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Abstract

We show that theéV’P-Complete language 38 has a PCP verifier that makes two queries
to a proof of almost-linear size and achieves sub-constatapility of erroro(1). The verifier
performs only projection tests, meaning that the answdrdditst query determines at most one
accepting answer to the second query. Previously, by tradlelarepetition theorem, there were
PCP Theorems with two-query projection tests, but onlyi{antily small) constanterror and
polynomialsize [29]. There were also PCP Theorems wgith-constanerror andalmost-linear
size, but a constant number of queries thadiger than2 [26].

As a corollary, we obtain a host of new results. In particuiaur theorem improves many
of the hardness of approximation results that are provetjube parallel repetition theorem. A
partial list includes the following:

1. 3T cannot be efficiently approximated to within a factorgoﬁr o(1), unlessP = N'P.
This holds even under almost-linear reductions. Prewotist best known\VP-hardness
factor WaS% + ¢ for any constant > 0, under polynomial reductions (Hastad, [18]).

2. 3LIN cannot be efficiently approximated to within a factor%oﬂ- o(1), unlessP = N'P.
This holds even under almost-linear reductions. Prewotis¢ best knowaVP-hardness
factor was% + ¢ for any constant > 0, under polynomial reductions (Hastad, [18]).

3. APCP Theorem with amortized query complexityo(1) and amortized free bit complex-
ity o(1). Previously, the best known amortized query complexity faed bit complexity
werel + ¢ ande, respectively, for any constant> 0 (Samorodnitsky and Trevisan, [32]).

One of the new ideas that we use is a hew technique for doingaimpositionstep in the
(classical) proof of the PCP Theorem, without increasirgyiimber of queries to the proof.
We formalize this as a composition of new objects that we loadlally Decode/Reject Codes
(LDRC). The notion of LDRC was implicit in several previoussks, and we make it explicit in
this work. We believe that the formulation of LDRCs and thainstruction are of independent
interest.
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1.1

Introduction

Probabilistic Checking of Proofs

The PCP Theorem [2, 1] states that any mathematical proobeatonverted to a form that can
be checkegrobabilistically by reading only aconstantnumber of places in the proof. Moreover,
the check can be performed by efficientverifier. If the mathematical theorem, supposedly being
proven, is correct, then there exists a proof in the new fdrat the verifier always (or almost
always) accepts. On the other hand, if the mathematicar¢heds false, then no matter which
proof is provided, the verifier rejects with at least somestant probability. Note that soundness
holds even though the verifier queries the proof only in a @risyumber of places.

A PCP verifier has several important parameters (ideallywweld like all parameters, except
the completeness, to be as small as possible):

1.

Completeness(c) : The minimal probability that the verifier accepts a cotrpmof. An
almost perfect completeness- 1 is usually required. In most cases, a perfect completeness
¢ = 1 can be obtained.

. Soundness (or, Error)(¢) : The maximal probability that the verifier accepts a pramfdn

incorrect theorem. An error of at most- 6 for some constant > 0 is usually required. In
some cases, a sub-constant etrer o(1) can be obtained.

Queries(q) : The number of queries to the proof. A constant number ofigae = O(1) is
usually required. In some case@sy 2 can be obtained.

Size(m) : The size of a proof in the new form, with respect to the siz# the original proof.
A polynomial sizem = poly(n) is usually required. In some cases, an almost linear size
m = n't°) can be obtained.

. Randomnesg(r) : The number of random bits used by the verifier. The randesngper

bounds the size byn < 27 - ¢. Thus,r = O(logn) corresponds to polynomial size and
r = (14 o0(1)) - logn corresponds to almost linear size.

. Alphabet (X)) : The alphabet used for the proof in the new form. It is somet more

convenient to consider tlenswer-sizdog |X| (i.e., the number of bits required to represent an
alphabet symbol), rather than the alphabet Sizatself. An alphabet size of at mogbly(n)
(i.e., answer-size aD(log n)) is usually required. In some cases, answer-siz@(bfg 1) can

be obtained.

We denote by?C' P, ([r, q]x the class of languages that have a PCP verifier with comp@sten
soundness, randomness, andq queries to a proof over alphabet (When we omit:, it should
be understood that = {0,1}.)

We think of all the parameters as functionsof

2



1.2 Hardness of Approximation and Two-Query Projection Tess

Feige et al [15] discovered that there is a close and simpiaaxtion between PCP Theorems and
hardness of approximation. The PCP Theorem can be forndadizstating that approximating the
number of satisfiable clauses iBB8AT formula to within some constant factor P-hard. This
formulation enabled a vast body of hardness of approximagsults via further reductions.

A reduction can be viewed as proving a PCP Theorem in whictyfieeof check corresponds to
the problem to which one reduces. Consider, for instadicay, i.e., the problem of computing the
maximal number of equations that can be satisfied simultassigan a system of linear equations,
where each equation is on three variables @véi(2). To prove the hardness of approximating
3LIN, it is sufficient to prove a PCP Theorem in which the verifiég'sts consist of querying three
bits and comparing their &R to predefined value$) ©r 1).

For many optimization problems, this research directiamdpced hardness results that match
(or almost match) the approximation factors obtained bybi existing algorithms. Thus, one is
able to explain our lack of success in finding better efficegopproximation algorithms. For other
problems, tight hardness results are not known, or are kremlynunder assumptions.

A generic type of tests that was discovered to be especiaéifulias a starting point for further
reductions is &avo-query projection testn a system of two-query projection tests, the proof cdasis
of two partsA and B. The verifier makes one query to thepart and one query to thB part.
Upon seeing the answer to tiequery, the verifier either immediately rejects, or it has ejuely
determined answer to thié query on which it accepts

1.3 Existing PCP Theorems

The basic PCP Theorem that was proved by [2, 1] based on piewiork [25, 5, 4, 15, 31] is:
Theorem 1 (Basic PCP, [2, 1]).NP C PCPL%[O(logn), O(1)].

One can convert Theorem 1 to the following equivalent foatiahs.
Theorem 2 (Equivalent formulations, [7]). Theorem 1 is equivalent to each of the following:

1. Lowerror: Foranye > 0, NP C PCP,.[O(logn), O(log 1)].

2. Two-query projection tests: There exist a constart > 0 and an alphabet: of constant
size, such thalv P C PCP,;_5[O(logn), 2]s.. Moreover, the PCP verifier makes two-query
projection tests.

The first item follows from sequential repetition of the waBCP test (the repetition can be done
in a randomness efficient way by using hitters; see, e.g26t).[ For a constant errar, the number
of queries ig)(1), but for sub-constant errat the number of queries becomes super-constant. The

In contrast, in WIQUE-GAMES [23], each of the two answers determines uniquely a singigfgimg answer to the
other.



second item transforms the number of querie3 &b the cost of enlarging the error to a fraction not
much smaller than.

Low error can also be obtained while preserving two-quepjgation tests. This is done via
parallel repetition. The parallel repetition transforioatincreases the randomness considerably,
but decreases the error probability exponentially. This Wit shown in [29]. (Recently, several
improvements and simplifications were obtained by Holen$&9] and Rao [28]).

Theorem 3 (Parallel repetition PCP, [29]). There exists an alphabg&t of constant size, such that
foranye > 0, NP C PCP;.[O(logn - log %), 2]200%%). Moreover, the PCP verifier makes two-
guery projection tests.

For a constant errar, the randomness i3(log ), and the size ipoly(n). For sub-constant er-
ror ¢, however, the randomness becomes super-logarithmicharsize becomes super-polynomial.
Interestingly, by a result of Feige et al [16], when applypagallel repetition to “natural” verifiers
in order to decrease the error frcgno a small constant errat it is necessaryo usec-log n random
bits, wherec > 1 depends on.

Sub-constant error PCP Theorems are also known. In theseeths, the error is decreased
below a constant while preserving polynomial size [30, 3, T3e state of the art in terms of the
probability of error was proved in [13].

Theorem 4 (Sub-constant error PCP, [30, 3, 13])For any constaniz > 0, there exist: <
2-(en)"™ and alphabet of size|Z| < 2, such thatVP C PCP; .[O(logn), O(1)]s:.

Theorem 4 gives a low error PCP Theorem with constant numbgueries. However, the
number of queries is strictly larger than

We note also that one can use known algebraic techniquesamolkery low error with two-
guery projection tests. However, the alphabet size of thinstuction is always super-polynomial.
The following theorem is folklore and follows from low degreesting theorems with sub-constant
error [30, 3, 27].

Theorem 5 (Two-query projection tests PCP, [30, 3, 27])Fix any constant > 0. Then, for every
e < —L— there exists an alphab&t of size|%| < 2°°¥(2), such that\'P C PCP; [O(logn), 2]s.

(log )?

Moreover, the PCP verifier makes two-query projection tests
Note that the alphabet size is super-polynomial in this tanson, no matter what the error is.

The randomness complexity of the verifier in the basic PCPoiildme can be improved, yielding
a PCP Theorem with almost-linear size. Various papers eetiithat [17, 10, 8, 12]. The state of
the art is by Dinur [12], based on a result by Ben-Sasson addrs|9]:
Theorem 6 (Almost-linear size PCP, [9, 12])3SaT € PCPL% [logn + O(loglogn), O(1)].

Note that the result is phrased for a speci®-Complete language 3$, rather than for all
N'P. The reason is that the reduction from an arbitt&f§? language to 38r may not preserve
almost-linear size.

The transformations from Theorem 2 can be adapted to pesénost-linear size:
Theorem 7 (Equivalent formulations, almost-linear size).Theorem 6 is equivalent to each of the
following:



1. Lowerror: Foranye > 0, 3SaT € PCP, [logn + O(loglogn) + O(log 1), O(log 1)].

2. Two query projection tests: There exist a constant> 0 and an alphabek of constant size,
such that3Sat € PCP;;_s[logn + O(loglogn),2]s. Moreover, the PCP verifier makes
two-query projection tests.

The first item follows from randomness efficient sequentgetition via hitters (see, e.g., in
[26]). The second item is along the same lines as the secemdiit Theorem 2.

Recently, sub-constant error was achieved simultaneeustyalmost-linear size:
Theorem 8 (Sub-constant error PCP of almost-linear size, [2, 26]). There exists a constant
a > 0, as well ass < 206" and an alphabet of size|x| < 2(°¢™'™* such that3SAT €
PCP; Jlogn + O((logn)=),0(1)]s.

Like Theorem 4, Theorem 8 gives a constant number of qudrasd strictly larger thag.

In light of the results described above, the following gicest arise (see, e.g., [3]): Are there
PCP Theorems wittwo queries and sub-constant error ? How about two-query groretests and
sub-constant error ? Are there such PCPs with almost-Isizar?

1.4 Our Results

We prove a PCP Theorem with two-query projection tests,cautstant error and almost-linear size.
More precisely, for any errar > 0 (that can be any function of), we obtain a construction with
soundness, answer-sizgoly (1) and sizen' () - poly(1). Our main theorem is as follows.
Theorem 9 (Main theorem). For everys > 0, there exists an alphabét with log [X| < poly(?1),
such that3SAT € PCP,[(1 + o(1)) - logn + O(log ),2]s.. Moreover, the PCP verifier makes
two-query projection tests.

In particular, ife > W where( is a sufficiently small constant, the answer-size is loga-

rithmic and the size is almost-linear. We note that for eerct ﬁ Theorem 9 follows from
Theorem 5 (the PCP Theorem that is based on Low Degree Testingthis is exactly the less
interesting case where the alphabet size is super-pohatoifine new part is the construction for
e> 1

= (logn)?

The previous work that is most related to Theorem 9 is The@dthe PCP Theorem obtained
from the Parallel Repetition Theorem). Theorem 9 is incomalple to Theorem 3. While Theorem 9
obtains two-query projection tests with sub-constantrearad polynomial (even almost-linear) size,
which cannot be obtained by Theorem 3, the answer-size imréhe 9 ispoly(L), rather than
O(log %) in Theorem 3. Note that far = O(1), poly(1) = O(log1) = O(1) and hence in this
range Theorem 9 gives the same answer-size as the one inefitn@ofup to a constant), but with
better size parameter (almost-linear size, rather thaympatial size).



1.5 Hardness of Label-Cover

We can also formalize our main result in terms of the optitngaproblem LABEL-COVER. The
problem captures two-query projection tests and servdseastarting point for many of the existing
hardness of approximation results.

Definition 1.1 (Label-Cover). An instance ofLABEL-COVER contains a regular bipartite multi-
graphG = (A, B, E) and two finite set&, and Xz, where|X,| > |¥g|. Every vertex inA is
supposed to get a label M4, and every vertex i3 is supposed to get a label ;. For each edge
e € FE there is a projectiorr, : ¥4 — g which is a partial function.

Given a labeling to the vertices of the graph, i.e., functipn : A — X4 andyp : B — Y3,
an edge: = (a,b) € F is said to be “satisfied” ifr.(p4(a)) = ¢p(b) (it might be thatr.(p4(a)) is
undefined; in which case.(¢a(a)) # ¢g(b)).

The goal is to find a labeling that maximizes the number o$Batl edges. We say thatraction
of the edges are satisfiable if there exists a labeling thas®as~ fraction of the edges.

In the LABEL-COVER notation, thesizecorresponds to the number of vertide§ + |B|. The
alphabetcorresponds to the (larger) set of labEls. Therandomnesss log |E|.

Sometimes kBEL-COVER is defined with projections, that are functions, rather than partial
functions. However, the more general definition of partigidtions is convenient for us, and works
just as well for the applications. In the literature one cad & variety of different problems that are
named lABEL-COVER and are incomparable to Definition 1.1. However, today, drae LABEL -
CovVER usually refers to the problem defined in Definition 1.1.

Our main theorem can be restated as follows.
Theorem 10 (Main theorem). For everyn, and every: > 0 (that can be any function of) the
following holds. Solving SAT on inputs of size can be reduced to distinguishing between the case
that aLABEL-COVER instance of size' ™" - poly(2) and parameter$s 4|, [Sp] s.t. log [$a| <
poly(1) andlog |~ 5| < O(log 1), is completely satisfiable and the case that at mdsaction of its
edges are satisfiable.

1.6 Some Implications of Our Main Theorem

In this section we demonstrate some of the prominent imipdica of Theorem 10. The presentation
follows Khot’s survey [24], and the reader is referred t@ thirvey for more details.

The following scheme is used to prove hardness of approiomagsults:

1. Start with a two-query projection tests PCP Theorem waithdrror (the PCP based on parallel
repetition, given in Theorem 3).

2. Apply Long Code [6, 18] and other techniques to convertdiseperformed by the verifier to
the desired form.



This scheme has been successful in proving hardness ofxapatoon results for many opti-
mization problems. A prominent example is the work of H&gt8] proving, among other results,
the hardness of approximating 8Sand 3LN.

Theorem 10 can many times replace Theorem 3 in step 1. Wherisanterested in\/P-
hardness results, this will usually give better resultsthénat parallel repetition gives: almost-
linear reductions, rather than polynomial or super-poigrad reductions, and sub-constant error,
rather than constant error. This is true as long as step 2rduasse specific properties of parallel
repetition other than two-query projection tests, and ag las the number of repetitions used is
relatively small. (We note that when one is interested inlhass results under stronger assumptions
such as\V"P ¢ DTIM E(2r°Yleen) one usually obtains better results using parallel repatit.e.,
using Theorem 3 rather than Theorem 10). In this section weodstrate a few cases in which
Theorem 10 can indeed be used to give better results in thesse.

38AT:

Hastad followed the above mentioned scheme to prove hssdesults for many optimization prob-
lems, including the classical 3% [18]. Note that any3C'N F' formula has an assignment satisfying
at Ieastg fraction of its clauses. Thus, the best we can hope for is tavghat it isA/P-hard to
distinguish between the case that the formula is satisfeadethe case that onglfraction of the
clauses are satisfiable.

Corollary 11 (3SAT hardness). Solving BAT on inputs of size. can be reduced to distinguishing
between the case that3@' N F formula of size:!*°(!) is satisfiable and the case that orfly+ o(1)
fraction of its clauses are satisfiable.

This corollary improves over Hastad'’s result in two regpeirst, it shows a hardness result
based on an almost-linear size reduction, rather than apotlial size reduction. Second, it shows
that approximating the number of satisfiable clauses toimwihfactor of L + o(1) is N'P-hard,
and not only that approximating that number to within a facctbg + ¢ for any constant > 0
is N'P-hard (as in Hastad's original result). Thél) term is roughly(loglog n)~*(") because of
Hastad’s test construction that is based on the Long Codenaté that if we could have achieved
in Theorem 10 the alphabet/error tradeoff of Theoreft:3| < poly(1), theo(1) term would have
been(logn) ). We note also that Hastad does obtain hardness of appriainrasults to within
a factor ofI + o(1) where theo(1) term is (logn) ™ (using the above mentioned scheme), but
these are nat/P-hardness results and are based on stronger assumptions.

3LIN:

To obtain an optimal completeness/soundness gap fery bits, we can follow Hastad [18] and
consider the problem of solving linear equations3orariables over= F'(2). For this problem, one
can efficiently check whether all the equations can be sadisfmultaneously by Gauss elimination.
Hence, we give up perfect completeness.

Corollary 12 (3LIN hardness). Solving 3AT on inputs of sizes can be reduced to distinguishing
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between the case thatin a setof°(!) linear equations, each depending ®wariables ovelG F(2),
a fraction of1 — o(1) of the equations can be satisfied, and the case thatbriy(1) fraction of
the equations are satisfiable.

Again, this corollary improves over Hastad’s result in trespects: First, it shows a hardness
result based on an almost-linear size reduction, ratherahaolynomial size reduction. Second, it
shows that approximating the number of satisfiable equatiomwithin a factor 0% +o(1) isN'P-
hard, and not only that approximating that number to withiacor of% + ¢ for any constant > 0
is AP-hard (as in Hastad’s original result). Thél) term is the same as the one for3S Once
again, we note also that Hastad does obtain hardness afxam@tion results to within a factor of
5+ o(1) (where theo(1) term is better than the one we obtain here), but these at&’@ohardness
results and are based on stronger assumptions.

Amortized query complexity and free bit complexity:

Assume for simplicity that the alphabetis= {0, 1}. Roughly speakingamortized query complex-
ity is the ratio betweeibg of the soundness and the number of queries. There are ssirarkr
and essentially equivalent definitions. Here, we refer bypriimed query complexity téﬁ%%c),
following [24]. “Free” queries are queries to which the aeswan be arbitrary. The satisfying
answers to the other queries are determined uniquely byrtbweas to the free queries. Roughly
speakingamortized free bit complexitg the ratio betweetbg of the soundness and the number
of free queries. Formally, we refer by amortized free bit pteRrity to fHlog(l/e) where f is the

. log(1/s)
number of free queries.

Samorodnitsky and Trevisan used the 3LIN test (and the abmrmioned scheme) to obtain
PCP Theorems in which the amortized query complexityis< and the amortized free bit com-
plexity ise (for any constant > 0) [32]. Using a similar approach, our results imply a sSimP&P
Theorem with amortized query complexityt o(1) and free bit complexity(1). Moreover, this is
done by aralmost-linearsize reduction from 3&r, rather than a polynomial size reduction in [32].
Corollary 13 (Nearly-optimal amortized query complexity and free bit complexity). There ex-
ists a functionk,,,...(n) > w(1), such that, for any natural number(1) < k < k... (n), 3SAT on
inputs of sizex has a verifier that usegl + o(1)) - logn random bits to picky = k% + 2k queries
to a binary proof, such that only = 2k of the queries are free. The verifier has completeness
¢ =1—o(1) and soundness at most= 2-***1, implying amortized query complexity+ o(1) and
amortized free bit complexity(1).

1.7 Techniques

In the literature there are two main approaches for proviitejRCP Theorem. The classical ap-
proach [2, 1] and Dinur’s approach [12]. The classical apphostarts with a PCP verifier with
small error but very large alphabet, and gradually reducesikphabet size. Dinur's approach starts
with a PCP verifier with small alphabet but very large erroil gradually reduces the error. Our
proof is more related to the first approach.



One of the main new ideas that we use can be viewed as a newdeetar doing the compo-
sition step in the PCP Theorem, without increasing the nurobgueries to the proof.

Proof composition is what enabled the PCP theorem [2, 1],isad important part of all PCP
constructions since. In the literature, there are sevaeffareint (but very related) ways to do the
composition step (see for example [2, 34, 14, 8]). HoweVkthase methods are either restricted to
constant error, or require a large number of queries. Fanpla each application of the standard
way of doing the composition step in the classical proof efRCP Theorem, increases the number
of queries to the proof by 1.

To formalize our techniques, we define the notiohotally Decode/Reject CodeDRC). Very
roughly speaking, LDRCs are codes such that there existsaogy algorithm that performs a local
test on a codeword and based on the test either rejects antsule value of several positions in
the encoded message. The decoding algorithm should sttesfpllowing two properties: 1) If it
is given as an input a correct codeword then it always ac@mtsalways returns the correct values
of the encoded message. 2) Given any word as an input (nosseadyg a correct codeword), with
very high probability, if the algorithm does accept thenrbiirned values agree with one of a small
list of codewords (a list decoding of the word that is givemasnput).

The notion of LDRC and variants of it were implicit, or evenrseexplicit, in many previous
works (e.g., [3, 30, 33, 13, 26]). We believe that the explicrmulation of LDRCs and their
construction are of independent interest.

Our new composition technique is a composition of LDRCdeathan a composition of veri-
fiers. The difference between a verifier and an LDRC is thatidieechecks a predicate, while an
LDRC checks a predicate and — provided that the predicatatisfied — returns values. By using
LDRCs, rather than verifiers, we deviate from the path takemarks such as [2, 1, 3, 10, 9, 8], and
proceed in the path taken in [13, 26].

Our entire proof is presented as a construction of LDRCs we&ttiain properties, rather than
a construction of PCPs. We then use the new LDRCs to reduceutinder of queries in existing
constructions of PCPs. Thus, our proof can be viewed as atieduhat reduces the number of
gueries in PCP constructions. More precisely, the redaaanverts a PCP with a large number of
gueries into a PCP with two-query projection tests, whileinoreasing the error by much.

We note however that for the construction of our LDRCs, we sldvmany of the techniques that
were developed for constructions of PCPs, and our proofatosiseveral steps that are similar to
corresponding steps in the classical approach for proviad®CP Theorem. For example, we use
the Reed-Muller and Hadamard codes and their local testidgsalf-correction properties. We do
have several new techniques that we need in order to achiewastruction with two queries and
sub-constant error.

As in the classical approach for proving the PCP Theoremcomstruction starts with an LDRC
with low error but large alphabet, and gradually reducesalpbabet size. The construction is by
performing various transformations, including compasis of the Reed-Muller and Hadamard con-
structions, and other transformations. Our proof relieglgebraic constructions, yet the construc-
tion involves several combinatorial steps that are quiteege and may find other applications. The



combinatorial steps use expanders with a very large speetpa The use is different from the use
of expanders of constant spectral gap in the work of Dinu} (ABhough it bears some similarity to
it). More details appear in Section 3 where we outline ouistaction.

The formal definition of LDRC, as well as more details and aggpions, appear in Section 2.
We wish to emphasize that LDRCs are different from existingjans such as Relaxed Locally
Decodable Codes (RLDCs) [8]. A comparison and a constmicifoRLDCs and locally testable
codes from LDRCs appears in Section 2.3. The use of LDRCsaoyqeduction for PCPs appears
in Section 2.2.

2 Locally Decode/Reject Codes fok-Tuples

A Locally Decode/Reject Code is an encodifg {0,1}" — ¥™ that maps messagesc {0,1}"
to codewords?(x) € ™. ¥ is the alphabet of the code andis its length. Underlying an LDRC
there is a list of-tuples of positions irin|:

<7;1’1, o 77;1,k>7 ce <iN71, . ,iN,k> c [n]k

The code is associated with a local testing/decoding dlgotid. The purpose of the algorithmis to
decode a randortrtuple from the list. The algorithm is probabilistic and nayly query a constant
number of positions ifrE™. Based on the answers to the queries it should either rgeotturn a
k-tuple from the list together with a decoding/obits for it (see Figure 1). Note that the alphabet
needs to be large enough to allow that. In our setting, thardiigm makes two queries and performs
a projection test. If the test passes, then based on the atswe first query (that also gives the
satisfying answer to the second query), the algorithm shdetode a&-tuple.

Letz € {0,1}" and fix some randomness for the algorititnThis fixing determines &-tuple
(i1,...,ir) € [n]¥ in the hard-wired list. Let us say that the algoritbdon the fixed randomness
decodest if the algorithm.A4 does not reject and does outgyt= z(iy),..., b, = =(iy), where
x(1;) for j € [k] denotes the;’th symbol inz.

In Definition 2.1 below we state the properties of the locatégdecoder. Given access to a
codewordy = FE(z), the algorithm must always decode The requirement from the algorithm
when given as input a non-codeword is more subtle. In exjdefinitions of local decoders, the
input y is assumed to be at least close (in Hamming distance) to sodemvord £ (), and the
requirement is to decode In the definition of LDRCs, we will not assume thais close to a
codeword. That is, we allow to be an arbitrary string ift™. In this casey may be far from
all codewords. Hence, we allow the algorithm to reject ifahnot decode. Nonetheless, the list of
codewords that are somewhat close ttannot be large (wheh defines a code with good distance).
We require that with high probability, il does not rejectd decodes one of a short list of messages
x1,...,2; € {0,1}". It does not matter whichy; the algorithm decodes, but all bits must be
consistent with the same (note that this is non-trivial wheh< 2¥).

Definition 2.1 (Locally decode/reject code fork-tuples). Let0 < 6., < 1. Letl, : (0,1) —
R* be a decreasing function. An encodifg: {0,1}" — Y™ together with a testing/decoding
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Local Tester/Decoder
Hard-wired: A collection of size/V of k-tuples of positions irn|:

(i1, ey i)y s (N -y ing) € []F

Input: y € X

Goal: Test whethery locally agrees with a codeword, and, if so, decddeositions in
the message, where the positions are chosen uniformly émnafrom the hard-wired list.

Output: Either reject or a k-tuple of indices(iy, ..., ) that is uniformly distributed in
the hard-wired list, as well dsbitsb,, ..., b, € {0,1}.

Process:

1. Pick in some randomized manner a constant number of gutrig (in our case, twg
queries), as well as &-tuple (iy, ..., i) that is uniformly distributed in the hard-wired
list.

2. Perform some test on the queried positiong (in our case, a projection test). If the test
rejectsreject

3. Use the queried positions to comp#tbits b, ..., b, € {0, 1}.

Figure 1: Local tester/decoder

algorithm A as in Figure 1 is called &0, lna:)-l0cally decode/reject cod®r the hard-wired
k-tuples, if the following holds:

1. Completenessor everyz € {0,1}", on inputF(z), the algorithm always decodes

2. Soundness:For everyy € ™, for every reald such thatj,,;, < § < 1, there existl <
lmaz(0) Messagesy, ..., x; € {0,1}", such that the following holds: the probability that the
algorithm does not reject, yet does not decode any; of. . , x;, is at mosiO(9).

The parameter,,,;,, lower bounds the error of the LDRC, i.e., the probabilityt the tester/decoder
accepts although it should not. The paramétgr gives the list size as a function of the error we
are willing to tolerate. Typicallyl,,,,(0) < §~°0),

2.1 Bipartite Locally Decode/Reject Codes

For our setting, let us also explicitly define the®eL-CoVER version of LDRCs. The notion of
bipartite LDRCsimposes the two query projection tests structure on thd tester/decoder. The
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notion is stronger than the notion in Definition 2.1. The ahog consists of two partd and B.
The list-decoding is determined solely by tBepart.
Definition 2.2 (Bipartite locally decode/reject code fork-tuples). Consider a list of-tuples

(i11y ey i)y s (iNy -y ing) € [0]F

A Bipartite LDRC for thek-tuples isG = (G = (A, B, E), X4, X5, {7} ccps {Te}eems 1Pe fecr)
whereG’ = (G = (A, B, E), X4, 35, {7.}.cp) IS an instance olLABEL-COVER, and every edge
e € E carries ak-tuple ., from the list and an evaluation functign : ¥4 — {0, 1}'“. For each
J € [N], the tuple(i; 1, . .., 1;,) appears on the same number of edges.

Given a labeling to the vertices of the graph, i.e., fundtioh : A — ¥, andCy : B — X,
an edgee = (a,b) € F is said to be “satisfied” if it is satisfied ig’. For a message € {0,1}",
the edge: is said to “decode’z if p.(Ca(a)) = (z;,,...,x;,) Wherer, = (iy,..., i) is the tuple
associated witle.

LetO < dyin < 1. Letl,e, ¢ (0,1) — R be a decreasing function. We say that the LDRC is a
(Omin, lmaz )-bipartite LDRC if it satisfies the following conditions:

1. Completeness¥or everyz € {0,1}", one can efficiently compute assignmeTrifs: A — X4
andCp : B — Y5, such that all edges € F are satisfied and decode

2. SoundnessFor everyCp : B — Y, for every reabb such thab,,,;, < < 1, there exist <
lmaz(0) Messages, ..., z; € {0,1}", such that the following holds for arfy, : A — X 4:
when picking uniformly at random an edgec F, the probability that is satisfied but does
not decode any one af, ..., x;, is at mostO ().

Note that for decoding to be possible, the alphabet mustfgatic |> 4| > k.

In the LABEL-COVER notation, the length of the code corresponds to the numbeenices
|A| + | B|, and the alphabet of the code corresponds to the (largeoj kdiels> 4. The randomness
of the local tester/decoder Isg |E|. For any interesting list ok-tuples (where we refrain from
defining “interesting” explicitly; an “uninteresting” lisnay be one that does not even contain most
possible indices itin]), the length must be at leaQ( N + n). We refer to the size of the gragh,
|G| = |A| + |B| + |E|, as thesizeof the bipartite LDRC. The size measures both the lengthef th
LDRC and the number of possible tests of its local testeodec We say that the construction is of
almost-linearsize, if the size i§N + n) - n°W,

We show a construction of an almost-linear size bipartitd&RI3 as follows:
Theorem 14 (Construction of bipartite LDRC). There exists a constafit< a < % such that the

following holds. Let: be such that < (logn)~. Letm < ¢ < 1. Then, there is an efficient

algorithm that given a collection of siz¥ of k-tuples, outputs &d,.i, = &, lnae(6) = 67°W)-
bipartite LDRC for these tuples. Its size is almost linéar+ n) - n°"), and its alphabets satisfy
log |X4] = k - poly(2) andlog [X5] = O(log ). The degree of thel vertices is()°*), and the
degree of theB vertices is(1)°().
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2.2 Query Reduction For PCPs Via LDRCs

Bipartite LDRCs allow us to convert a PCP with a low error adrge number of queries, e.g., the
one appearing in Theorem 7 (item 1), to a PCP with low errortauadquery projection tests. Using
the bipartite LDRC construction of Theorem 14, we get our R@&@rem, Theorem 10.

Definition 2.3 (Construction algorithm). A (k,,..., dmin )-cONstruction algorithm for bipartite LDRCs
with parametergsize, block 4, blockz) is an efficient algorithm that given a collection ftuples,
wherek < kyqe, OUtPULS &in, Lnaz )-bipartite LDRC for the tuples, wheig,,.(0) < §~°W), The
size of the output isize, the alphabet size of thé vertices is2P'°ck4 and the alphabet size of the
vertices i2blocks,

Theorem 15 (Query reduction). If there is a(q, €)-construction algorithm for bipartite LDRCs
with parametergsize < (N + n) - n°Y block, block), then for some, > 00,

PCPy[(1+0(1)) - logn, q] € PCPioe (1 +0(1)) - log n, 2] ysieck s

Moreover, the PCP verifier performs two query projectiorigeand the answer to the second query
consists oblockg bits.

Proof. Denote byC a (g, ¢)-construction algorithm for bipartite LDRCs with paramstésize <
(N +n) - n°M block4, blockz). Assume that outputs(e, I,,.. )-bipartite LDRCs. Let us choose
€0 = €/lmaz(g) > €9,

Let L € PCPi.[(1+ o(1)) - logn,q]. Denote the implied PCP verifier Byi. Denote the set
of randomness strings the verifier uses byR, where|R| < n'*°(), On randomness € R, the
verifier V; performsg queries to a binary proof of size < n't°(); denote thej-tuple of queries
thatV; performs byl (r) € [m]9.

Invoke the construction algorithi on the collection of size.' () of g-tuples{Vi(r)},. to
obtain a bipartite LDRC:

g = <G = (A7 Bv E)v 2147 EB? {We}eeEv {Te}eeEv {pe}eeE>

Identify 32, with {0, 1}°°%4 andX 5 with {0, 1}"°*“*. Note that the size af is n!+o(!),

Consider the following PCP verifiar; for L. Assume that the verifidr; is given inputz. The
verifier V, has oracle access to a proof which it interprets as lafiélsCz), whereCy : A —
{0,1}°°*4 andCj : B — {0,1}"°*". Supposedly(, andC; encode a proof that would have
convinced the verifieV; thatx € L. The verifierl;, proceeds as follows:

1. Pick uniformly at random an edge= (a,b) € E. LetV;(r) for a uniformly distributed- € R
be such that, = Vi (r).

2. If m.(Ca(a)) # Cp(b), reject

3. Otherwise, accept or reject, dependingl®is verdict on inputz, randomness and answers
pe(Ca(a)) toits queries.
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Note thatl; is efficient, uses onlyl +o(1))-log n random bits to make two queries to a proof, where
the answer to the first query consistsbtifck 4 bits, and the answer to the second query consists of
blockp bits, and performs a projection test on the answers.

Let us argue completeness and soundness.

Completeness. Assume thatr € L. By the completeness 6f;, there exists a proaf € {0,1}™
thatV; always accepts. Lety : A — {0,1}*°** andCj : B — {0,1}"°%*? be labels for which
all edges are satisfied and decadd-or these labels, the verifiés always accepts.

Soundness. Assume that: ¢ L. Consider label€, : A — {0,1}°** andCy : B —
{0,1}°°%7 Letm,...,m € {0,1}" be thel < l,...(c) strings that follow from the definition
of the LDRCG for the assignments'y, C'z and the parametet.

Let us show that the probability th&} accepts on input and proof(C4, Cz) is at mostO(¢):

By the soundness of the LDRE, the probability that the edgeis satisfied inG, but does not
decode any ofry, ..., m, is at mostD(e).

For everyi € [I], whenV is given inputz and proofr;, the probability over the randomness of
Vi thatV; accepts is at most,. Thus, the probability that given input the verifierV; accepts when
given as proof one ofy, ..., m, isatmost - ¢ < O(e). O

Corollary 16. Theorem 10 holds.

Proof. Lete > 0. Let us assume that for some constant 0 it holds that: > W Otherwise,
the conclusion of Theorem 10 follows from Theorem 5. We whiboses’ > ¢°(V) shortly. By
Theorem 7 (item 1),

1
3SAT € PCP; ~[(1+0(1)) - logn, O(log g)]

Apply the query reduction theorem (Theorem 15) using the Cldenstruction algorithm given in
Theorem 14. Deduce that for some> °O),
1

PCP1g[(1+0(1)) -logn, Olog -)] € PCP1[(1+ 0(1)) - logn, 2] | ypacd)

Moreover, the PCP verifier performs two query projectiotnsteand the answer to the second query
consists 0f0(log 1) bits. Lete’ = ¢,. Therefore, solving 38 on inputs of size: can be reduced
to distinguishing between the case thatasEL-COVER instance of size'**()) - poly(1) and pa-
rametergX .|, [Xp| s.t. log [£4] < poly(2) andlog|X5| < O(logl), is completely satisfiable and
the case that at mostfraction of its edges are satisfiable. O

2.3 Relaxed Locally Decodable Codes

In this section we recite the notion of Relaxed Locally Desdald Codes (RLDC) [8]. RLDCs are
codes with local testing and decoding algorithm that arkediht from LDRCs. The notions are
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incomparable in one sense, the requirement of an RLDGti®ngerthan the requirement for an
LDRC, while in another sense, the requirement of an RLD®@easakerthan the requirement for an
LDRC. In the sequel we compare the two notions.

