉

whereGI
in = (Ain, Bin, E

I
in). Let tupiin : Ain → F

w × L
τ be the uniform tuple associator

(where we use the indexing introduced for the queried pointsabove).

4. Composed graph. To construct the composed graphG, for each vertexaout ∈ Aout we
produce a copy ofAin, and for each vertexbout ∈ Bout, we produce a copy ofBin. That is, we
take:

A
.
= {〈aout, ain〉 | aout ∈ Aout ∧ ain ∈ Ain} , B

.
= {〈bout, bin〉 | bout ∈ Bout ∧ bin ∈ Bin}

For every edgeeout = (aout, bout) ∈ Eout with labelξout = labelGout(eout) and an edgeein =
(ain, bin) ∈ EI

in whereI = 〈aout, ξout〉, we put an edgee ∈ E between〈aout, ain〉 ∈ A and
〈bout, bin〉 ∈ B.

Note that the composed graph is left regular with left degreedegleftout · degleftin and right
regular with right degreedegrightout · degrightin. The size of the composed graph is less than
sizeout · sizein.

5. Labels. We let Ω
.
= Ωout × Ωin. If an edgee ∈ E corresponds to the outer edgeeout =

(aout, bout) ∈ Eout, labeled byξout = labelGout(eout), and the inner edgeein ∈ EI
in, where

I = 〈aout, ξout〉, thenlabelG(e) is the pair〈ξout, ξin〉 ∈ Ω, whereξin is the label of the inner
edgeein in GI

in, i.e.,ξin = labelGI
in

(ein).

6. Alphabets. We letΣA = 〈Ωout, ΣAin,dec, ΣA,enc, ΣA,dec〉, where the encoded domain consists
of all possible functions fromΩout to the encoded domain ofΣAin

, i.e.,

ΣA,enc
.
= {f | f : Ωout → ΣAin,enc}

123

and the decoded domain consists of all possible functions fromΩout to the decoded domain of
ΣAin

, i.e.,
ΣA,dec

.
= {f | f : Ωout → ΣAin,dec}

We let ΣB
.
= ΣBin

. The projectionprojG is defined in the natural way, by assigning every
vertexa = 〈aout, ain〉 ∈ A, assignmentσa : Ωout → ΣAin,dec and labelξ = 〈ξout, ξin〉 ∈ Ω,
whereI = 〈aout, ξout〉, the projection

projG(a, σa, ξ)
.
= projGI

in
(ain, σa(ξout), ξin)

Note that the block length is at mostdegleftout · blockin (note that we can assume without loss
of generality that|Ωout| ≤ degleftout).

7. Evaluation. Let e = (a, b) ∈ E be an edge, wherea = 〈aout, ain〉 andb = 〈bout, bin〉. Let
eout = (aout, bout) and letξout = labelGout(eout) be the label of the outer edge.

Suppose thattupGout(bout) = 〈~xi,1, . . . , ~xi,k〉 ∈ (Fm)k for i ∈ [N] (For simplicity, we associate
everybout with a uniquei ∈ [N]). We settupG(e)

.
= 〈〈~xi,1, ~yi,1〉, . . . , 〈~xi,k, ~yi,k〉〉 ∈ (Fm ×

L
τ)k. Note that each tuple is associated with the same number of edges.

Let σa : Ωout → ΣAin,dec andI = 〈aout, ξout〉. We letevalG(e, σa) be evalGI
in

(ain, σa(ξout))
truncated to thek positions corresponding to thek vertex queried points associated witheout.

8. Tree satisfiability constraints. Recall the definition of tree satisfiability constraints appearing
in Section 7.5.

Let a = 〈aout, ain〉 ∈ A. Let σa : Ωout → ΣAin,dec be an assignment fora. We define a
satisfiability constraintsatG(a, σa), whose purpose is to check the tree satisfiability constraints
of aout in Gout (recall that the inner reader has no satisfiability constraints). The check focuses
on one position in the Hadamard encoding of the evaluation ineach of the nodes. The position
is determined byain (here we use the uniformity in the tuple association).

Let the tree satisfiability constraints ofaout in Gout be given by the treeTaout = (Uaout ∪
Ωout, Eaout) and the ancestors point specification functions{Paout,ξout}ξout∈Ωout

.

We say thatσa satisfiesa (i.e.,satG(a, σa) = true), if there exists an assignment of elements
in L to the inner nodes of the treeσ : Uaout → L, such that the following holds. Letu ∈ Uaout

be a node in the treeTaout. Assume thatu is in depthh ∈ {0, . . . , depthout − 1} in the tree.
Let ξout ∈ Ωout be a leaf in tree which is a descendent ofu. Let ~p = Paout,ξout(h) ∈ F

w be
the point specified foru in the tree. Let~y ∈ L

τ be the position in the Hadamard encoding
associated withain (i.e., is the second component of the pairtupiin(ain)).

Then,〈~p, ~y〉 is a path queried point ofI = 〈aout, ξout〉. Suppose it is thej’th queried point for
j ∈ [k′]. It should hold thatevalGI

in
(ain, σa(ξout))j = σ(u).

124

18.1 Analysis

Lemma 18.1 (Composition).Let 0 < δmin,out, δmin,in < 1. Let lmax,out, lmax,in : (0, 1) → R
+ be

decreasing functions. Assume thatlmax,in(δ), lmax,out(δ) ≤ δ−O(1). For a sufficiently small constant
c > 0, set

δmin
.
= max

{
δc
min,in, δ

c
min,out,

(
d′

|F|

)c

,

(
1

|L|

)c}

Then, ifAout outputs(δmin,out, lmax,out)-RM-RRs, andAin outputs(δmin,in, lmax,in)-RM�Had-LRs,
thenA outputs(δmin, lmax)-edge reading bipartite locally decode/reject codes, for somelmax(δ) ≤
δ−O(1).

Proof. We will prove encoding and list decoding:

Encoding. Let f ∈ Denc. We efficiently construct assignmentsCA : A → ΣA,enc andCB : B →
ΣB,enc as follows: LetCAout : Aout → ΣAout,enc andCBout : Bout → D1,enc be the assignments for
Gout following from the encoding property forf .