To motivate Relaxed Locally Decodable Codes (RLDC), wesgie¥he definition of Locally
Decodable Codes (LDCs) [21]. LDCs are encodings {0,1}" — X™ that are associated with a
local decoding algorithri. The algorithm gets as input an indéx [n] and has oracle access to
awordy € X™ that isclose(in Hamming distance) to some encoding, i.e., there exists{0, 1}"
such thatA(y, C(z)) < 0, whered is a small constant. The purpose 4dfis to decoder;. The
algorithm is probabilistic and is allowed to query a constamber of positions iny. Wheny =
C(z), the algorithm should always output The soundness requirement is tfatany: € [n| and
anyy such thatA(y, C(x)) < 4, the algorithmA decodes:; with probability at leasts 1 — §. The
probability is only taken over the randomness of the alparid, and not over the choice ofc [n].

The Hadamard code is locally decodable with two queriesitblgngth is exponentiah = 2™.
The best constructions known today (under the assumptairihibre are infinitely manylersenne
primeg are slightly sub-exponentiﬁ?”m and obtain a local decoder that quersdsts [35]. For two
gueries, an exponential lower bound is known [22]. For marerigs, a super-linear lower bound is
known [21].

Motivated by this state of affairs, Ben-Sasson et al [8]xeththe notion of LDCs as to enable
succinct constructions. Their idea was to allow the decodéto decode a position. In this case,
the decoder should declare that it cannot decodegjadt Of course, the decoder must not use this
privilege too often: it may declare it cannot decode only fewitions, depending on the distance of
the received word from the code. The key point is tfat.every position € [n], the algorithm4
may err, i.e., not reject yet return a wrong value, with ongnaall probability over its random coin
tosses. There must not be even ere[n] for which algorithmA err with large probability (unlike
for LDRCs).

Definition 2.4 (Relaxed locally decodable code)let0 < § < 1 and let0 < p < 1. An encoding
E : {0,1}" — X™ together with a decoding algorithtd as in Figure 2 is called 4, p)-relaxed
locally decodable coddf the following holds:

1. Completeness: For everyz € {0,1}" and everyi € [n], on inputE(x) andi, the algorithm
A outputsz;.

2. Soundness: Given awordy € ¥ with A(y, E(x)) <,

(a) For every position € [n], the probability that4 does not reject, yet outpubs# z;, is
at mostz.

(b) For at leastp fraction of the positions € [n], the probability that4 does not reject, and
does output;, is at least.

The main differences between RLDCs and LDRCs are as follows:
e List decoding vs. unique decoding. RLDCs, the guarantee is that the word is very close to
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Relaxed Local Decoder
Input: y € £¥™ and: € [n].

Goal: Find z; for z € {0,1}" such thatE(z) is the closest codeword (in Hamming dis-
tance) toy.

Output: Eitherreject, or a bitb € {0, 1}.

Process:
1. Pick in some randomized manner a constant number of guerie

2. Perform some test on the queried positiong.iif the test rejectsieject

3. Use the queried positions to compute thebkit {0, 1}.

Figure 2: Relaxed local decoder

a (unique) codeword. In LDRCs there is no such guaranteelota¢decoder has to perform
well in the list decoding region.

e Average case vs. worst case.RLDCs, the local decoder has to perform well &rindices
with high probability over its randomness. In LDRCs, thedbdecoder has to perform well
for almost allindices with high probability over its randomness. Therghmibe very few
indices, on which the algorithm always returns an incorvatie.

e k-tuple vs. one positionin RLDCs (as in LDCs), the requirement is to decode one [ositi
In LDRCs, the requirement is to decod@ositions.

3 Construction Outline

In this section we outline our LDRC construction, i.e., theqd of Theorem 14. We present a simpli-
fied construction, taking the liberty of ignoring severaliss. In particular, in this outline we ignore
the almost-linear size guarantee. The reason is that ths ideolved in handling almost-linear size
appear in previous works [27, 26] and introduce many techuiifficulties. A full account of issues

we ignore in this outline appears in Section 3.12. Recall dhdaining a PCP Theorem with two
guery projection tests and sub-constant error, even witynpmial size, was unknown prior to our
work.
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3.1 Encoding codewords

The first conceptual step is as follows: Instead of LDRCs dimgpbinary strings as in Defini-
tion 2.2, we will construct LDRCs encoding codewords in sao@eC' C I'. The formal definition
appears in Section 3.2. The differences from Definition 2elas follows:

e Given a codeword: € (', we would like assignmentSy, Cz “encoding” x (the encoding
does not need to work for all possible strings, only for coolels inC'; this is a relaxation of
Definition 2.1).

e Given assignments',, C'z we would like a “list decoding” of codewords, . .., z; € C (the
list decoding cannot use any string in the decoding, onlyewautds inC’; this is a strengthen-
ing of Definition 2.1).

Note that constructing LDRCs for an infinite family of effinidy encodabldinear codesC = {C,, }
yields, in particular, LDRCs as in Definition 2.1. The reagothat given a binary string € {0,1}"
we can first encode it using a codg, for a sufficiently largen’, and obtain a codeword € C,,
such thatr is a prefix ofz’ (by linearity, we can assume, without loss of generalitgf the code is
systematigi.e., an encoding contains the message bits and a sequilean functions of these
bits). Then, we can use an LDRC for the cddg. The positions we wish to decodedralso appear
inx'.

For the final construction of Theorem 14, we use as our linede€' the concatenation of Reed-
Muller and Hadamard. The reason is that both for the Reedevabde and for the Hadamard code,
we canlocally decode/rejectFor the Reed-Muller code — Hgw degree testingnd using curves.
For the Hadamard code — lipearity testingand using linear subspaces.

Nonetheless, the Reed-Muller code and the Hadamard code dpparent caveats. For the
Reed-Muller code — while the length can be made almostijriba alphabet size is too large. For
the Hadamard code — while the alphabet size is small, theHesgxponential.

Our methods allow us to gain from the advantages of the twesaghile not losing much from
their shortcomings. By composing the respective LDRCs, btaio locally decode/reject codes
with almost-linear length and small alphabet.

3.2 New Notion of LDRC and Its Parameters

Next we formulate the new notion of LDRCs we use. In this newamwe make an additional
“technical’ change.

We associate satisfiability constraints with theertices, rather than with the edges. Recall that
the projections on the edges are partial functions. Thahisome values of thé endpoint, an edge
may never be satisfied. Instead, we define the projections fartctions and define sefs.}, 4,
where for every: € A we havey, C Y4 is the set of satisfying values far A label to the vertex

projects on all the neighbors af The satisfiability constraint o may check consistency between
the different projections.
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Definition 3.1 (Bipartite locally decode/reject code fork-tuples; new notion). Fix a codeC' C
Y. Consider a list ofk-tuples

(i11y ey i)y s (iNy -y ing) € []F

A Bipartite LDRC for théi-tuples is(G = (A, B, E), X4, X5, {Xa}aea {Teteer 1Tetecr 1Pe}ecr)
where(G = (A, B, E), X4, X, {7} is an instance oL ABEL-COVER, and every edge € E
carries a tupler, from the list and an evaluation functign : ¥, — X*. For eachj € [N], the
tuple(i;1, ..., %,x) appears on the same number of edges.

Given a labeling to the vertices of the graph, i.e., function : A — >, andCp : B — ¥, a
vertexa € A is said to be “satisfied” ifC4(a) € x,. Anedge: = (a,b) € E'is said to be “satisfied”
if a is satisfied andr.(C4(a)) = Cp(b). Given a message € C, an edges = (a,b) € F is said to
“decode” z, if p.(Ca(a)) = (z;,, ..., x; ) Wherer, = (iy,..., i) iS the tuple associated with

LetO < dpin < 1. Letl,e, ¢ (0,1) — R be a decreasing function. We say that the LDRC is a
(Omin, lmaz)-bipartite LDRC if it satisfies the following conditions:

1. Completeness:For everyz € C, there are assignments, : A — ¥, andCy : B — Xp,
such that all edges € E are satisfied and decode

2. Soundness:For everyCy : B — X, for every realy such that),,,;,, < § < 1, there exist
| < lnaz(6) messages, ..., r; € C, such that the following holds for anyy : A — 4:
when picking uniformly at random an edge= F, the probability that is satisfied but does
not decode any one af, ..., z;, is at mostO ().

We will be interested in various properties of an LDRC. Oné¢hein is the form of the satisfia-
bility constraints of thed vertices. Another is the alphabéts andXz. The alphabets will usually
be codes themselves.

We will also be interested in the following parameters:

1. Size. The size of the LDRC, i.e]A| + |B| + |E|. The size combines the length of the code
|A| + |B| and the randomness of the tester/decade(E|. As we mentioned earlier, in this
outline we will focus on polynomial size.

2. Block length. The block length of theA vertices islog [>X4|. The block length of theB
vertices idog |Xg|.

3. Left degree. In this outline we focus on graphs that are left regular, aél.the A vertices
have the same degree. The left degree is this degree.

4. Right degree. In this outline we focus on graphs that are right regular, akkthe B vertices
have the same degree. The right degree is this degree.
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3.3 Locally Decode/Reject Code for Reed-Muller

In this section we describe a locally decode/reject codéhi®iReed-Muller code. The construction
is (a variant of) the folklore construction that yields Them 5.

Let the parameters of the Reed-Muller code be: a finite figld dimensionn and a degree
d. The code consists of ath-variate polynomials of degree at maekbver the fieldF. It will be
convenient to identify positions in the code with point&in. Thus, thek-tuples we wish to decode
are given as tuples of points:

<{2_3"171, .. ,f17k>, RN <fN,17 .. ,II_Z"NJf) c (Fm)k

The size of the LDRC is polynomial iff™|. The left degree iﬁF|O(1), and the right degree is
polynomial in|F™|. The alphabet of thd vertices is a Reed-Muller code itself, but of much reduced
parameters: the dimension and the degree’Hieg kd) (independent of the initial dimension).
Still, the block length is largeoly(k, d) - log |F| (compare it to the lower bound - log |F|; note
the dependence on the degrBeand this is the main disadvantage of this constructiors€ehow
severe this disadvantage is, recall that the degreest be taken to be large if we want a good rate:

The number of codewords in the Reed-Muller codéFi\ém"td>. Thus, the rate iimntd) /n, where
n = |F™|. To get large distance and polynomial length, we need to dadech thatn - |IF|Q(1) <

d < |F|. Hence, the alphabet is at best super-polynorfidi!es”, If we wish the length to be
almost linear, the alphabet becomes even larger, slighbyexponential.

What allows local testing/decoding for the Reed-Mulleredgla principle that we loosely state
as follows:

Low degree testing principle: Fix a functionf : F™ — F. There are a few low degree
polynomialsgy, ..., q : F™ — F as follows. Pick uniformly at random a lirflein ™. “Almost
surely, whenf agrees with some low degree polynomial on a non-negligitaetion of the
points on? (local tes), it agrees on these points with onegf. . ., ¢; (global conclusioli'.

Herenon-negligiblemeans a sufficiently large fraction®® . (%)9(”.

Proofs of variants of the above principle appear in [3, 3Q,273. They rely on the distance
property of the Reed-Muller code and on its recursive stmgctany low degree subsetlgf defines
a Reed-Muller sub-code. The “line” in the above principla ba replaced by any low degree curve
or manifold inF™. In particular, we replace the “line” with a low degree maitfthat goes through
a k-tuple we wish to decode.

We will refer to our LDRC as the Manifold vs. Point constractj and define it as follows:

e The A vertices arel-dimensional manifolds of degree at mast 1 in F*: there is a manifold
for every k-tuple we wish to decode and three dimensional subspaB€' i(where we use
three-dimensional subspaces because we apply the lowediegteng of [27]). The manifold
contains thé: points and the subspace.
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e The B vertices are the points ii".

e Every manifold is connected to all the points on it, excep&ffew points that are removed to
ensure right regularity.

e Alabel to aB vertex is a field element.

e Alabel to anA vertex is ad-variate polynomial of degree at mdgt+ 1) - d. The projections
{m}.cp are such that for an edge= (a,b) € L, the projectionr.(c,) is the value of the
polynomialo, on the point corresponding toon a.

e To encode a Reed-Muller codeword, we view it as a labelinb®fz vertices (i.e., the points
in ™) with field elements. We label the vertices with the restrictions of the codeword to
the manifolds on thel side.

e There are no satisfiability constraints, i.e., for evernjterern € A, we have thaj, is the set
of all possible labels.

e Foran edge = (a,b) € F, the tupler, is thek-tuple contained im. The evaluation.(c,)
is the value of the polynomial, on thek points corresponding tq.

Note that the labels to thd vertices are Reed-Muller codewords, but not Reed-Mulleleeo
words with the parameters we declared. Yet, we can represemy polynomial with constant
dimension and degre@(kd) as a polynomial with dimension and degi@€og kd).

3.4 Why Composition is Hard — The Two-Prover Game Perspecty

It will be useful to think of the LDRC construction above inmes of a game between a verifier and
two provers: proved and proverB. The verifier asks provet about a manifold iff”™. The verifier
asks prover3 about a point on the manifold. Provdrknows that prove3 is asked about one of
the points on the manifold that provergot, but proverd does not know which point. Provée?
knows that prover is asked about one of the manifolds that contain the pointgiaver B got,
but proverB does not know which manifold. The low degree testing prilecgssures us that this
missing information is sufficient to force the provers to eidhto the same low degree polynomials.

Unfortunately, the alphabet of this Manifold vs. Point coustion is large, because proveér
needs to describe a polynomial for its manifold. A naturdlison is to usecomposition Prover
A needs to provide a polynomial for the entire manifold, batfaict, the verifier is only interested
in the value of this polynomial ok + 1 points: thek-tuple it decodes and the point that prover
got (on which the verifier compares the answers). The ideavgtv the verifier's task as decoding
k + 1 symbols from a Reed-Muller code, and use an LDRC for this @agp

Let us demonstrate the idea by taking the Manifold vs. Poamistruction of Section 3.3 as
a concrete instance of an LDRC. Instead of prademe will have two provers: proved.A and
proverA.B. ProversA.A and A. B will convince the verifier ink + 1 values that are all evaluations
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of one low degree polynomial for the manifold on the releyamints. The verifier will send prover
A.A a sub-manifold within the manifold fad that goes through thee + 1 points. The verifier will
send proveA. B a point in the sub-manifold. The proveAsA and A. B are expected to reply with
consistent evaluations.

The composition we described increases the number of miopesries from twoA and B, to
three:A.A, A.B andB. When composition is applied several times, the number efiga increases
even further. Indeed, this is what happened in previous svttét applied composition for similar
needs [3, 30, 13, 26].

A-priori, it seems that we could insist on using only two peos/by, in addition ta3’s original
role, letting each of proverd, B simulate one of proverd. A, A.B. However, this fails, no matter
how we attempt to splid. A and A.B betweenA and B. The reason is that the questions in the
inner protocol reveal information on the questions of theepprotocol, in a way that some prover
will always gain information about the outer question of dtleer prover. To see this, let us check
the two splitting alternatives:

1. Firstalternative: A.A — A | A.B — B. ProverA gets the sub-manifold. Provér gets the
outer point (on the manifold) and the inner point (on the swdmifold). In this case, provet
gains information about the point & from knowing the sub-manifold that contains it.

2. Second alternative: A.A — B | A.B — A. Prover A gets the inner point (on the sub-
manifold). ProverB gets the outer point (on the manifold) and the sub-manifdidthis
case, proveB gains information about the manifold from knowing the suénifold.

The question that arises is whether one can devise a congoggsibtocol for two provers in which
the questions of the inner protocol do not give (enough)rmédion on the questions of the outer
protocol.

3.5 The Key Idea: Confusing the Provers

The problem with implementing composition is that we carafird thatany of the provers will
learn the sub-manifold. We saw that once any of the provarsisethe sub-manifold, that prover
gets information that may allow the provers to fool the owtifier.

What we do instead is I&tothprovers learn the sub-manifold. The key idea is that pre\vetill
also get many other sub-manifolds to confuse it. Proveiill not know which of the sub-manifolds
that it got is the one that prove® got. ProverB will not know which of the possible questions
to prover A prover A actually got (where each question to proveis a collection of manifolds
containing the manifold that provét got).

In the next few sections we will show that the two prover game indeed be transformed into
a form in which the question to prover consists of a few manifolds, and the question to praver
consists of a single manifold. Since we wish the alphabeetashsmall as possible, the question to
prover A should consist of as few manifolds as possible.
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3.6 Reducing Right Degree

For the presentation, we will go back to viewing the Manifeid Point LDRC of Section 3.3 as a
bipartite graph. Our first step is to decrease the right adegf¢he graph to some smdll.

For right degree reduction, we use a regular expander gfaph (Vy, Ey) with number of
vertices that equals the original right degree of the grdphreeD and second eigenvalue” for a
constant, < a < 1.

The construction is as follows (see Figure 3):

e The A vertices are as before. The labels to theertices are as before.

e For every vertex € B and every expander vertexc Vy, create a copyb, v). The labels to
the copies are as the labels to the origiRalertices.

e For every edgéa,b) € E in the original graph, whergu, b) is thew'th edge coming intd,
and every expander edge, v) € Ey, create an edggs, (b, v)). The projectionr, the tuple
7 and the evaluation functiomthat this edge carries are the same as the projection, togle a
evaluation of(a, b).

- KiK'

=\a.i-7

Figure 3: Right degree reduction.

It turns out that choosin@ = [1], wheres is the error we aim for, suffices for soundness. Note
that the left degree, as well as (essentially) the size, atéptied by a factor ofD.

The construction uses in an essential way the fact that wedmdrease the right degree, and not
the left degree. It works because each left vertex detesrariabeling for all the copies of each of
its neighbors. More than that, it is unreasonable to expgctanstruction of this kind to reduce left
degree: Revealing to prover a short list of points in it, among them the point that profegot,
allows proverA to choose a polynomial that agrees with profeon all these points. This can be
done even when provés’s answers do not correspond to any low degree polynomial.
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3.7 The Sunflowers Construction

To transform our LDRC into the form described in Section 8:8,switch the roles of provet and
prover B. When the right degree is small, we can do that while presgrthe projection property:
we can ask proveB to answer about a vertex € A, and ask prover to answer about all the
neighbors of a vertek € B.

Here is where we pay in the alphabet size. Recall that in Bmedr4, and hence in our PCP
construction (Theorem 10), the block length depends paiyally on % rather than orlog % The
reason is that the block length depends linearly on the degagher than on the logarithm of the
degree: we keep separate information about each neighbor.

The construction is as follows:

e The newA vertices are the ol@® vertices, and the new® vertices are the oldl vertices. The
edges are flipped, but otherwise remain the same.

e The alphabet of the new vertices is the alphabet of the ollvertices. A label of a newl
vertex consists oD labels for the newB vertices, one per neighbor.

e For every old vertexy € B, for every: € [D], assuming that = (a,b) is thei'th edge
touchingp, for a labely = (p;, ..., pp) to b in the new graphz.(p) = p;.

e Each edge: is associated with the same tupleas before. The evaluation function that
carries follows from the previous evaluation function: &se that the input to the new eval-
uation function iy = (p1,...,pp). Then, the evaluation is obtained using the old evaluation
pe ONp; wheree is thei'th edge according to the ordering we defined.

e The newA vertices have a satisfiability constraint: for every bhertex, which corresponds
to a point inF™, all the D labels must agree on the point.

It is instructive to think of a newA vertexa as a sunflower, composed of its neighboriig
vertices as petals (as in Figure 4). The neighborihgertices intersect on a point given by A
satisfying label ta: is composed of labels to the neighboriBgvertices that are consistent on the
intersection.

3.8 Right Degree Reduction on the Sunflowers Construction

The Sunflowers construction gives a graph with small lefrde@nd large right degree, rather than
a graph with small right degree and large left degree. We patyaight degree reduction on this
graph, and get a graph with small left and right degrees.

In the two prover game terminology, provérgets D different manifolds that have a common
“center” in their intersection. Provds gets one of these manifolds. Provédoes not know which
manifold proverB got. ProverB does not know which sunflower containing its manifold, among
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Figure 4: The Sunflowers construction.

D possible sunflowers, provet actually got. Yet, although each of the provers only has dlsma
amount of uncertainty regarding the question that the giherer was asked, both provers should
prefer to adhere to the prescribed strategy.

In addition, the satisfiability constraints on provés answer can be checked by querying its
manifolds on a few points. To see that, note that the satikfiabonstraints in the Sunflowers
construction in fact check: (i) agreement on “centers’ iflientity between copies of the same
manifold. The (ii) checks come from the right degree reductand can be done by comparison on
a random point.

The new structure of the Sunflowers construction is whatnalcomposition in the next section.

3.9 Composition

In this section we start with the Sunflowers LDRC we cons&ddh Section 3.8, and show how to
perform composition of this LDRC with inner LDRCs of the satyyge. The purpose of composition

is to obtain an LDRC with lower alphabet. The block lengthtef tomposed LDRC is proportional

to the left degree of the outer construction and the blocgtlenf the inner construction (and inde-
pendent of the block length of the outer construction). Towapgosition preserves the structure of
Section 3.8.

ProverA in the outer LDRC needs to provide for each manifold that igt@lpn its sunflower,
a polynomial for the entire manifold. However, in realitye\are only interested in the value of
this polynomial onk + 1 pointg: the k-tuple we wish to decode and the point in the center of the
sunflower (on which we compare the answers from all petals)e Mhat, this time, proveB already
knows the manifold that provet got, because prove? also got the exact same manifold.

The idea is to use an inner Sunflowers LDRC to decodé: thel positions in the Reed-Muller
codeword corresponding to a polynomial on the manifoldteag of prover3, we will have two
provers: proverB.A and proverB.B. ProversB.A and B.B can convince the verifier i + 1

2To simplify the presentation, we ignore the random pointieekfor the (i) checks. In Section 3.12 we remark how
this matter is solved.
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values that are all evaluations of one low degree polynofoidhe manifold on the relevant points.
We insist on using only two provers by letting provésimulate provei3. A and proverB simulate
proversB.B. We have to make sure that the questions in the inner praoeeéal no information
on the questions of the outer protocol.

ProverA does not get information, because proMesimulates proveB. A for every petal in its
sunflower. Hence, provet does not know which petal is the one that profgewas asked about.
(The picture is completely symmetric from prowé’s point of view).

However, proveB does gain information about the outer question of proyidrecause the+ 1
points that the inner LDRC decodes, reveal the outer ceamerhence give information about the
outer question thatl got. For that reason we change the protocol a little bit. beoto confuse
prover B, each inner LDRC on an outer ed@e b) decodes not only the + 1 points that need to
be decoded but also thke+ 1 points that every other neighbor heeds to decode. Since the right
degree of the outer LDRC is small, this is possible. Now tlotupe is completely symmetric from
the point of view of prover3 and hence proveB gets no information about the outer question of
proverA.

In the composed two prover game, the verification is as falow

1. Outer sunflowerPick at random a sunflower containiigmanifolds, as well as one of these
manifolds.

2. Inner sunflower: For every manifold, pick at random a sub-sunflower contaginih sub-
manifolds. For the manifold that was picked, pick a sub-riwddhiin it.

3. Ask proverA aboutall the D sub-sunflowers (one for each manifold). Ask proyeabout
the sub-manifold. Check the consistency between their arssw

Why does this protocol work? Prover does not know which of thé&? sub-manifolds is the one
that proverB was asked about. Provér does not know which of the sunflowers (that contain the
sub-manifold that proveB got) is the one that proved was asked about. Hence, both provers
would better off adhere to their prescribed strategy.

The composed graph is as shown in Figure 5. There id &artex in the composed graph for
every pair(a, a;,) of an outerA vertexa and an inne vertexa;,. It should be thought of as taking
the sunflower,, for each of the petals of the sunflower There is aB vertex in the composed
graph for every paitb, b;,,) of an outerB vertexb and an innei3 vertexb;,,. It should be thought of
as taking the sub-manifold, inside the manifold. Every outer edgéu, b) is replaced by an inner
graph for decoding all thg: + 1)-tuples for neighbors df.

Composition essentially multiplies the size of the outerstouction and the inner construction.
The inner construction is typically smaller, and hence tbmithant factor is the size of the outer
construction. Composition multiplies the outer and inmdtr degrees, as well as the outer and inner
right degrees. Nonetheless, the degrees remain polyndmﬁal By a single composition, we can
get the block length down fromwoly (%, d) - log |F| to poly(k,log d, 1) - log |F|. This block length is
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Figure 5: Composed graph.

small, but not as small as we want (recall that we wish to elaté the dependence drand |F|).
We solve this in the next section.

3.10 Locally Decode/Reject Code for Hadamard and The Concahation of
Reed-Muller and Hadamard

We solve the still-too-large-alphabet problem the sameasgagil PCP constructions since [1]: com-
pose our construction with a construction for the Hadamantkec This results in arbitrarily small
alphabet at the cost of a larger size. First, let us deschibédadamard construction. In the next
section we describe the composition with it.

We let the Hadamard code be over a small finite fleld he field. may beG F'(2), but for low
error we use larger field&.| = (1)°. We use the lettel to distinguish the field from the field
we used for the Reed-Muller code. It will be convenient tcethkio be a subfield oF. Letw be
such that we can identify thB alphabet of the construction of Section 3.9 witt. Thisw will be
the dimension of the Hadamard code we take. The length of #umiard code if."|, which is
exponential inw, but sincew is relatively small, this is tolerable.

It will be convenient to identify positions in the Hadamable with points inL*. Thus, a list
of k-tuples we wish to decode can be thought of as a ligttiples of points:

(Z1s ey T1k)s - ATN, - Tvg) € (V)P

We can construct an LDRC for the Hadamard code similarly éony we constructed LDRCs for
the Reed-Muller code in Section 3.3. The difference fromReed-Muller LDRC is that we consider
(k + 2)-dimensional linear subspacesliff instead of degreék + 1) manifolds. In addition, the
correctness of the construction now follows from lineat#égting theorems (e.g., of [19]), rather
than from the more difficult low degree testing theorems.
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Importantly, the Hadamard construction also gives an LDRCtlie concatenation of Reed-
Muller and Hadamard: Not only that we can locally decodefefhew symbols of a label (where
the label corresponds to a Reed-Muller codeword), but weatsm locally decode/reject aiy-
linear functionof the w symbols. In particular, we can locally decode/reject anyisgl in the
concatenation of the Reed-Muller codeword with Hadamard.

3.11 Composition of Locally Decode/Reject Code for Reed-Migr with Lo-
cally Decode/Reject Code for Concatenation of Reed-Mullemnd Hadamard

To design an LDRC of reasonable rate for the concatenatidReedd-Muller and Hadamard, we
compose the LDRC for Reed-Muller obtained in Section 3.9he low rate LDRCs for the con-
catenation of Reed-Muller and Hadamard obtained in Se&ib@. The composition is along the
same lines as the composition of LDRCs for Reed-Muller dieedrin Section 3.9.

The major difference is as follows. We cannot ask the inneRCS to decode the evaluation of
a manifold on the center of a sunflower as we could earliers Thbecause the inner LDRCs can
return symbols irl., and not symbols in (the much too largeé) However, the inner LDRCs may
return symbols of the Hadamard encoding of the evaluatianshéw that this is sufficient to ensure
consistency on the centers.

In the composed construction of Section 3.9, the satisfigloibnstraints of thed vertices take
the form of atree of comparisons: each petal in an outer sunflower introducésreer sunflower of
its own. All the sub-manifolds of this inner sunflower intecson the center of the outer sunflower,
as well as on a new center. This can be described by a tree ahwieD? sub-manifolds are leaves
and the inner nodes correspond to centers. Each inner nede ¢tlaildren in the tree: one for each
petal that intersects on the inner node’s center (see Figlurédny two sub-manifolds have to be
consistent on all the centers that are common ancestors.

Figure 6: Comparisons tree.

Since the satisfiability constraints of the constructiorSettion 3.9 are given in the form of
a comparisons tree, the analysis of the composition of tmstoaction of Section 3.9 with the
construction of Section 3.10 boils down to analyzing théfeing two-prover game:

The Tree-Path Game. Underlying a tree-path game there is a fixed tree. Each notieeitree
may be labeled by a value In L is a subfield off. The purpose of the verifier is to check whether
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two provers agree on a labeling of the nodes. ee provergets an index and replies, for each of
the nodes in the tree, with thigh symbol of the Hadamard encoding oveof a label to the node.
Thepath provergets a leaf in the tree and replies, for each of the nodes qpéttefrom the leaf to
the root, with a label iff to the node. The verifier checks the consistency of the assitvgot from
the two provers.

3.12 Some Technical Difficulties and Non-technical Subtlegts [Or: Why Is
The Formal Proof So Long?]

In this section we list some complications that arise in thestruction.

Codes and domains. The algebraic construction in Section 3.3 is such that stelecoding may
contain polynomials of a slightly larger degree than thedRtelller code permits (degreé +1) - d
rather thani). Yet, the set of polynomials of degree at m@st+ 1) - d is also a Reed-Muller code.
To allow the construction to go through, we consider LDRGa tiavetwo codesunderlying them,
instead of one. To facilitate that, we introduce the notiba domain A domain is composed of
two codes of the same length and over the same alphabetntoeled codand thedecoded code
The decoded code contains the encoded code as a subset. R hd3 to encode codewords of
the encoded code. The LDRC is allowed to use in its list dempdbdewords from the decoded
code. When we compose, the outer LDRC has to work just as wiillabels over the decoded
code of the inner LDRC, as it would with labels over the encbdede of the inner LDRC. Hence,
our definition of LDRCs needs to be extended to alphabetstieahemselves domains.

Consistency between copies.The presentation of composition in Section 3.9 ignored fisee
of checking consistency between copies of the same petalle\n different copies we wish to
decode different tuples, their labels should be the samas i$bue arises from the right degree
reduction in Section 3.8. It complicates the constructiod iéss analysis considerably:

1. We change the inner Sunflowers LDRC construction so tleatémters of the sunflowers are
uniformly distributed inF, independently of the tuples being decoded. More on thig is i
Regularity and uniformitypelow.

2. We change the composition so that copies are comparedanrtar centers (which are uni-
formly distributed on the manifolds, independently of thples being decoded).

3. In the analysis of the composition, we show that the corapas on the inner centers suffice
for the consistency check of the outer test.

Regularity and uniformity. The adaptation of the Manifold vs. Point LDRC to almost-#ine
size results in LDRCs that are jualmostright regular, rather then right regular. Crucially, the
right degrees depend on the tuples we wish to decode. As H, neben performing right degree
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reduction as in Section 3.6 and then when obtaining the Sueftoconstruction in Section 3.7,
the distribution of the centers of the sunflowedepends on the tuples we wish to decodéis
dependence is problematic in an inner construction of a csitipn.

Hence, for the inner construction we consider a uniformtrigigular, but polynomial size (rather
than almost-linear size), Manifold vs. Point LDRC constie. The inefficiency is tolerable in the
context of an inner construction. We go through the constracsteps in Sections 3.3, 3.6, 3.7
and 3.8 to prove that uniformity and independence are preder

4 Qrganization of the Construction

We start with some preliminaries about expanders and ctal&ection 6 we define several variants
of locally decode/reject codes that are needed for our nactgin and prove some useful lemmas
about them. In Section 7 we define our building blocks, which lacally decode/reject codes
with special structure for specific codes (e.g., Reed-MuHadamard). These building blocks lend
themselves to various manipulations as described in $e8tidhose manipulations, put in the right
order, allow us to construct the locally decode/reject somle are after in Section 9. The rest of the
paper is devoted to implementing and analyzing the diffemgamipulations.

5 Preliminaries

The set of real numbers&. The set of positive real numbersis = {z € R | 2 > 0}. The set of
natural numbers i8 = {0, 1,2, ...}. The set of positive natural numberNs = {1,2,...}. Fora
natural numbern, we denotén| = {1,...,n}. For a stringe or a vectorz of lengthn and an index
i € [n], we letz; denote the’th coordinate ofr. All the logarithms in this work are bage

5.1 Bipartite Graphs

In this work we refer to bipartite (multi-)graphis = (A, B, E). Thesizeof G is |G| = |A| + |B| +

|E| (where|E| is counted with multiplicities). Théeft degreeof GG is the maximal degree oft
vertices, and theight degreeof G is the maximal degree dB vertices. If all the degrees of thé
vertices are equal to the left degree, we say that the grdpft regular. If all the degrees of thé
vertices are equal to the right degree, we say that the gsapfht regular. If the graph is both left
and right regular with the same degr&ewe say that it is\-regular. We use the notatiak; (v) to
denote the degree of a vertexc AU B. It will be convenient to think of the edges touching a vertex
as being ordered. For a vertexc AU B and an index € [Aq(v)], leteg(v, ) € E denote the'th
edge touching. Fortwo setsX C AandY C B,letE(X,Y) ={(z,y) e F |z € X,y e Y }.

29



5.2 Expanders

For an undirected (multi-)grapd = (V, £') and two sets of verticeX,Y C V, let E(X,Y) =
{(z,y) € E |z € X,y € Y} (we use the convention that an edgey) € E with bothz,y € X, Y
is taken to the multi-set twice). Roughly speaking,expanderis a A-regular undirected (multi-
)graphG = (V, E) in which the number of edges (with multiplicities) betweary dwo sets of
verticesX,Y C V,i.e,, |E(X,Y)|, is approximately the expected number irmadomA-regular
undirected (multi-)graph.

It can be shown that angs-regular undirected (multi-)graph whose adjacency mdtag low
second largest eigenvalue (in absolute valusatisfies this property:
Lemma 5.1 (Expander mixing lemma).LetG = (V, E) be aA-regular undirected (multi-)graph,
whose adjacency matrix has second largest eigenvalue §alate value)\. Then, for any two sets

X, Y CV,
BV X VLA JIX] Y
AVE VI VIS A YV V]

We will use the explicit constructions guaranteed by théofaing lemma (for a proof see Ap-
pendix A):
Lemma 5.2 (Explicit construction of expanders).There is a constantc < 1 and a function
T : N — Nt with T(A) = O(A), such that given two natural numbersand A, one can find
in time polynomial inn and in A an undirected (multi-)grapliz = (V, E') with |V| = n, which
is T'(A)-regular and whose adjacency matrix has second largestngajae (in absolute value)
A< (T(A).

In this work we will refer to the bipartite versions of expandyraphs. Given a (multi-)graph
G = (V, E), we define its bipartite version, or it®uble coverG’ = (V' x {out},V x {in}, E) by
taking for every edge = (z,y) € E the edges(z, out), (y,in)) € E' and((y, out), (z,in)) € E'.
Note that if G is A-regular, then so i€”. Combining Lemma 5.1 and Lemma 5.2 we have the
following:
Lemma 5.3 (Bipartite expanders). There is a constant < 1 and a function’ : N — N* with
T(A) = ©(A), such that given two natural numbetsand A, one can find in time polynomial im
and inA aT'(A)-regular undirected bipartite (multi-)grapty = (V1, Vs, E) with |Vi| = |[Va] = n
as follows. For every two sefs C V; andY C V5,

BX.Y)| x| |Y]
T(A) -l Vil

1 (X1 Y]

ISR A TA R

5.3 Codes

Let X be a finite alphabet and letbe a natural number. THeelative) Hamming distanceetween
two stringsz, y € X" is the fraction of positions on which andy differ, i.e., Pr;cp,) [z; # ). Let
0 < € < 1. A codewith (relative) distancd — ¢ is a setC' C " such that every two elements

30



xz,y € C have (relative) Hamming distance at ledst €. In other words, every two elements
x,y € C agreeon at most fraction of the positions. The numbetis called thdengthof the code.
The elements of ' are called theodewordof the code. For a sét/ of size| M| = |C/|, anencoding
of M via C is a one-to-one functioh- : M — X" that takes messages frai to codewords irC'.
WhenX is a field andM is a linear space ovet, we say that the encodinglisear if it is a linear
transformation from\/ to the linear spacg”.

Given a stringr € X" and a real numbdr < § < 1, thed-list decodingof = with respect to
C'is the set of all codewords € C that agree withe on at least & fraction of the positions, i.e.,
Pricp [c; = ;] > 6. We have the following useful proposition:

Proposition 5.4 (List decoding).Let C' C X" be a code with (relative) distande— e. Assume
d > 2y/e. Then, for every: € X", thed-list decoding ofr with respect toC' contains at mos§
codewords.

Proof. Let z € ¥". Assume towards a contradiction that thést decoding ofr with respect to
C containsl = |2]| + 1 different codewords. Then, when picking a positioe [n] uniformly
at random, the probability that agrees with one of the codewords on itia position is at least
ol — (1) - € > 1. Contradiction! O

5.3.1 Some Specific Codes

Some examples of codes that we will use are:

The Reed-Muller Code. TheReed-Muller CodéRM) is defined by a finite field and two natural
numbersm andd. The code is of lengthh = |F™| over alphabeF. Let us identify the positions
1,...,n with the points inf"™. Then, for everyn-variate polynomial) of degree at most overF
we have a codeword, € F". The symbol in the position correspondingite F™ in ¢ is Q(Z).

This code is of distance — %.

We identify the following encoding with the Reed-Muller eodetV = (m;;d) be the number
of monomials in anm-variate polynomial of degree at mastoverF. Let Exy; : FY — F” be
the transformation taking a vector IV, representing coefficients for ti& monomials, to the
evaluations of the induced polynomial on the point&th Note that this encoding is linear oviér

The Hadamard Code. The Hadamard CodgHad) is defined by a finite fiel# and a natural
numberm. The code is of length, = |F™| over alphabeF. Let us identify the positions, ..., n

with the points inF™. Then, for every linear functiod : F™ — T, i.e., a function of the form
L(zy,...,z,) =Y. a;x; for some coefficients vectar = (a4, ..., a,) € F™, we have a code-
word ¢, € F". The symbol in the position correspondingite F™ in ¢y, is L(Z). This code is of

H 1
distancel — i

We identify the following encoding with the Hadamard codeet £,y : F™ — F” be the
transformation taking a vector i, which is the coefficients vector of a linear function, to the
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evaluations of the linear function on the pointgftfi. Note that this encoding is linear ovér

5.3.2 Transformation on Codes

We can produce new codes from existing ones by using transtoons such as repetition or con-
catenation:

Repetition. Assume that’ C X" is a code. Let be a natural number. Then, theepetitionof C'
is the codeC! C ¥ defined by taking copies of each symbol in a codeword. In other words, for
every codeword = ¢; - - - ¢, € C' we have the codeword

Cl...cl...cn...cnecl
—_— =
l l

If C' has (relative) distance— e, then so doe€§.

Concatenation. Assume that”; C X" is a code and thaf, C T'* is a code that ha&™| = |3
codewords. Assume tha is associated with an encodig, : M — >™ and that”; is associated
with an encodingt, : ¥ — I'*. The concatenation af’, andC,, denotedC; ¢ Cy, C I'*, is

the code obtained when encoding each symbol 6f a&odeword byEg,, i.e., we defineky, :

¥" — I such thatEg, (o) - -0,) = Ec,(01)- - Ec,(0,). The encoding associated with the
concatenatiord; o Cy is £, o B¢, : M — I'*n (), is calledthe outer codeand(, is calledthe
inner code If C; has (relative) distance — ¢; and(C, has (relative) distance — ¢,, thenC; o Cs

has (relative) distance— (¢; + €5 — €1¢2). Code concatenation is used to reduce the alphabet of a
code( (from X to the typically much smallelr) at the cost of slightly enlarging the length (from

n ton - k) and damaging the distance.

If E¢, is linear andE, is linear, then we can view! as a linear space ovér(by defining for
A € T"andv € M, the scalar multiplication to b&- v = (A - 1) - v wherel € X (recall that> is
a field). Note that\ - 1 € X is well-defined, and so i§\ - 1) - v € M). Using this perspective, the
encodingEy, o E¢, corresponding to the concatenatiGno C, becomes linear over.

6 Graph Theoretic Formulation

6.1 Bipartite Constraint Graphs

We formalize two query constraint graphs with projectioogerty as bipartite graplis = (A, B, E),
where vertices i determine values for vertices g. Vertices inA are assigned values from an al-
phabet: 4, while vertices inB are assigned values from an alphabgt Every edge: = (a,b) € E

is associated with an elemepifrom some sef), where¢ is called thdabel of the edge. Every as-
signmentr, € ¥4 for a determines a single assignmentdaiven byproj(a, 0., &) € ¥p. The test
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associated with the edgeconsists of comparing whether the assignment fequalsproj(a, 0,4, §),
as well as of a satisfiability checlt(a, o,,) that checks the validity of,. In particular,sat(a, o,,)
may check some consistency condition betweerj(a, o,, £) for different¢’s.

Definition 6.1 (Bipartite constraint graph). G = (G, 2, ¥4, X, sat, label, proj) is called abi-
partite constraint graplif

1. G = (A, B, F) is a bipartite (multi-)graph(2 is a finite set and 4, X5 are finite sets.

2. sat : A x 34 — {true, false} is a function §at determines for each vertexe A whether it
is satisfied under the given assignment).

3. label : E — Qis afunction {abel assigns every edge some elemerit)n

4. proj : Ax Y4 xQ — Ypgisafunction (for every vertex € A and assignmentfor it, € >4,
proj gives, for every € (), the “projection” of o, to &).

We say that an edge= (a,b) € E is satisfiedin G under assignments, € ¥4 ando, € Y, if
sat(a,o,) = true andproj(a, o,, label(e)) = oy.

We say that an edge = (a,b) € F is satisfiedin G under assignment§’y : A — ¥, and
Cp : B — X, if e is satisfied inG under the assignments, (a) andCz(b).

When there are several constraint graphs involved we somastuse subscripts to distinguish
between functions corresponding to different graphs., Bug.write satg to refer tosat of G.

6.2 Bipartite Locally Decode/Reject Codes

We formulate locally decode/reject codes that make twoigs&vith a projection property as bipar-
tite graphs. But, before we do that, let us defiloenains Domains capture the sets of messages we
encode and decode. It is not a standard notion, but it willdrg gonvenient for us in the sequel.

6.2.1 Domains

The messages we encode will sometimes be strings iior a finite alphabekl and a lengt, and
sometimes be codewords themselves, e.g., Reed-Mullewoods or Hadamard codewords. We let
D.... denote the set of messages we encode.

For the decoding we allow to use messages from a set that sbhotarger than the set of
messages we encode. For example, suppose we encode Rdeddddewords corresponding to
polynomials of degree at magtor some natural number Then, we may consider as an appropriate
decoding a codeword that corresponds to a polynomial obatbjilarger degre€’. In general, we
let D, be the set of possible decodings, whéxg. © D.,.. EqualityD,,,. = D4, may hold, but
is not required.

For notational convenience we refer to messages as fusctiather than strings. Strings it
can be thought of as functiofis] — X, while the codes we use naturally give rise to functions. For
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instance, the Reed-Muller code gives rise to low degreenuoiyals, and the Hadamard code gives
rise to linear functions.

Formally, adomainis defined as follows:
Definition 6.2 (Domain). AdomainD is a tuple(D, R, D.,., Dq..), WhereD and R are finite sets,
andD.,.. € D,.. are sets of function® — R. D.,. is calledthe encoded domajrand D,,. is

calledthe decoded domain
Some particular domains of interest in this work are:

3. With any finite set: we associate a domaild = (D, R, D.,,., D) that corresponds to en-
coding and decoding symbols ia The domain consists dP = {1}, R = ¥ andD,,,. = Dge. =

{141} =%}

¥®.  With any setX” for a finite set¥ and a natural numbet, we associate a domai? =
(D, R, Dene, Dyee) that corresponds to encoding and decoding of string®'inThe domain consists
of D = [n], R =Y andD.,. = Dg. = {f | f: [n] — X} (the previous item is a special case for
n = 1).

Reed-Muller Code. A Reed-MullerdomairD = (D, R, D.,,., D) corresponds to encoding and
decoding of Reed-Muller codewords, where the code we uséhéodecoding contains the code
used for the encoding. The domain is defined by a finite fiela natural number. and two natural
numbers) < d < d' < |F|. We takeD = F™ andR = F. D,,. is the set of allm-variate
polynomials of degree at mogwoverF, while D,... is the set of alin-variate polynomials of degree
at mostd’ overF. The numbern is called thedimension The degred is called theencoding degree
and the degred is called thaedecoding degree

Hadamard Code. A Hadamard domaiD = (D, R, D.,., D4..) cOrresponds to encoding and
decoding of Hadamard codewords. The domain is defined byta field[F and a natural number
m. We takeD = F™ andRR = F. The encoded and decoded domains are the $ame= D,.. and
equal to the set of all linear functiords: F — F. The numbern is called thedimension

Concatenation of Reed-Muller and Hadamard Codes. A RMoHad domainD = (D, R, Dene, Daec)
corresponds to encoding and decoding codewords in a codshwdhia concatenation of a Reed-
Muller code and a Hadamard code. The domain is defined by a field IF, a subfieldL of I, a
natural numbern and two natural numbefs < d < d’ < |F|. Denote the extension degreelbf
overL by - = [F : L]. Let¢ be a linear bijection fronff' (viewed as a linear space over the field
L) to the linear space of linear functiohS — L. (note that there ard.”| = |F| linear functions
L™ — L). The domain will correspond to encoding each symbol in adRdaller codeword bys.
We takeD = F™ x L™ andR = L.
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e The encoded domaiR.,,. is the set of all functiong : F" x L™ — L of the formf (7, Z5) =
?(Q(71))(Z2) for some polynomiad) : F — F of degree at most.

e The decoded domaiR,,. is the set of all functiong : F"™ x L™ — L of the form f (7, Z3) =
»(Q(7))(Z2) for some polynomial) : F — T of degree at most'.

6.2.2 Bipartite Evaluation Graphs

Fix a domainD = (D, R, D.,., D) that defines the messages we encode and decodé. dret
N be natural numbers. Fix a collection/ftuples of positions in a message we wish to decode:

<IL’171, .. .,$17k>, RN <IL’N71, . 71'N,k> c Dk

We formulate a bipartite evaluation graph as a bipartitestaint graphG = (A, B, E), in
which tuples(z; 1, ..., z; ) are associated with vertices that are “responsible” fotuatang f on
them. Either thed vertices or theB vertices get associated with tuples. The set of verticasatiea
associated with tuples is denotede {A, B}, and we refer to them dbe evaluating verticesThe
tuple that is associated with a vertexc V' is denotedup(v). For an evaluating vertex € V' and
an assignment, € Xy to v, an evaluation on the tuplep(v), namely,k values inR, is given by
a functioneval(v, o,). All tuples should be associated with the same number ofiatial vertices,
and all evaluating vertices must have the same degree indipd g

Formally we define bipartite evaluation graphs as follows:
Definition 6.3 (Bipartite evaluation graph). LetD = (D, R, D.,.., Dq4..) be a domain. Let and
N be natural numbers. Assume a collectiorkétiples:

<l’171, .. .,1'17k>, RN <1'N71, . 71'N,k:> c Dk

G=(G=(AB,E),V,Q Y4, Xp,sat, label, proj, tup, eval) is called abipartite evaluation graph
for the k-tuples, if

1. ¢ = (G,Q, X4, Xp, sat, label, proj) is a bipartite constraint graph.

2. V € {A, B} is a set ofevaluating verticesAll the V' vertices have the same degree in the
graphdG.

3. tup : V — DF is a function mapping each evaluating vertex té-guple (z; 1, ..., z; ) for
i € [N]. Eachi € [N] must have the same (positive) number of vertices V' mapped to
<l’i71, Ce 7l'i,k>-

4. eval : V x Xy — R*is a function, mapping each evaluating verteg V' with an assignment
for it to assignments for the elementsap(v).

We say that a vertex € V with tup(v) = (x;1,...,%ik) € DF readsf € Dg.. in G under an
assignment, € Xy, if eval(v,0,) = (f(2i1), ..., f(zix)). We say that an edge= (a,b) € E
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readsf € D, in G under assignments, € ¥4 ando, € Yp, if the evaluating vertex it touches
v € {a,b} NV readsf in G under the assignment,. We say that an edge= (a,b) € E reads
f € Dy In G under assignments, : A — X, andCg : B — Xp, if e readsf in G under the
assignments’y (a) andCp(b).

We say that an edgec E is satisfiedn G under assignments, : A — ¥, andCp : B — X,
if e is satisfied inG’ underC'4, andC'z.

If V= A, we say thayj is aleft evaluator Otherwise, we say that it isrégght evaluator

6.2.3 Bipartite Locally Decode/Reject Codes fok-Tuples

Fix a bipartite evaluation graph as in Definition 6.3. An etiog of a message is given by assign-
ments to the vertice§'y : A — ¥, andCp : B — Y. Given assignment§’y andCp, local
decode/reject is done as follows:

1. Pick an edge = (a, b) € E uniformly at random. Let € {a,b} NV be the evaluating vertex
thate touches.

2. Check the satisfiability constraint on the edge: i not satisfied under'y, andC'z, reject

3. Otherwise, return “the evaluation ofp(v) is eval(v, Cy (v))”.

Note thattup(v) is (x;1, . . ., z;x) for a uniformly distributed € [N].

For every messagg € D.,.. one should be able to efficiently compute assignments tel thed
B vertices such that the local decode/reject procedure mejamts and always evaluatgsThat is,
all edges are satisfied and read

Given an assignment to the vertices, there should be a short list decodfing . ., f; € D,
such that, for every assignment to tHevertices, with high probability, the local decode/reject
procedure either rejects or evaluates ong0f. ., f;. Thatis, for almost all edges, either the edge
is not satisfied, or the edge reads ongof . ., f;.

Note that we require the list decoding, ..., fi € Dg. to depend only on the assignment
to the B vertices, and not on the assignment to theertices. That is, given the assignment to
the B vertices, there is a single list decodirfg . . ., f; that worksfor all assignments to th&
vertices. Conceptually, one can give this requirementdaievfing meaning: The assignment to the
B vertices alone is already an encoding of the message (ardtifficient for decoding), while the
assignment to thd vertices provides additional information that is neededlie purpose olocal
decode/reject.

Two parameters determine the quality of list decoding indbees. One i9,,;, which lower
bounds the error of the decoding, namely, the probabilit the decoding procedure does not
reject, yet its evaluation does not correspond to the el&radrihe list decoding. The other s,
which upper bounds the size of the list decoding. This size (decreasing) function of the error
0 > 0,,in We are willing to settle for.
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The formal definition is as follows:
Definition 6.4 (Bipartite locally decode/reject code).LetD = (D, R, D¢, D4ec) be a domain.
Letk and N be natural numbers. Assume a collectiorkédfiples:

<J}1’1, .. .,J}Lk>, ceey <JIN’1, . ,.TNJf) - Dk

Let0 < Omin < 1. Letl,ee : (0,1) — RT be a decreasing function. A bipartite evaluation
graphG = (G = (A, B, E),V,Q, %4, ¥Xp, sat, label, proj, tup, eval) for the k-tuples is called a
(Omin, lmaz:)-bipartite locally decode/reject codier the k-tuples, if the following holds:

1. Encoding: There is an efficient algorithm that given a messdge D.,.., computes assign-
mentsCy : A — ¥, andCp : B — Y, such that every edge= (a, b) € E is satisfied and
readsf in G underCly, Cp.

2. List Decoding: For every assignmerit : B — X, for every reab) such that,,,;,, < § < 1,
there exist < 1,,,.(5) elementsfy, ..., f; € Dge., such that for every assignmeff; : A —
¥4 the following holds: when picking uniformly at random an edg= (a,b) € E, the
probability that inG underCy,, C'z, the edgee is satisfied, although does not read any of
fi,-- -, fi,isatmosiO(9).

6.2.4 Composable Bipartite Locally Decode/Reject Codes

We strengthen the definition of bipartite locally decodefrecodes (Definition 6.4) with the in-
tent of allowing composition of codes. In the strengthenefinition the alphabets are domains
themselves,

ZA - <DA> RA, ZA,enca ZA,dec> ZB - <DBa RB; ZB,enca ZB,dec>

Encoding of a message comprises assignments over the eldoadains of the alphabets, ... and
Yp.ene- ON the other hand, the list decoding property should hotth@iven assignments over the
decoded domains of the alphabEts,.. andX 3 4. The previous definition can be seen as a special
case in which the encoded and decoded domains of the aljghaieetqual, namel 4 ¢c = X4 dec
andzB,enc = 2B,dec-

Adding elements to the decoded domains of the alphabetsstlageask of the decoder harder,
since it needs to succeed on more assignments. In contldgtigeelements to the decoded domain
D... makes the task of the decoder easier, since it can use tleserdk in the decoding as well.
Usually there will be a correspondence between the decodedias of the alphabets and the de-
coded domairD,,.., SO whenever the decoder needs to succeed in decoding nsagerasnts, it has
more elements it can use in the decoding.

Definition 6.5 (Composable bipartite locally decode/rejeiccode). LetD = (D, R, Depe, Daec) b€
a domain. Let and N be natural numbers. Assume a collectiorketiples:

<l’171, .. .,$17k>, RN <$N71, .. 71'N,k> c Dk

LetO < dpin < 1. Letl,g, : (0,1) — RT be a decreasing function.
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G=(G=(AB,E),V,Q,%Y4,Xp, sat, label, proj, tup, eval) is called &(d,,, lma )-COMposable
bipartite locally decode/reject codier the k-tuples, if:

o X4 = (D, Ra, YA cnes Ladec) ANAE 5 = (Dp, Rp, X5 enc, 2B.dec) are domains.

o §'=(G=(AB,E),V,Q Y4 dec, LB.dec, Sat, label, proj, tup, eval) is a bipartite evaluation
graph for thek-tuples. We say that an edgec F is satisfied inG under assignments', :
A — Y4 andCp 1 B — Yp g4, if e is satisfied inG’ under the assignments, and C'g.
We say that an edge € E readsf € Dy in G under assignmentS, : A — X4 4. and
Cp: B — ¥p4e, if ereadsf € Dy in G' under the assignments, and C'x.

e The following holds:

1. Encoding: There is an efficient algorithm that given a messdge D.,., computes
assignments’y : A — ¥4 .. aNdCp : B — Y ., SUCh that every edge= (a,b) €
E is satisfied and readg in G underCy, Cp.

2. List Decoding: For every assignment’s : B — Xp 4., for every realé such that
Omin < 0 < 1, there exist < [,,,.(0) elementsfi, ..., f; € Dg., such that for any
assignmentCy : A — ¥4 4., the following holds: when picking uniformly at random
an edgee = (a,b) € E, the probability that, inG underCy, C, the edge: is satisfied,
althoughe does not read any of;, . . ., f;, is at mosiO(9).

We sometimes omit the specification®f;,, andl,,...., when we do not wish to relate to them.
Properties. We consider the following properties Gf
Size. Thesizeof G is the size of5.

Alphabet size and block length. Thealphabet sizef the A vertices igX 4 ...|- Thealphabet size

of the B vertices i ¥z ...|- Theblock lengthof the A vertices islog |~ 4 .| Theblock lengthof
the B vertices islog |X 5 (nc|. Thealphabet sizef G is the maximum between the alphabet size of
the A vertices and the alphabet size of tRevertices (which is typically the alphabet size of the
vertices). Theblock lengthof G is the maximum between the block length of theertices and the
block length of theB vertices (which is typically the block length of thevertices).

Graph degrees. Theleft degreeof G is the left degree ofs. Theright degreeof G is the right
degree of5. G isleft regularif G is. G isright regularif G is.
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6.2.5 Construction Algorithms for Composable Bipartite Locally Decode/Reject Codes

LetD = (D, R, Deye, Daec) be adomain. Let andN be natural numbers. fD, k, N')-construction
algorithmfor composable bipartite locally decode/reject codes isoagrlure that given as input a
collection of sizeN of k-tuples of points

<J}1’1, .. .,J}Lk>, ceey <JIN’1, . ,.TNJf) - Dk

outputs a composable bipartite locally decode/reject dodéhose tuples. The construction algo-
rithm is said to beefficient if its running time is polynomial inD|, | R|, k and N .

We define severalniformity properties that construction algorithms may or may not h&ye
uniformitywe refer to properties that are common to all outputs of atcoctson algorithm, inde-
pendently of the:-tuples given as input to the algorithm.

Uniform in structure.  Fix finite setsA, B andV € {A, B}. Fix a finite sef. Fix domains 4
andXz. A (D, k, N)-construction algorithm is said to lmmiform in structurel A, B, V,Q, ¥4, ¥p),

if on all inputs its output has the same vertex detthe same vertex sét, the same evaluating
verticesV/, the same label s€1 and the same alphabet domalng andX 3.

When the identity of4, B, V, €, 34 andX 3 is inessential, we simply say that the algorithm is
uniform in structurewithout specifying them.

Uniform in tuple association. Fix finite setsA, B andV € {A, B}. Fix a finite set2. Fix
domainsX 4, andXp. Lettupi : V' — [N] be a function (called aniform tuple associatQr The
functiontupi assigns every evaluating vertex an index of an input tuple.

A (D, k, N)-construction algorithm is said to heniform in the tuple associatiotupi, if it is
uniform in structurd A, B, V,Q, ¥4, ¥ 3) and on all input tuples, thieip function of its output is as
follows: for every vertexy € V, the tupletup(v) is thed’th input tuple for indexi = tupi(v).

When the identity of the uniform tuple associatapi is inessential, we simply say that the
algorithm isuniform in the tuple associatiomwithout specifyingupi.

Uniform in encoding and list decoding. Fix finite setsA, B andV € {A, B}. Fix a finite set.
Fix domainst 4 andX 3. Assume the following:

¢ &: an efficient algorithm (called aniform encodérthat given a messagéc D.,,. computes
an assignmer’s : B — Xp ene.

e L: an algorithm (called aniform list decoderthat given an assignments : B — Xp 4.
and a real parametércomputes a sequence of messafjes. ., f; € Dgec.

Notably, both€ and L are independent of the tuples on which we evaluate.

A (D, k, N)-construction algorithm is said to lbmiform in the encoding and in the list decod-
ing L, if:
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1. Itis uniformin structuré A, B, V,Q, 34, 3p).

2. There is an efficient algorithé&i that given a messagéc D.,,. and a collection ok-tuples of
poiNtS(1 1, ..., T1g)s - s {TN1, - - -, k) € DF, computes an assignmeitt : A — X4 e

3. Given as input a collection @f-tuples of points(x; 1,...,214), .-, {TN1, ..., Tng) € DF,
the outpuig of the construction algorithm for those tuples i8a,.,, l;..::)-composable bipar-
tite locally decode/reject code that satisfies the follap@émcoding and list decoding proper-
ties:

Uniform Encoding: Let f € D.,.. Invoke& on fand(xy1,...,z14), ..., (TN1,-- - TNk)
to compute an assignmefity : A — X, ... Invoke& on f to compute an assignment
Cp : B — Y (independent of the input tuples). Then, every edge(a,b) € E is
satisfied and readsunderC, andC'’;.

Uniform List Decoding: LetCp : B — Xp 4. and letd be a real parameter such that
Omin < 6 < 1. Invoke £ on Cz andé to compute < [,,..(d) messages, ..., f; €
Dye. (independent of the input tuples). Then, for every assignirog : A — X4 4.
the following holds: When picking uniformly at random an edg= (a,b) € FE, the
probability that, inG underC'4, Cg, the edge: is satisfied, although does not read any
of fi,..., fi,isatmosO(J).

When the identities of the uniform encodg&rand the uniform list decodef are inessential, we
simply say that the algorithm isniform in encoding and list decodingithout specifyingg andL.

6.2.6 Point Variant of Composable Bipartite Locally Decodé&Reject Codes

We define a variant of composable bipartite locally decagedt codes (see Definition 6.5). In this
variant, not only thé/ vertices are meant to evaluate a functionketuples of points inD, but also
the vertices on the other side (which will be denot&de { A, B}) are meant to evaluate the same
function on points inD. Each vertex» € W has a poinpnt(v) € D associated with it. For an
assignment, to v, the evaluation of: on the point is given bywvalp(v,o,) € R. All the points in

D have the same number &f vertices associated with them. We require nothing aboujadiiné
distribution of the tuples and the points.

Each edge touches oné vertex and ondl vertex. We strengthen the definition of reading,
so for an edge to read a functighe D, theV vertex must evaluaté¢ on its tuple and théV
vertex must evaluatg on its point. We require all the vertices Wi to be of the same degree, so a
uniformly distributed edge touches a vertex associated avitniformly distributed poing € D.

Analogous to a bipartite evaluation graph we define:
Definition 6.6 (Bipartite tuple-point evaluation graph). LetD = (D, R, D.y., Dge.) be a domain.
Letk and N be natural numbers. Assume a collectiorkefiples:

<J}1’1, .. .,J}l’k>, ceey <JIN’1, s 7$N,k> - Dk
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G=(G=(AB,E),V,Q Y4, Xp,sat, label, proj, tup, eval, pnt, evalp) is called abipartite tuple-
point evaluation grapfor the k-tuples, if

1. ¢ = (G,V,Q, %4, ¥p, sat, label, proj, tup, eval) is a bipartite evaluation graph for thg-
tuples.

2. Denote the vertices on the other sidéoby IV = (AU B)\ V € {A, B}. AlltheWW vertices
must have the same degregin

3. pnt : W — D is a function mapping each vertex Wi to a point inD. Each pointp € D
must have the same (positive) number of verticesi/” mapped to it.

4. evalp : W x Xy — R s a function, mapping each vertexc W with an assignment for it to
an assignment fapnt (v).

We say that a vertex € W with pnt(v) = p € D readsf € Dg. in G under an assignment
o, € Dy, if evalp(v,0,) = f(p). We say that an edge= (a,b) € F readsf € Dy, in G under
assignments, € X, ando, € Xp, if e reads f in G’ under the assignments, and o, (as in
Definition 6.3) andv € {a,b} N W readsf in G under the assignmemnt,. We say that an edge
e = (a,b) € Ereadsf € Dy in G under assignments, : A — ¥4 andCp : B — X, if e reads
f in G under the assignmen€s$,(a) andCg(b).

We say that an edgec E is satisfiedn G under assignments, : A — ¥, andCp : B — X,
if e is satisfied inG’ underC'y andC'z.

The point variant of composable bipartite locally decogjett codes is defined similarly to
Definition 6.5, with the bipartite tuple-point evaluatioragh underlying it.
Definition 6.7 (Composable bipartite locally decode/rejeiccode (point variant)). Let
D = (D, R, Depe, Dgee) be a domain. Let: and N be natural numbers. Assume a collection of
k-tuples:
<l’171, e ,$17k>, RN <$N71, . 71'N,k> c DF
LetO < d,in < 1. Letl,g, : (0,1) — RT be a decreasing function.

G=(G=(AB,E),V,Q,%Y4,Xg, sat, label, proj, tup, eval, pnt, evalp) is called a(d,,in, lmaz )-
composable bipartite locally decode/reject code (poinawvd) for the k-tuples, if we have that:

o Y4 = (D4, Ra, YA enc, LAdec) ANAX 5 = (Dp, Rp, X5 enc, LB,dec) are domains.

o §' = (G,V,Q, 34 dec;y LB.dec; Sat, label, proj, tup, eval, pnt, evalp) is a bipartite tuple-point
evaluation graph for thé-tuples. We say that an edgec E is satisfied inG under assign-
mentsCy : A — ¥4 4. @aNdCp : B — Yp 4, If e is satisfied inG’ under the assignments,
andCp. We say that an edgec E readsf € Dy, in G under assignmentS, : A — X4 4.
andCg : B — Y 4., if ereadsf € Dy, in G" under the assignments, andC’.

e The following holds:
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1. Encoding: There is an efficient algorithm that given a messdge D.,., computes
assignment§’y : A — X4 .. andCp : B — Yg ., SUch that every edge= (a,b) €
E is satisfied and readg in G underCy, Cp.

2. List Decoding: For every assignment’s : B — Yp 4., for every reald such that
Omin < 0 < 1, there exist < [,,,,(0) elementsfi, ..., fi € Dge., such that for every
assignmentCy : A — ¥4 4. the following holds: when picking uniformly at random
an edgee = (a,b) € E, the probability that, inG underCy, C, the edge: is satisfied,
althoughe does not read any of;, . . ., f;, is at mosiO ().

Note thatG~ = (G, V,Q, ¥4, 3, sat, label, proj, tup, eval) is a composable bipartite locally de-
code/reject codeWe refer to it as the composable bipartite locally decogjebt code induced by
g.

6.2.7 Construction Algorithms for The Point Variant of Composable Bipartite Locally De-
code/Reject Codes

LetD = (D, R, Dee, Daec) be adomain. Let andN be natural numbers. fD, k, N)-construction
algorithmfor composable bipartite locally decode/reject codesr(jpaariant) is a procedure that
given as input a collection of siz¥ of k-tuples of points

<J}1’1, . 7x1,k>7 ceey <JIN’1, . ,.TNJf) - Dk
outputs a composable bipartite locally decode/reject ¢pdimt variant) for those tuples. Efficiency

and uniformity in structure of such algorithms are as forstarction algorithms for composable
bipartite locally decode/reject codes.

For the point variant we are interested in an additionalarmity property that construction
algorithms may or may not have:

Uniform in point association. Fix finite sets4, B andV € {A, B}. Fix a finite set(2. Let
W = (AU B)\ V. Fix domainsX, andXz. Letpnt : W — D be a function (called aniform
point associator.

A (D, k, N)-construction algorithm for bipartite locally decodeée codes (point variant) is
said to beuniform in the point associatiopnt, if it is uniform in structure(A, B, V,Q, ¥4, ¥5) and
on all input tuples, the output of the algorithm has agits function the uniform point associator
pnt.

When the identity of the uniform point associatort is inessential, we simply say that the
algorithm isuniform in the point associatigmvithout specifyingpnt.

6.2.8 List Decoding Based on Point Evaluations

Recall thatD,.. defines a code as follows: for evefyc D,.. there is a codeword withD| co-
ordinates, where the symbol in positienc D is f(z). Provided thatD,.. defines a code with
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large (relative) distance, a list decoding can be computed solely on the point evaluations.
The following lemma shows that and relates the list decotbrtye list decoding guaranteed in the
definition of the codes:

Lemma 6.8 (List decoding for point evaluations).Let0 < ¢ < 1. FixadomainD = (D, R, Dene, Daec) -
Suppose thab,.. defines a code with (relative) distante- . Letk and NV be natural numbers.
Let0 < dpmin < 1. Letl,e : (0,1) — R be a decreasing function. Let be a (D, k, N)-
construction algorithm that output®,,,:, ln...)-composable bipartite locally decode/reject codes
(point variant). Assume thafl is uniform in structure(A, B, V,Q, ¥4, ¥ 5) and in the point as-
sociationpnt : W — D, wherelW = (AU B) \ V. Denote¥4 = (D, Ra, X4 encs 2 a.dec) aNd

Z:B = <DB7 RB; 2B ,encs Z:B dec>

Assume that there 8< ¢/,
that . —5 > 2\/e.

Then, for every assignment : W — R and every reab such thatmax {6,,in, 9, } < 0 < 1,
there exist’ < % “lmaz(0) €elementgyy, . . ., gr € Dye., for which the following holds.

< 1, such that for every real satisfyingd,,,, < d < 1it holds

Assume the algorithid is invoked on some inpuéttuples. Denote the output by

G=(G=(AB,E),V,Q,%Y4,%g, sat, label, proj, tup, eval, pnt = pnt, evalp)

LetCp : B — ¥p 4. be an assignment, and I¢t, .. ., f; € Dg.. be thel < [,,,.(d) elements
guaranteed by the list decoding propertytbfor Cz andé. LetCy : A — ¥4 4 bE an assignment.

When picking uniformly at random an edge= (a,b) € FE, the probability that, inG under
Ca, Cp, (i) the edger is satisfied, (ii) for the vertex € W N {a, b} it holds evalp(v, Cy (v)) =
pe(v), and (iii) e does not read an element frofyfy, ..., fi} N {g1,...,gr}, IS atmosO(J).

Proof. Define a code” C RI"!I as follows: for everyy € Dy, define a codeword withiV| co-
ordinates by letting the symbol in the positiore W be g(pnt(v)). Note that by the definition of
bipartite tuple-point evaluation graphs, this code is @&téipn of the code defined 1®,... Hence,
its relative distance i$ — ¢ as well.

Fix an assignmente : W — R. Fix a reald such thatmax {5,,in, 0,,;,,} < d < 1. Setd’ =
Wm(g and note that’ > 2./e. Letgy,...,gr € Dy be all functionyy € D, that agree with the
point evaluatiorpe on at least’ fraction of the vertices, that i${v € W | g(pnt(v)) = pe(v) }| >
&' - [W]. Note that there are at mogt= 2 - [,,,,,(0) such functions by applying Proposition 5.4 on
C.

Assume the algorithrd is invoked on some input-tuples. Denote the output lgy as above.
Let Cs : B — Ypq. be an assignment, and It, ..., fi € Dy be thel < 1,,,.(5) elements
guaranteed by the list decoding propertygdior Cz andd. LetCy : A — 34 4. b€ an assignment.

Pick an edge: = (a,b) € FE uniformly at random. Denote th#” vertex touching: by v €
{a,b} N W, and note that is uniformly distributed inl/’. We will bound the probability that the
following badevents happen bg(J) and be done:
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e BAD;: In G under the assignments, andC'z, the edge: is satisfied but does not read any

of fi,..., fi-

e BAD,: In G under the assignments, and Cp, for some; < [I], the edgee readsf;,
evalp(v, Cyw (v)) = pe(v), yetf; ¢ {g1,..., 91}

The bound onBAD; follows directly from Definition 6.7. Let us boun8AD,: Fix j € [I].
Whenevere readsf; andevalp(v, Cyw (v)) = pe(v), it holds thatf;(pnt(v)) = pe(v). Whenf; ¢
{g1,--.,9r}, this can happen with probability less th&n The probability that this happens for
somej € [l]isat most - O(d') = O(9). O

6.2.9 Generic Framework for Composable Bipartite Locally Decode/Reject Codes

We define a generic framework for handling both composalgarbte locally decode/reject codes
and their point variants.

Definition 6.9 (Generic bipartite evaluation graph). LetD = (D, R, D.y¢, Dgec) be a domain.
G = (G = (A, B,E),Q, Y4, Xp, sat, label, proj, read) is called ageneric bipartite evaluation
graph if G = (G = (A, B, FE),Q, X4, X, sat, label, proj) is a bipartite constraint graph and
read C E X ¥4 X ¥p X Dy, is a relation. We say that an edge= (a,b) € E readssomef € D,

in G under assignmentS, : A — X4 andCp : B — X5, if (e,Ca(a),Cp(b), ) € read.

Definition 6.10 (Generic bipartite locally decode/reject ode). LetD = (D, R, D.,, Dyec) be @
domain. LeD < 4, < 1. Letl,., : (0,1) — R be a decreasing function.