By the uniformity in encoding (and list decoding) ofAin, for everybout ∈ Bout we can effi-
ciently construct an assignmentCBin,bout : Bin → ΣBin,enc for the concatenation of the Reed-Muller
codewordCBout(bout) with the Hadamard encoding overL. For everyb = 〈bout, bin〉 ∈ B, let
CB(b)

.
= CBin,bout(bin).

For I = 〈aout, ξout〉 ∈ Aout × Ωout, let CAin,I : Ain → ΣAin,enc be the assignment forAin in
GI

in following from the encoding property for the concatenationof projGout(aout, CAout(aout), ξout) ∈
D1,enc with the Hadamard encoding overL.

Let a = 〈aout, ain〉 ∈ A. Then,CA(a) is taken to be the functionσa : Ωout → ΣAin,enc defined
as follows: Forξout ∈ Ωout, let I = 〈aout, ξout〉 and defineσa(ξout)

.
= CAin,I(ain).

Let e = (a, b) ∈ E for a = 〈aout, ain〉 ∈ A andb = 〈bout, bin〉 ∈ B. Denote the label ofe by
label(e) = ξ = 〈ξout, ξin〉 ∈ Ω. Let I = 〈aout, ξout〉 ∈ Aout × Ωout. Let eout = (aout, bout) ∈ Eout

andein = (ain, bin) ∈ EI
in. We have the following properties:

Reading. Assume thattupG(e) = 〈〈~xi,1, ~yi,1〉, . . . , 〈~xi,k, ~yi,k〉〉 for i ∈ [N].

We have thatevalG(e, CA(a)) is thek positions inevalGI
in

(ain, CAin,I(ain)) corresponding to the
k vertex queried points associated witheout. The edgeein reads the concatenation ofCBout(bout)
with the Hadamard encoding overL in GI

in underCAin,I andCBin,bout. Thus, for everyj ∈ [k]
it holds thatevalG(e, CA(a))j is the~yi,j symbol ofevalGout(bout, CBout(bout))j with the Hadamard
encoding overL. Sinceeout readsf in Gout underCAout andCBout, alsoe reads the concatenation of
f with the Hadamard encoding overL in G underCA andCB.

Projection. We have projection:

projG(a, CA(a), ξ) = projGI
in

(ain, CAin,I(ain), ξin) = CBin,bout(bin) = CB(b)

125

Let a = 〈aout, ain〉 ∈ A, and let us show thatsatG(a, CA(a)) = true. Let the position in the
Hadamard encoding associated withain be~y = (y1, . . . , yτ) ∈ L

τ (this is the second component of
the pairtupiin(ain)).

Satisfaction. We define an assignmentσ : Uaout → L of subfield elements to the inner nodes of
Taout: Let σ′ : Uaout → F be the satisfying assignment to the inner nodes of the satisfiability tree
Taout of aout in Gout as follows fromsatGout(aout, CAout(aout)) = true. Recall that we identifyF with
L

τ . For every nodeu ∈ Uaout let σ(u) be the symbol of the Hadamard encoding ofσ′(u) determined
by ain. That is, ifσ′(u) = (σ′

1, . . . , σ
′
τ) ∈ L

τ , thenσ(u)
.
=
∑τ

i=1 yi · σ′
i.

Next we show that this assignment is indeed satisfying. Letu ∈ Uaout be a node in the treeTaout.
Assume thatu is in depthh ∈ {0, . . . , depthout − 1} in the tree. Letξout ∈ Ωout be a leaf in the tree
which is a descendant ofu. Let Qξout

.≡ CAout(aout)(ξout) ∈ D1,dec be the assignment for this leaf in
the outer RM-RRGout.

Let ~p = Paout,ξout(h) ∈ F
w be the point specified foru in the tree. Let~y ∈ L

τ be the second
component of the pairtupiin(ain). Assume that〈~p, ~y〉 is thej’th queried point ofI = 〈aout, ξout〉
for j ∈ [k′]. Then, the inner reader indeed evaluates byevalGI

in
(ain, CA(a)(ξout))j the position~y of

the Hadamard encoding overL of Qξout(~p).

List decoding. Let CB : B → ΣBin,dec. Let δ < 1. In the course of the proof we will need various

lower bounds onδ. All these lower bounds will be quantities that areδ
Ω(1)
min,in, δ

Ω(1)
min,out,

(
d′

|F|

)Ω(1)

or
(

1
|L|

)Ω(1)

. We will setδmin as to satisfy all these lower bounds.

We use the list decoding properties of the inner and outer constructions to define a list decoding
for the composed construction.

We will set δin in the sequel in a way thatδin ≥ δO(1) would hold. Setδmin such thatδin ≥
δmin,in. Set lin

.
= blmax,in(δin)c ≤ δ−O(1). Let bout ∈ Bout. Let CBin,bout : Bin → ΣBin,dec be

the assignment induced byCB defined by letting everybin ∈ Bin be assignedCB(〈bout, bin〉). Let
fbout,1, . . . , fbout,lin ∈ D�

1,dec be the list decoding guaranteed by the uniform list decodingproperty of
Ain for the assignmentCBin,bout and confidence parameterδin (we pad the list arbitrarily if there are
less thanlin elements in the list decoding). Definelin assignmentsCBout,1, . . . , CBout,lin : Bout →
D1,dec by assigning, fori ∈ [lin], every vertexbout ∈ Bout to the Reed-Muller codeword associated
with fbout,i.

We will set δout in the sequel in a way thatδout ≥ δO(1) would hold, and setδmin such that
δout ≥ δmin,out. Setlout

.
= blmax,out(δout)c ≤ δ−O(1). For everyi ∈ [lin], let fi,1, . . . , fi,lout ∈ Ddec

be the list decoding guaranteed by the property of the RM-RRGout for the assignmentCBout,i and
confidence parameterδout (we pad the list arbitrarily if there are less thanlout elements in the list
decoding). In total, we defined a list decoding of sizelin · lout ≤ δ−O(1).

Fix an assignmentCA : A → ΣA,dec. For everyI = 〈aout, ξout〉 ∈ Aout × Ωout, the assignment
CA induces an assignmentCAin,I : Ain → ΣAin,dec to Ain in GI

in: for every vertexain ∈ Ain, take

126

CAin,I(ain)
.
= CA(〈aout, ain〉)(ξout).

For somel∗in ≤ δ−O(1) defined later, we will construct assignmentsCAout,1, . . . , CAout,l∗in
:

Aout → ΣAout,dec, such that the following holds:

Proposition 18.2 (Target outer assignments).Pick uniformly at random an edgee = (a, b) ∈ E.
Let a = 〈aout, ain〉 ∈ A, b = 〈bout, bin〉 ∈ B, eout = (aout, bout) ∈ Eout, ξout = labelGout(eout),
I = 〈aout, ξout〉 andein = (ain, bin) ∈ EI

in. With probability at least1− O(δ):

Either the edgee is not satisfied inG under the assignmentsCA andCB, or there arei0 ∈ [lin]
andj0 ∈ [l∗in], for which: (i) the edgeein reads the concatenation ofCBout,i0(bout) with the Hadamard
encoding overL in GI

in under the assignmentsCAin,I andCBin,bout; (ii) the edgeeout is satisfied in
Gout under the assignmentsCAout,j0 andCBout,i0.

We setδout ≥ δO(1) such thatδout · lin · l∗in = O(δ). Note that once we prove Proposition 18.2, we
are done: Let us use the notation of the proposition. The edgeeout is uniformly distributed inEout.
Thus, by the list decoding property of the outer construction Gout, for everyi0 ∈ [lin] andj0 ∈ [l∗in],
the probability of the following event is at mostO(δout): (ii) holds, but not (iii)eout reads one of
fi0,1, . . . , fi0,lout in Gout under the assignmentsCAout,j0 andCBout,i0. Hence, the probability that this
event happens forsomei0 ∈ [lin] andj0 ∈ [l∗in] is at mostO(δout · lin · l∗in) = O(δ). Moreover,
whenever both (i) and (iii) hold, inG underCA andCB, the edgee reads the concatenation of one of
fi0,1, . . . , fi0,lout with the Hadamard encoding overL.

Constructing the target outer assignments. For every vertexaout ∈ Aout, we constructl∗in assign-
mentsσaout,1, . . . , σaout,l∗in

: Ωout → D�
1,dec to aout. We identify an assignmentσ : Ωout → D�

1,dec

with an assignmentΩout → D1,dec that maps eachξout to the Reed-Muller codeword corresponding
to σ(ξout).

The assignmentsCAout,1, . . . , CAout,l∗in
: Aout → ΣAout,dec are defined for everyi ∈ [l∗in] by

assigning eachaout ∈ Aout the functionΩout → D1,dec identified withσaout,i.

For every vertexaout ∈ Aout we construct the assignmentsσaout,1, . . . , σaout,l∗in
in three steps:

1. Projection step.Setl′in
.
= b1

δ
· lmax,in(δ2)c ≤ δ−O(1). For every vertexaout ∈ Aout, for each

labelξout ∈ Ωout, we construct a listfaout,ξout,1, . . . , faout,ξout,l′in
∈ D�

1,dec of candidates forξout.
The list satisfies the following property:

Proposition 18.3. Let aout ∈ Aout. Let eout = (aout, bout) ∈ Eout be an edge coming out of
aout that has labellabelGout(eout) = ξout. LetI = 〈aout, ξout〉 ∈ Aout × Ωout.

When picking uniformly at random an edgeein = (ain, bin) ∈ EI
in and settinge = (a, b) ∈ E

for a = 〈aout, ain〉 ∈ A andb = 〈bout, bin〉 ∈ B, the probability that the following holds is at
mostO(δ):

The edgee is satisfied inG under the assignmentsCA and CB, but ein does not read an
element in{fbout,1, . . . , fbout,lin} ∩

{
faout,ξout,1, . . . , faout,ξout,l′in

}
in GI

in under the assignments
CAin,I andCBin,bout.

127

For everyi ∈ [l′in], for everyξout ∈ Ωout, defineσaout,i(ξout)
.
= faout,ξout,i.

2. Satisfaction step.Using our analysis for the Tree-Path game, for every vertexaout ∈ Aout we
construct thel∗in assignmentsσaout,1, . . . , σaout,l∗in

: Ωout → D�
1,dec. The assignments corre-

spond to satisfying assignments foraout in Gout. In addition, the property of the assignments
from the previous step would still hold for them:

Proposition 18.4.Letaout ∈ Aout.

(a) For everyi ∈ [l∗in], it holds thatsatGout(aout, σaout,i) = true (recall that we identifyσaout,i

with an assignmentΩout → D1,dec).

(b) Pick uniformly at random an edgeeout = (aout, bout) ∈ Eout coming out ofaout in Gout.
Denote its label byξout = labelGout(eout). DenoteI = 〈aout, ξout〉. Pick uniformly
and independently at random an edgeein = (ain, bin) ∈ EI

in. Sete = (a, b) ∈ E for
a = 〈aout, ain〉 ∈ A andb = 〈bout, bin〉 ∈ B. The probability that the following holds is
at mostO(δ):

The edgee is satisfied inG under the assignmentsCA and CB, but ein does not read
an element in{fbout,1, . . . , fbout,lin} ∩

{
σaout,1(ξout), . . . , σaout,l∗in

(ξout)
}

in GI
in under the

assignmentsCAin,I andCBin,bout.

When (in the notation of Proposition 18.4), the edgeein reads an element in{fbout,1, . . . , fbout,lin}∩{
σaout,1(ξout), . . . , σaout,l∗in

(ξout)
}

in GI
in under the assignmentsCAin,I andCBin,bout, it holds that

for somei0 ∈ [lin] andj0 ∈ [l∗in], the edgeein reads the concatenation ofCBout,i0(bout) with the
Hadamard encoding overL in GI

in under the assignmentsCAin,I andCBin,bout, and that the edge
eout is satisfied inGout underCAout,j0 andCBout,i0 . Thus, once we prove Proposition 18.4, Proposi-
tion 18.2 is proved as well, noticing that whene = (〈aout, ain〉, 〈bout, bin〉) is uniformly distributed
in E, we also have thateout = (aout, bout) is uniformly distributed among the edges coming out of
aout in Gout, and the edgeein = (ain, bin) is uniformly distributed inEI

in for I = 〈aout, ξout〉.
Let us turn to the construction.