G=(G=(AB,E),Q Y4, Xp,sat,label, proj, read) is called a(d,in, lma: )-geNeric bipartite
locally decode/reject codd:

o X4 = (D, Ra, YA cnes Ladec) ANAE 5 = (Dp, Rp, X5 ency 2B.dec) are domains.

o §' = (G = (A B, E),Q X4 dec, B dec: Sat, label, proj, read) is a generic bipartite evalua-
tion graph. We say that an edgec E is satisfied inG under assignmentS, : A — ¥4 4.
andCp : B — Y ., if e is satisfied inG’ underC,, Cz. We say that an edgec E reads
somef € Dy, in G under assignmentS, : A — ¥4 4. aNdCp : B — Y 4, if e readsf
in G underCy, C5.

e The following holds:

1. Encoding: There is an efficient algorithm that given a messdge D.,., computes
assignments’y : A — ¥4 .. aNdCp : B — Y ., SUCh that every edge= (a,b) €
E is satisfied and read$ in G underCy, Cp.

2. List Decoding: For every assignment’s : B — Xp 4., for every realé such that
Omin < 0 < 1, there exist < [,,,.(5) elementsfy,..., fi € Dge., such that for any
assignmenty : A — X4 4., the following holds: when picking uniformly at random
an edgee = (a,b) € E, the probability that, inG underCy, C'g, the edge: is satisfied,
althoughe does not read any of;, . . ., f;, is at mosiO(9).
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In this generic framework, we can prove the following usgftdposition, stating that not only
that every assignment to tte vertices defines a list decoding, but also every assignmoethietA
vertices defines a list decoding. The list decoding may lpetathan the list decoding defined by
the assignment to thB vertices and may incur a larger error.

Proposition 6.11 (List decoding for assignment toA vertices). Let D = (D, R, Dene, Diec)
be a domain. Leb < 6, < 1. Letln. : (0,1) — RT be a decreasing function. Let
G = (G = (A B,E),Q,X4,%g, sat, label, proj, read) be a (dmin, lna:)-generic bipartite lo-
cally decode/reject code. Then, for every assignmiegnt A — ¥4 4., for every realy such that
VOmin < 0 < 1, there exist’ < %~lmaz(52) elementg, ..., gr € Dy satisfying the following. Let
Cp : B — Yp.a. be an assignment. When picking uniformly at random an edge(a, b) € E,
the probability that, inG underCy, C'g, the edge: is satisfied althougl does not read an element
fromgy, ..., gy, isat mosiO().

Proof. Fix an assignment’y : A — ¥4 4. and a reab such that/o,,;, <4 < 1.

Fix s = L%j. Letb € B. Letoy(b),...,0s(b) € ¥ 4. be all elements € ¥ g 4. that at leasd
fraction of the edges coming intan G “vote” for them according t@’'4, i.e.,

{i € [Aq(D)] | eq(b,i) = (a,b) A proj(a,Cs(a),label(eq(b,i))) = o} > 6 - Ag(b)

Note that indeed there are at mestuch elements € X ;.. (there might be less thanelements,
in which case we pad the list arbitrarily). Defia@ssignments foB, Cp1,...,Chs : B — X5 decs
by letting, for everyj € [s] andb € B, Cp ;(b) = 0,(b).

Fix a confidence parameté&t = §2 > §,,;,. For everyj € [s], letg;1,...,g;;+ € D denote
the list decoding of* < [,,,,(6*) elements corresponding @ ; for confidence parametér, as
follows from the list decoding property @. Note that the total number of elements we define
(possibly with repetitions) i = s - I* < 3 - [, (6?).

LetCp : B — Y 4. be an assignment. Pick uniformly at random an edge(a,b) € E. We
will bound the probability that the followingadevents happen bg(d) and be done:

e BAD;: The edger is satisfied inG under the assignments, andCz, howeverCy(b) ¢
{Cp1(b),...,Crs(b)}.

e BAD,: The edge: is satisfied inG under the assignments, andC's, and for somg € |[s],
it holds thatC'z(b) = Cp ;(b), howevere does not read one @f 4, . . ., g, +-

Bounding BAD,. Letb € B such thatCz(b)
fraction of thei € [A(b)] we have that (b, i) =
C4 andCp: it cannot hold thaproj(a, Ca(a),la
[Ag(b)]. The bound orBAD; follows.

{Cpa(b),...,Cps(b)}. Then, for less than
b) € Eis satlsfled ing under the assignments

¢
(a,0) €
bel(eq(b,1))) = Cp(b) for ¢ fraction of the: e
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Bounding BAD,. Onthe evenBAD,, for j € [s] it holds thate is satisfied inG underCy, Cg ;,
yete does notread any @f; 1, . . ., g;;~. By the list decoding property @, the probability that this
happens is at most- O(6*) = O(9). O

6.3 Edge Reading Bipartite Locally Decode/Reject Code

In this section we define another instance of generic bipgalically decode/reject code. In this
instance, the edges evaluate tuples.

Definition 6.12 (Edge reading bipartite locally decode/regct code).LetD = (D, R, Dene, Diec)
be a domain. Let and N be natural numbers. Assume a collectiorkefiples:

<IL’171, .. .,$17k>, RN <IL’N71, . 71'N,k> c Dk

LetO < dpin < 1. Letl,,, : (0,1) — RT be a decreasing function.

G = (G = (A,B,E),Q, X4, Xg, sat, label, proj, tup, eval) is called a(d,in, lma: )-€dge read-
ing bipartite locally decode/reject codé

o X4 = (D, Ra, YA cnes Ladec) ANAE s = (Dp, Rp, X5 ency 2B.dec) are domains.

e tup : E — D" is afunction mapping each edge ta:-auple(z; 1, ..., z; ;) fori € [N]. Each
i € [N] must have the same (positive) number of edged- that are associated with thiéh
k-tuple, i.e.tup(e) = (z;1, ..., Tig).

e cval : E x Y44 — RFis a function, mapping each edge= F with an assignment to the
edge’sA endpoint (which determines an assignment to the edg&adpoint) to assignments
for the elements afup(e).

e Foranedge € F, assignments, € ¥4 4. andoy, € X gec aNAf € Dy, let(e, 04,00, f) €
read if and only ifeval(e, 0,) = (f(zi1), ..., f(z:x)) Wheretup(e) = (z;1, ...,z ). Then,
G = (G = (A, B,E),Q, X4, Xp, sat, label, proj, read) 1S @ (Omin, lmaz)-g€NEric bipartite
locally decode/reject code.

e We say that is satisfied inG under assignmentS, : A — ¥4 4. aNdCp : B — ¥p 4., if €
is satisfied inG’ underC'y andC. We say that readsf in G underCy, andCjp, if e readsf
in G’ underC4, andCp.

A (D, k, N)-construction algorithm for edge reading bipartite logaecode/reject codes is a
procedure that given as input a collection of si¢ef k-tuples of points

<l’171, .. .,$17k>, RN <$N71, . 71'N,k:> c Dk

outputs an edge reading bipartite locally decode/rejededor those tuples. Efficiency and uni-
formity in structure of such algorithms are as for consinrctlgorithms for composable bipartite
locally decode/reject codes.
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7 Building Blocks

We will devise construction algorithms for various typesomposable bipartite locally decode/reject
codes and point variants of them. These types will differhie type of domains they work with
(Reed-Muller domain, Hadamard domaegnc), in whether they are left or right evaluators and in the
specific form of theisat, label, proj, eval andevalp functions. These specifics would later allow us
to transform construction algorithms for one type of cogesanstruction algorithms for others and
to compose construction algorithms. In this section weeytkie different types of building blocks
we use. In the next section we give a full account of the difiérmanipulations on the building
blocks.

7.1 Reed-Muller Left Reader

A Reed-Muller Left Reader (RM-LR) is a composable bipattieally decode/reject code. It works
for a Reed-Muller domairD defined by some finite fielf, a dimensionmn, an encoding degreé
and a decoding degre&. It is a left evaluator (meaning that the set of evaluatingdices is A),
and the alphabet domain for the verticesD is also a Reed-Muller domain with the same finite
field F, but with different (hopefully reduced) dimension and degparameters, denotedd,, and
d.,, respectively. No additional satisfiability constrainte @nposed on the assignments to the
vertices. Assignments to the vertices are over the domain associated with the field

The edges are labeled by pointdiity, i.e.,Q2 = F“. The projection of a vertex € A, assigned
some polynomial, is given by evaluating the polynomial oa ploint given as label. A vertex €
A evaluates its tupléup(a) by evaluating the polynomial assigned to it brpre-defined points
p1, - .-, Dr € F*. This way we reduce the problem of evaluatinguples inD to evaluating:-tuples
in D. Itis convenient — and does not restrict us — to have the saiméspy, . . ., p, for all vertices
a € A.

Formally,

Definition 7.1 (Reed-Muller Left Reader (RM-LR)). Assume domains as follows:

e LetD = (F™, F, D.pe, Daee) be a Reed-Muller domain defined by a finite fig|éx dimension
m, an encoding degre¢ and a decoding degreé.

o LetD = (F* T, ﬁmc, 15dec) be a Reed-Muller domain defined by the fig|ch dimensionw,
an encoding degreé,, and a decoding degreé, .

o LetF = <{1},F,Iﬁﬁf‘emﬁ‘dec) be tbe dorgain associated with Recall that we associate a
domain with a finite set by taking.,,. = Faoee = {f | f: {1} — F}.

Letk and N be natural numbers. Assume a collectiorkefiples:

(Z1s ey T1k)s - TN, - Tvg) € (F™)F
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LetO < dpin < 1. Letl,g, : (0,1) — RT be a decreasing function.
A (Omin, lmaz)-cOMposable bipartite locally decode/reject code forkreples

G=(G=(A,B,E),V=AQ, D, T, sat, label, proj, tup, eval)

is called a(d,in, lma: )-Reed-Muller Left Reader (RM-LR) reducirig — D for the k-tuples, if the
following holds:

1. Satisfaction: For every vertex: € A and assignment, € Doee, it holds thatsat(a, 0,) =
true.

2. Projection: 2 = [F, and for every vertex € A, assignment, € 15dec and labelp’ € F“, we
have thatroj(a, o,, p) is the element if¥ ;.. corresponding te, (p).

3. Tuple Evaluation: There are pointgy, ..., p, € F*, such that for every vertex € A and
assignment, € Dy, we haveeval(a, o,) = (04(P1), .-, 04(Dk))-

A (D, k, N)-RM-LR construction algorithm with structural parametésige, block, degleft, degright)
reducingD — Dis an efficien{D, k, N)-construction algorithm that given a collection of siX¥eof
k-tuples, outputs an RM-LR reducidy+— D for the k-tuples that has sizeze, block lengthblock,
left degreedegleft and right degreelegright.

7.2 Reed-Muller Left+Point Reader

A Reed-Muller Left+Point Reader (RM-LPR) is the point vaiaf a Reed-Muller Left Reader.
Every vertexb € B is associated with a poiptt(b). An assignment, to b corresponds to a field
element, which is also the evaluation on the associated paifp(b, oy ).

Definition 7.2 (Reed-Muller Left+Point Reader (RM-LPR)). Let D and D be Reed-Muller do-
mains. Le) < ,,;, < 1. Letl,,q. : (0,1) — RT be a decreasing function.

A (d,min, lmaz:)-cOmposable bipartite locally decode/reject code (poartant) G for some collgc-

tion of tuples is called &9,,i,, lmq. )-Reed-Muller Left+Point Reader (RM-LPR) reducifig— D
for the tuples, if:

1. The composable bipartite Iocallx decode/reject codeided byG is a (6,min, lma: )-REE-
Muller Left Reader reducin@ — D for the tuples.

2. Denote the alphabet dgmain of tBevertices bﬁ = ({1}, F, Rm, ﬁdec). For every vertex €
B and assignment, € F,., it should hold thatvalp(b, 0,) is the field element corresponding
to oy,

A (D, k, N)-RM-LPR construction algorithm with structural paramesédize, block, degleft, degright)
reducingD — Disan efficient D, k&, N)-construction algorithm that given a collection of siXe
of k-tuples, outputs an RM-LPR reducify — D for the k-tuples that has sizsize, block length
block, left degreedegleft and right degreelegright.
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7.3 Hadamard Left Reader

A Hadamard Left Reader (Had-LR) is a composable bipartitallp decode/reject code that works
for a Hadamard domain and is a left evaluator. Since we wélldadamard Left Readers only as
inner constructions, we make very few restrictions on theircture.

Definition 7.3 (Hadamard Left Reader (Had-LR)). LetF be a finite field and let» be a natural
number. LetD = (F™ F, D.,., Dq4.) be a Hadamard domain. Létand N be natural numbers.
Assume a collection d@f-tuples:

(Zrs ey T1k)s - TN, - Tvg) € (F™)F

Let0 < 0pnin < 1. Letla : (0,1) — R be a decreasing function.
A (Opmin, lmaz)-cOmMposable bipartite locally decode/reject code for theples

G=(G=(AB,E),V =AQ, X, 3g,sal = true,label, proj, tup, eval)

is called a(d,,in, lmae )-Hadamard Left Reader (Had-LR)r the k-tuples.

A (D, k, N)-Had-LR construction algorithm with structural paramedésize, block, degleft, degright)
is an efficien{D, k, N)-construction algorithm that given a collection of siXeof k-tuples, outputs
a Had-LR for thek-tuples that has siz€ze, block lengthblock, left degreedegleft and right degree
degright.

7.4 RM ¢ Had Left Reader

An RM ¢ Had Left Reader (RMHad-LR) is any composable bipartite locally decode/regexte
that works for a RM> Had domain and is a left evaluator. Since we will use RMad Left Readers
only as inner constructions, we make very few restrictiomgheir structure.

Definition 7.4 (RM < Had Left Reader (RM ¢ Had-LR)). Let[F be a finite field, and lef. be a
subfield ofF, where the extension degreellbbverLL is 7 = [F : L|. Letm be a natural number. Let
D = (F™ x L™, L, Depe, Dyec) be a RMHad Domain. Let and N be natural numbers. Assume a
collection ofk-tuples:

<(fl71, ?]1,1), cee (fum ?71,k)>, cee ((fN,h ?7N,1)7 cee (fN,/m ?ij;)> e (F™ x LT)k
LetO < dpin < 1. Letl,g, : (0,1) — RT be a decreasing function.
A (Omin, lmaz)-COMposable bipartite locally decode/reject code forkreples
G=(G=(AB,E),V =AQ %, 3g, sat = true,label, proj, tup, eval)

is called a(d,1in, lmae )-RMoHad Left Reader (RM Had-LR)for the k-tuples.

A (D, k, N)-RM« Had-LR construction algorithm with structural parameters
(size, block, degleft, degright) is an efficien{D, k, N)-construction algorithm that given a collection
of sizeN of k-tuples, outputs an RMHad-LR for thek-tuples that has sizsze, block lengthblock,
left degreedegleft and right degreelegright.
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7.5 Reed-Muller Right Reader

A Reed-Muller Right Reader (RM-RR) is a composable biparidically decode/reject code. It
works for a Reed-Muller domain defined by some finite figJddimensionm, encoding degreé
and decoding degreg. Itis a right evaluator (meaning that the set of evaluatiedives isB), and
the alphabet domai® for the B vertices is also a Reed-Muller domain with the same finitel fiel
F, but with different (hopefully reduced) dimension and degparameters, denoted d,, andd,,,
respectively. A vertex € B evaluates its tupleup(b) by evaluating the polynomial assigned to it
on k pre-defined pointgy, ..., p, € F*. Assignments to thel vertices contain assignments to the
neighboringB vertices, by specifying a polynomial per lalget (2. Satisfiability constraints on the
a vertices compare the evaluations of the polynomials orewdifit points. The constraints are in a
tree structure as explained next.

Tree satisfiability constraints. Tree satisfiability constraints for a vertexc A are given by
a (rooted) treel, = (U, U Q, E,) and functions{Pm}geQ, calledancestors point specification
functions

1. The leaves of the treE, are the elements ifl. The set of inner nodes in the tredlis.

2. For every depth in the tree, all the nodes in this depth beesame number of children. In
particular, all the leaves have the same depth,irdenotediepth(T,).

3. Every leaf¢ € () specifies a point ifi™” for each of its ancestors. The specification is given
by the functionP, ¢ : {0,...,depth(T,) — 1} — F*, where the ancestors are represented by
their depth in the tree.

A polynomial Q, € D,.. assigned to a ledf € 2 defines an assignment of field elements to the an-
cestors ot in the tree by evaluating the polynomial on the points asdediwith themQ, (P, (7))

fori =0,...,depth(T,) — 1. The tree satisfiability constraints are said teshésfiedby an assign-
mento, : Q — 15(160 of polynomials to the leaves, if there is an assignment aof iééments to all
the inner nodes of the tree: U, — [ that is consistent with the evaluations of all the leavess, |.

if we U,isindepthi € {0,...,depth(T,) — 1} in the tree, the leaf € Q2 is a descendent of it and
Qe = 0,(€) is the polynomial assigned tg then it should hold that(u) = Q¢ (P, ¢(7)). Intuitively,
each leat € Q2 “has an opinion” on all the vertices on the path from it to thetr The satisfiability
constraints are satisfied if all the leaves agree.

In addition, we require an RM-RR to be left regular (note thiate it is a right evaluator, it is
necessarily right regular), and require that for everyeseitc A, there would be the same number
of edges coming out af for each label.

Definition 7.5 (Reed-Muller Right Reader (RM-RR)). Assume domains as follows:

o LetD = (F",F, D, D4.) be a Reed-Muller domain defined by a finite fig|cx dimension
m, an encoding degre¢ and a decoding degreé.
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e LetD = (F”,F, Depe, Daee) be a Reed-Muller domain defined by the fi|ca dimensionw,
an encoding degreé, and a decoding degre€, .

o Let Z:A = <Quﬁdecu 2A,enca 2A,dec>) WherezA,enc = {f ‘ f Q- 5enc} and Z:A,dec =
{f ‘ f : Q_>1ﬂjdec}-
Letk and N be natural numbers. Assume a collectiorkefiples:
(Z1s ey T1k)s - ATN, - Tvg) € (F™)F
LetO < dpin < 1. Letl,,, : (0,1) — RT be a decreasing function.
A (Omin, lmaz)-cOMposable bipartite locally decode/reject code forkreples
G=(G=(AB,E),V =B,Q, Y4, D, sat, label, proj, tup, eval)

is called a(d,min, lmaz)-Reed-Muller Right Reader (RM-RR) reducidy — D for the k-tuples, if
the following holds:

1. Satisfaction: For every vertexa € A there are tree satisfiability constraints given by a tree
T, and ancestors point specification functiof13, ¢ }._,, such that for every assignmen :

Q0 — 25dec, it holds thatsat(a, 0,) = true if and only if the tree satisfiability constraints are
satisfied by,.

2. Labeling: Leta € A be a vertex. For all labelg € (2, there is the same number of edges
e € £ coming out ofz with label(e) = €.

3. Projection: For every vertex; € A, assignment,, : (2 — Dg.. and label¢ € €2, we have that
proj(a, 0q,§) = 04(§)-

4. Tuple Evaluation: There are pointgy, ..., p, € F*, such that for every vertek € B and
assignment, € Dy, we havecval(b, 0p) = (o (P1), - - -, o (Pk))-

5. Regularity: G is left regular.

A(D,k, N)-RM;RR construction algorithm with structural parametgiige, block, degleft, degright, depth)
reducingD — D is an efficien(D, k, N)-cogstruction algorithm that given a collection of si¥eof
k-tuples, outputs an RM-RR reducifig— D for the k-tuples that has sizeze, block lengthblock,

left degreeadegleft, right degreedegright, and whosed vertices all have tree satisfiability constraints
of depthdepth.
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7.6 Reed-Muller Right+Point Reader

A Reed-Muller Right+Point Reader (RM-RPR) is the point aatiof a Reed-Muller Right Reader.
Each vertexu € A is associated with a poiptit(a). We think of this point as associated with the
root of the satisfiability tree ai, namely, the point that all the leavés: () “have an opinion on”.
Given an assignment, to a, we let the point evaluation functiavalp(a, o,) be the opinion of an
arbitrary leaf¢, € Q2. Recall that ifo, is satisfying, i.e.sat(a, 0,) = true, then all the leaves agree
on the assignment to the root. N

Definition 7.6 (Reed-Muller Right+Point Reader (RM-RPR)). Let D and D be Reed-Muller
domains. Led < d,,;, < 1. Letl,.. : (0,1) — R* be a decreasing function.

A (d,min, lmaz)-cOmposable bipartite locally decode/reject code (poartant) G for some collgc-
tion of tuples is called &J,,,;, lnq)-Reed-Muller Right+Point Reader (RM-RPR) reducing— D
for the tuples, if:

1. The composable bipartite locally gecode/reject codei@ed byG is a (d,in, lma: )-Reed-
Muller Right Reader reducin® — D for the tuples.

2. Denote the alphabet domain of tHevertices by, = (Q,ﬁdec, YA encs LA dec). FIX SOME
arbitrary &, € ). For every vertexx € A, for every assignment, : 2 — Dee, We have
thatevalp(a, 0,) = 04(&)(Pag, (0)) (WhereP, ¢, is the ancestors point specification function
associated witl's satisfiability tree).

A (D, k, N)-RM-RPR construction algorithm with structural parameter
(size, block, degleft, degright, depth) reducingD — Dis an efficient(D, k, N)-construction algo-
rithm that given a collection of siz& of k-tuples, outputs an RM-RPR reducifig— D for the
k-tuples that has sizeize, block lengthblock, left degreedegleft, right degreedegright, and whose
A vertices all have tree satisfiability constraints of degébth.

8 Manipulations on Building Blocks

In this section we survey the different manipulations wedhav building blocks: generation, change
of domains, right degree reduction, transformation ofriediders into right readers and composition.

8.1 Generation of Left Readers

We will be able to devise construction algorithms for letiders.

8.1.1 Construction of Reed-Muller Left and Left+Point Reacders

The first algorithm we show is an RM-LPR construction aldoritthat is uniform in the point
association. This algorithm works for Reed-Muller domainsn which the field is sufficiently
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large with respect to the dimension the decoding degre€ and the numbek of points in a tuple

we wish to evaluate. It reduces the evaluatiorbimo evaluation in a Reed-Muller domain with

a constantdimension. On the downsid& has an encoding degree that — not only is not smaller
than the encoding degrekof D — but is slightly larger. In addition, theze, block, degleft and
degright parameters of the algorithm are all very large. Since wewsd this algorithm as an inner
construction, we can put up with the large size and blocktlengs to the left and right degrees —
subsequent manipulations would allow us to reduce them.

Lemma 8.1 (Construction of RM-LPR). Setw = 4. LetD be a Reed-Muller domain defined by a
finite fieldF, a dimensionn > w, an encoding degreé and a decoding degreé. Letk < |F| and

N be natural numbers. We assume that the following conditadsh

o d > (k+1)-d.

Let D be a Reed-Muller domain defined by a finite figlda dimensionw, an encoding degree
(k+ 1) - d and a decoding degreé.

Then, there is 4D, k, N)-RM-LPR construction algorithm with structural parameter
(size, block degleft degright) reducingD — D for size < N - |F|°"™, block < poly(k, d) - log |F|,
degleft < |IF| Y anddegright < N - |IF|O(m The algorithmis unlform in the point association and
outputs(d,min, lmaz )-RM-LPRS for

5 . d'(k+ 1
min — X
[Fl -k IF IF
andlq, (6) = 2.

We will also show a construction algorithm for (the weakeNHRR with much smaller size
parameter. With the right choice of parameters, this sizelavbe almost-linea(N + [F™|)!+o(),
rather than polynomial ifif™| and V. In particular, to save in the size we need the fielh have
a subfieldK of an appropriate size. The smaller the subfield — the smiiéesize. The larger the
subfield — the lowebp,,;,. Specifically, ford,,;, to be small we requiréK| > Q(m?), while the

influence of[K| on the size is a factor gi|°™. When the dimensiom is sufficiently small, we
can get lows,,,;,, at a reasonable increase in the size.

The other structural parametesi®ck, degleft anddegright would remain large, and subsequent
manipulations are required for reducing them.
Lemma 8.2 (Construction of RM-LR). Setw = 4. LetD be a Reed-Muller domain defined by a
finite fieldF, a dimensionn > w, an encoding degre¢ and a decoding degreé. LetK C FF be a
subfield off. Letk < |F| and N be natural numbers. We assume that the following conditadash

o d > (k+1)-d

Let D be a Reed-Muller domain defined by a finite figlda dimensiornw, an encoding degree
(k+1) - d and a decoding degreé.
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Then, there is 4D, k, N)-RM-LR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD — D for size < (N + [F|™) - [F|°Y . [K[*™, block <
poly(k, d) - log |F|, degleft < [F|°" anddegright < (N + |F|™) - [F|°" - [K|*". The algorithm
OUtpUtS(8,in, Linaz )-RM-LRS for

8.1.2 Construction of Hadamard Left Reader

andlq. (0) = 2.

We show a Had-LR construction algorithm that is uniform ie thple association and in the encod-
ing and list decoding. The size, block length, left and ridégrees are all large, but as we use this
algorithm only as an inner construction, their influencelmdverall construction is minor.

We require that the field underlying the Hadamard domainimeérIn the overall construction,
this field will be a small subfield of the field we are using foe thuter construction.
Lemma 8.3 (Construction of Had-LR). Let D be a Hadamard domain defined by a prime finite
fieldF and a dimensiom:. Letk < m — 2 and N be natural numbers.

Then, there is 4D, k, N)-Had-LR construction algorithm with structural parameger
(size, block, degleft, degright) for size < N - [F|°"™, block < O(k) - log |F|, degleft < |F|°* and
degright < NV - |F|°"™. The algorithm is uniform in the tuple association and in émeoding and

list decoding. It output$d, i, lnas )-Had-LRS ford,,;, = 2.¢ /W and ;.. (0) = 52—3 Moreover, the

right degrees of the vertices in the Had-LR do not depend eimbut to the algorithm.

8.2 Power Reduction

Suppose that we have construction algorithms for RM-LRsM¥rIFPRs reducingD — D,, where

the dimension of the RM domaiR, is small, but the encoding degree is large (Indeed we have suc
algorithms by Lemmata 8.1 and 8.2). Then, we can transfogsettalgorithms into construction
algorithms reducin@®@ — D,, whereD, is a domain in which both the dimension and the encoding
degree are relatively small. Specifically, the dimensioth ancoding degree parameters are loga-
rithmic in the encoding degree @ ;. Note that this means that the block length becomes larger
(although not by much if the dimension B is constant).

The only pre-requirement for the transformation is thatehs a large enough gap to begin with
between the encoding degreel®f and its decoding degree.
Lemma 8.4 (Power reduction). Assume the following:

o LetD = (F™ T, D, Dq.) be a Reed-Muller domain defined by a finite fig)c dimension
mg, an encoding degre, and a decoding degreé,.
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o LetD; = (F"™ F, D cne, D1 gec) be @ Reed-Muller domain defined by the fig|cé dimension
m1, an encoding degreé, and a decoding degred.

Fix by = [log(d; + 1)], and assume thaf; > mjbid;. Letmy = dy = my - by. Let
dy = |dy/d].

o LetDy = (F"2,F, Dy e, Do gee) be the Reed-Muller domain defined by the figldimension
ms, encoding degreé, and decoding degre,.

LetO < dpin < 1. Letl,, : (0,1) — R be a decreasing function. Then,

1. Ifthere is a(D, k, N)-RM-LR construction algorithm with structural parameters
(size, block, degleft, degright) reducingD — D, then there is also &D, k, N)-RM-LR con-
struction algorithm with structural parametefsize, block’, degleft, degright) reducingD +—
D,, whereblock’ = d?(ml) -log |F|. If the former algorithm output§s, ;.. ;e )-RM-LRS, then
so does the latter algorithm.

2. Ifthereis a(D, k, N)-RM-LPR construction algorithm with structural paramegter
(size, block, degleft, degright) reducing® +— D; that is uniform in the point association,
then there is also 4D, k, N)-RM-LPR construction algorithm with structural parameger
(size, block’, degleft, degright) reducingD — D, that is uniform in the point association,
whereblock’ = dlo(ml) -log |F|. If the former algorithm output&,in, lmaez)-RM-LPRS, then
so does the latter algorithm.

8.3 Right Degree Reduction

We can transform construction algorithms that produceeesadith large right degree into construc-
tion algorithms that produce right regular readers withlsrght degree. This comes at the cost of
enlarging the size of the construction and the left degrest, the increase in the size and the left
degree is proportional to the new right degree which is sniijht degree reduction also causes
some deterioration in the error and list size parameterseofé¢aders.

Right degree reduction is possible due to the projectiopgnty of the readers. We do not have
a similar lemma for left degree reduction. Instead we wi#t agransformation presented in the next
subsection that swaps between the left and right degrees.
Lemma 8.5 (Right degree reduction).There is a constant < 1 and a function’ : N — N*
with T'(A) = ©(A) as in Lemma 5.3, such that the following holds for every retoumberA:
Let D and D be Reed-Muller domains. L&° be a RMHad domain. Let) < Omin < 1. Let

lmaz : (0,1) — RT be a decreasing function. S&t,, = max {vémm, W} andl’ . (0) =
L e (62).
5 max
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. Ifthere is a(D, k, N)-RM-LR construction algorithm with structural parameters

(size, block, degleft, degright) reducingD +— D, then there is also aD, k, N)-RM-LR con-
struction algorithm with structural paramete(®)(A - size), block, T'(A) - degleft, T'(A)) re-
ducingD +— D. If the former algorithm output&d, i, lma: )-RM-LRS, then the latter algo-
rithm outputs(d*,... 1% .. )-RM-LRs. Moreover, the output of the algorithm is alwaystig
regular.

. Ifthere is a(D°, k, N)-RMecHad-LR construction algorithm with structural parameters

(size, block, degleft, degright) that is uniform in the tuple association and in the encodind a
list decoding and outputs RMlad-LRs, in which the right degrees of the vertices do not de-
pend on the input to the algorithm, then there is als@¥, k, N)-RMcHad-LR construction
algorithm with structural parameter$) (A -size), block, 7'(A) - degleft, T'(A)) that is uniform

in the tuple association and in the encoding and list decgdiif the former algorithm out-
PULS (,min, Lmaz )-RMoHad-LRs, then the latter algorithm outpuis;, -RMoHad-LRs.
Moreover, the output of the algorithm is always right regula

*
in’ lmam)

. Ifthereis a(D, k, N)-RM-LPR construction algorithm with structural parameser

(size, block, degleft, degright) reducingD +— D that is uniform in the point association,
then there is also 4D, k, N)-RM-LPR construction algorithm with structural parameter
(O(A - size), block, T'(A) - degleft, T(A)) reducingD — D that is uniform in the point as-
sociation. If the former algorithm output$,,.;,., ln...)-RM-LPRS, then the latter algorithm
outputs(d.;.., l% .. )-RM-LPRs.

min’ ‘max

. Ifthere is a(D, k, N)-RM-RR construction algorithm with structural parameters

(size, block, degleft, degright, depth) reducingD +— D, then there is also &D,k, N)-RM-RR
construction algorithm with structural parametei@(A-size), block, T'(A)-degleft, T'(A), depth)
reducingD +— D. If the former algorithm output&, i, L )-RM-RRS, then the latter algo-
rithm outputs(é;:,,.,, I, )-RM-RRs.

. Ifthereis a(D, k, N)-RM-RPR construction algorithm with structural parameter

(size, block, degleft, degright, depth) reducingD — D that is uniform in the point association,
then there is also &D, k, N)-RM-RPR construction algorithm with structural parameter
(O(A -size), block, T'(A) - degleft, T'(A), depth) reducingD — D that is uniform in the point
association. If the former algorithm outpui,..,., l.....)-RM-RPRs, then the latter algorithm
outputs(dr,;.., 1., )-RM-RPRs.

min’ ‘max

8.4 Transforming Reed-Muller Left Readers Into Reed-Muller Right Read-

ers

Construction algorithms that produce RM-LRs that are rigdgiular with small right degree can
be transformed into construction algorithms for RM-RRs. n§&auction algorithms that produce
RM-LPRs that have small right degree (they are right regoyadefinition) can be transformed into
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construction algorithms for RM-RPRs. Moreover, the lattansformation preserves uniformity in
point association. The cost is enlarging the block length gctor equal to the right degree. If the
right degree is small, then this cost is small as well. Addidl costs are enlarging the error and list
size parameters.

The transformation swaps the left and right degrees. If tigiral left reader has left degree
degleft and right degredegright, then the new right reader has left degdegright and right degree
degleft. In particular, if the original left reader has small rigleigiee, then the new right reader has
small left degree.

The transformation sets the depth parameter of the righerezonstruction algorithms to
Lemma 8.6 (Switching sides).Let D and D be Reed-Muller domains. Lét< §,,, < 1. Let
limas = (0,1) — RT be a decreasing function. SEt;,, = /0 andi;,,, (0) = 3 - lyax (6%).

1. Ifthere is a(D, k, N)-RM-LR construction algorithm with structural parameters

(size, block, degleft, degright) reducingD — D that outputs right regular RM-LRs, then there
is also a(D, k, N)-RM-RR construction algorithm with structural parameters

(size, degright - block, degright, degleft, 1) reducingD +— D. If the former algorithm outputs
(Omin, lmaz)-RM-LRS, then the latter algorithm outpuis;, -RM-RRs.

*
i) lmax)

2. Ifthereis a(D, k, N)-RM-LPR construction algorithm with structural parameter
(size, block, degleft, degright) reducingD — D that is uniform in the point association, then
there is also gD, k, N)-RM-RPR construction algorithm with structural parameter
(size, degright - block, degright, degleft, 1) reducingD +— D that is uniform in the point as-
sociation. If the former algorithm output$,,.;,., ln...)-RM-LPRS, then the latter algorithm
outputs(d?.,.., l%...)-RM-RPRs.

min’ ‘max

8.5 Transforming Hadamard Left Readers Into RM¢Had Left Readers

Construction algorithms for Had-LRs can be transformea @anstruction algorithms for RivHad-
LRs. The cost is a huge blow-up in the parameters of the Hadha@main compared to the
parameters of the RMHad domain. Hence, this transformation is useful only whengarameters
of the RMeHad domain are very small to begin with.

Lemma 8.7 (From Had-LRs to RMc¢Had-LRs). Let D be a RMHad domain defined by a finite
fieldF, a prime subfield. of F, a dimensionn, an encoding degreé¢ and any decoding degre&.
Letr = [F : L]. SetM = (") (the number of monomials in an-variate polynomial of degree at
mostd). Let’H be a Hadamard domain defined by the finite fieldnd the dimensiod/ - .

Let £k and N be natural numbers.

If there is a(H, k, V)-Had-LR construction algorithm with structural parameger
(size, block, degleft, degright) that is uniform in the tuple association and in the encoding &st
decoding and outputs Had-LRs, in which the right degreesefviertices do no depend on the
input to the algorithm, then there is(®, k, N )-RMcHad-LR construction algorithm with the same
structural parameterssize, block, degleft, degright) that is uniform in the tuple association and in
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the encoding and list decoding and outputs#Md-LRs, in which the right degrees of the vertices
do no depend on the input to the algorithm.

If the former algorithm output§), ..., I )-Had-LRs, then the latter algorithm outputs,,,, lia: )-
RMoHad-LRs.

8.6 Composition of Reed-Muller Right Reader and Reed-MulleRight+Point
Reader Construction Algorithms

For Reed-Muller domain®, D; andD,, we can compose an RM-RR construction algorithm re-
ducingD — D; (“outer algorithm”) and an RM-RPR construction algoritheducingD; — D,
that is uniform in the point association (“inner algorithnrito an RM-RR construction algorithm
reducingD — D, (“composed algorithm”).

Through composition we can reduce the block length. Assimaiethe outer algorithm produces
RM-RRs that have left degrelegleft,... Assume that the inner algorithm produces RM-RPRs that
have block lengttblock;,. The block length of the RM-RRs produced by the composedridhgo
is degleft,,: - block;, (independent of the block length of the outer algorithm)susee that the left
degreeadegleft,,; is small (this can be taken care of by the previous manimra)i Since the inner
construction algorithm should work only for the doméam, and not the domai®, the block length
block;, can be made small, thus making the block length of the contgpomestruction small.

For composition to be possible, the right degree and thehgegeimeters of the outer algorithm,
denoteddegright,,. anddepth,,; respectively, should be small. This is because the inn@riéhgn
should be able to handle tuples witht degright,,. - depth,,: points.

The costs of composition are an increase in the size, in tharld right degrees and in the depth
parameter, as well as a deterioration of the error and listjgarameters.

The size parameter of the composed algorithm is typicallyidated by the size parameter of
the outer algorithm. If the outer algorithm outputs RM-RRsiresize,,, and the inner construction
algorithm outputs RM-RPRs of sizgze;,, then the composed algorithm outputs RM-RRs of size
roughlysize,, - size;,. Even if the sizaize;, is relatively large with respect to the domain parameters,
since the domain is onlfp;, and notD, the contribution osize;, is typically minor.

Lemma 8.8 (Composition of RM-RR and RM-RPR construction algrithms). Let D, D; and
D, be Reed-Muller domains with a finite fiéfd Denote the decoding degree®f by d.

Letk andV be natural numbers. L&t < 0,in out: Omin.in < 1. L€tlnaz out, lmaz,in = (0,1) — RF
be decreasing functions. Assume that for some congigrits> 1 for every0 < § < 1 it holds that
lmar,in((s) S ;)Tg- Set

o 1/(b2+1)
5min = max 5min,in7 <2b% ' (Smm,out>1/(2b2+3)’ <2b1 ‘ ﬁ)
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and

b 1
lmax(é) - 6712 . lmax,out(2—b% . 62b2+3)

Assume that,,;, < 1. Given:

e A (D, k, N)-RM-RR construction algorithid,,,, with structural parameters
(sizeout, blockeyt, deglefty,:, degrightoy:, depthy,: ) reducingD — Dj, with depthey, < df.

e A (D, k + degright,y: - deptho,, 1)-RM-RPR construction algorithtd;,, with structural pa-
rametergsize;,, block;,, degleft;,, degright;,, 1) reducingD; — D, that is uniform in the point
association.

One can obtain 4D, k, N)-RM-RR construction algorithmd with structural parameters
(size, block, degleft, degright, depth) reducingD — D, for size < sizey, - sizei,, block = degleft,,, -
block;,, degleft = degleft,, - degleft;,, degright = degright,.. - degright;, anddepth = depthg, + 1.

If Aout OUtpUtS((Smin,outa lmax,out)'RM'RRsi and4in OUtpUtS(émin,ina lmax,in)'RM'RPRSa them
outputs(d,min, lmaz )-RM-RRS.

8.7 Composition of Reed-Muller Right Reader and RMHad Left Reader
Construction Algorithms

Let D° be a RMvHad domain. We wish to obtain an edge reading bipartite lpackdcode/reject
code forD° with small block length.

Let D be a Reed-Muller domain corresponding to the outer codP°oénd suppose that we
have a RM-RR construction algorithm reducibg— D, for some Reed-Muller domaif,. From
this algorithm we can rather easily obtain an edge readipgrbie locally decode/reject code for
D¢ whose block length depends &y |F|. Our aim, however, is to achieve a much smaller block
length. In particular, block length that does not dependherfield size, which is inevitably large in
a Reed-Muller code.

We show how to compose the RM-RR construction algorithmeeduD — D, (“outer algo-
rithm”) with a RMoHad-LR construction algorithm for the domé&i?f corresponding to concatena-
tion of D; and Hadamard (“inner algorithm”). For the composition takvie inner algorithm must
be uniform in the tuple association and in the encoding astdikcoding. The composition results
in an algorithm whose block length parameter depends ontii®teft degree of the outer algorithm
and the block length of the inner algorithm.

The costs of this composition, namely the increase in theam graph degree parameters, are
similar to the costs of the composition described in Sulice&.6.
Lemma 8.9 (Composition of RM-RR and RMvHad-LR construction algorithms). LetD andD,
be Reed-Muller domains with a finite field Let D° and D§ be the RMHad domains associated
with D and Dy, respectively, where the subfieldlisC F. Denote the decoding degree ®fby d’
and the decoding degree B, by d|. Denote the dimension &f, by w.
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Letk and N be natural numbers. Lét < 0,in out, Omin,in < 1. L€tlnaz out, lmazin : (0,1) — R
be decreasing functions. Assume that. i,(8), lmaz.out (§) < 5700,

For a sufficiently small constat> 0, set
d/ (& 1 C
6min = max {6rcnm iny 6rcmn out’ (_) ’ (_> }
’ o\ || IL|

e A (D, k, N)-RM-RR construction algorithmd,,,; with structural parameters
(sizeout, blockeyt, deglefto,:, degrightoy:, deptho,: ) reducingD — Dy, where the deptlepth,,:
is constant and smaller thadf.

Given:

e A (Dy,degleftoy: - k + depthoy + 1, \F\w“)-RMoHad-LR construction algorithr;,, with
structural parametergsize;,, block;,, degleft;,, degright;,) that is uniform in the tuple asso-
ciation and in the encoding and list decoding. The outputhefalgorithm is always right
regular.

One can obtain D¢, k, N)-construction algorithmA that outputs (left and right) regular edge
reading bipartite locally decode/reject codes. The alfon has structural parameters

(size, block, degleft, degright) for size < sizey,: - sizej,, block < deglefty,: - block;,, degleft <
degleft,,. - degleft;, anddegright < degright,.. - degright;,.

If A,ue OUtPULS(S1min out s limaz.out)-RM-RRS, and,,, OUtputs(d,min.in, lmax.in)-RMeHad-LRs, then
A outputs(8,.in, Imae )-€dge reading bipartite locally decode/reject codes faned,,..(9) < §—°W),

9 Putting The Pieces Together

In this section we show how to put the pieces together to coctsa bipartite locally decode/reject
code fork-tuples that has small block length and almost-linear di¥e start by outlining our plan.
Then we construct each of the components. Finally, we sgiahemeters and get the final code.

Our plan is to construct an edge reading bipartite locallyode/reject code with small block
length and small size, and then derive from it the code we widre construction is as follows:

1. Devise outer RM-RR construction algorithm: We devise an RM-RR construction algorithm
that has small size parameter, small left and right degresnpeters, small depth parameter,
but large block length parameter. Specifically, the bloeigta is polynomial ink, d, log |F|
and the left and right degrees.

2. Devise inner RM-RPR construction algorithm: We devise an RM-RPR construction algo-
rithms that is uniform in the point association and has |aige parameter, small left and right
degree parameters, small depth parameter and large blogthlparameter.
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We will invoke the inner construction algorithm only on thlabet domain of outer RM-
RRs, and hence the large size and block length would be smdiki context of the global
construction.

. Compose the RM-RR and RM-RPR construction algorithms:We compose the outer RM-
RR construction algorithm from Step 1 with an appropriateemRM-RPR construction algo-
rithm from Step 2 to get an RM-RR construction algorithm véthaller block length.

Specifically, the block length would be polynomialinlogd, log |F| and the left and right
degrees. Notably, the dependencedds much smaller than in the block length of the outer
RM-RR.

. Devise inner RMeHad-LR construction algorithm: We devise an RMHad-LR construc-
tion algorithm that is uniform in the tuple association andhe encoding and list decoding.
It has very large size parameter and large left and rightesegr

We will invoke the inner construction algorithm only on thipteabet domain of composed
RM-RRs, and hence the large parameters would be small inadhixt of the global con-
struction.

. Compose the RM-RR and RMvHad-LR construction algorithms: We compose the RM-
RR construction algorithm from Step 3 with an appropriateemRMeHad-LR construc-
tion algorithm from Step 4 to get an RMlad-LR construction algorithm with smaller block
length.

Specifically, the block length would not depend at all on tegréed or the fieldF of the outer
Reed-Muller code.

| RM-RR | | RM-RPR |

© composition

| RM-RR | |RM ¢ Had-LR |

| |
I

| composition |

'

Figure 7: The outline of the construction.

9.1 Outer RM-RR Construction Algorithm

The outer RM-RR construction algorithm is as follows:
Lemma 9.1 (Outer RM-RR construction algorithm). There is a global constant, > 1, as well
as afunctioril’ : N — Nt withT'(A) = ©(A) (as in Lemma 8.5) as follows.
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Let D be a Reed-Muller domain defined by a finite figlda dimensionn > 4, an encoding
degreed and a decoding degre€. LetK C F be a subfield oF. Letl < k£ < 'F' , N and A be
natural numbers. We assume that the following conditiods$tol

o d > cy(k+ 1)dlog((k+ 1)d).

There is a Reed-Muller domaiR defined by the fiell, a dimensiont < m < ¢, - log((k +
1)d), an encoding degreg: and a decoding degreg! /((k + 1)d)|, as well as aD, k, N)-RM-
RR construction algorithm with structural parametésize, block, degleft, degright, depth) reducing
D — D forsize < (N + [F™|) - [F|°M - |K|*™- A2, block < poly(k,d, A)-log |F|, degleft = T(A)2,
degright = T'(A) anddepth = 1. The algorithm output§d, ..., L. )-RM-RRs for

25\ 00 LNCD NN g 20
P i o) _ - _
5”"—1““{(%) () (w) ) (3)

andl . (6) = 5.
Proof. The algorithm is obtained as follows:

1. Generation of RM-LRs: LetD; be the Reed-Muller domain defined by the figldlimension
4, encoding degreg:+1)-d and decoding degre&. Invoke Lemma 8.2 to obtain(@, k, N)-
RM-LR construction algorithmd; with structural parametefsize; , block, degleft, , degright,)
reducingD D1 for size; < (N + [F|™) - |[F|°Y) - |K|*™, block, < poly(k,d) -
degleft, < |F|°" anddegright, < (N + [F|™) - |F|°® . [K|*". The lemma guarantees that
Ay outputs(S,min 1, lmaz.1)-RM-LRs for

A d-(k+1)
mind = WA TR =k |K |IF

2. Power reduction: Defineb = [log((k+1)-d+1)] andm = 4b. Letc¢y, > 1 be such
that m < colog((k + 1)d). By assumptiond > 4b(k + 1) - d. Let D be the Reed-
Muller domain defined by the field, dimensionm, encoding degreeé: and decoding de-
gree |d'/((k+1)d)]. Invoke Lemma 8.4 (1) om4, to obtain a(D,k, N)-RM-LR con-
struction algorithmA, with structural parameter&ize,, block,, degleft,, degright,) reduc-
ing D — D, wheresize, = size;, blocky = poly(k,d) - log |F|, degleft, = degleft; and
degright, = degright,. The lemma guarantees thés outputs(d,,in 2, lmaz 2)-RM-LRS, where
6min,2 = 5min,1 andlma:c,2 = lma:c,l-

andleq1(6) = 2.

3. Right degree reduction: Let « < 1 and7 : N — N with T(A) = ©(A) be as in
Lemma 8.5. Invoke Lemma 8.5 (1) a4, to obtain a(D, k, N)-RM-LR construction al-
gorithm A3 with structural parameterizes, blocks, degleft,, degright;) reducingD +— D,
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wheresize; = (N + [F|™) - [F|°Y - [K[*™ - A, blocks = poly(k, d) -
T(A) - degleft, anddegright; = T'(A). The lemma guarantees that the algoritdmoutputs
right regular(d,,n. 3, lmaz,3)-RM-LRs, for

B d-(k+1)
s o {1t (i ) e

andl; g, 3(0) = 5.

. Switching sides: Invoke Lemma 8.6 (1) otd; to obtain a(D, k, N)-RM-RR construction
algorithm A, with structural parameterize,, blocky, degleft,, degright,, depth,) reducing
D — D, wheresize, = (N + [F|™) - |[F|°Y - |K|*™ - A, block, = poly(k,d, A) - log |F],
degleft, = T'(A), degright, = T'(A) - degleft; anddepth, = 1. The lemma guarantees that
the algorithmA, outputs(d,,in 4, lmaz.4)-RM-RRS, for

- <k+1 16
b o ({5 i ) e

andl; g, 4(6) = %.

. Right degree reduction: Invoke Lemma 8.5 (4) o, to obtain a(D, k, N)-RM-RR con-
struction algorithm4; with structural parameter&izes, blocks, degleft-, degright;, depth;)
reducingD — D, wheresize; = (N+|F|™)-|F|°Y. [K[*™- A2, blocks = poly(k, d, A)-log |F|,
degleft, = T'(A)?, degright; = T'(A) anddepth; = 1. The lemma guarantees that the algo-
rithm As outputs(d,,in.5, lmaz,5)-RM-RRS, for

- (k+1 32
s s {0 (5 {5 e |

andlmaxg) (5) =

2
315 *

Inner RM-RPR Construction Algorithm

The inner RM-RPR construction algorithm is obtained sinyl¢o the way the outer RM-RR con-
struction algorithm is obtained. The parameters resenmioleet of Lemma 9.1, except for the size
parameter which is larger.

Lemma 9.2 (Inner RM-RPR construction algorithm). There is a global constantg > 1, as well
as afunctioril’ : N — N* with7(A) = ©(A) (same as in Lemma 9.1) as follows.

Let D be a Reed-Muller domain defined by a finite filda dimensionn > 4, an encoding

degreed and a decoding degreé. Let]l < k < El ' N and A be natural numbers. We assume that
the following condition holds:
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o d > co(k+ 1)dlog((k+ 1)d).

There is a Reed-Muller domaiR defined by the fiele, a dimensioni < ¢, - log((k + 1)d), en-
coding degreen (wherem is as in Lemma 9.1) and decoding degte€/((k + 1)d) |, as well as a

(D, k, N)-RM-RPR construction algorithm with structural parametgize, block, degleft, degright, depth)
reducingD — D for size < N - [F|°"™ . A2, block < poly(k,d, A) - log [F|, degleft = T(A)2,
degright = T'(A) anddepth = 1. The algorithm is uniform in the point association and oupu
(8mins lmaz)-RM-RPRs for

d'k Q(1) d Q(1) 1 Q(1)
< - om il
‘5m’“—max{<uw) () (s)

Proof. The algorithm is obtained as follows:

andl ;. (6) = 5.

1. Generation of RM-LPRs: Let D, be the Reed-Muller domain defined by the fi&ldlimen-
sion4, encoding degreék + 1) - d and decoding degreé. Invoke Lemma 8.1 to obtain a
(D, k, N)-RM-LPR construction algorithmt, with structural parameters

(sizey, blocky , degleft,, degright, ) reducingD — D, for size;, < N - [F|°"™), block; <
poly(k, d) - log [F|, degleft, < [F|°") anddegright, < N - |F|O(m The lemma guarantees that
A, is uniform in the point association and outpis,, 1, limaz,1)-RM-LPRS for

5 - d - k:+1 L md’
mint =N TR =k |IF [F|

andlq.1(6) = 2.

2. Power reduction: Defineb = [log((k+1)-d+1)] andm = 4b. Letcy, > 1 be such
that m < colog((k + 1)d). By assumptiond > 4b(k + 1) - d. Let D be the Reed-
Muller domain defined by the field, dimensionm, encoding degree: and decoding de-
gree |d'/((k+ 1)d)|. Invoke Lemma 8.4 (2) o4, to obtain a(D, k, N)-RM-LPR con-
struction algorithmA, with structural parameter&ize,, blocks, degleft,, degright,) reduc-
ing D — D, wheresize, = size;, blocky = poly(k,d) - log |F|, degleft, = degleft; and
degright, = degright,. The lemma guarantees that is uniform in the point association and
OUtpUtS(0ymin.2; linaz,2)-RM-LPRS, WhereS, i, o = 6min.1 @NAla0.0 = lnga -

3. Right degree reduction: Invoke Lemma 8.5 (3) ot to obtain a(D, k, N)-RM-LPR con-
struction algorithmA; with structural parameterSizes, blocks, degleft,, degright,) reducing
D — D, wheresize; = N - [F|°™ . A, blocks = poly(k, d)-log |F|, degleft; = T((A)-degleft,
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anddegright; = T'(A). The lemma guarantees that the algoritdmis uniform in the point
association and outputs,,;,, 3, l;maz,3)-RM-LPRS, for

| & (k4 1) U fmd |
5mz'n = ¥ ) V= ¥ )
s m{ F—% m(\/ R |1F|> T(A)l-a}

andlma%g((;) =

2

5

4. Switching sides: Invoke Lemma 8.6 (2) o4 to obtain a(D, k, N)-RM-RPR construction
algorlthm A, with structural parameter$|ze4, blocky, degleft,, degright,, depth,) reducing
D — D, wheresize; = N - |F|°U™ . A, block, = poly(k,d, A) - log |F|, degleft, = T(A),
degright, = T'(A) - degleft, anddepth, = 1. The lemma guarantees that the algoritdmis
uniform in the point association and outp(ds,;,, 4, l;na..4)-RM-RPRS, for

d/ (k_'_l 16
b s { £t iy ) e |

andl;e.4(8) = .

5. Right degree reduction: Invoke Lemma 8.5 (5) o4, to obtain a(D, k, N)-RM-RPR con-
struction algorlthmA5 with structural parameter@ze5, blocks, degleft, degright;, depth;)
reducingD — D, wheresize; = N - [F|°"™ . A2, blocks = poly(k,d, A) - log |F|, degleft, =

T(A)?, degright; = T(A) anddepth, = 1. The Iemma guarantees that the algoritimis
uniform in the point association and outp(ds,;,, 5, l;maz.5)-RM-RPRS, for

- w4 (k+1) 22
s <o { PR (i ) e

andl,,a. 5(0) =

2

9.3 Composition of The RM-RR and RM-RPR Construction Algorithms

Composing the outer RM-RR construction algorithm of Lemmniawith the inner RM-RPR con-
struction algorithm of Lemma 9.2 we get the following:

Lemma 9.3 (Final RM-RR construction algorithm). Let7 : N — Nt with T(A) = ©(A) (asin
Lemma 8.5). There is a polynomigl, -, ) as follows.

Let D be a Reed-Muller domain defined by a finite filda dimensionn > 4, an encoding
degreed and a decoding degre€. Let K C F be a subfield off. Letk, N and A be natural
numbers, where < k < &l — T(A).

We assume that the following conditions hold:
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o d>d-q(k,logd,A).

o logkd < me°W,
There is a Reed-Muller domaih with field F and the same dimension and encoding degree which
is at mostO(log(k + A) + loglogd), as well as &D, k, N)-RM-RR construction algorithm with
structural parameterssize, block, degleft, degright, depth) reducingD — D for size < (N +|F™])-

IF™" K™ - A4, block < poly(k,log d, A) - log |F|, degleft = T(A)?, degright = T(A)? and
depth = 2. The algorithm output&s,,in, lina: )-RM-RRS where

dEN D A S 1\ 20 4\ 1\ &M
o) ) ) o () )
{ 13 13 K] || A

and /g, (8) < 557

Proof. Let ¢y be the global constant from Lemma 9.1. Let us chapsech that:
d > co(k + 1)dlog((k + 1)d) (1)

(¢ should also satisfy requirement (2) below).

Invoke Lemma 9.1 on the domaiR, the subfieldK and the natural numbers N and A.
Let D, be the Reed-Muller domain guaranteed in the lemma. The doMahas dimension and
encoding degreé < m; < ¢glog((k + 1)d). Its decoding degree is!’/((k + 1)d)]. Let A, be
the (D, k, N)-RM-RR construction algorithm with structural parameters
(siz€out, blockeyt, degleftoy:, degrightout, depthoy) reducingD — D for sizeg,: < (N + |[F™|) -
IF|°W | K|*™ - A2, blockoy < poly(k, d, A) - log [F|, degleftou: = T'(A)?, degrighto, = T/(A) and
deptho,e = 1. The algorithm output&,in out, lmaz.out)-RM-RRS for

d'k Q1) 1 Q(1) d Q1) 1 Q(1)
5min ou < T oL — om L — N
’t—m“{(m) k) T R A

andloz,0ut (6) = 5.
We choosey such that
d/

(k+1)d

| | >ck+T(A)+ 1) -mylog((k+T(A)+1)-my) 2

Invoke Lemma 9.2 on the domai, and the natural numbets+ 7'(A), 1 and A. Let D be the
Reed-Muller domain guaranteed in the lemma. The dorfrdias the same dimension and encoding
degree which is at most log((k + T(A) + 1)my) = O(log(k + A) + loglogd). Let A;, be the

(D1, k +T(A), 1)-RM-RPR construction algorithm with structural paramster
(sizein, blockiy, degleft;,, degrightin, depthi,) reducingD; — D, for size;, < |F|°™) . A2, block;, <

66



poly(k,logd, A) - log |F|, degleft;, = T'(A)?, degright;, = T'(A) anddepth;, = 1. The algorithm is
uniform in the point association and outps,;,, in, limaz.in)-RM-RPRs for

d'A Q(1) o d’ Q(1) 1 Q(1)
| ﬂa"{(d\ﬂ) T (k:duw) (A)

andlaz,in(6) = 5.
Apply the composition lemma (Lemma 8.8) of,, and.A,,. Let A be the(D, k, N)-RM-RR

construction algorithm reducing — D obtained from the lemma. The algorithihhas structural
parameterssize, block, degleft, degright, depth) for:

o size < sizeyy - sizey, < (N + |[F™)) - |F|m0(l) KPP AR
e block = degleft,,; - block;, < poly(k,logd, A) - log |F|.
degleft = degleft,,. - degleft;, = T'(A)%.

degright = degright,,: - degright;, = T'(A)?.
e depth = depthy,: + 1 = 2.

The algorithm output&d,.in, lna: )-RM-RRs where

JENCD AN D 1\ 20 A ORI C)
Orin < i .= o) [ _—_ o) [ 2 _
—max{<uw) ’(\F\) moAw) T m) A

andlmax(é) = 50% : lma:c,out((so(l)) < 501(1) : =

9.4 Inner RM¢Had-LR Construction Algorithm

The inner RMHad-LR construction algorithm is obtained from the Had-ldRstruction in Lemma 8.3
and the transformation to RWMHad-LRs in Lemma 8.7. It is transformed to a constructiomatgm
that outputs right regular RMHad-LRs via the transformation of Lemma 8.5.

Lemma 9.4 (Inner RMoHad-LR construction algorithm). LetD® be an RMHad domain defined
by a finite fieldF, a dimensionn, an encoding degreé, a decoding degre€ and a prime subfield
L, where the extension degreeris= [F : L]. SetM = (™). Letl < k < M -7 —2andN be
natural numbers. LefA be a natural number.

There is aD°, k, N)-RMoHad-LR construction algorithm with structural parameters
(size, block, degleft, degright) for size < N - |[F|?™). A, block < O(k)-log|L|, degleft < A-[L|*®
anddegright < O(A). The algorithm is uniform in the tuple association and in¢neoding and list

decoding and outputs right regul&b, ;.. , ;.. )-RMoHad-LRs fors, ,;, < max {(‘T{‘)QU), (i)g(”}
and /g, (8) < 557
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Proof. The algorithm is obtained as follows:

1. Generation of Had-LRs. Let H be the Hadamard domain defined by the fikldnd the
dimensionM - 7. Let A, be the(H, k, N)-Had-LR construction algorithm guaranteed by
Lemma 8.3. The algorithid, has structural paramete(sze, , block, , degleft,, degright, ) for
size; < N - [F|M block; < O(k) - log |L|, degleft, < |L|°* anddegright, < N - |F|°).
The algorithm is uniform in the tuple association and in theagling and list decoding. It

OUtPULS(8,min 1, lmaz.1)-Had-LRS fOrd,,;,1 = 2,6/ﬁ andl,,..1(6) = &. The right degrees of

the vertices in the output do not depend on the input to therilhgn.

2. Transformation to RM ¢Had-LRs. Invoke Lemma 8.7 om; to obtain & D°, k, N)-RMoHad-
LR construction algorithrd,. The algorithmA, has structural parameters
(sizes, blocks, degleft,, degright,) for sizes < N - [F|°™) | blocks < O(k) - log ||, degleft, <
IL|°™ anddegright, < N - [F|°™). The algorithm is uniform in the tuple association and in

the encoding and list decoding. It outpUs,i,, 2, limaz 2)-RMoHad-LRS ford, im0 = 2.¢ \Tll

andl,,g,2(0) = % The right degrees of the vertices in the output do not deperttie input
to the algorithm.

3. Right degree reduction. Invoke Lemma 8.5 (2) omd, to obtain a(D°, k, N)-RMcHad-LR
construction algorithmA; that outputs right regular RbMHad-LRs. The algorithm4; has
structural parametesizes, blocks, degleft,, degright,) for size; < N - |F|°?) . A, blocks <
O(k) - log |L|, degleft, < A - [L|°* anddegright; < O(A). The algorithm is uniform in the
tuple association and in the encoding and list decodinguti@s (6,,n 3, limaz,3)-RMoHad-

LRs for d,,;n,3 < max {(\Tll)ﬂ(l)’ (%)9(1)} andl,nae3(6) < 5ok

O

9.5 Composition of The RM-RR and RMvHad-LR Construction Algorithms

Composing the composed RM-RR construction algorithm of ioen®.3 with the inner RMHad-
LR construction algorithm of Lemma 9.4 we get the following:

Lemma 9.5 (Final RMcHad-LR construction algorithm). Let7 : N — Nt with T(A) = ©(A)
(asin Lemma 8.5). Let(-, -, -) be the polynomial from Lemma 9.3.

Let D° be an RMHad domain defined by a finite fiekl a dimensionn > 4, an encoding
degreed, a decoding degred’ and a prime subfield. C F. LetK C F be a subfield of. Letk, NV
andA be natural numbers, whete< k < &l — T(A).

We assume that the following conditions hold:
o d>d-q(k,logd,A).

e logkd < me°W,
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There is & D°, k, N)-construction algorithm with structural parametéesze, block, degleft, degright)
for size < (N + [F]) - [F|™" " Fpobmalosd) e i2m plock < AOW) . k. log [L|, degleft < |L|*7"*,
degright < A9 The algorithm outputs left and right regulés, ..., ... )-edge reading bipartite
locally decode/reject codes, where

1 Q1) d'EA (1) 1 (1) 1 Q1)
P el o(1) | o) . —_ —
5”"—““X{<m4) w0 () () ()

andlmam(5> S 501(1) .

Proof. Let D be the Reed-Muller domain associated viith Invoke Lemma 9.3 on the domaip,
the subfieldK and the natural numbeks N andA, to obtain a Reed-Muller domaiR; with field

[F and dimension and encoding degtee= O(log(k+A)+loglogd), as well as 4D, k, N)-RM-RR
construction algorithrmd,,,; with structural parametefsize,:, blockot, degleft,,:, degrighto:, depthoy:)
reducingD +— D, for sizeo < (N + |F™[) - [F|™" - [K[*™ - A%, blockeys: < poly(k,logd, A) -
log |F|, deglefto,: = T(A)?, degrighto,: = T(A)? anddepth,,: = 2. The algorithm outputs
(Omin.outs lmaz.out)-RM-RRS where

AN\ D AN SO 1\ & 4\ 1\ %M
() ) () o ()
t { || || K] || A

andlmax,out (5) S 50% .

Let D be the RMHad domain associated wit; for the subfieldL. Denoter = [F : L.
Denotek’ = degleft,,:-k+depthou,:+1. Let us assume without loss of generality thia (zjj) T2
and thato > 2 (so, in particular, the decoding degreeldfis larger thar).

Invoke Lemma 9.4 on the domal?y and the natural numbeksand|F|“*" to obtain & D¢, &/, [F[“*)-
RMeoeHad-LR construction algorithm,;,, with structural parametefsize;,, block;,, degleft;,, degright;,)
for size;,, < \F|p°|Y(k’A’1°gd), blocki, < AW . k. log [L|, degleft;, < A - \]L\Aom'k anddegright;, <
O(A). The algorithm is uniform in the tuple association and ineéheoding and list decoding, and
outputs right regulafd,.in.in, lmaz.in)-RMoHad-LRs WhereS, ,;,, i, < max {(ﬁ)g(”, (i)ﬂ(l)} and
Umaz,in(0) < (;olw-

Apply Lemma 8.9 on the outer algorithay,,, and the inner algorithma;,, to obtain & D°, k, N)-
construction algorithrod with structural parametersize, block, degleft, degright) for size < (N +
) [ FPo e Alogd) g 2m plock < AOW). k. log |L|, degleft < [L|*”"*, degright < AO®).
The algorithm outputs left and right regul@,...., l.....)-edge reading bipartite locally decode/reject
codes, where

1\20 JEAN 2O 1\ /120
rin < il oQ) | om ., [ — -
—““X{QLO . m) " \K) \a

andl,q. (9) < o0y O
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9.6 Setting Parameters

In this section we construct the bipartite locally decoejett code we want:
Corollary 17 (Edge reading bipartite locally decode/rejet code). Let n be a natural number.
Let D be the domain associated with the set of binary strifigsl}". There exists a constant
0 < a < 1 such that the following holds. Létand N be natural numbers such that< (log n)®.
Letm < e < 1. Then, for every collection d@f-tuples

<7;1’1, .. 77;1,k>7 ce <iN71, . ,iN,k> c [n]k

there is a (left and right) regulafd, ., ... )-bipartite locally decode/reject code, wheig;, < ¢
andl,,q.(6) < 6-°U. The size of the code {&V + n) - n°") and the block length i% - poly(2). The
left degree is at most*P°¥(2). The right degree is at mosbly(Z). Moreover, the alphabet of the
right vertices is of sizgoly(1).

Proof. We will choose a constarit < a < % later. Let us choose the parameters of the<Rigd
code we will use with respect te. In all that follows we omit ceil and floor notation when weeef
to natural numbers in order to ease the reading.

Let h = 20s™" andm = (logn)'~® so thath™ > n. Assume without loss of generality that
m > 4. Letd = (h — 1)m. Setd’ = d - q(k,log d, A) whereq is as in Lemma 9.5.

SetA < (1)°M large enough so that the terﬁi)m) appearing in the expression féy,;, in
Lemma 9.5 is at most. LetL = GF(p) wherep < (1)°® is a prime number which is large
enough so the terr(’nﬁ)‘m) appearing in the expression féy,;,, in Lemma 9.5 is at most. Let

. Q) o .
K = GF(p%) whereg; is large enough so that the tern? (V) - (lT11<|> appearing in the expression
for 0,,;, In Lemma 9.5 is at most. LetF = GF(p?92) whereg, is large enough so that the term
1)

! Q . . . . .
om. % appearing in the expression iy, in Lemma 9.5 is at mostandk < Ll —7(A)

(whereT is as in Lemma 9.5). Denote = ¢, - g». LetD® = (F™ x L",L, D¢, .. Dg,.) be the
determined RMHad domain. Note that we can do all the above and have:

m

m < (logn)=®

e d< d < 2(logn)a+0(loglogn)

|F‘ < 2(log n)*+O0(loglogn)

|K| < 20(loglog n)

IL|, A < poly(3)

From Lemma 9.5 we get a construction algoritinwith structural paramete(size, block, degleft, degright)
for:
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O(a)

size < (N 4 n) - not) . 2(losn)

block < k - poly(£)

degleft < k-poly(z)

degright < poly(%)

O(a)

Let us chooser so that the(°s™™"*’ term appearing in the expression for the size’d.

The construction algorithm outputs left and right regutay;,,, /... )-edge reading bipartite lo-
cally decode/reject codes, féy,;, <  andl,,..(6) < 6-°M. Looking into the construction reveals
that the alphabet of the right verticedlis

Fix a setd C F of size|H| = h such thatd{™ C F™ and|H™| > n. Pick an arbitrary vector
a € 7. Let us identify[n] with distinct elements$z, @) € H™ x L". Let us consider the encoding
of {0,1}" that sends strings € {0, 1}" to codewords € D¢ . such that for every € [n] we have
f(i) = z;. Note that this is possible by our choicedf

Given a collection of sizév of k-tuples

<Z'171, C.. ,Z'17k>, cee <'L'N71, C.. 7'iN,k> c [n]k
we invoke.A on the corresponding collection éftuples inF™ x L™ to obtain the bipartite locally
decode/reject code we want. O

10 Construction of RM-LRs and RM-LPRs

In this section we present algorithms for constructing RMRs and RM-LRs proving Lemma 8.1
and Lemma 8.2. The idea of the construction algorithms is¢ate a bipartite graph, in which
side A corresponds to low degree manifoldgfifi, each passing through an input tuple, and gide
consists of all the points ifi”™. This way each4 vertex has a tuple that is associated with it, and
eachB vertex has a point that is associated with it. We put edgegdmatA vertices corresponding
to manifolds andB vertices corresponding to points on them. Assignment$ wrtices naturally
project onto assignments to their neighboringertices.

A correct encoding of a polynomi&) : F" — T assigns eacl® vertex the value of) on the
point associated with th& vertex, and assigns eachvertex the restriction of) to the manifold
associated with thd vertex. This way each vertex can evaluat@ on the tuple associated with it,
and eachB vertex can evaluat@ on the point associated with it. Note that the restrictiord)ab
any manifold of a low degree is a polynomial of low degree.

To show that the construction has a list decoding propemryise dow degree testingheorem
for sub-constant error. Specifically, we use the low degestirtg theorem of [27], and choose the
manifolds through the input tuples as to satisfy the coodgiof this theorem. The advantage of
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the theorem of [27] is that it can be used (together with antiaél idea from [26]) to yield con-
structions of small size, as required in Lemma 8.2. For Ler@rhahat does not require particularly
small size, we could have used other low degree testingeheoas well [3, 30].

10.1 A Low Degree Testing Theorem

We specify the variant of the low degree testing theorem @f j{2e use. Details on the relation
between this variant and the original test of [27] can be ¢bunAppendix B.

The Randomness-Efficient Subspace vs. Point testLet [F be a finite field. Letn andd’ be
natural numbers, where degree at mtss considered “low degree”. L&t be a subfield oF.

Fix a functionf : F"" — F we wish to test. Iff were a polynomial of degree at ma&t then for
anyz, i, y» € F™™, the functionp(to, t1,t2) = f(toZ'+ t14) + t27>) would have been a polynomial
in three variables of degree at masoverF.

Assume access to an orackewhose goal is to convince us thatis of degree at most'. For
everyz € F™ andy, y» € K™, the oracled provides a three-variate polynomial of degree at most
d', which is supposedly(to, t1,t2). The oracle4 may be probabilistic, meaning that its answer
may depend not only of, 1, >, but also on additional randomness.

A test for checking thaf is consistent with a polynomial of degree at mdsis described in
Figure 8.

LDT/A

1. Pick uniformly at random three vectofs, i}, 7>) € F™ x K™ x K™. Using the oracle
access to4, obtain a three-variate polynomial(to, t1,t2) overF of degree at most’
for (Z, 41, ¥=) [p* is supposedly the restrictign(te, t1,t2) = f(toZ + t171 + t21s)].