The projection step (Proof of Proposition 18.3). We will apply Proposition 6.11 that shows a list
decoding for assignments to the left side of a reader and use the uniformly distributed position read
by the inner reader.

Let aout ∈ Aout. Let eout = (aout, bout) ∈ Eout be an edge coming out ofaout that has label
labelGout(eout) = ξout. Let I = 〈aout, ξout〉 ∈ Aout × Ωout. Chooseδmin such thatδ ≥

√
δmin,in.

Let faout,ξout,1, . . . , faout,ξout,l′in
∈ D�

1,dec be the elements following from Proposition 6.11 for the
assignmentCAin,I : Ain → ΣAin,dec and the parameterδ.

Pick uniformly at random an edgeein = (ain, bin) ∈ EI
in and sete = (a, b) ∈ E for a =

〈aout, ain〉 ∈ A andb = 〈bout, bin〉 ∈ B.

Let us bound the probability that the following bad events happen byO(δ) and be done:

128

• BAD1: The edgee is satisfied inG under the assignmentsCA andCB, butein is not satisfied
or does not read one offaout,ξout,1, . . . , faout,ξout,l′in

in GI
in underCAin,I andCBin,bout.

• BAD2: The edgeein is satisfied and reads an element from
{
faout,ξout,1, . . . , faout,ξout,l′in

}
−

{fbout,1, . . . , fbout,lin} in GI
in under the assignmentsCAin,I andCBin,bout.

Bounding BAD1. Whene is satisfied inG under the assignmentsCA andCB, we have thatein is
satisfied inGI

in under the assignmentsCAin,I andCBin,bout. The bound follows from Proposition 6.11.

Bounding BAD2. Let i0 ∈ [lin] andj0 ∈ [l′in] be such thatfaout,ξout,j0 6= fbout,i0. The probability
that ein readsfaout,ξout,j0 andfbout,i0 in GI

in under the assignmentsCAin,I andCBin,bout is at most
d′

|F|
+ 1

|L|
(since whenein is uniformly distributed inEI

in also the last pair intupGI
in

(ain) is uniformly
distributed inF

w × L
τ , and by the distance property of the concatenation of the Reed-Muller code

and the Hadamard code). Thus, for everyj0 ∈ [l′in] such thatfaout,ξout,j0 /∈ {fbout,1, . . . , fbout,lin}, the
probability thatein readsfaout,ξout,j0, as well as one offbout,1, . . . , fbout,lin, in GI

in under the assign-

mentsCAin,I andCBin,bout is at mostlin ·
(

d′

|F|
+ 1

|L|

)
.

The probability thatein is satisfied but does not read one offbout,1, . . . , fbout,lin in GI
in under the

assignmentsCAin,I andCBin,bout is at mostO(δin). In particular, for everyj0 ∈ [l′in], the probability
that ein is satisfied, readsfaout,ξout,j0, but does not read one offbout,1, . . . , fbout,lin in GI

in under the
assignmentsCAin,I andCBin,bout is at mostO(δin).

Hence, the probability that for somej0 ∈ [l′in] such thatfaout,ξout,j0 /∈ {fbout,1, . . . , fbout,lin}, the
edgeein is satisfied and readsfaout,ξout,j0 in GI

in under the assignmentsCAin,I andCBin,bout, is at most

l′in ·
(
lin ·

(
d′

|F|
+ 1

|L|

)
+ O(δin)

)
. We setδin such thatl′in · δin ≤ δ (this also fixeslin). We setδmin

such thatl′in · lin ·
(

d′

|F|
+ 1

|L|

)
≤ δ.

The satisfaction step (Proof of Proposition 18.4). Let aout ∈ Aout. Let us define a Tree-Path game
corresponding to the constraints on the edges connecting vertices〈aout, ain〉 ∈ A to their neighbors
in G.

1. Tree. The treeT is Taout = (Uaout ∪Ωout, Eaout) from the tree satisfiability constraints ofaout

in Gout.

2. Alphabet. The rangeR of the assignments to the nodes of the tree is the fieldF.

3. Code. The encoding of the assignments to the nodes is a repetition of a Hadamard encoding
E : F → L

|Ain| defined as follows: Lett ∈ F. Let us identify the|Ain| positions inE(t)
with the vertices inAin and focus on a positionain ∈ Ain. Assume thatain is associated with
position~y ∈ L

τ in the Hadamard encoding (this is the case if~y is the second component in
the pairtupiin(ain)). Then the symbol ofE(t) in positionain is the symbol of the Hadamard

129

encoding oft in position~y, namelyφ(t)(~y) (whereφ is as in the definition of the domain cor-
responding to concatenation of Reed-Muller and Hadamard).Note that the code has relative
distance1− 1

|L|
.

Fix j ∈ [l′in]. Let us define the strategies for the tree prover and the path prover induced by the
assignmentCA and the assignmentσaout,j respectively:

1. Tree prover. Assume that the tree proverT is given a vertexain ∈ Ain corresponding to a
position in the encoding. Denotea = 〈aout, ain〉.

• If satG(a, CA(a)) = false, thenT outputs an arbitrary assignment to the nodes of the
treeσ : Uaout ∪ Ωout → L.

• If satG(a, CA(a)) = true, then there is an implied assignment to the inner nodesσ1 :
Uaout → L. The tree proverT outputs an assignmentσ : Uaout ∪Ωout → L that identifies
with σ1 onUaout, and assigns0 to the elements inΩout.