2. Pick uniformly at randont, # 0,t;,t; € F. Setzy = tozZ + t1y7 + t272. If indeed
p*(to, t1,t2) = f(Z), accept Otherwisereject

Figure 8: Randomness-Efficient Subspace vs. Point Low [@efgster
This test is similar to the test in [27]. The following foll@drom a slight strengthening of the
statement of [27] appearing in [26] (see Appendix B):
Theorem 18 (Analysis of low degree test, [27, 26]Foré > m (f/% + ﬁ), for any function
f : F™ — T, there arel < % polynomialsQ;,...,Q; : F™* — F of degree at most’, such
that for any oracleA the following holds: the probability, over the randomne$s4oand over

the randomness of the tester, ttab7/* accepts, althoughf (%) ¢ {Q1(%), ..., Q:(%)} (where
Zp € F™ is picked by the tester; see Figure 8), is at mO$#).
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10.2 The Manifold vs. Point RM-LPR Construction Algorithm

The purpose of this section is to prove Lemma 8.1. We desenbBM-LPR construction algo-
rithm that is uniform in the point association, called theriald vs. Point RM-LPR construction
algorithm. We specify the properties of the algorithm in Sediion 10.2.1 and analyze it in Subsec-
tion 10.2.2.

The description of the algorithm will start with specifyitige uniform part of the construction
(i.e., the part that is common to all outputs of the algorithamd proceed by presenting the compo-
nents that are input-specific.

Construction 1 (Manifold vs. Point RM-LPR algorithm). We use the notation and assume the
restrictions appearing in Lemma 8.1.

We define a uniform structure and uniform point associat®fodows:

A vertices. The vertex setl consists of quadrupletS, 7, i1, v») for i € [N] (indicating an input
tuple) and®, 1, y» € F™ (needed for the low degree test). We 8et= A (for left evaluators) and
Q = " (recall that we setv = 4).

B vertices. The vertex seB consists of all point§ € F™. For everyb € B, we sepnt(b) = b.

Alphabets. The alphabet:, is the domairD defined by the finite field, the dimensionv, the
encoding degreék + 1) - d and the decoding degre#. The alphabeE is the domain associated
with the seff. Let us denot& 4 = (F“,F, X4 cne, Lagee) @aNAE5 = ({11 F, X5 ene, 2B dec) -

Given as input a collection of siz€ of k-tuples:
(Zr1s s Fig)s e (BN, Evg) € (F™)F
The construction algorithm constructs an RM-LPR
G=((A,B,E),V,Q, Y4, Xp, sat = true, label, proj, tup, eval, pnt, evalp)
for the k-tuples as follows:

Associating A vertices with manifolds. A vertexa = (i, 7, 41, 7>) € A is associated with théth
input tupletup(a) = (%;1,...,Z;x), and corresponds to a manifold through thth tuple defined
as follows. Fix arbitrarilyk + 1 different scalars in the field,, . . ., g, ¢x+1 € F. Letc; z : F — F™
denote the single curve of degre¢hat goes throught'; ;, ..., 7, andz atq, . . ., gk, qe+1:

—

CGalq) =Tia, .., ciglar) = Tig, Cig(Qryr) =
The vertex: is associated with the manifold of degree at niost 1
fa(t, to, t1,t) =to - ciz(t) +t1 - 41 + L2+ Yo

where we also denote, = {u.(t,to,t1,t2) | t,to, 11,2 € F}. Note that each € [N] has the same
number ofu € A with tup(a) = (Z;1, ..., Tix)-
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Edges. We connect every vertex= (i, 7, 1, 7») € A to points inB that are on the manifold
1to- The choice of the points is done as to match the low degréent&ibsection 10.1: for every
teF\{q,...,q}andty #0,t,t, € F, thereis an edge = (a,b) € E connecting: to the point
b=ty ciz(t) +1t1-U1 +ta-Uo € F™ 0Onpu,. We setabel(e) = (t,to,t1,t2) € Q.

Projection. For every vertexa € A, assignment, € X4 4. (Which is aw-variate polynomial
over the fieldF) and label¢ € Q (which is a point inF"), we letproj(a, 0., &) be the element in
YB.ene = 2 B.4ec COrresponding to the field element(&).

Point evaluation. For every vertex € B and assignment, € Xp 4., We letevalp(b, o) be the
field element corresponding tg.

Tuple evaluation. Denotep; = (¢1,1,0,0),...,pkx = (¢x, 1,0,0) € F“. For every vertex: € A,
the tupletup(a) is on the manifold., in positionsp,, ..., p, i.e.,tup(a) = (a(P1), - - -, ta(Dk))-
For every vertexa € A and assignment, € X4 4. (Which is a polynomial on the manifojd,),
the evaluation of: on its tuple is given by the evaluation@f on the pointsy, .. ., pi, i.e., we let

eval(a,04) = (0a(P1), - - -, 0a(Dk))-

10.2.1 Properties of The Manifold vs. Point RM-LPR Construdion Algorithm

Note that the algorithm is uniform in the point associatiduditionally, the algorithm is efficient,
and runs in time polynomial iff™| and N .

e Size.Onallinputs, the outputis of sizize = N-[F|*"+|F™"|+N-|[F|*"-|F|°Y = N.|F|°"™.

e Block length.On all inputs, the output has block lenditock = log |X 4 enc| = poly(k,d) -
log |F|, since the number of monomials in a polynomial witfil ) variables of degree at most
(k + 1)d is poly(k, d), and for polynomials over a fieldl, there ardF| possible coefficients
for each monomial.

o Left degreeOn all inputs, the output is left regular with left degrgleft = (|F| — k) - (|]F| —
1) - [F* = 7%,

e Right degree.On all inputs, the output is right regular, and its right degisdegright =
%-degleft =N- \F\O(m). To see why right regularity holds, notice that the disttidinduced
on B by picking uniformly and independently at random a veriex A and a neighbor of
a in the output graph, is uniform: this is the distribution defil onF"™ by picking uniformly
and independently at randoie [N], 7, 41,92 € F", t € F\ {q1,...,qx}, to # 0,t1,t5 € F,
and computingdy - ¢; z(t) + t1 - 71 + to2 - yo. By definition of the curves, z, for everyi € [N],
foranyt € F\ {q,...,q}, for a uniformly distributedz € F™, we have that; z(t) is
uniform in F. Hence, for anyt, # 0,t,t; € F and anyy, o € F™, the distribution of

to - ¢iz(t) +t1 - th + t2 - > is uniform onE™.
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10.2.2 Analysis of The Manifold vs. Point RM-LPR Algorithm. Completing The Proof of
Lemma 8.1

To complete the proof of Lemma 8.1 it remains to prove thatatgerithm output$d,,.in, lma: )-RM-
LPRs for thed,,,;,, andl,,,, stated in the lemma.

Fix an input to the construction algorithm
(Zr1s s Fig)s e (BN, Tvg) € (F™)F
Denote the output of the algorithm by
G=((A,B,E),V,Q, Y4, Xp, sat = true, label, proj, tup, eval, pnt, evalp)

Let us prove encoding and list decoding:

For a functionf : F* — F and a vertex. = (i, Z, 41, J2) € A, let the restriction off to y, be
fiu. : F* — F defined by assigning evety, t, t1,t,) € F*
#(t

f\ua(tatmtl, tz) (to G, ) +t - U1+t ﬁz)

DenoteD = (F™ F, Dopne, Daee)-

Encoding. Assume a polynomigf € D.,.. For every vertex € B, takeC(b) to be the element
in 5., cOrresponding tg'(b). Define an assignmeidty : A — X4 ., by letting every vertex

a € Abe assigned's(a) = fiu, € Xa.enc. Note that bothC'y, Cp can be constructed efficiently
given f, and that every edgec F is satisfied and readsin G underC'y andC'z.

List Decoding. Fix an assignment’s : B — X 4... Fix a reald such thav,,;, <4 < 1.

Invoke the low degree testing theorem given in Theorem 1&(e/K = ) for the function
fs : ™ — T defined for everyr € F™ by letting fz(Z) be the field element corresponding to
Cp(Z). Letfi, ..., fi € Dy be thel <1,,..(9) polynomials guaranteed by the theorem.

Fix an assignmer@'y : A — X4 gec.

Proposition 10.0.1.When picking uniformly and independently at random a vertex A and an
edge coming out of it = (a,b) € E, the probability that is satisfied inG underC, C'z, although

fe(b) & {fi(b),..., fi(b)} is at mostO(9).

Proof. There is a probabilistic oracld, such that picking uniformly at random a veriex A and
an edge coming out of ¢ = (a, b) € E and checking whetheris satisfied inj underC4 andCp is
equivalent to performind. D775 for the oracleA. To see this, considgrD7T 754 when replacing
its step 1 by the following procedure (that implicitly definine oracleA):

e Pick uniformly at random a vertex= (i, ¥, 1, o) € A.
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e Pick uniformly at random a scalarc F \ {q1, ..., qx}-

e Output the three vector& = ¢; z(t), 41, ») together with the polynomigh*(to, t1,t2) =
Ca(a)(t,to, t1,t2) Of degree at most'.

For everyt € F\ {q1,...,qx}, for a uniformly distributeds € F™, the distribution of the point
¢;.z(t) is uniform inF™. Hence, the distribution of2' = ¢; z(t), 41, ¥2) is uniform inF™ x F™ x F™.
The lemma follows from Theorem 18 fét = F.

m[of Proposition 10.0.1]
Proposition 10.0.2.Leta € A such thatCu(a) ¢ { fiju.,-- - fi ;- When picking uniformly at
random an edge coming out of e = (a,b) € E, the probability thate is satisfied inG under
Cya,Cpandfg(d) € {fi1(b),..., fi(b)}isat mostO(9).

Proof. Write a = (i, 7,4, ,). For everyj € [l], the polynomialsCs(a) and f;,,, aredifferent
w-variate polynomials of degree at ma@ét+ 1) - d’ overF. Thus, by the Schwartz-Zippel lemma,

they can agree on at most a fraction &£ of the points inF”. Hence,Cla(a)(t,to, t1,t2) €

|IF|
: (k+1)
{ filpa (. b0, t1, 82), - - -, fuua (8, o, 1, t2) } for at most a fraction of- TT

F.

of the scalars, ¢y, t1,ts €

By construction, picking uniformly an edge coming outaof equivalent to picking uniformly
and independently at randotve F \ {q,...,qx}, to # 0,1, 12 € F and takinge = (a,b) € E for
b = toc; z(t)+t191+t2y>. Moreover, whenever = (a, b) is satisfied ig underCy, Cz andfp(b) €
{f1(b), ..., fu(b)}, itfollows thatCy(a)(t, to, t1, t2) = fB(D) € { fijua (t,to,t1,t2), . - -, fiua(t, to, tr, t2) }
We conclude that, when picking uniformly at random an edgeing out ofa, e = (a,b) € E,
the probability thate is satisfied inG underC4,Cy and fz(b) € {fi(b),..., fi(b)} is at most

%.(/T;Il_): ‘FI‘Fi = O(6) (for § > m’ﬁkl) m[of Proposition 10.0.2]

By Proposition 10.0.1 and Proposition 10.0.2 and usingrigtlarity, when picking uniformly
at random an edge = (a,b) € F, the probability that is satisfied inG underC,, Cz, although
a) ¢ {flwa, . fzma} is at mostO(d). The list decoding property follows noticing that when
the edgee is satlsfled ing underC 4 andC, andCa(a) € { fiju,- - - fij }» We have that reads
oneoffy,..., fiinGunderCy, Cg.

This concludes the proof of Lemma 8.1.

10.3 The Manifold vs. Point RM-LR Construction Algorithm

The purpose of this section is to prove Lemma 8.2. We desanti®M-LR construction algorithm,
called the Manifold vs. Point RM-LR construction algorithirhe algorithm is along the same lines
as the Manifold vs. Point RM-LPR construction algorithm.eTdifference between the two comes
from savings in the size parameter of the RM-LR algorithmedéhsavings are obtained by reducing
the number of manifolds using ideas from [27, 26].

We will need the following lemma from [26]:
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Lemma 10.1 (Balancing curves, Lemma 7.1 in [26])For a finite fieldF, a natural numbernn,
natural numbersV andk < |F|, an accuracy parametdr < ¢ < 1 and a collection of sizéV of
k-tuples:

(Z1s ey T1k)s - TN, - Tvg) € (F™)F
there is an algorithm that runs in time polynomial|ii"|, N andé, and constructsV - C' curves
Ci1y. .- cne : F — F™ of degree at most, whereC' = [Z717 (i.e., there are at mosy + =]
curves). The curves have the following properties for fixkstiqict) scalarsy, . . ., ¢, € F:

1. (“Curves pass through given points”) Foreverg [N],j € [C], ¢ij(q1) = Ziq, .-, (@) =
2. (“Curves covelf™ almost uniformly”) The probability distribution induceah@™ by picking

uniformly and independently at randoine [N], j € [C] andt € F\ {¢1,...,q}, and
computinge; ;(t) is e-close in the;-norm to uniform ovei™.

The presentation of the RM-LR algorithm and its analysisely follow the presentation of the

RM-LPR algorithm.
Construction 2 (Manifold vs. Point RM-LR algorithm). We use the notation and assume the

restrictions appearing in Lemma 8.2.
Given as input a collection of siz€ of k-tuples:

<l_"171, .. ,f17k>, RN <l_"N71, .. 7fN,k> c (Fm)k
The construction algorithm constructs an RM-LR
G={((AB,E),V,Q,X4, Xpg, sat = true, label, proj, tup, eval)

for the k-tuples as follows:

A vertices. Sete = Wl‘ andC = (%} asinLemma 10.1. The vertex setonsists of quadruplets
(i, 7,71, y2) for i € [N] (indicating an input tuple); € [C] (indicating a curve through the input
tuple) andy;, o € K™ (needed for the low degree test). We ®Bet= A (for left evaluators) and

Q = " (recall that we setv = 4).
B vertices. The vertex seB consists of all pointg’ € F™.

Alphabets. The alphabet:, is the domairD defined by the finite field, the dimensionv, the
encoding degreék + 1) - d and the decoding degre#. The alphabek is the domain associated
with the seff. Let us denot& 4 = (F*,F, X4 cne, Ladec) @aNAE5 = ({11 F, X5 ene, 2B dec) -
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Associating A vertices with manifolds. Invoke the algorithm from Lemma 10.1 Bhm, N, k,
¢ and the CO"eCtiC)r(le, R ,ka), RN <Zl_§"N,1, ce fN,k> € (Fm)k Let C11y---5sCN,C : F — F™
denote the curves outputted by the algorithm.

A vertexa = (i, 7,71, 92) € A is associated with théth input tupletup(a) = (Z;1,...,Zik),
and corresponds to a manifold of degree at most 1 through thei'th tuple defined as follows

pa(t to, t1,te) =to - cij(t) +t1-th +ta - %o

where we also denoie, = {1 (t, to, t1,t2) | t,to,t1,t2 € F}. Note that eacli € [N] has the same
number ofu € A with tup(a) = (Z;1, ..., Tix)-

Edges. We connect every vertex= (i, 7,71, 72) € A to points inB that are on the manifold
1q. The choice of the points is done as to match the low degréent&ubsection 10.1: for every
t € F\{q,...,qx} andty # 0,1;,t; € F, there is an edge = (a,b) € E connecting: to the point
b=ty C@j(f) + 1 - ?jl + g - ?jg € F™on - We Se'label(e) = (t, to,tl,tg) e Q.

Projection. For every vertexa € A, assignment, € X4 4. (Which is aw-variate polynomial
over the fieldF) and label¢ € € (which is a point inF™), we letproj(a, o,, ) be the element in
Yp.enc = 2B.dec COrresponding to the field elemeni(&).

Tuple evaluation. Denotep; = (¢1,1,0,0),...,p5x = (g, 1,0,0) € F“. For every vertex: € A,
the tupletup(a) is on the manifold., in positionsp,, ..., P, i.e.,tup(a) = (o (P1), - - -, ta(Pk))-
For every vertexa € A and assignment, € X4 4. (Which is a polynomial on the manifojd,),
the evaluation ot on its tuple is given by the evaluation@f on the pointsy, .. ., pi, i.e., we let

eval(a,o,) = (0,(P1)s - -+, 0a(Pk))-
10.3.1 Properties of The Manifold vs. Point RM-LR Construcion Algorithm
The algorithm is efficient, and runs in time polynomial 1’| and N.

Size.On all inputs, the output is of sizize = N - C - |[K™|* + ||+ N - C - [K™|* - [F|°Y) =
(N + [F™)) - [F[O0 - K",

Block length.On all inputs, the output has block lendtlock = poly(k, d) - log |F|.

Left degreeOn all inputs, the output is left regular with left degrigleft < |IF|O(1).

Right degreeThe output is not necessarily right regular. We bodeglight < (N + |[F™|) -
|F‘O(1) . |K‘2m
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10.3.2 Analysis of The Manifold vs. Point RM-LR Algorithm. Completing The Proof of
Lemma 8.2

To complete the proof of Lemma 8.2 it remains to prove thatatgerithm output$d,,.in, lmae ) -RM-
LRs for the,,;, andl,,.. stated in the lemma.

Fix an input to the construction algorithm
(Zr1s s Tig)s e (BN, Tvg) € (F™)F
Denote the output of the algorithm by
G={((AB,E),V,Q,%X4, Xp, sat = true, label, proj, tup, eval)

Let us prove encoding and list decoding:

For a functionf : F* — F and a vertex: = (i, j, 41, %2) € A, let the restriction off to y, be
fiu. : B — F defined by assigning evety, t, t1,t,) € F*

flMa (t7 t07t17t2) = f(t(] . Cl,j<t> + tl : Zjl + t2 . Zj2)

DenoteD = (F™,F, D.pne, Dyee)-

Encoding. Assume a polynomiaf € D.,.. For every vertex € B, takeCz(b) to be the element
in 5., cOrresponding tg'(b). Define an assignmeidty : A — X4 ., by letting every vertex

a € Abe assigned's(a) = fiu, € Xa.enc. Note that bothC'y, Cp can be constructed efficiently
given f, and that every edgec F is satisfied and readsin G underC'y andC'z.

List Decoding. Fix an assignment’s : B — X 4... Fix a reald such thav,,;, <4 < 1.

Invoke the low degree testing theorem given in Theorem 18 functionf : F™ — T defined
for everyx € F™ by letting fz(%) be the field element correspondingdg (z). Let fi,..., f; €
Dgec be thel < 1,,,.(0) polynomials guaranteed by the theorem.

Fix an assignmen’y : A — X4 gec.
Proposition 10.1.1.When picking uniformly and independently at random a vertex A and an
edge coming out of it = (a,b) € E, the probability that is satisfied inG underC, C'z, although

fe(b) & {fi(b),..., fi(b)} is at mostO(9).

Proof. ConsiderLDT/#4 when replacing its step 1 by the following procedure (thaplinitly
defines the oraclgl):

e Pick uniformly at random a vertex= (i, j, 71, 92) € A.

e Pick uniformly at random a scalarc F \ {q1, ..., qx}-
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e Output the three vector&” = c¢; ;(t), 71, v2) together with the polynomigh*(to, t1,t2) =
Ca(a)(t, to, t1, t2) Of degree at most.

By the properties of the curves;, the distribution of the point; ;(¢) is e-close (in the;-norm) to
uniform onF™. Hence, the distribution o2 = ¢, ;(¢), 41, ¥2) is e-close (in thd;-norm) to uniform
onF™ x K™ x K™. The lemma follows from Theorem 18 noticing that .

m[of Proposition 10.1.1]

Similarly to Proposition 10.0.2, relying on the low degré¢h® curves, we have the following:
Proposition 10.1.2.Leta € A such thatC4(a) ¢ {fiju.,-- - fiu ;- When picking uniformly at
random an edge coming out of e = (a,b) € E, the probability thate is satisfied inG under
Ca,Cpandfg(b) € {fi(b),..., f1(b)} is at mostO(9).

By Proposition 10.1.1 and Proposition 10.1.2 and usingrgtlarity, when picking uniformly
at random an edge = (a,b) € E, the probability that is satisfied inG underC,, Cz, although
Ca(a) & {fijpa>---» fuua } 18 @t mostO(8). The list decoding property follows noticing that when
Ca(a) € { fijpas---» fuua | » We have that reads one off, ... ., f;in G underCy, Cp.

This concludes the proof of Lemma 8.2.

11 Construction of Hadamard Left Readers

In this section we present an algorithm for constructing #HRd proving Lemma 8.3. The idea
of the construction algorithm is to create a bipartite graphwhich side A corresponds to low
dimensional linear subspaceslifi’, each passing through an input tuple, and sitleonsists of
points inF™. This way each4 vertex has a tuple that is associated with it. We put edgesdastA
vertices corresponding to subspaces &ndertices corresponding to points on them. Assignments
to A vertices naturally project onto assignments to their naogimg B vertices.

A correct encoding of a linear functioh : F — F assignsL to the points inB, and assigns
the restrictions of_ to the subspaces to thevertices. This way eacH vertex can evaluaté on
the tuple associated with it. Note that the restrictiorL @b any linear subspace is a linear function.

To show that the construction has a list decoding propemyse dinearity testingtheorem for
large finite fields. The linearity test we need is in the formagdrojection test. Its analysis follows
from the analysis of the more standard Blum-Luby-Rubinfekt [11]. Specifically, we build upon
the analysis for large finite fields by [19]. The analysis ieggithat the field is prime and assumes
that the function igolded(details follow).

11.1 A Linearity Testing Theorem

Folding. Let[F be a finite field. Letn be a natural number. Fix a functigh: F* — F we wish to
test. If f were a linear function, then:
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1. (Multiplication by scalar)For everyz € F™ andt € F, f(t-2) =t - f(2).

2. (Addition)For everyz, ij € F™, f(Z+ %) = f(2) + f(¥).

We can ensure that item 1 holds by usfolyling: consider the equivalence relatienon F, where
Z~ygifandonlyif 2=t -y forsomet # 0 € F. Let R C F™ be a set of representatives of the
equivalence classes. For evahye ™, let [Z] be the representative of the class that containa
foldedfunction is a function that is defined on the representatﬁesR — F. A folded function

f defines a functiory : F" — I that satisfies item 1 by assigning evary= ™ the appropriate
multiple of the value of its representative, i.e.Zif= t - [Z], thenf(Z) =t - f([Z]).

Linearity Testing (projection form). Let f: R — . Assume access to an orackewhose goal
is to convince us thaf is linear. For every’ € F™ andy € F™, the oracleA provides a bi-variate
linear function, which is supposedfi(t,Z'+ t2%). The oracle4 may be probabilistic, meaning that
its answer may depend not only érandy, but also on additional randomness.

A test for checking thaf is consistent with a linear function is described in Figure 9

LmTestf A

1. Pick uniformly at random two vectors, ) € F™ x F™. Using the oracle access to
A, obtain a bi-variate linear functioii(ty,t,) overF for (Z,¢) [I* is supposedly th¢
restriction f (t12' + t27)].

A\1%4

2. Pick uniformly at random,t, € F. SetZ, = ;2 + toy. If indeedi*(t1,t2) = f(Zo),
accept Otherwiseryeject

Figure 9: Linearity Tester (Projection form)

The following follows from the analysis of [19] (see Appexd: for details):
Theorem 19 (Analysis of linearity test, [19]). There are some naturah, and Fj, such that for
everym > mg and a prime finite field® with |F| > Fp, the following holds. LeR C F™ be a set of
representatives needed for folding.

For o > 2,6/“%—‘, for any functionf: R — T, there arel < 5% linear functionsL,...,L; :

F™ — IF, such that for every probabilistic oracld:

The probability, over the randomness4tnd over the randomness of the tester, thiat Te st/ vi‘
accepts, althougtf (Zy) & {Li(%o), ..., Li(Zo)} (Wheref : F™ — F is the function defined by
andi, € F™ is picked by the tester; see Figure 9), is at mO$b).
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11.2 The Had-LR Construction Algorithm

The purpose of this section is to prove Lemma 8.3. We deseridad-LR construction algorithm
that is uniform in the tuple association and in the encodimgylest decoding. We specify the prop-
erties of the algorithm in Subsection 11.2.1 and analyze $ubsection 11.2.2.

The description of the algorithm will start with specifyitige uniform part of the construction
(i.e., the part that is common to all outputs of the algorithamd proceed by presenting the compo-
nents that are input-specific.

Construction 3 (Had-LR construction algorithm). We use the notation and assume the restric-
tions appearing in Lemma 8.3.

We define a uniform structure and uniform tuple associat®fodows:

A vertices. The vertex setl consists of triples:, Z, /) for i € [N] (indicating an input tuple) and
Z,y € F™ (needed for the linearity test). We dét= A (for left evaluators). The uniform tuple
associatortupi : A — [IN] assignesi, z, i) the index.

Setw = k + 2 and(2 = F".
B vertices. The vertex seB consists of all representativese R.

Alphabets. The alphabet:, is the Hadamard domai® defined by the finite field and the
dimensionw. The alphabet .z is the domain associated with the d&t Let us denote, =
<Fw7 IF, ZA,enca ZA,dec> andZB = <{1}7 IF, ZB,enca ZB,dec)-

Given as input a collection of sizZ€ of k-tuples:
(Z1s s T1k)s - TN, - Tvg) € (F™)F
The construction algorithm constructs a Had-LR
G={((A,B,E),V,Q, %4, Xp, sat = true, label, proj, tup, eval)

for the k-tuples as follows:

Associating A vertices with manifolds. A vertexa = (i,2,y) € A is associated with théth
input tupletup(a) = (Z;1, ..., Z;x). Let us assume without loss of generality that, . . ., 2; , are
linearly independent (otherwise, we find a maximal subetgblinearly independent vectors inside
the k-tuple and complete it to A-tuple (Z; 1, . . ., Z;x) of linearly independent vectors).

DenoteZ; ;11 = Zand;x+» = ¢. Then, the vertex corresponds to the following linear
subspace through thé&h tuple:

k+2
Sa = > - T
j=1

tl,...,tk+2 EF}
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We also use the functional notatign: F* — F, where for every = (t,,. .., t;42) € F¥,

k+2

L) =)t
j=1
Note that eachi € [V] has the same number @fc A with tup(a) = (Z;1,. .., Tix)-

Edges. We connect every vertex= (i, Z, i) € A to representatives i of points on the subspace
s.. For everyt = (t1,...,tero) € F**2 such thatty,; # 0, there is an edge = (a,b) € E
connecting: to the representative of the corresponding pointspnb = [1,(#)]. We setabel(e) =
teq.

Projection. For every vertex. € A, assignment, € ¥4 4. (Which is aw-variate linear function
over the fieldF) and label¢ € Q (which is a point inF"), such that,(§) = ¢ - [[,(£)] for a scalar
t #0 € F,weletproj(a, o,, ) be the element ik s ... = X5 4. COrresponding to the field element

% ) Ua(g)'

Tuple evaluation. For every vertex. € A, we letp,, ..., pr € F* be such that thé-tupletup(a)
is on the subspace, in positionsp, ..., Pk, i.e., tup(a) = (l.(P1),-..,l.(Pk)). For example,
when the originalk-tuple (Z; 1, ..., ;) consists of linearly independent vectors, we have=
(1,0,...,0,0,0),...,p, = (0,...,1,0,0) € F*.

For every vertex: € A and assignment, € X4 q.. (Which is aw-variate linear function over
the fieldF), the evaluation of. on its tuple is given by the evaluation®f on the pointgy, . . ., Pk,
i.e., we letval(a,0,) = (04,(P1), -, 0a(Pk))-

11.2.1 Properties of The Had-LR Construction Algorithm

The algorithm is efficient, and runs in time polynomial#*| and N.

e Size.Onallinputs, the output is of sizize < N-|[F|*" +|R|+ N -|F|*"-|[F|*** = N |F|°™.

e Block length.On all inputs, the output has block lendilock = log|X 4 cpc| = log |I£~?|’f+2 =
O(k) - log |F|.

e Left degreeOn all inputs, the output is left reqular with left degrisgleft = (1 — \Tll) JEY| <
F[O®.

e Right degree.The graph is not right regular, however, the degrees ofthertices are the
same for all inputs, andegright < size. To see why the right degrees are independent of the
input, note that for every fixing of; 1, ..., 2, and; o = ¥, for anyt = (t1, ..., tgso) €

F5+2 such that,; # 0 € F, whenz; iy, = 7is uniformly distributed irf™, so is>_1 7, -
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Z; ;. The vectorg/ andz are distributed uniformly if¥”, independent of; ;, . . ., Z; 5. Thus,
the degree of thélﬂ:%ll representatives that are ribare the same, and all the right degrees
are independent o# the input.

11.2.2 Analysis of The Had-LR Algorithm. Completing The Prof of Lemma 8.3

To complete the proof of Lemma 8.3 it remains to prove thaatherithm is uniform in the encoding
and list decoding and outputs,.;.., l,n..)-Had-LRs for the),,,;,, andl,,.. stated in the lemma.

Fix an input to the construction algorithm
(Zr1s s Fig)s e (BNgy s Tvg) € (F™)F
Denote the output of the algorithm by
G={((AB,E),V,Q,%X4, Xp, sat = true, label, proj, tup, eval)

Let us prove encoding and list decoding:

For a functionf : I — F and a vertexa = (i, 2, y) € A, let the restriction off to s, be
fia : T — T defined by assigning everyc Fv

fla() = fla(3))

DenoteD = (F"™,F, Depe, Daec) -

Encoding. Let us prove uniform encoding. Assume a linear functfoa D.,,.. For every vertex
b € B, takeCg(b) to be the element iX s .,,. corresponding tg (b). Define an assignmeiit, :
A — ¥4 .enc DY letting every vertex € A be assigned’s(a) = fjo € X4 ne. Note that bottC'y, C
can be constructed efficiently giveip and that every edgec F is satisfied and readsin G under
C4 andCp.

List Decoding. Fix an assignmert’s : B — Xp 4... Fix a reald such thav,,;, <4 < 1.

Invoke the linearity testing theorem given in Theorem 19Hmrfunctionf3 : R — [ defined for
everyr € R by letting f5(Z) be the field element correspondingd@(¥). Let f1,. .., fi € Dy be
thel < I,,..(9) linear functions guaranteed by the theorem. Note that thetoaction off;, ..., f;
is uniform: it requires only’'z ands.

Fix an assignmenf’y : A — X4 gec.
Proposition 11.0.3.When picking uniformly and independently at random a vertex A and an
gdge coming out of & = (a, b) € F, the probability thak is satisfied inG underC, C's, although

fe(b) & {fi(b),..., f1(b)} is at mostO(9).
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Proof. There is a probabilistic oracld, such that picking uniformly at random a veriex A and
an edge coming out of t = (a,b) € E and checking whether is satisfied inG underC, and

Cp is equivalent (up to a small statistical distance) to peniag LinTest!s+ for the oracled. To
see this, considetinTest/5* when replacing its step 1 by the following procedure (thatliaitly
defines the oraclgl):

e Pick uniformly at random a vertex= (i, Z, y) € A. Denotetup(a) = (Z;1,...,Zik)-
e Pick uniformly (and independently of the choicedfat randony = (¢, ... ,t;) € F*.

e Output the two vectorg? + Z?Zl t; - @;;,y) together with the bi-variate linear function
P (trrr, trr2) = Cala)(bsr -ty oo bign - i, tiegn, tieg2)-

Note thatz + Zf L tj - @ j is uniformly distributed inf™. Moreover, the follwoing two distri-
butions are at statistical distancg IFI)

1. LinTest!A distribution: Pick uniformly at randomt,, 1, {2 € F. Compute

k
et - <5+ th fzg> +tp2 Y

i=1

2. Edge distribution: Pick uniformly at randot}y . . . , ., , € F such that)_ , # 0. Compute

k
t-Z t 7+t y
j Tl 2oy
Jj=1

The proposition follows from Theorem 19, recalling that - -

m[of Proposition 11.0.3]
Proposition 11.0.4.Leta € A such thatCa(a) ¢ {fia.--, fya}. When picking uniformly at
random an edge coming out af e = (a,b) € E, the probability thate is satisfied inG under

Cy, Cpand fz(b) € {f1(b), ..., fi(b)} is at mostO ().

Proof. Write a = (i, 2, /). For every;j € [l], C4(a) and f;, aredifferentw-variate linear functions
overF. Thus, they can agree on at most a fractlorﬁ)bf the points inF*. Hence,C'4(a)(t) €
{fi1a(8), ..., fya(t) } for at most a fraction of; - i Of thet € Fv.

By construction, picking uniformly an edge coming outaafs equivalent to picking uniformly
t € F* such that,,, # 0, and takinge = (a,b) € E for b = [I,(£)] (where recall that we denote
xl k+1 = ZandZ; 10 = y). Moreover, Whenevedf = (a,b) |s satlsfled inG underCy, Cp and

fB(b) € {f1( ), fi(b)}, itfollows thatCs (a)(t) € { fiia(®), .- ., fila(f) }-
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We conclude that, when picking uniformly at random an edgeing out ofa, ¢ = (a,b) € E,
the probability thate is satisfied inG underC4,Cs and f5(b) € {fi(b),..., f(b)} is at most
Z- ﬁ = 0(9). m[of Proposition 11.0.4]

By Proposition 11.0.3 and Proposition 11.0.4 and usingrigtlarity, when picking uniformly
at random an edge = (a,b) € E, the probability that is satisfied inG underCy, C, although
Ca(a) & {fijas- -, fua} is at mostO(8). The list decoding property follows noticing that when the
edgee is satisfied inG underCy, andC, andC4(a) € {f1|a, - fl|a}, we have that reads one of

f17 ey fl In g underCA7CB
This concludes the proof of Lemma 8.3.

12 Power Reduction

In this section we show the power reduction manipulatiooyjpmg Lemma 8.4. Our presentation
will use the notation introduced in this lemma.

The power reduction manipulation transforms construcigorithms reducin® — D,, where
D, is a Reed-Muller domain with a small dimension but a large encoding degrée, to construc-
tion algorithms reducin@® — D,, whereD; is a Reed-Muller domain in which both the dimension
msy and the encoding degréde are logarithmic in the encoding degrée The manipulation is based
on thepower substitutiomechnique from [13].

12.1 A Power Reducing Embedding

The manipulation is done using the following embedding:

Embedding F"* — F™2. Recall that; = [log(d; + 1)] andmy = m; - b;. Define an embedding
¢ : ™ — ™2 by mapping everyz, ..., T, ) € F™ to

. 20 21 9b1—1 20 21 2b1—-1
Ay, Tmy) = (27,27 . 0T X T Ty )

Power reduction for polynomials via the embedding. Assume that we have a polynomial :
F™ — T of degree at most;. For some coel‘l‘icient@xi1 iy }le ~ whereq;, € I, the

polynomial@ can be written as

_ E i1 imy
Q(xlv"wxnh) - Ay, i7rzlx1 T Ty
11 ]

..... imy

For a numbef) < i < d;, denote by(i,b; — 1) - - - b(i, 0) the binary representation of Then, we
define a polynomial),, : F2 — F by mapping everyzi o, ..., T1p 15 s Tmg 05« - -y Ling by —1) €
F™2 to

Q¢(l’170, ey T1bi—15 "y Ty 09 - - - 7xm1,b1—1) =
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b(il 70) b(il ,bl —1) b(iml 70) b(iml 7b1 _1)
E Qiy,yimy " T10 " Trp—1 Lm0 " Ty -1

Note that@), is efficiently computable and th&l = @, o ¢. The polynomialky, is a multi-linear
polynomial inm, variables, and henc®, € D,.,.. Moreover, sincel, = |d;/d,], for every

Q € Dy 4ee, it holds that o ¢ € Dy 4.

12.2 The Power Reduction Manipulation on RM-LRs
Given an RM-LR reducin@® — D; for some tuples:
G=((A,B,E),V =A, Q,Dl,fﬁi, satg = true, labelg, projg, tupg, evalg)

whereF = ({1}, F,F.,.,F,.) is the domain associated with the finite fiéid we construct an
RM-LR reducingD — D, for the same tuples (note th@thas the sameup function asg):

G={((AB,E),V =A,Q,D,, F, satg = true, labelg, projg, tupg, evalg)
by performing the following operations:

1. LetQ =™z,
2. For every edge € E, setlabelg(e) = ¢(labelg(e)).

3. Foravertex € A, anassignmentforit, , € D, q.. and alabep € F2, we letprojz(a, 0,2, D)
be the element ii¥,.. corresponding to the field elememt (). Note that for every edge
e = (a,b) € E itholds thatprojz(a, 0,2, labelz(e)) = projg(a, oaz2 o ¢, labelg(e)).