2. Path prover. Let {Paout,ξout}ξout∈Ωout
be the ancestors point specification functions of the tree

satisfiability constraints ofaout in Gout. Fix a leafξout ∈ Ωout. We say that an assignmentσ :
{0, . . . , depthout} → F is consistentwith an assignmentσaout,j(ξout) to ξout, if the following
holds:

• For0 ≤ h ≤ depthout−1, letfξout ∈ D1,dec be the Reed-Muller codeword corresponding
to σaout,j(ξout) ∈ D�

1,dec. Let ~p ∈ F
w be the point associated with the node in depthh,

i.e.,~p
.
= Paout,ξout(h). Then, it should hold thatσ(h) is the evaluation offξout on ~p. I.e.,

σ(h) = fξout(~p).

• Forh = depthout, it should hold thatσ(h) = 0.

Assume that the path proverP is given a leafξout ∈ Ωout. Then,P outputs the assignment
σ : {0, . . . , depthout} → F that is consistent withσaout,j(ξout).

Set δT
.
= δ

l′in
≥ δO(1). We setδmin such thatδT ≥ 2 ·

(
1
|L|

)1/2depthout

(recall thatdepthout is

constant). Letσj,1, . . . , σj,l : Uaout ∪ Ωout → F be thel ≤ 2

(δT)2
depthout

≤ δ−O(1) assignments to the

nodes of the tree guaranteed forδT and the strategies ofT andP by Proposition 17.2. For every
ι ∈ [l], let σaout,j,ι : Ωout → D�

1,dec be defined as follows: letξout ∈ Ωout.

• If σaout,j(ξout) is consistent withσj,ι (that is, consistent with an assignment{0, . . . , depthout} →
F that is consistent withσj,ι), let σaout,j,ι(ξout)

.
= σaout,j(ξout).

• Otherwise, letσaout,j,ι(ξout) be an arbitrary element inD�
1,dec that is consistent withσj,ι (note

that such exists sincedepthout ≤ d′
1).

130

For everyι ∈ [l], it holds thatsatGout(aout, σaout,j,ι) = true (where we identifyσaout,j,ι with an
assignmentΩout → D1,dec).

Pick uniformly at random an edgeeout = (aout, bout) ∈ Eout coming out ofaout in Gout. Denote
its label byξout = labelGout(eout). DenoteI = 〈aout, ξout〉. Pick uniformly and independently at
random an edgeein = (ain, bin) ∈ EI

in. Sete = (a, b) ∈ E for a = 〈aout, ain〉 ∈ A and b =
〈bout, bin〉 ∈ B. Note thatξout is uniformly distributed inΩout and thatain is uniformly distributed
in Ain.

When the edgee is satisfied inG under the assignmentsCA andCB and the edgeein reads
σaout,j(ξout) in GI

in underCAin,I andCBin,bout, it holds that the Tree-Path verifier accepts when the
tree proverT gets the positionain and the path proverP gets the leafξout. In addition, when
the answer ofP is consistent withσj,ι for ι ∈ [l], it holds thatein readsσaout,j,ι = σaout,j in GI

in

under the assignmentsCAin,I andCBin,bout. Hence, by Proposition 17.2, the probability thate is
satisfied inG under the assignmentsCA and CB, andein readsσaout,j(ξout) in GI

in underCAin,I

andCBin,bout, but for all ι ∈ [l], eitherσaout,j,ι(ξout) 6= σaout,j(ξout), or the edgeein does not read
σaout,j,ι(ξout) = σaout,j(ξout) in GI

in under the same assignments, is at mostO(δT). The probability
that this happens for somej ∈ [l′in] is at mostO(δ).

Let l∗in ≤ δ−O(1) be the total number of assignments we defined. Proposition 18.4 follows from
Proposition 18.3.

Acknowledgments

We wish to thank Guy Moshkovitz, Omer Reingold, Guy Kindler,Irit Dinur, Tal Moran, Amir
Shpilka, Michal Moshkovitz and Ariel Gabizon for their help.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness
of approximation problems.Journal of the ACM, 45(3):501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs:a new characterization of NP.Journal
of the ACM, 45(1):70–122, 1998.

[3] S. Arora and M. Sudan. Improved low-degree testing and its applications.Combinatorica,
23(3):365–426, 2003.

[4] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarithmic
time. InProc. 23rd ACM Symp. on Theory of Computing, pages 21–32, 1991.

[5] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover interac-
tive protocols.Computational Complexity, 1:3–40, 1991.

131

[6] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability—towards
tight results.SIAM Journal on Computing, 27(3):804–915, 1998.

[7] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactove proofs: How
to remove the intractability assumption. InProc. 20th ACM Symp. on Theory of Computing,
pages 113 – 131, 1988.

[8] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of proximity,
shorter PCPs, and applications to coding.SIAM Journal on Computing, 36(4):889–974, 2006.

[9] E. Ben-Sasson and M. Sudan. Simple PCPs with poly-log rate and query complexity. InProc.
37th ACM Symp. on Theory of Computing, pages 266–275, 2005.

[10] E. Ben-Sasson, M. Sudan, S. P. Vadhan, and A. Wigderson.Randomness-efficient low de-
gree tests and short PCPs via epsilon-biased sets. InProc. 34th ACM Symp. on Theory of
Computing, pages 612–621, 2003.

[11] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems.Journal of Computer and System Sciences, 47(3):549–595, 1993.

[12] I. Dinur. The PCP theorem by gap amplification.Journal of the ACM, 54(3):12, 2007.

[13] I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP characterizations of NP: Towards
a polynomially-small error-probability. InProc. 31st ACM Symp. on Theory of Computing,
pages 29–40, 1999.

[14] I. Dinur and O. Reingold. Assignment testers: Towards acombinatorial proof of the PCP
theorem.SIAM Journal on Computing, 36(4):975–1024, 2006.

[15] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques.Journal of the ACM, 43(2):268–292, 1996.

[16] U. Feige and J. Kilian. Impossibility results for recycling random bits in two-prover proof
systems. InProc. 27th ACM Symp. on Theory of Computing, pages 457–468, 1995.

[17] O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost-linear length.Journal
of the ACM, 53(4):558–655, 2006.

[18] J. Håstad. Some optimal inapproximability results.Journal of the ACM, 48(4):798–859, 2001.