4. Assume that the poinfs, . . ., p,. € F™ are such that for every vertexc A and assignment
a1 € D1 4ec We have thatvalg(a,o,1) = (061(D1),---,041(Pk)). Then, for every vertex
a € Aand assignment, > € Dy g, let evalg(a, 0a2) = (042(0(P1)); - - -, 0a2(0(Pk))) =
evalg(a, 042 © @).

Properties of the manipulation. G can be computed efficiently frog. Moreoverg has the same
size and left and right degrees@sand its block length idf(ml) -log |FF|.

Analysis. We say that assignments, : A — Dy 4. andCy : A — D; 4. areequivalentif for
every vertex: € A, it holds thatCs(a) = C 4(a) o ¢.
Proposition 12.1. For any two equivalent assignmerdts, : A — Dy gec aNACy : A — Dy ge, for

any assignmert’s : B — F., for any edge = (a,b) € E, we have:

e cis satisfied ing underC,, Cp if and only ife is satisfied inG underC 4, Cp.
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e creads som¢ € D, in G underCy, Cj if and only ife readsf in G underC 4, C.

We thus have:
Lemma 12.2.Let0 < 0, < 1. Letl,,.. : (0,1) — R be a decreasing function. § is a
(8min» lmaz)-RM-LR reducingD — D; for some tuples, and is obtained fromg by the power
reduction manipulation, the@ is a (6,,in, limaz )-RM-LR reducingD — D, for the same tuples.

Proof. Let us prove encoding and list decoding:

Encoding. For a polynomialf € D, letCs : A — D; ., andCp : B — f&f‘enc be the efficiently
computable assignments under which every edger is satisfied and readsin G. The assignment
C4: A — Dy, equivalent toC,, defined by assigning every € A the polynomialC4(a)y, is
also efficiently computable. Moreover, by Proposition 12lledges € F are satisfied and read
in G underC 4, Cp.

List Decoding. Fix an assignmenf’z : B — Eec. Fix a reald such that),,;,, < d < 1. Let
fi,--, fi € Dgec be thel < 1,,..(6) elements guaranteed by the list decoding propert§.oket
Cy:A— D 4ec e @an assignment. L€ty : A — D, 4. be its equivalent assignment. By the list
decoding property of, for all edges € E, but at most)(9) fraction, e is either not satisfied or
reads one of, ..., f; in G underCy, Cz. Hence, by Proposition 12.1, for all edges E, but at
mostO(§) fraction,e is either not satisfied or reads onefef. . ., f; in G underC 4, C. O

Transforming RM-LR construction algorithms.  Assume that we are given (@, k, N)-RM-
LR construction algorithm4; with structural parameter&ize, block, degleft, degright) reducing
D — D,. The(D, k, N)-RM-LR construction algorithrd, with structural parameters
(size, block’, degleft, degright) reducingD — D, will be as follows: Given an input to the construc-
tion algorithm

(Z1s ey T1k)s - TN, - Tvg) € (F™)F
Invoke A4; on the input tuples to obtain an RM-L&reducingD — D; for the input tuples. Then
perform the power reduction manipulation on RM-LRs thatdsatibed above to obtain an RM-LR
G reducingD — D, for the input tuples, and outpgt

12.3 The Power Reduction Manipulation on RM-LPRs
Given an RM-LPRG reducingD — D, for some tuples:
G=(AB,E),V=A, 0, D, T, satg = true, labelg, projg, tupg, evalg, pntg, evalpg)

Let G~ be the RM-LR reducin@® — D, for the same tuples that is induced 8y Perform the
power reduction manipulation on RM-LRs that is describealvatio obtain an RM-LR;~ reducing
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D — D, for the input tuples:
G- ={((A,B,E),V =A,Q,D,, ﬁ, satg— = true, labelz—, projg—, tupg—, evalgz=-)
Obtain an RM-LPR reducin® — D, by considering:
G={((AB,E),V=A4AQ,D,, F, satg= = true, labelg=, projg=, tupg=, evalg=, pntg, evalpg)

Note that the RM-LR induced by, denotedG)~, isG.

Properties of the manipulation. G can be obtained efficiently froi. MoreoverG has the same
size and left and right degrees@sand its block length ig”™") - log [F|.

Analysis. Applying Proposition 12.1 we get:
Proposition 12.3. For any two equivalent assignmertts, : A — Dy 4. andCy : A — Dy 4., foOr
any assignmerd’s : B — F ., for any edge: = (a,b) € E, we have:

e cis satisfied ing underC,, C if and only ife is satisfied inG underC 4, Cp.

e e reads som¢g € Dy, in G underC,, Cjp if and only ife readsf in G underC 4, Cjp.

Proof. Let us prove the second item. Recall thatadsf in G underCy, Cp if and only if e reads
fin G~ underCy, C andevalpg (b, C(b)) = f(pntg(b)). Similarly,e readsf in G underC 4, C'g
if and only if e readsf in (G)~ = G~ underC 4, Cy andevalpg (b, Cp(b)) = f(pntg(h)). By

Proposition 12.1¢ readsf in G~ underC, C if and only if e readsf in G- underC 4, C. O

Hence, similarly to the case of RM-LRs, we have:
Lemma 12.4.Let0 < 0, < 1. Letl,. : (0,1) — R be a decreasing function. § is a
(Omin» bmaz)-RM-LPR reducingD — D; for some tuples, ang is obtained fromg by the power
reduction manipulation, the@ is a (J,,in, lmaz )-RM-LPR reducingD — D, for the same tuples.

Transforming RM-LPR construction algorithms.  Assume that we are given(®, k, N)-RM-

LPR construction algorithrd; with structural parameter&ize, block, degleft, degright) reducing
D — D that is uniform in the point association. Consider tf& &, N)-RM-LPR construction
algorithm A, with structural parameter&ize, block’, degleft, degright) reducingD — D, defined
as follows: Given an input to the construction algorithm

<l_"171, c.. ,f17k>, RN <l_"N71, .. 7fN,k> c (Fm)k
Invoke .A; on the input tuples to obtain an RM-LRRreducingD — D; for the input tuples. Then
perform the power reduction manipulation on RM-LPRs thatescribed above to obtain an RM-
LPR G reducingD — D, for the input tuples, and outpgt Note thatA4, is uniform in the point
association.
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13 Right Degree Reduction

In this section we show how to reduce the (graph) degree oBthertices in the various building
blocks we consider, thus proving Lemma 8.5. We start by prtesgthe right degree manipulation
on bipartite constraint graphs. Then we will describe thaimaation on RM-LRs, RMHad-LRs,
RM-LPRs, RM-RRs and RM-RPRs.

13.1 The Right Degree Reduction Manipulation on Bipartite Wnstraint Graphs

The idea of right degree reduction is to split each vebtex B into many copies. The number of
copies will be the original degree 6fin the graph. Each copy will have a small degree in the new
graph. This is achieved by putting an expander with smalteke@gn the new graph between the
neighbors ob in the original graph andtls copies. Formally, the manipulation is defined as follows:

Given a natural numbek and a bipartite constraint graph
G=(G=(A,B,E),Q X4, Xp,satg,labelg, projg)
we construct a bipartite constraint graph that is right l@gwith right degree(A):
G = (G =(A,B,E),Q,%4,%p, satg, labelg, projg)
by performing the following operations:

1. Bipartite expanders.Leta < 1andT : N — N*, whereT'(A) = ©(A), be asin Lemma5.3.
Forn = 1,...,|A|, compute as follows from Lemma 5.374 A)-regular bipartite (multi-
)graphH,, = ([n], [n], E,,) satisfying the following expansion property: for every taets

X C[n],Y C[n],

2. B vertices. For every vertex € B, for everyi € [Aq(b)], there is a vertek = (b, i) € B.
In the remainder of this section we shorthand and waitg) to denoteA(b).

3. Edges. For every; € [A(b)], assuming thg’th edge coming intd is eq(b,j) = e =
(a,b) € E, for every edge(j,i) € Eap), We put an edge = (a,(b,i)) € E. We set
labelz(€) = labelg(e).
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Figure 10: Right degree reduction.

Properties of the manipulation.

¢ Running timeg can be computed froig efficiently.

Size.The size ofG is

Gl = A+ [B| +|E| = |Al+ > _A®) + ) _T(A)-A(b) <O (A-|G))

beB beB

Block length.The manipulation does not change the alphabets.

Left degreeThe degree of each of thévertices inG is larger than its degree i@ by a factor
of T'(A).

Right degreeG is right regular with right degre€(A).

Analysis. Given an assignmelit; : B — Y5 tothe vertices irB and a real paramet (Al))m <
6 < 1, we define a list of size = | 1| of assignments to th& vertices corresponding t6; and
o as follows. For every vertek € B, letoy(b),...,0:(b) € Xp be all elements € Yz that are

assigned to at leastdafraction ofb’s copies, i.e.,
{i € [A(D)] | Cp((b, i) =0} =0 AD)

Note that there are at massuch elements € Y. If there are less thanelements, we pad the list
arbitrarily. We define the assignments to theertices corresponding Gz andd, Cp1,...,Cp s :
B — Yp, by letting, for everyj € [s] andb € B, Cp ;(b) = 0;(b).

We prove the following proposition:
Proposition 13.1.LetC, : A — X4 be any assignment to thé vertices. When picking uniformly
at random an edge = (a, (b,i)) € E, the probability that the edge is satisfied inG under the
assignment§’y andCy, howeverC5((b, 7)) ¢ {Cp1(b),...,Cps(b)}, is at mosts.
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Proof. Letb € B. Foro € X, defineY;, , C [A(b)] to be the indices of copies éfassignedr by
Cp,

Yoo ={t € [A()] | Cp((b,7)) =0}
Let us say that an edge= (a,b) € E coming intob votesfor o € Y, if the projection ofC4(a)
ontobisa, i.e.,projg(a, Ca(a),labelg(e)) = o. DefineX,, C [A(b)] to be the indices of the edges
coming intob that vote foro,

Xoo = {7 € [A(D)] | ec(b, ) votes foro }

Note that the setX, ., as well as the sets, ., are pairwise disjoint.

Let S C ¥ denote the “uncovered” elemeris= X5 \ {Cp1(b),...,Cps(b)}. By definition,
for everyo € S, it holds thatly; .| < § - A(b). Hence, by the expansion property’@f ), we have

‘EA XbC”YEHT)‘ <5 |Xb,o‘ |Xbcr‘ |YE)0
Ta)-Ap) A "
Thus, we get the following upper bound on the fractional nemﬁ edgeSz = (a, (b,4)) € E that
are satisfied by’'4, Cg, althoughC5((b, 7)) ¢ {Cg1(b),...,Cps(b

Zggs ‘EA(b) (Xb,07 }/E),cr)‘ S 5. Z |Xb,o| _'_ 1 1 ) ‘Xbcr| ‘}/E)cr
T(8) - AQ) 2 ) 22

By the Cauchy-Schwarz inequality and using the disjoirgreéshe setsY, . and of the set%}, ., w
have:

Yoes [Eap) (Koo, Yoo)| | X0l Yoo
o)A < Ot @y \/Z \/Z
< 0+ #
= e
< 20

The proposition follows noticing that the probability weshito bound is at most

ZbeB 20 - T<A) ’ A(b) — 95
> pen T(A) - A(b)

O

13.2 The Right Degree Manipulation on Composable Bipartite_ocally De-
code/Reject Codes that are Left Evaluators

Given a natural numbek and a composable bipartite locally decode/reject codedimestuples:

g = <G = (A7 Bv E)v V= A7 Qv ZAa ZB: satg, labelg,projg,tupg, 6’Ua,lg>
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We construct a composable bipartite locally decode/rejede for the same tuples which is right
regular with right degre&'(A)

G=(G=(AB,E),V =A,Q,%,, 3, satg, labelg, projg, tupg, evalg)
as follows:
1. Consider the bipartite evaluation graph underlyigng
G'=(G=(AB,E),V =A QYA dec; LB dec, Salg, labelg, projg, tupg, evalg)
whereX 4 4. andXp 4. are the decoded domainsf; andX s, respectively.
2. Consider the bipartite constraint graph underlydg

g” = <G = (A, B, E), Q, EA,dem EB,deca Satg, labelg,projg)

3. Perform the right degree reduction manipulation on thestaint graphg” to compute the
bipartite constraint grap@”:

G" = (G = (A, B,E),Q, L4 dec, LB dec, Satg, labelgr, projg)
[Note thatG is left regular]
4. Define a bipartite evaluation graph:

G =(G=(AB,E),V =A,Q Y4 dc, LB.dec, Salg, labelgz, projg, tupg, evalg)

5. Let the corresponding composable bipartite locally deé@ject code be:

G=(G=(AB,E),V =AQ,%,, g, satg, labelg = labelgr, projg, tupg, evalg)

Properties of the manipulation. G can be obtained efficiently fro. If G has sizesize, theng
has sizeD(A - size). G has the same block length @s It is left regular with left degree larger by a
factor of T'(A) than the left degree @. It is right regular with right degre@&(A).

Analysis.

Proposition 13.2. Lete = (a, (b,i)) € E be an edge, and let= (a,b) € E be its corresponding
edge. For every assignmeft; : A — ¥4 4., for every two assignmenisz : B — Xp 4. and
Cg: B — Yp.ge. such thatC(b) = C5((b,)) it holds that:

e cis satisfied ing underC,, Cj if and only ife is satisfied inG underC, Cy.

e creads som¢g € Dy, in G underC 4, Cj if and only ife readsf € Dy, in G underCy, C.
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We thus have:
Lemma 13.3.Let0 < 0, < 1. Letl,a, @ (0,1) — R* be a decreasing function. S&t,, =

max{\/émm, W} and ;.. (6) = % - Lnaw(6%). If G is @ (8min, lmas)-cOmposable bipartite

locally decode/reject code for some tuples, @&hi obtained fron by the right degree reduction
manipulation, therg is a (6%, , I, .. )-composable bipartite locally decode/reject code for thme
tuples.

Proof. Let us prove encoding and list decoding:

Encoding. Denote the encoded domain Bfby D.,. and the encoded domains of the alphabet
domains ofG (andG) by X4 ¢, andXp .. For a polynomialf € Dy, letCy 1 A — S cne
andCp : B — X be the efficiently computable assignments under which evégee € E is
satisfied and readéin G. The assignmert’s : B — Y35.,.., defined by assigning evety, i) € B

the valueC'z(b), is also efficiently computable. Moreover, by Propositi@?2] all edges € E are
satisfied and reagdl in G underC, C5.

List Decoding. Fix an assignmenfs : B — Yp4.. Fix a reald such thats;,, < ¢ < 1.

Let Cp1,....Cps : B — Ypa be thes = L%j assignments corresponding ¢g; and j as
in the analysis of the right degree reduction manipulationbgartite constraint graphs. Fix a
real parameted’ = 6% > 0,,,,. For everyj € [s], let f;1,..., fi1 € Dae. be thel < I,4.(8")
elements guaranteed by the list decoding property fur C5 ; andd’. In total we defined at most

L e (0%) = 12, (6) elements.

) max

LetCy : A — ¥4 4ec e an assignment.

By the list decoding property @, for at mostO(s - §') = O(¢) fraction of the edges € E, for
somej € [s], the edge: is satisfied but does not read onefof, . .., f;; in G underCy, Cg ;.

By Proposition 13.1, for all edges= (a, (b, 7)) € E, but at most(4) fraction,e is not satisfied
in G underCy, Cg, or C5((b,i)) € {Cpi(b),...,Cr4(b)}. Hence, by Proposition 13.2, for all
edges = (a, (b, 1)) € E, but at mosD(J) fraction, eithere is not satisfied irG underC 4, Cg, or
for somej € [s] we haveCy((b,7)) = Cp ;(b) and the edge = (a,b) € E is satisfied inG under
Ca,Cp;.

For a uniformly distributed edge= (a, (b,4)) € E, the edge: = (a, b) is uniformly distributed
in E. Hence, for all edges = (a, (b,7)) € E, but at mos(4) fraction, eithef is not satisfied irg
underCy, Cg, or for somej € [s] we haveCy((b, 7)) = Cp ;(b) and the edge = (a,b) € E reads
one off;1,..., fj;in G underC4, Cp ;. Thus, by Proposition 13.2, for all edges- (a, (b)) € E,
but at most () fraction,e is either not satisfied or reads onefef, . . ., f,,in G underC,, Cz. O

Transforming RM-LR construction algorithms.  Assume that we are given a natural number
and a(D, k, N)-RM-LR construction algorithrmd; with structural parameters
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(size, block, degleft, degright) reducingD +— D. Consider thgD, k, N)-RM-LR construction gl-
gorithm A, with structural parameter®) (A - size), block, T'(A) - degleft, T'(A)) reducingD +— D
defined as follows: Given an input to the construction altomi

—

<f1’1, .. 7$1,k>7 ceey <J,_’»N’1, o ,fN,k> € (Fm)k

Invoke .4; on the input tuples to obtain an RM-L& reducingD +— D for the input tuples. Then
perform the right degree reduction manipulation on complesaipartite locally decode/reject codes
that is described above to obtain an RM-GReducingD — D for the input tuples, and outpgt

Transforming RM ¢Had-LR construction algorithms. Assume that we are given a natural num-
berA and a(D, k, N)-RM¢Had-LR construction algorithmal; with structural parameters

(size, block, degleft, degright) that is uniform in the tuple association and in the encodimtyl&st de-
coding, and outputs RMHad-LRs whose right degrees do not depend on the input tddbetam.

Consider théD, k, N )-RMoHad-LR construction algorithm, with structural parametef) (A-
size), block, T'(A) - degleft, T'(A)) defined as follows: Given an input to the construction aloni

—

<f1’1, A 7x1,k>7 ceey <fN’1, o ,fN,k> € (Fm)k

Invoke A; on the input tuples to obtain an RMad-LR G for the input tuples. Then perform
the right degree reduction manipulation on composablertiipdocally decode/reject codes that is
described above to obtain an RMad-LRG for the input tuples, and outpgt

Note that the algorithm, is uniform in the tuple association, as well as in the encgdind list
decoding.

13.3 The Right Degree Manipulation on RM-LPRs
Given a natural numbek and an RM-LPR reducin®p — D for some tuples:
G =((A B,E),V =A QD,F, satg = true, labelg, projg, tupg, evalg, pntg, evalpg)
We construct an RM-LPR reducing — D for the same tuples that has right degrge\ )
G=((A,B,E),V = A,Q,D,F, satz = true, labelg, projg, tupg, evalg, pntg, evalpg)
as follows:
1. Consider the RM-LR induced lgy.

G =(A,B,E),V=A, O, D,F, satg, labelg, projg, tupg, evalg)

2. Perform the right degree reduction manipulation on the [HMG~ to obtain the RM-LRG—:
G- =((A,B,E),V = A,Q, D, IA?, satg, labelg=, projg, tupg, evalg)
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3. Assume that the field of the Reed-Muller domamis F and the dimension is:. Define
pntg - B — ™ by assigning every vertef,i) € B the pointpntg(b). Definecvalpg :
B x Fu. — F by assigning every verteb, i) € B and assignment, € F,.. the evaluation
evalpg (b, o3) [Note that since; is an RM-LPR, for a uniformly distributed vertek, i) € B,

the pointpntz((b,4)) is uniformly distributed inF™].
4. Let the corresponding RM-LPR be:

G={(ABE),V=A4Q, 15, I?, satg = true, labelg = labelz=, projg, tupg, evalg, pntg, evalpg)

Properties of the manipulation. G can be obtained efficiently froi§i. If G has sizesize, theng
has sizeD (A - size). G has the same block length @s It is left regular with left degree larger by a
factor of T'(A) than the left degree @. Itis right regular with right degre®(A).

Analysis. Applying Proposition 13.2, we get:

Proposition 13.4.Lete = (a, (b,i)) € E be an edge, and let= (a,b) € E be its corresponding
edge. For every assignme@t, : A — Do, for every two assignmentsy : B — f?dec and
Cg : B — Fg. such thatCp(b) = C5((b,4)) it holds that:

e cis satisfied ing underCy, Cj if and only ife is satisfied inG underC,, C5.

e creads somg € Dy in G underC 4, Cy if and only ife readsf € Dy in G underC 4, Cx.

Thus, similarly to Lemma 13.3, we have:
Lemma 13.5.Let0 < 0, < 1. Letl,a, @ (0,1) — R* be a decreasing function. S&t,, =

max {\/5mm, W} and?, ., (0) = -140(62). If G iS @(8min, nas)-RM-LPR reducing +— D

for some tuples, and is obtained fronG by the right degree reduction manipulation, théns a
(ox . 1% )-RM-LPR reducing® — D for the same tuples.

min’ ‘max

Transforming RM-LPR construction algorithms. Assume that we are given a natural number
A and a(D, k, N)-RM-LPR construction algorithmd; with structural parameters

(size, block, degleft, degright) reducingD +— D. Consider theéD, k, N)-RM-LPR construction al-
gorithm A, with structural parameter®) (A - size), block, T(A) - degleft, T'(A)) reducingD — D
defined as follows: Given an input to the construction aktomi

<l_"171, . ,f17k>, RN <l_"N71, .. 7fN,k> - (Fm)k

Invoke 4; on the input tuples to obtain an RM-LRRreducingD — D for the input tuples. Then
perform the right degree reduction manipulation on RM-LRf is described above to obtain an
RM-LPR G reducingD — D for the input tuples, and outpgt. Note that if 4; is uniform in the
point association, then so ;.
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13.4 The Right Degree Manipulation on RM-RRs

Given a natural numbek and an RM-RR reducinp — D for some tuples:
G =((A, B, E),V = B,Q,%4,D, satg, labelg, projg, tupg, evalg)
We construct an RM-RR reducirig — D for the same tuples that has right degrge\)
G={((AB,E),V =B,Q,%,, D, satg, labelg, projg, tupg, evalg)
as follows:
1. Consider the bipartite evaluation graph underlying
G'=((A,B,E),V = B,Q, %4 dec, Dee, satg, labelg, projg, tupg, evalg)
whereX 4 gec and75dec are the decoded domainsf; andD, respectively.
2. Consider the bipartite constraint graph underlyghg

g” = <(A> Ba E)a Qa ZA,deca 5dec7 Satg, lab€lg, pTOjg>

3. Perform the right degree reduction manipulation on thestiaint graphg” to compute the
bipartite constraint grap@”’:

@ = <(A> Ea E)a Q> ZA,deca 5deca salg, label@, p?“Ojg>

[Note that: (1) For every vertex € A, for all labelsé € €2, there is the same number of edges
e € E coming out ofa with labelgr(e) = &; (2) The graphG = (A, B, E) is left regular]

4. Assume that the field of the Reed-Muller doméa&mis F and the dimension is:. Define
tupg : B — (F™)* by assigning every vertef, i) € B the tupletupg(b). Defineevaly :
B X Dyp — F* by assigning every vertef, i) € B and assignment, € D,.. the evaluation
evalg(b, o) [Note that the distribution obtained by picking uniformly @mndom a vertex
b € B and computingupg(b) and the distribution obtained by picking uniformly at randa
vertex(b, i) € B and computingupz((b, i}) are identical].

5. Define a bipartite evaluation graph:

G =((A,B,E),V = B, %4 dec, ﬁdec, satg, labelgr, projg, tupg, evalg)

6. Let the corresponding RM-RR be:

G={((AB,E),V =B,Q, %y, D, satg, labelgr, projg, tupg, evalg)
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Properties of the manipulation. G can be obtained efficiently fro. If G has sizesize, theng
has sizeD(A - size). G has the same block length @s It is left regular with left degree larger by a
factor of T'(A) than the left degree @. It is right regular with right degre@€(A). The depth of the
tree satisfiability constraints ¢f is the same as that of.

Analysis.
Proposition 13.6.Lete = (a, (b,i)) € E be an edge, and let= (a,b) € E be its corresponding
edge. For every assignmefiy : A — X4 4., for every two assignmentss : B — D, and
Cg : B — Dy such thatCz(b) = C5({b,4)) it holds that:

e cis satisfied ing underC,, Cj if and only ife is satisfied ing underC, C5.

e creads som¢g € Dy in G underC 4, Cy if and only ife readsf € Dy in G underC 4, C.

Thus, similarly to Lemma 13.3, we have:
Lemma 13.7.Let0 < 0, < 1. Letl,a, @ (0,1) — R* be a decreasing function. S&t,, =

max {\/5mm, W} andlr, .. (6) = %-lmax(cS?). If G is a(0min, lmaz)-RM-RR reducin@ +— D

for some tuples, and is obtained frong by the right degree reduction manipulation, théns a
(0 in> U0 )-RM-RR reducin@ — D for the same tuples.

min’ ‘max

Transforming RM-RR construction algorithms.  Assume that we are given a natural numbher
and a(D, k, N)-RM-RR construction algorithm; with structural parameters

(size, block, degleft, degright, depth) reducingD — D. Consider th€D, k, N)-RM-RR construc-
tion algorithm.4, with structural parameter& (A - size), block, T'(A) - degleft, T'(A), depth) re-
ducingD — D defined as follows: Given an input to the construction akioni

<l_"171, .. ,f17k>, ceey <l_"N71, . 7fN,k> c (Fm)k

Invoke .4; on the input tuples to obtain an RM-RRreducingD — D for the input tuples. Then
perform the right degree reduction manipulation on RM-Rif ts described above to obtain an
RM-RR G reducingD — D for the input tuples, and outpgt

13.5 The Right Degree Manipulation on RM-RPRs

Given a natural numbek and an RM-RPR reducinf — D for somek-tuples:
G=((AB,E),V =B,Q,%,, D, satg, labelg, projg, tupg, evalg, pnitg, evalpg)

We construct an RM-RPR reducifiyy— D for the same tuples which has right degi&e\)
G={((A,B,E),V =B,Q,%,, 15, satg, labelg, projg, tupg, evalg, pntg, evalpg)

as follows:
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1. Consider the RM-RR induced gy
G =(A,B,E),V =B, Y4, D, satg, labelg, projg, tupg, evalg)

2. Perform the right degree reduction manipulation on the RIRIG ~ to obtain the RM-RR;~:
G- ={((A,B,E),V =B,Q,%,, D, satg, labelg=, projg, tupg—, evalg=)

3. Letthe corresponding RM-RPR be:
G ={((AB,E),V =B,Q,%,, D, satg, labelg=, projg, tupg=, evalg=, pntg, evalpg)

Properties of the manipulation. G can be obtained efficiently fro. If G has sizesize, theng
has sizeD(A - size). G has the same block length @s It is left regular with left degree larger by a
factor of T'(A) than the left degree @. It is right regular with right degre@€(A). The depth of the
tree satisfiability constraints ¢f is the same as that 6f.

Analysis. Applying Proposition 13.6, we get:

Proposition 13.8.Lete = (a, (b,4)) € E be an edge, and let = (a,b) € E be its corresponding
edge. For every assignmefiy : A — X4 4., for every two assignmentsg : B — Dy and
C5 : B — Dy, such thatC'z (b) = C5((b, i)) it holds that:

e cis satisfied ing underC,, Cj if and only ife is satisfied inG underC4, C5.
e creads somg € Dy in G underC 4, Cy if and only ife readsf € Dy in G underC 4, C.

Thus, similarly to Lemma 13.3, we have:
Lemma 13.9.Let0 < i < 1. Letl,q. : (0,1) — RT be a decreasing function. S&f. =

max {\/—5mm, W} andr,,(6) = L - Lyaa(8%). If GiS @ (B min, Lnas)-RM-RPR reducing® —

D for some tuples, and is obtained frong by the right degree reduction manipulation, th@is a
(0% in, U0 )-RM-RPR reducin@® — D for the same tuples.

min’ ‘max

Transforming RM-RPR construction algorithms. Assume that we are given a natural number
A and a(D, k, N)-RM-RPR construction algorithm; with structural parameters

(size, block, degleft, degright, depth) reducingD +— D. Consider théD, k, N)-RM-RPR construc-
tion algorithm.A, with structural parameter&) (A - size), block, T'(A) - degleft, T'(A), depth) re-
ducingD — D defined as follows: Given an input to the construction akoni

(Z1s ey T1k)s - TN, - Tvg) € (F™)F

Invoke .4, on the input tuples to obtain an RM-RRRreducingD — D for the input tuples. Then
perform the right degree reduction manipulation on RM-RERs is described above to obtain an
RM-RPRG reducingD — D for the input tuples, and outpgt. Note that if4; is uniform in the
point association, then so ;.
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14 Transforming Reed-Muller Left Readers Into Reed-Muller
Right Readers

In this section we show how to transform RM-LR constructitgoathms into RM-RR construc-
tion algorithms and RM-LPR construction algorithms into FR¥R construction algorithms, thus
proving Lemma 8.6.

14.1 Transforming RM-LRs Into RM-RRs

To transform RM-LRs into RM-RRs we switch the roles of theand theB vertices. After the
switch, theB vertices project onto the vertices, instead of thd vertices projecting onto th&
vertices. This is achieved by letting assignments to eadiexe € B contain assignments to all the
A vertices neighboring it. This causes the block length todase by a factor equal to the degree of
the B vertices.

We add satisfiability constraints to tlievertices. The constraints ensure that the assignments to
A vertices contained in an assignment to a vebtexB are consistent on their projection oritm
the original RM-LR. These constraints are formulated imieof tree satisfiability constraints (see
the discussion before Definition 7.5).

Formally, the switching sides manipulation on RM-LRs is@l#ofvs:
Given aright regular RM-LR reducin — D for some tuples that has right degrigright:

G=(G=(AB,E),V=AQD,F,satg = true, labelg, projg, tupg, evalg)
we construct an RM-RR reducig — D for the same tuples
G=(G=(4,B,FE),V = B,Q,%4,D, satg, labelg, projg, tupg, evalg)
by performing the following operations:
1. SetA = BandB = A.

2. For every edge = (a,b) € E there is an edge = (b,a) € E. Note thatG = (A, B, E) is
left regular.

3. Set = [degright]. If ¢ = (a,b) € E is thei'th edge coming intd in G for i € [degright]

ande = (b,a) € E, then we setabel(€) = i. Note that for every vertek € A, for all labels
i € [degright] there is one edge € E coming out ofb with labelz(e) = i.

4. The alphabet domaixi; and the projection functioprojs are as in the definition of RM-RRs
(Definition 7.5).

5. Settupg = tupg andevalg = evalg.
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6. Recall that by the definition of RM-LRs, we have that= F* whereF is the field of D,
andw is its dimension. For every vertex= b € A, define a satisfiability tre@, of depth
1 as follows. The tree contains a roaf = b that has as its children the elementsin=
[degright]. The elements if2 are the leaves of the tree. To complete the description dfélee
satisfiability constraints we need to define for evegy [degright] a functionP;; : {0} — F¥
specifying a point i for the rootu,. For every index € [degright] corresponding to an
edgee = eq(b,i) € E, setP;,;(0) = labelg(e) € F*.

Properties of the manipulation. G can be obtained efficiently froi. G has the same size &s
The block length ofj is larger than the block length ¢f by a factor equal to the right degree@f
G is left and right regular with left degree equal to the rigagcee oG and right degree equal to the
left degree ofG. The depth of the tree satisfiability constraintg;as 1.

Analysis. DenoteD = (F™,F, D¢y, Diec), D = (F*, F, Dene, Diec)s St = (0 Ditecs S enmer S dee)
andF = ({1}, F, F,,c, Fyec).

LetCy: A — X4, be an assignment to thevertices inG. We define itgorojected assignment
Cg: B — Eec to the B vertices inG by assigning every vertedx=a € B an element iriFdec as
follows: If oz = C4(@) is not satisfying, i.e.satz(a, 0z) = false, letCp(b) be an arbitrary element
in ... Otherwise, denote by = P, 1(0) € F* the point that the (arbitrary) leafspecifies for the
root of 7;. Let Cz(b) be the element T . corresponding to(1)().

Proposition 14.1. Assume tha€', : A — Ddec andCp : B — Fdec are assignments tg. Assume
thatCy: A — ¥y . andCg: B — Dy.. are assignments @, such that the projected assighment
of C5 to the B vertices isCp andCz = C4. Lete = (a,b) € F and lete = (b,a) € E be its
corresponding edge. It holds that:

e If 2is satisfied inG underC; andC', thene is satisfied inG underC, andCs.

e ¢ reads an element € D, in G underC and C'y if and only ife readsf in G underC
andCp.

Moreover, given assignments, : A — 25em andCp : B — IFW such that all edges are satisfied
in G underC, andC, one can efficiently compute assignmefits: A — Y ene andCy : B —
D.ne, SUch that the projected assignmentdf to the B vertices isCs, C5 = C4, and it holds that
all edges are satisfied i& underC; andC'5.

Lemma 14.2.Let0 < i < 1. Letl,q. : (0,1) — RT be a decreasing function. S&f. =
VOmin @nAdl%  (0) = % Apmaz(0%). 1f G is @ (6min, limaz)-RM-LR reducingD +— D for some tuples,

and G is obtained fromg by the switching sides manipulation, thénis a (07,,,,, ..)-RM-RR
reducingD — D for the same tuples.

Proof. Let us prove encoding and list decoding:
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Encoding. Let f € D.,.. Assume that’y : A — D,,. andCy : B — F.,. are the efficiently
computable assignments guaranteed by the encoding pyagejtfor f. By Proposition 14.1, we
can efficiently construct assignmerdts : A — Xz . andCgz : B — D,,,, such that all edges are

satisfied and read in G underCy andC5.

List Decoding. Fix an assignmenf’z : B — 15(160 and a reab such that)’, < 6 < 1. Let
fi,--y fi € Dge. be thel < [I* () elements guaranteed by Proposition 6.11 invoked on the
(6min, lmaz)-geNeric bipartite locally decode/reject code inducedibyhe assignment’y, = C3

and the parameter.

LetCy : A — ¥4, be an assignment to thé vertices inG. LetCy : B — Fy. be the
projected assignment to thevertices inG. When picking uniformly at random an edge F, the
probability thate is satisfied but does not read onefef. . ., f; in G underCy, Cp, is at most(9).
Hence, by Proposition 14.1, when picking uniformly at ramdan edge € E, the probability that
e is satisfied but does not read onefef. . ., f; in G underC+, C, is at mosiO(9). O

Transforming RM-LR construction algorithms.  Assume that we are given @, k, N)-RM-
LR construction algorithm4,; with structural parameter&ize, block, degleft, degright) reducing
D+ D that outputs right regular RM-LRs. Consider tf2, k&, N)-RM-RR construction algorithm
A, with structural parameterSize, degright - block, degright, degleft, 1) reducingD — D defined
as follows: Given an input to the construction algorithm

(Z1s ey T1k)s - TN, - Tvg) € (F™)F
Invoke A; on the input tuples to obtain a right regular RM-IRreducingD — D for the input
tuples. Then perform the switching sides manipulation onER4 that is described above to obtain
an RM-RRG reducingD — D for the input tuples, and outpgt
14.2 Transforming RM-LPRs Into RM-RPRs
Given an RM-LPR reducin® +— D for some tuples that has right degrigright:
G=(G=(AB,E),V =A, 0, D,F, satg = true, labelg, projg, tupg, evalg, pntg, evalpg)

whereD = (F*,F, D,ye, D) andF = ({1}, F, Fepe, Faee), We construct an RM-RPR reducing
D — D for the same tuples

G=(G=(AB,E),V =BQ,Yy D, satg, labelg, projg, tupg, evalg, pntg, evalpg)

by performing the following operations:
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1. Consider the RM-LR induced ly.
G =(G=(AB,E),V=A, Q,ﬁ,ﬁ, satg = true, labelg, projg, tupg, evalg)
[Note that it is right regular]

2. Perform the switching sides manipulation on RM-LRs taabain RM-RRG—:

G- =(G=(AB,E),V =BQ,%y D, satg=, labelz=, projg=, tupg=, evalg=)
SoA = B. DenoteX; = (2, Diecs X4 nes S dec) -

3. Setpntg = pntg. Define a functiorvalpg : A x Y3 ;.. — F as in Definition 7.6.

4. Let the corresponding RM-RPRbe:

G = (G,V,Q, 54, D, satg—, labelg=, projg— tupg-—evalg=, pntg, evalpg)

Properties of the manipulation. G can be obtained efficiently froi. G has the same size &s
The block length ofj is larger than the block length ¢f by a factor equal to the right degree®f
G is left and right regular with left degree equal to the rigagoke oG and right degree equal to the
left degree ofG. The depth of the tree satisfiability constraintg;as 1.