[19] J. Håstad and A. Wigderson. Simple analysis of graph tests for linearity and PCP.Random
Structures and Algorithms, 22(2):139–160, 2003.

[20] T. Holenstein. Parallel repetition: Simplifications and the no-signaling case. InProc. 39th
ACM Symp. on Theory of Computing, pages 411–419, 2007.

[21] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting
codes. InProc. 32nd ACM Symp. on Theory of Computing, pages 80–86, 2000.

132

[22] I. Kerenidis and R. de Wolf. Exponential lower bound for2-query locally decodable codes
via a quantum argument. InProc. 35th ACM Symp. on Theory of Computing, pages 106–115,
2003.

[23] S. Khot. On the power of unique 2-prover 1-round games. In Proc. 34th ACM Symp. on Theory
of Computing, pages 767–775, 2002.

[24] S. Khot. Guest column: inapproximability results via long code based PCPs.SIGACT News,
36(2):25–42, 2005.

[25] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. InIEEE Symposium on Foundations of Computer Science, pages 2–10, 1990.

[26] D. Moshkovitz and R. Raz. Sub-constant error probabilistically checkable proof of almost-
linear size. Technical Report TR07-026, Electronic Colloquium on Computational Complexity,
2007.

[27] D. Moshkovitz and R. Raz. Sub-constant error low degreetest of almost-linear size.SIAM
Journal on Computing, 38(1):140–180, 2008.

[28] A. Rao. Parallel repetition in projection games and a concentration bound. InProc. 40th ACM
Symp. on Theory of Computing, 2008.

[29] R. Raz. A parallel repetition theorem. InSIAM Journal on Computing, volume 27, pages
763–803, 1998.

[30] R. Raz and S. Safra. A sub-constant error-probability low-degree test and a sub-constant error-
probability PCP characterization of NP. InProc. 29th ACM Symp. on Theory of Computing,
pages 475–484, 1997.

[31] R. Rubinfeld and M. Sudan. Robust characterizations ofpolynomials with applications to
program testing.SIAM Journal on Computing, 25(2):252–271, 1996.

[32] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal amortized
query complexity. InProc. 32nd ACM Symp. on Theory of Computing, pages 191–199, 2000.

[33] M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the XOR lemma.
J. Comput. Syst. Sci., 62(2):236–266, 2001.

[34] M. Szegedy. Many-valued logics and holographic proofs. In J. Weidermann, P. van Emde Boas,
and M. Nielsen, editors,Automata, Languages and Programming, 26th International Collo-
quium, ICALP 2007. Lecture notes in Computer Science, pages 676–686. Springer-Verlag,
1999.

[35] S. Yekhanin. Towards 3-query locally decodable codes of subexponential length.Journal of
the ACM, 55(1):1–16, 2008.

133

A Explicit Construction of Expanders

We will use the following lemma as our starting point. It gives an explicit construction of expanders
with constant degree and constant eigenvalue. For a proof see, for example, Corollary 2.4 in [12]:
Lemma A.1. There are constants∆0 > 1 and 0 < λ0 < ∆0, such that given a natural number
n, one can construct in time polynomial inn a ∆0-regular graphG = (V, E) with |V | = n whose
adjacency matrix has second largest eigenvalue (in absolute value)λ0.

By raising the graph obtained from Lemma A.1 to a sufficientlylarge powerr, we can get
Lemma 5.2:
Corollary 20 (Restatement of Lemma 5.2).There is a constantα < 1 and a functionT : N→ N

+

with T (∆) = Θ(∆), such that given two natural numbersn and∆, one can find in time polynomial
in n and in∆ an undirected (multi-)graphG = (V, E) with |V | = n, which isT (∆)-regular and
whose adjacency matrix has second largest eigenvalue (in absolute value)λ ≤ (T (∆))α.

Proof. We use the notation of Lemma A.1. Takeα
.
= log λ0

log ∆0
. Let T : N → N

+ be the function that
maps every natural∆ < ∆0 to ∆0 and every natural∆ ≥ ∆0 to ∆r

0, wherer ≥ 1 is the natural
number that satisfies∆r

0 ≤ ∆ < ∆r+1
0 . Note thatT (∆) = Θ(∆).

Given natural numbersn and ∆, let G0 = (V, E0) be the∆0-regular graph with|V | = n
obtained from Lemma A.1. Setr ≥ 1 to be the natural numberlog∆0

(T (∆)). RaiseG0 to the power
r to obtain aT (∆)-regular undirected (multi-)graphG = (V, E) (i.e., letG be the (multi-)graph
corresponding to raising the adjacency matrix ofG0 to ther’th power). Then, the second largest
eigenvalue (in absolute value) ofG’s adjacency matrix isλr

0 = (∆r
0)

α = (T (∆))α. Note thatG can
be computed in time polynomial inn and in∆.

B Low Degree Testing

The test presented in [27] differs from the variant stated inSubsection 10.1.

Specifically, the test of [27] assumes access to adeterministicoracleA0, assigning polynomials
of degree at mostd′ to three-dimensionalsubspacesin F

m (and not to their basis representation
~z, ~y1, ~y2). Supposedly, the polynomials are the restrictions of the tested functionf to the subspaces.
The notational convention is that for an affine subspaces ⊆ F

m, for a point~z ∈ s, the polyno-
mial assigned tos evaluated on~z is denotedA0(s)(~z) (this way there is no need to specify the
representation ofs).

For a functionf : F
m → F, the test of [27] is as in Figure 13.

We consider a different (yet equivalent) formulation, given in Figure 14.

The following follows from what was shown in [27, 26] (The theorem was essentially proved in
[27]. In [26] it was shown that the list decoding does not depend onA0):

Theorem 21 (Analysis of low degree test, [27, 26]).For δ ≥ m
(

8

√
1
|K|

+ 4

√
md′

|F|

)
, for any function

f : F
m → F, there arel ≤ 2

δ
polynomialsQ1, . . . , Ql : F

m → F of degree at mostd′, such that

134

LDT f,A0

original :

1. Pick uniformly at random three vectors〈~z0, ~y1, ~y2〉 ∈ F
m × K

m × K
m. If ~z0, ~y1, ~y2 are

linearly dependent,accept. Otherwise, lets denote the three-dimensional linear subspace
spanned by~z0, ~y1, ~y2.

2. If A0(s)(~z0) = f(~z0), accept. Otherwise,reject.

Figure 13: The low degree tester of [27]

LDT f,A0

equiv :

1. Pick uniformly at random three vectors〈~z, ~y1, ~y2〉 ∈ F
m × K

m × K
m. If ~z, ~y1, ~y2 are

linearly dependent,accept. Otherwise, lets denote the three-dimensional linear subspace
spanned by~z, ~y1, ~y2.

2. Pick uniformly at randomt0 6= 0, t1, t2 ∈ F. Set~z0 = t0~z + t1~y1 + t2~y2. If A0(s)(~z0) =
f(~z0), accept. Otherwise,reject.

Figure 14: The low degree tester of [27]; different formulation.

for every oracleA0, the following holds: the probability over the randomness of the tester that
LDT f,A0

equiv accepts, althoughf(~z0) /∈ {Q1(~z0), . . . , Ql(~z0)}, is at mostO(δ).

Let us show that Theorem 18 from Subsection 10.1 indeed follows from Theorem 21. Recall that
in the tester of Theorem 18, we let the answers of the oracleA depend on the basis representation
of s and on additional randomness.

Assume that for a functionf : F
m → F and for an oracleA, the probability, over the randomness

ofA and the randomness of the tester, that the testerLDT f,A from Subsection 10.1 accepts, although
f(~z0) /∈ {Q1(~z0), . . . , Ql(~z0)}, is 0 ≤ δ′ ≤ 1.

Let us probabilistically construct an oracleA0 for LDT f,A0

equiv. For every subspaces such that
there is a positive probability fors = span{~z, ~y1, ~y2} in LDT f,A, pick at random a representation
〈~z, ~y1, ~y2〉 ∈ F

m × K
m × K

m, and a polynomial of degree at mostd′, according to the distribution
of LDT f,A, conditioned ons = span{~z, ~y1, ~y2}. LetA0(s) be this polynomial.

Then, the expectation (over the randomness in the construction ofA0) of the probability, over the
randomness of the tester, that the testerLDT f,A0

equiv accepts, althoughf(~z0) /∈ {Q1(~z0), . . . , Ql(~z0)},
is at leastδ′ − O(1

|F|
). Hence, there exists an oracleA0, such that the probability that the tester

LDT f,A0

equiv accepts, althoughf(~z0) /∈ {Q1(~z0), . . . , Ql(~z0)}, is at leastδ′ −O(1
|F|

).

Theorem 18 follows, noticing that for the choice of parameters made in the construction, it holds
that 1

|F|
≤ δ.

135

C Linearity Testing

In this section we show how the linearity testing theorem we stated in Section 11.1 follows from the
analysis of the Blum-Luby-Rubinfeld linearity test [11].

We test a folded functioñf : R → F, whereR ⊆ F
m is a set of representatives needed for

folding, as in Section 11.1. The folded function defines a function f : F
m → F that respects scalar

multiplication. The Blum-Luby-Rubinfeld test is as in Figure 15.

BLRLinTestf̃ :

1. Pick uniformly at random~z, ~y ∈ F
m.

2. If f(~z + ~y) = f(~z) + f(~y), accept. Otherwise,reject.

Figure 15: Blum-Luby-Rubinfeld (BLR) linearity test

Define the agreement of a functioñf : R→ F with a linear function by

Linf̃ .
= max

~a∈Fm

{
Pr

~z∈Fm

[
f(~z) =

m∑

i=1

aizi

]}

It was shown in [19] that large acceptance probability of theBLR linearity test implies large
agreement of the function with a linear function. The same analysis also allows to derive a converse
result: a large agreement of the function with a linear function implies a (relatively) large acceptance
probability of the BLR tester:
Theorem 22 (Analysis of linearity test [19]).Let f̃ : R→ F.

(
Linf̃

)3

≤ Pr
[
BLRLinTestf̃ accepts

]
≤ Linf̃

For convenience we repeat below the linearity test from Section 11.1.

LinTestf̃ ,A :

1. Pick uniformly at random two vectors〈~z, ~y〉 ∈ F
m × F

m. Using the oracle access to
A, obtain a bi-variate linear functionl∗(t1, t2) over F for 〈~z, ~y〉 [l∗ is supposedly the
restrictionf(t1~z + t2~y)] .

2. Pick uniformly at randomt1, t2 ∈ F. Set~x0 = t1~z + t2~y. If indeedl∗(t1, t2) = f(~x0),
accept. Otherwise,reject.

Figure 16: Linearity Tester (Projection form) – a copy of Figure 9

From Theorem 22, we conclude that large acceptance probability of the linearity test in the
projection form implies large agreement of the function with a linear function:

136

Corollary 23. Let f̃ : R→ F and letA be a probabilistic oracle. Then,

Linf̃ ≥
(
Pr
[
LinTestf̃ ,A accepts

])3

−O

(
1

|F|

)

Proof. For ~z, ~y ∈ F
m, let the maximal agreement off with a linear function within the subspace

spanned by~z and~y be

Linf̃
~z,~y

.
= max

~a∈F2

{
Pr

~t∈F2
[f(t1~z + t2~y) = a1t1 + a2t2]

}

Note that

Pr
[
LinTestf̃ ,A accepts

]
≤ E

~z,~y∈Fm

[
Linf̃

~z,~y

]
(6)

Let R2 ⊆ F
2 be a set of representatives for the equivalence ratio∼ on F

2 (as defined in Sec-
tion 11.1). For~z, ~y ∈ F

m, definef̃~z,~y : R2 → F to be the following restriction off

f̃~z,~y(t1, t2)
.
= f(t1~z + t2~y)

Let f~z,~y : F
2 → F be the function defined bỹf~z,~y. Note that for everyt1, t2 ∈ F, it holds that

f~z,~y(t1, t2) = f(t1~z + t2~y)

Hence,

Pr
[
BLRLinTestf̃ accepts

]
≥ E

~z,~y∈Fm

[
Pr
[
BLRLinTestf̃~z,~y accepts

]]
− O

(
1

|F|

)
(7)

In addition, inequality 6 gives

Pr
[
LinTestf̃ ,A accepts

]
≤ E

~z,~y∈Fm

[
Linf̃~z,~y

]
(8)

By Theorem 22,

E
~z,~y∈Fm

[
Pr
[
BLRLinTestf̃~z,~y accepts

]]
≥ E

~z,~y∈Fm

[(
Linf̃~z,~y

)3
]

By Jensen’s inequality,

E
~z,~y∈Fm

[
Pr
[
BLRLinTestf̃~z,~y accepts

]]
≥
(

E
~z,~y∈Fm

[
Linf̃~z,~y

])3

137

Thus, applying Theorem 22 again and using inequalities 7 and8, we get:

Linf̃ ≥ Pr
[
BLRLinTestf̃ accepts

]

≥ E
~z,~y∈Fm

[
Pr
[
BLRLinTestf̃~z,~y accepts

]]
− O

(
1

|F|

)

≥
(

E
~z,~y∈Fm

[
Linf̃~z,~y

])3

− O

(
1

|F|

)

≥
(
Pr
[
LinTestf̃ ,A accepts

])3

−O

(
1

|F|

)

We use the list decoding version of this theorem:
Corollary 24 (Restatement of Theorem 19).There are some naturalm0 and F0, such that for
everym ≥ m0 and prime finite fieldF with |F| ≥ F0, the following holds. LetR ⊆ F

m be the set of
representatives needed for folding as in Section 11.1.

For δ ≥ 2 6

√
1
|F|

, for any functionf̃ : R → F, there arel ≤ 2
δ3 linear functionsL1, . . . , Ll :

F
m → F, such that for every probabilistic oracleA:

The probability, over the randomness ofA and over the randomness of the tester, thatLinTestf̃ ,A

accepts, althoughf(~x0) /∈ {L1(~x0), . . . , Ll(~x0)} (wheref : F
m → F is the function defined bỹf

and~x0 ∈ F
m is picked by the tester; see Figure 9), is at mostO(δ).

Proof. Fix δ ≥ 2 6

√
1
|F|

and a functionf̃ : R→ F. Let f : F
m → F be the function defined bỹf . Set

δ′
.
= δ3 and note thatδ′ ≥ 2

√
1
|F|

. Let L1, . . . , Ll : F
m → F be the linear functions corresponding

to theδ′-list decoding of (the word corresponding to)f with respect to the Hadamard code. Recall
that by Proposition 5.4,l ≤ 2

δ3 . LetA be a probabilistic oracle.

Assume on way of contradiction that the probability, over the randomness ofA and over the
randomness of the tester, thatLinTestf̃ ,A accepts, althoughf(~z) /∈ {L1(~z), . . . , Ll(~z)}, is more
than 2δ. Let g̃ : R → F

m be a function that agrees with̃f on all points~z for which f(~z) /∈
{L1(~z), . . . , Ll(~z)}. To other points,̃g assigns a functioñe : R → F that rarely agrees withany
linear function (see Proposition C.1 below):

g̃(~z)
.
=





f̃(~z) f(~z) /∈ {L1(~z), . . . , Ll(~z)}

ẽ(~z) otherwise

Let g : F
m → F be the function defined bỹg. Note that by our assumption,LinTestg̃,A accepts with

probability more than2δ. Hence, by Corollary 23, there is a linear functionL : F
m → F, such that

Pr
~z∈Fm

[g(~z) = L(~z)] > (2δ)3 − O

(
1

|F|

)

138

However, by Proposition C.1,

Pr
~z∈Fm

[g(~z) = L(~z) ∧ g̃([~z]) = ẽ([~z])] ≤ 1√
|F|
· (1 + o(1)) +

1

|R|

Thus, for sufficiently largem and sufficiently large fieldF,

Pr
~z∈Fm

[g(~z) = L(~z) ∧ g̃([~z]) 6= ẽ([~z])] > 8δ3 − 1√
|F|
· (1 + o(1)) ≥ δ′ (9)

It follows that
Pr

~z∈Fm
[f(~z) = L(~z)] ≥ δ′

Therefore, there must be1 ≤ i ≤ l, such thatL ≡ Li. On the other hand, returning to inequality 9,
we now have

Pr
~z∈Fm

[f(~z) = Li(~z) ∧ f(~z) /∈ {L1(~z), . . . , Ll(~z)}] > 0

which is a contradiction.

The proposition we needed for the proof is proven below:
Proposition C.1 (Random function rarely agrees with linear). There is some naturalm0, such
that for everym ≥ m0, the following holds. There exists a functionẽ : R → F such that for
any linear functionL : F

m → F, when picking uniformly at random~z ∈ R, the probability that

ẽ(~z) = L(~z) is at most
√

1
|F|
· (1 + o(1)).

Proof. Pick a functioñe : R → F uniformly at random. LetL : F
m → F be a linear function. For

every~z ∈ R, let XL,~z be an indicator random variable for the event thatẽ(~z) = L(~z). For every
~z ∈ R it holds thatPr [XL,~z = 1] = 1

|F|
. Let XL =

∑
~z∈R XL,~z. By the linearity of the expectation,

it holds thatE [XL] = |R|
|F|

. By the Chernoff bound, for everyλ > 0,

Pr

[
XL > E [XL] + λ

]
< exp

(
−2λ2

|R|

)

In particular, this holds forλ
.
=
√

m |R| ln |F|. For sufficiently largem, it holds that λ
|R|
≤
√

1
|F|

,

implying that

Pr

[
XL

|R| >

√
1

|F| +
1

|F|

]
< |F|−2m

Applying a union bound, the probability that for some linearL : F
m → F it holds that XL

|R|
>√

1
|F|

+ 1
|F|

is at most|F|−m. In particular, there exists̃e : R → F such that for all linear functions

L : F
m → F it holds thatXL

|R|
≤
√

1
|F|
· (1 + o(1)).

139

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