Analysis. Using Proposition 14.1, we get: B

Proposition 14.3. Assume tha€'y : A — Dy andCp : B — Fy.. are assignments tg. Assume
thatCy : A — ¥y, andCp : B — Dy, are assignments 19, such that the projected assignment
of C'; to the B vertices isCz andC; = C4. Lete = (a,b) € E and lete = (b,a) € E be its
corresponding edge. It holds that:

e If ¢is satisfied inG underC and C'z, thene is satisfied ing underC4 andC.

e If 2 is satisfied inG underC'; andC'; ande reads an element € Dy, in G underC, and
Cp, thene readsf in G underC4 andC'y.

Moreover, given assignments, : A — 25em andCgz : B — IE,E suc_h that all edges_are sgtisfied
in G underC'y andC'z, one can efficiently compute assignmeitts: A — Y5, andC5 : B —

D..., Such that the projected assignment®f to the B vertices isCz, C5 = C4, and it holds that
all edges are satisfied i& underC+ andC.

Similarly to Lemma 14.2, we have:
Lemma 14.4.Let0 < 0 < 1. Letl,a, @ (0,1) — R* be a decreasing function. S&t,, =
VO min @NAL,0 (0) = L 100 (62). If G iS @ (mins inas)-RM-LPR reducingd — D for some tuples,
and G is obtained fromG by the switching sides manipulation, théns a (¢7,,,., *...)-RM-RPR
reducingD — D for the same tuples.
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Transforming RM-LPR construction algorithms.  Assume that we are given(®, k, N)-RM-
LPR construction algorithrod; with structural parameter&ize, block, degleft, degright) reducing
D — D that is uniform in the point association. Consider tfiz k, N)-RM-RPR construction
algorithm.A, with structural parametexsize, degright - block, degright, degleft, 1) reducingD — D
defined as follows: Given an input to the construction aktomi

—

<f1’1, o 7x1,k>7 ceey <J,_’»N’1, .. ,fN,k> € (Fm)k

Invoke 4; on the input tuples to obtain an RM-LRRreducingD — D for the input tuples. Then
perform the switching sides manipulation on RM-LPRs thatéscribed above to obtain an RM-
RPRG reducingD +— D for the input tuples, and outpgt. Note thatA, is uniform in the point
association.

15 Transforming Hadamard Left Readers Into RM¢Had Left
Readers

In this section we show how to transform a Had-LR constructtgorithm into a RMHad-LR
construction algorithm, thus proving Lemma 8.7. Recalt thReed-Muller codeword corresponds
to a low degree polynomial. The idea is to take the coeffisi@hthe low degree polynomial, and
encode them via a Hadamard code olzerThe symbols of the concatenation of the Reed-Muller
codeword with a Hadamard code appear in the encoding (we dingit1 below).

This results in a very wasteful construction, and is henegl wsly as an inner construction.

We use the notation appearing in Lemma 8.7. SpecificBlljg a RMcHad domain defined by a
finite field F, a prime subfield. of F, a dimensionn, an encoding degreéand a decoding degree
d'. The extension degree &foverLL is7 = [F : L|. The number of monomials in an-variate
polynomial of degree at mogtis M/ = (™*%). We consider the Reed-Muller encodifigf — FI*"!
which is a linear function over the field. We consider the Hadamard encodiog— 1L which is a
linear function over the field.. IdentifyingF with the linear subspade”, the concatenation of the
two encodings can be viewed as a linear function dver

The linear functions corresponding to symbols of RM-Had Code. By the linearity of the con-
catenation of the Reed-Muller encoding and the Hadamaraldéng, for every paifz, i) € F™ x L™
representing a position in the concatenation, there iseatifunction ovei. mapping each vector
in LM to the symbol of the corresponding codeword at positiény). Letéz; € LM 7 be the
coefficients vector of this linear function.

Transforming Had-LR construction algorithms. H is a Hadamard domain defined by the finite
field L and the dimensioM/ - 7. Note that there is a natural bijection between the encodathth
of D and the encoded (and decoded) domait{othe bijection that maps a Reed-Muller codeword
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in the encoded domain @ to the Hadamard encoding of its coefficients in the encodedadio of
H.

Assume that we are given (&, k, N)-Had-LR construction algorithrd; with structural pa-
rameters(size, block, degleft, degright) that is uniform in the tuple association and in the encoding
and list decoding. Moreover; outputs Had-LRs in which the right degrees of the verticeaato
depend on the input to the algorithm.

Let us construct &D, k, N )-RMoHad-LR construction algorithnd, with structural parameters
(size, block, degleft, degright) that is uniform in the tuple association and in the encodimd) lést
decoding, and outputs RMHad-LRs, in which the right degrees of the vertices do noedépon
the input to the algorithm:

Given an input to the construction algorithm

<(fl,17 271,1)7 BRI (fl,lm gl,k))? ey <(fN,17 gN,l)? ey (fN,ku gN,k)> S (Fm X LT)k

Invoke A, on the following input:
(Etrnins s Corpsdin)s - - o (Connsgnas - - s i ping) € (LMT)F
Assume that the output oA, is the Had-LR
G=(G=(AB,E),V =A0 Y, Yg,satg = true, labelg, projg, tupg, evalg)
Let us construct a RvMHad-LR
G=(G=(AB,E),V=A4,Q,%4,%5, satg = true, labelg, projg, tupg, evalg)
as follows:

1. For every vertexa € A, assuming thatupg(a) = (€z,, 4.1 €z 5.0 1€t tupg(a) =
<(fi,17 gi,l)u sy (fi,ka gl,k))

Note thatA, is uniform in the tuple association. Moreovet; outputs RMHad-LRs in which the
right degrees of the vertices do not depend on the input taltj@ithm.

Assume tha is a (dmin, lnaz)-Had-LR. Let us show tha§ is a (0,in, lnaz )-RMoHad-LR:
DenoteD = (F™ x L7, L, Depe, Daee) @NAH = (LM77 L, Hepne, Haee). Recall thatHe,. = Hee.
DenOteEA = <DA7 RA, ZA,enca ZA,dec> andzB = <DBa RB) ZB,enca ZB,dec)-

Encoding. Let f € D,,. and denote by € H.,. the corresponding element. LYy : /_1 —
Yaenc andCp 1 B — Y p 4. be the assignments guaranteed by the encoding propegtyooff. In
G underC4 andC3, all edges are satisfied and read
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List Decoding. Fix an assignment’z : B — ¥p 4. and a reab such thav,,;, < 4§ < 1. Let
Fiooos fi1 € Haee = Hene be thel < 1,,,,.(0) elements guaranteed by the list decoding property of
G. Letfi,..., fi € Depe € Dyec be the corresponding elements. ket : A — X4 gec. In G under

C4 andCp, when picking uniformly at random an edges F, the probability that is satisfied but
does notread one ¢f, ..., f; is at mostO(9).

SinceA; is uniform in the encoding and list decoding, sods

16 Composition of Reed-Muller Right Readers

In this section we show how to compose RM-RR and RM-RPR coatstm algorithms, thus proving
Lemma 8.8.

1. LetD = (F™ F, D.,., Dyec) be a Reed-Muller domain defined by a finite fi#lda dimension
m, an encoding degreéand a decoding degreg&

2. LetD; = (F*,F, Dy cne, D1 aee) be @ Reed-Muller domain defined by the fi&lda dimension
w, an encoding degreg and a decoding degrek.

3. LetDy = (F*,IF, D3 cne, D2 gee) be @ Reed-Muller domain.

Assume that we have outer and inner construction algoritsrisllows:

e A, (D, k, N)-RM-RR construction algorithm with structural parameters
(sizeout, blockeyt, deglefto,:, degrightou, depthy,: ) reducingD +— Dy, with depth,,: < d.

o A0 (D1, k + degrightoy: - depthyy, 1)-RM-RPR construction algorithm with structural pa-
rameterssize;,, block;,, degleft;,, degright;,, 1) reducingD; — D, that is uniform in the point
association.

We design a composed algorithah It will be a (D, k, N)-RM-RR construction algorithm with
structural parameterize, block, degleft, degright, depth) reducingD +— D, for size < sizeyy -
size;,, block = degleft,, - block;,, degleft = degleft,,; - degleft;,, degright = degright,,; - degright;,
anddepth = depth,,; + 1:

Assume that the input to the construction algorittdnis a collection ofk-tuples of points
(Zi1,..., %) € (F™)* for i € [N]. The construction algorithm constructs an RM-RR

G=(G=(AB,E),V = B,Q,X4,D,, satg, labelg, projg, tupg, evalg)

as follows:
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1. Outer construction. Invoke construction algorithmi,,,; on the inputk-tuples to obtain an
RM-RR

gout — <Gouta ‘/out = Bouta Qouta ZAouta Dla Satgout? labelgout ) projgout? tupgout? €Ualgout>

WhereGout = (Aouta Bouta Eout) andonut = <Qouta Dl,deca ZAout,enca ZAout,dec>-

2. Queried points. Recall that for every vertex,,; € A,.; there are tree satisfiability con-
straints given by a satisfiability trég, , whose leaves are the elementdi, and by an-
cestors point specification functiods>,,. ¢,.. }¢,,,cq,,, (S€€ Section 7.5). We say that an
edgee,us = (aout, bout) € Eou Queriesa pointz € FY, if Z is one of the points along the
path from¢,,; = labelg,,,(e..:) tO the root of the satisfiability tre€,_ ,, i.e., there is a depth
i €{0,...,depthe, — 1} such thatP,,,, ¢,.. (1) = 7.

For a vertex,; € B,.; we definek + degright,,: - depth,; queried pointof b,,; (possibly
with repetitions) as follows:

out?

e \ertex queried pointsk(points): If py,...,pr € F* are the points such that for ev-
ery oy, € Diaec it holds thatevalg,,, (bouts Tb,0) = (Tbyue(P1), - - - Obyue (D)), then
1, ..., Pk are the vertex queried points &f,;.

e Edge queried pointsiégright,,: - depth,,: points): For every edge,.: = (aout, bout) €
E,.; coming intob,,; in G,,; that queries a poing € F*“, the point? is an edge queried
point of b,,;.

We denote the queried pointsigf, by z\"*", ..., f,fjjg;’grighw.depthm

points are the vertex queried points.

€ F¥, where the firsk

3. Inner construction. For every verteX,,; € B,.:, we define an RM-RPR. The purpose of the
RM-RPR is to read the queried pointsigjf;.

The algorithm A, is uniform in the point association, and, in particular,farm in struc-
ture. LetA,,, B, Q, andX,, be such thatd,;, is uniform in structurgA;,, Bin, Vi, =
B;,, Qm, ZA,L.”, D2> DenoteZAm = <Qm, D2,dec> ZA,L-”,enca ZAm,dec>- Letpntm : Am — [F* be
the uniform point associator.

Forb,.; € B, invoke A;, on the queried points df,,; to obtain the RM-RPR}f’n’M:

Gt = (G% Vi, Qin, Ta

m )

Ds, Satgz_yout , labelgz_yout , projgz_yout , tupgz_yout , evalgz_yout , pntin, evalpgg;uut>

in’)

bou bou
whereG;o = (Ain, Bin, Ei").

By definition, there aré + degright,,: - depthgy POINISPY, . . ., Dt degrightou-deptho: € FF that
correspond to evaluation of the queried point§j’gf‘t, i.e., for everyb,, € B, andoy,, €
D2,dec;

vl groue (bin, 0b;,,) = (00, (D1), -+ Tbs, (Pt degrighton depthaue )

We call these pointthe evaluating points df,,;.
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. Composed graph. To construct the composed graph for each vertexi,,; € A, We
produce a copy ofi;,,, and for each vertek,,; € B,.:, we produce a copy aB;,. Thatis, we
take:

A = {(a'outa ain> | Aoyt S Aout A Ain S Azn}a B = {<bout7 bzn> | bout S Bout A bzn S an}

For every two edges,.; = (aout, bout) € Four @andey, = (ain, bin) € Efg“t, we put an edge
e € E between(a,,, a;,) € A and(by., bin) € B. Note that the composed graph is left and
right regular with left degredegleft,,. - degleft;, and right degredegright,, - degright;,. The

size of the composed graph is less than,,; - size;,.

Figure 11: Composed graph.

. Labels. We letQ) = [degleft,.:] x €. If an edgee € E corresponds to the outer edgg; =

(Gout, bout) € Fouwr @nd the inner edge,, € Ef’nouf, thenlabelg(e) is the pair(i, &;,,) € 2, where
i € |degleft,] is the index of the outer edgg,; among the edges coming out @f,, i.e.,
Cout = €Gou: (out, 1), ANAE,, is the label of the inner edgg, in gf’;;“f, ie.&n = label oou (ein)-
Note that for every vertex € A, there is the same number of edges coming outwith each
label.

. Alphabets. We letX 4 = (2, D5 gec; L aenc: 2 a.dec) @NAprojg be as in Definition 7.5. Note
that the block length idegleft,, - block;,.

. Evaluation. For every verteX = (b, bin) € B, we settupg(b) = tupg,,, (bout). NoOte that
each tuple is associated with the same numbé? vértices.

For o, € Ds g, We letevalg(b, op,) be evalgz_yout (bin, 0p) truncated to the first positions
(corresponding to thé vertex queried points).

. Tree satisfiability constraints. Let a = (a,u, a;n) € A. We define tree satisfiability con-
straints fora. Their purpose is:
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(a) To check the satisfiability constraints@f,; in G,;.

(b) To check the satisfiability constraints @f, in gfg“t for every vertexb,; € B, that
neighborsi,,; in Guy;.

(c) To check consistency between the assignments to everweWicesbgt)t, bg}t € Bout

that neighbora,,: in G such that the edges’), = (aou, b)) € E,, ande?, =

(aout, B2)) € E,y have the same labétbelg, . (e'))) = labelg, . (e!>,). The check is
by comparing them on the poiptit;,(a;,) (which is uniformly distributed irf* for a
uniformly distributeds;,, € A;,).

Let the tree satisfiability constraints af,; in G, be given by the treq, , = (U,,,, U
Qout, Ea,,.) and the ancestors point specification functi¢#s, . ¢,..} .. cq,,,- 10 construct
the satisfiability treel, for a we take the tred,, , and place in each ledf,,; € Q.. @
sub-tree of depthi. The leaves of the sub-tree are the eleménts (i, &;,,) € Q2 for which
the i'th edge coming out ot in G, has label¢,,;. Let us denote these elements by
Q.. € Q. Then, formally we defind, = (U, UQ, E,) for U, = U,,,, U Qo and E, =
Eeps U{(Eout- &) | Eout € Qour NE € Q¢,,, }. Note that for every depth, all nodes in that depth
have the same number of children, since this property haid$;f , and there is the same

number of edges coming out af,,; with each labek,.; € Q...

We set the ancestors point specification functions as falloket ¢ = (i,&;,) € Q. Let
bout € B,y be the vertex touching théth edgee,.; € F,,; coming out ofa,,; in G,,;, and
let &, = labelg,,, (en:) be the label of this edge. Léte {0,...,depth — 1} be a depth in
the treeT,. Recall thatdepth = depth,,; + 1. We handle the following two cases separately:

e 0 < h <depthy,—1: LetZ =P, ¢, (h) € F* be the point specified in the tr&g,_ ,.
Then,Z is a queried point ob,,;. Assume that it is thg'th queried point of,,; where
J € [k + degright,,: - depth,,], and letp; € F* be the corresponding evaluating point of
bout. We setP, ¢(h) = pj.

e h = depthy,: Let P,, ¢, : {0} — F* be the ancestors point specification function
associated with the trég,_ in the RM-RPRG’ . Then,P, ¢(h) = P,, .. (0).

16.1 Analysis

Lemma 16.1 (Composition).Let0 < Omin.outs Ominin < 1. L€tlnas outs lmazin = (0,1) — RT be
decreasing functions. Assume that for some constans > 1 for every0 < ¢ < 1 it holds that
lmam,in((s) S by . Set

sb2

y 1/(b2+1)
5min = max 5min,in7 <2b% ' (Smm,out>1/(2b2+3)’ <2b1 ‘ ﬁ)

and
by 1

lmax<5) = 572 : lmax,out(z—b% : 52b2+3)
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Assume thad,,;,, < 1.

Then, if A, OUtPULS(d,min.outs lmaz.out)-RM-RRS, and4;,, outputs(d,in.in, lmaz,in)-RM-RPRS,
then.A outputs(d,,in, lma: )-RM-RRS.

Proof. We will prove encoding and list decoding:

Encoding. Let f € D.,.. We efficiently construct assignmerits : A — X4, andCp : B —
Dy.enc as follows: LetCly,,, : Aout — Layuenc ANACR, ., + Bowr — D1 ene b the assignments for
Gout following from the encoding property fof. Let b, € Bout- LetCa,, b, + Ain — 24, enc
andCsp, 4., : Bin — Da.cne be the assignments fgi2> following from the encoding property for
CBout (bout> € Dl,enc-

Leta = (aou, ain) € A. Then,Cy(a) is taken to be the functiom, : [degleftout] X Qi — Do ene
defined as follows: For € [degleftou], 1€t €our = (Gouts bout) € Eou: b€ thei’th edge coming out of
Aoyt IN Gy FOr everye,, € Qi leto,((i, &) = Ca,, bou (@in) (&) (Recall that 4, ., is the set
of functions(2;, — Dz ¢nc). FOr everyb = (bou, bin) € B, letCp(b) = Cpg,, b, (bin)-

Lete = (a,b) € E for a = (apu, ain) € A andb = (byus, bin) € B. Denote the label of by
label(e) = (i,&m) € Q. Leteos = (Aout, bout) € Eour andey, = (i, bin) € E*. We have the
following properties:

Reading. We have thatvalg (b, C5(D)) is the firstk positions ineval gsou: (bin, C,,, o (bin)), @N,

sincee;, readsCp,,, (bou) IN Geo* underCly,, 4,,, andCp,, 4., it hoLiLds thatevalg (b, Cp(b)) =
evalg,,,(bout, Cp,,,(bout))- SinCee,,; readsf in G,,, underC,,,, andCp,, ,, alsoe readsf in G

underC4 andCjp.

out

Projection. We haVQ?TOjg(a, CA(a)v <i, gzn>) p?“O]g out (amv CAzn bout(am) SM) CB”L bout(b ) =
Cp(b).
Leta = (aou, ain) € A, and let us show thatutg(a, Ca(a)) = true:

Satisfaction. We define an assignmeant: U, — T of field elements to the inner nodes Gf;
recall thatU, = U, . U Q-

Qout

o Letoy : U,,,, — I be the satisfying assignment to the inner nodes of the sutilty tree
T, Of Gour IN Gy @s follows fromsatg,,, (aour, Ca,,, (@out)) = true. For every node. €
Ua,.. leto(u) = oy (u).

Qout

e Letoy : O, — F be defined as follows. Let,.; € Q... Denote the polynomial corre-
sponding to the labed,.: by Qc,.., = Ca,..(@out)(§out) € Diene- Then,oz(&our) evaluates
the polynomial,,, on the point associated with,,, namely,os({out) = Qe,.. (Pt (ain))
(recall the uniform point association). For every nade Q,.:, leto(u) = oa(u).
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Next we show that this assignment is indeed consistent Wélevaluations's(a) (&) for the leaves
¢ € Qofthetreel,. Leté = (7, &) € Q. Denote the polynomial assignediby ) = C4(a)(§) €
Dy enc- Leteour = (Gout, bout) € Eoue bE thei’th edge coming out ofi,,: IN Goye. L€t & € Qo
be the label of,,;. As before, denote the polynomial assigned: g by the outer assignment
CAout (aout> by Q&out = CA(,M (aout)(gout> S Dl,enc-

Leth € {0,...,depth — 1}, and letu € U, be the ancestor &f in deptht in the treeT,. We
handle the following two cases separately:

o 0 < h < depthoy — 1: Letey, = (ain, bin) € Efgut be some edge withibel bm(em) =&in.
Sincng = CAm, out(aln)(gln) CBm,buut(bm)’ quut CBuut(bOUt) ande;, readSCBuut(bout)
in gf’;;“t underCly,, 4,., andCsg, ..., We have thaQ¢ (P, ¢(h)) = Q¢ (Payuieon (R)). Since
Sa’tgout (aOUt7 CAout (aOUt)) - true It h0|ds thathout( Qout 5out<h)> - Ul (u)

o h = depthy,: SinceQe = Ca,, b, (in)(&n) and sat buut(am,C'A bow (in)) = true and
by the definition of thecvalp function in an RM- RPR (see Definition 7.6) we have that
Q&( a,§ ( )) - evalpg”‘;“t (a2n7 CAinybout (a2n>)' Slncngout CBout( OUt) andeln reangout( OUt)

in G underCy,, 4., andCsg,, 5., We haveQ (P, ¢(h)) = Qe,.. (pntin(ain)) = oa(u).

Overall, we get thaf): (P, ¢(h)) = o(u).

Listdecoding. LetCp: B — Dy gec. L€t <6 < 1.

We use the list decoding properties of the inner and outestoactions to define a list decoding
for the composed construction.

Setl;,, = | 5b2J Letbou: € Bout- LetCp,, ... © Bin — D2.4ec D the assignment induced by
for gfg“t defined by letting every;,, € B, be assigned’'s((bout, bin)). Note thatd,,;, ., < § < 1.
Let fo,uits- s fooundin € D1.dec D€ the list decoding guaranteed by the property of the RM-RLELR
for the assignment’;, ;. ., and confidence paramete(we pad the list arbitrarily if there are less
thanl;,, elements in the list decoding). Defihe assignment§Bm 153 CBouitin * Bout = D1 dec
by aSS|gn|ng forz € [lin], every verteX,,; € B,y 10 Cp,,, i(bout) = fbm i

Setd,u = - 620243 and note thab,inout < Sour < 1. S€tlowr = |lmaz.out(Gout)]. FOr

everyi € [m] Iet fits--os firw € Daec be the list decoding guaranteed by the property of the
RM-RR G, for the assignment’s,,, ; and confidence paramet&y,; (we pad the list arbitrarily if
there are less thafy,; elements in the list decoding). In total, we defined a listoding of size

lin * lows < 522 : lmax,out(2b2 62b2+3) = lmax(é)-

Fix an assignment’y : A — ¥4 4... For every edge,,; = (Gout, bout) € Eoue this assignment
induces an assignme@ly, ... : Ain — Xa,, dec 10 Ajpy N gbm' Assume that,,; is thei'th edge
coming out Ofa,y; IN Gy fOr i € [degleftoy], i-€.,€0u = €q,., (aout, 7). FOr every vertex,, € A;,,
takeCly,, ... (a:n) to be the function that assigns eagh € €2;,, the valueC4 ((aout, @in)) ({7, Ein))-

Setlf = (632%1. We will construct assignments,,,,, 1, - - -, Ca,p i 0 Aout — Lagup.decy SUCH
that the following holds:

mn
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Proposition 16.2 (Target outer assignments)Pick uniformly at random an edge= (a,b) € E.
Leta = (aout, @in) € A, b = (bout, bin) € B, €our = (Aout, bout) € Eoutr Eour = labelg,,, (o) and
Cin = (@in, bin) € B2, With probability at least — O(6):

Either the edge is not satisfied irG under the assignments, and Cp, or there areig € [l;,]
andj, € [Iz,], for which: (i) the edge;, readsCp,,, i, (bout) IN G2o** under the assignments,
andCp (i) the edgee,,, is satisfied ing,,, under the assignments, . ;, andCp, , ;-

ins€out

in 7bout 4

Note that once we prove Proposition 16.2, we are done, susirg the notation of the propo-
sition): The edge,,; is uniformly distributed inE,,;. Thus, for everyi, € [l;,] andj, € [I7,],

the probability of the following event is at moék(d,.;): (ii) holds, but not (iii) e,,; reads one of

Jiods -« s fioiouw IN Goye UNder the assignmentsy,, ;, andCp,,, ;.- Hence, the probability that this
event happens fasomeiy € [l;,] andjy € [I7,] is at mostO(dpus - lin - If,) = O(d). Moreover,
whenever both (i) and (iii) hold; reads one of;, 1, . .., fi,.i,.. IN G underCy andC'.

Constructing the target outer assignments. For every vertexa,,; € A,.:, We construct’, as-

signmentsoa,,, 15 - -+, Tagur iz, Qout — Didec 10 Goue- The assignment€'y,,, 1, ..., Ca,ppiz
Aot — Xa,...4ec are defined for every € [I7 ], by assigning the vertex,,, € A, the value
C 4pur,i(@out) = Oa,,, i We construct the assignmemts,, 1, . . . , 04,2, iN two steps:

1. Projection step. Setl,, = L% “lmaz,in(0)]. FOr every&,,; € Q,., we construct a list

Jaoutiéoutls s faourourt, € Diaec Of candidates fok,,;. The list satisfies the following
property:

Proposition 16.3. Letay,; € Apur- Letegws = (Gour, bout) € Eoe be an edge coming out of
a.: that has labelabelg, , (eout) = our- When picking uniformly at random an edge =
(ain, bin) € EPo* and setting: = (a,b) € E for a = (agut, ain) € Aandb = (byu, bin) € B,
the probability that the following holds is at masto):

The edger is satisfied inG under the assignments, and C'z, bute;, does not read an
element in{fbouml? ) fboutylin}m {faout,SOutJ’ R faoutygoutyl;n} In gg’(l),ut under the aSSIQnmentS
Ca andCp

in,€out inybout "

2. Satisfaction stepBy matching the listg., ., £,.:.15 - - - s Jaouréour,s, € Di.aec fOr different,,;’s,
we construct the;, assignments.,,,, 1, - -, 0, iz, © Qout — Digec, SO that the following
property is satisfied:

Proposition 16.4.Letay,; € Aou:-

(a) Forevery: € [I7 ], it holds thatsatg,,, (Gouts Tay,, i) = true.

(b) Pick uniformly at random an edgg.; = (Gout; bout) € Eouwr COMING OUL Of1,,; IN Gy
and an edge;,, = (ai,, bin) € Ef’nouf. Sete = (a,b) € E for a = (apy, amn) € A and
b = (bout, bin) € B. Let&,, = labelg,,, (es:). The probability that the following holds
is at mostO(9):
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The edge: is satisfied inG under the assignments, andCp, bute;,, does not read an

. . bou
element In{fbouhl? R fboutvlin} A {Uaoutvl(gOUt)7 w0 Oagus I, (Sout)} n gm * under the
assignmentg’y andCag,, pou:-

in,€out

When (in the notation of Proposition 16.4), the edgeaeads an element s, 1, - - -, foourts, }1
{C et (Cout)s - -+ Oapuriz, (our) } N Giovt under the assignmentSy,, ., and Cp,, s, it holds
that for someiy € [I;,] andjo € [I7,], the edgez;,, readsCsg,,, i, (bout) IN gf’;;”t under the assign-
mentsCly,, ... andCp,, »,.., and that the edge,,, is satisfied inG,,, underCy,, ,, andCpg,,, .-
Thus, once we prove Proposition 16.4, Proposition 16.2 evgd as well, noticing that when
e = ({aout, @in), (bout, bin)) 1S uniformly distributed inE, we also have that,,; = (aout, bout) IS
uniformly distributed among the edges coming out.gf in G,,; ande;, = (a;,, b;,) is uniformly
distributed inE’.

Let us turn to the construction.

The projection step (Proof of Proposition 16.3). We will use Lemma 6.8 and our definition of the
satisfiability tree.

Let &, € Q... Let us define a point evaluation functipa : A,, — F. Leta,, € A;, and
denotea = (apu, ain) € A. If satg(a,Ca(a)) = false, let pe(a;,) be an arbitrary field element.
Otherwise, letv : U, — F be the implied assignment to the inner nodes of the satikfjabee

T,. Recall that,,, is a node in this tree, and defipe(a;,) = o(&,.t). The decoded domaiB, 4.
7\ /G2t 1)
)

4 <
||

defines a code with (relative) distante 4., and for every real’ satisfying<2b1 .

IFI'
d’ < 1it holds thatW > 2 IIF\ Let fapurbouils - -+ faouriéount, € Draec D€ the list we get

from Lemma 6.8 for the construction algorith#dy,,, the functionpe and the parametey (we pad
the list arbitrarily if there are less thdj) elements).

Fix an edgecou: = (Gout, bowt) With label labelg, , (out) = Eour- L€t €y = (i, bin) € Elo*
ande = (a,b) € E for a = {(aou, ain) € A andb = (boy, bi) € B. Denote the label of by
labelg(e) = (i, &) By the definition of the tre&,, whensatg(a, C4(a)) = true we also have that
Sl goour (Wins Casy eon (@in)) = true andevalp goou (Gin, Casy eou (@in)) = pe(ain). In addition, when
Ca(a)({i, &m)) = Cp(b), we haveCa, .., (aim)(Emn) = Cpyy o (bin). Hence, when: is satisfied
in G under the assignments, andC'z, we have that;, is satisfied wﬂf’g“ under the assignments
Ca,,eon ANACH andevalpgz_yout (@in, Ca,, eon(@in)) = pe(ay,). Proposition 16.3 follows from
Lemma 6.8. "

inybout

The satisfaction step (Proof of Proposition 16.4). Let us say that a vertex = (agu, ain) € A
checkedan assignment,, ., ,...i € Di.dec TOr {our € Qour, if there is an edge,,; = (aout, bout) €
E,.: with labellabelg, , (eout) = Eoue @Nd an edge;,, = (ain, bin) € Ef,gut, such that:

andCp

inybout "

1. The edge;, readsf.,,, ¢,... IN G2o** underCy

in,€out
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2. Fora = (aout, ain) € Aandb = (bout, bin) € B, the edgee = (a,b) € F is satisfied inG
underC, andC' (and, in particularsatg(a, Ca(a)) = true).

Note that by the definition of the tree satisfiability constrs, if a vertexa € A checked assignments

f, D f e € D1 dec forg géj}t € Q.ut, respectively, then there is an assign-
out, utvl Qout, out7

mento,,; : Uao , — F to the inner nodes of the satisfiability trég ,, that is consistent with all

these assignments. That is, for every [s], for every deptth € {0, ..., depthy, — 1}, if u € U,,,,
is the ancestor of the Ie&fut in depthh in the tre€e?,,, thenfao/ W, (P ) (h)) = oout(u).

out ZJ Qout,
We define assignments,,, 1, Ta,u.,2s - - - > Oagur iz, © Sout — Diace USING the following proce-
dure:
fori=1,2,...,0} +1do

’Tin

outy " *

1. Forever¥,.; € Q.. let theuncovered assignmerfs &,,,; be
Lfout = {faoutvgouhl’ R faoutysouhlgn} - {Uaouhl(g()ut)? ttt 70-0/0ut77;_1(§0ut)}

2. Ifthere is nau = (aou, ain) € A such that for at least fraction of the,.; € Q,., the vertex
a checked an uncovered assignmentggy, halt.

3. Otherwise, let. € A be such a vertex. For evety,; € €2,.; such that checked an uncovered
assignmeny,, .. e, € Le,.. TOr Eour, 18000, i(Eout) = fagucon.i- COMpletes,, . ; into an
assignment),,;, — Dy 4. Such thatatg,,, (Gout, 0a,.,.i) = true [Note that this is possible for
CIepthout S d ]

Note that:

e When the algorithm ends, it is necessarily because it rebtttehalt instruction in Step 2:
For every iteration = 1,...,0% + 1, let L; denote the average number of uncovered assign-

ments— D oot |L§0 .| inthei’th iteration. We have thdt, < [, . Moreover, for every
|terat|om =1,...,0;,+1in which the algorithm does not halt, we have that; < L;,—0-1.
Hence, if the algorlthm reaches Step 2 initerafipr- 1, it holds thatl;« <}, —d-1;;, <0
(recall thatl;, > 22, while I}, < 4+). Therefore, in this iteration, for evety,, € Q. it

holds that L,,,,| = 0, and the algorithm must halt.

e Assume that the algorithm halts in Step 2 in thb iteration. Pick uniformly at random an
edgecou = (Gout, bout) € Eou COMING OUL Of,,, IN Gy and an edge;, = (ain, biy) € B2,
Sete = (a,b) € Efor a = (agu, ain) € Aandb = (byys, bin) € B. Let&y,, = labelg,,, (€out)-
Let us show that the probability that the edge satisfied ing under the assignment$, and
Cp, ande;,, reads an element ififo, .. eue1s - - -+ faouréourtl, }—{ a1 (Eout)s - - -+ Oagursi=1 (Eout) }
in Geo+ under the assignment, andCsp,, p,.., IS less tham:

in€out
Assume that this is not the case. For every € Q.. there is the same number of edges
Cout = (Qout, bout) € Eoue COMING oUt Ofayy, IN Goyy With labelg,, (€0ut) = Eoue- HeENCE,
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in the 7’th iteration, there must be a vertex= (a,., a;n) € A that checked an uncovered
assignment for at leastfraction of theg,,; € 2,.:. If this is the case, the algorithm does not
halt.

Let 0upus 1y - - s Tagurl, Qo — D1 q4ec be the assignments the algorithm outputs (If there are
less thari}, assignments, we pad the list arbitrarily with assignmets : Q,u: — Di gec With
satg,.,(Gout, 0a,,,) = true). By definition, for everyi € [I7,], it holds thatsatg,,, (Gouts Tay,i) =
true. Proposition 16.4 now follows from Proposition 16.3. O

17 The Tree-Path Game

In this section we analyze a two-prover game that we calie@-Path GameThis analysis allows
the composition of RM-RR and RMHad-LR construction algorithms.

A Tree-Path Game is defined by the following objects:

1. Tree. Arooted tre€l’ on a set of nodes. We denote the depth @f by d. The depthi should
be thought of as some small constant. Fet 0, ...,d, we letU; C U denote the nodes in
depthi. All the nodes inU; have the same number of children, denatedWe assume that
the tree is directed from the root to the leaves.

2. Alphabet. A finite alphabetR, where nodes iV are assigned values from

3. Code. An encodingt : R — X™ for some alphabet and lengthm. The encoding corre-
sponds to a code with (relative) distarice ¢ for 0 < e < 1.

In the game a verifier interacts with two provetise tree provef/” andthe path provefP. Both
are asked about an assignment to the nadeSupposedly, both answer about the same assignment
oc:U — R.

The tree prover is given a positiane [m| in an encoding, and outputs feverynodeu € U
a symbol inX. The symbol is supposedly thigh symbol in the encodind’(o(u)). We denote the
answer of the prover by (i) : U — 3. We say that it iconsistentvith an assignment : U — R,
if indeed for every node € U, it holds that7 (i)(u) = E(o(u));.

The path prover is given a leaf in the treg € U,, and outputs assignmenig ..., ry € R for
the nodesyy, ...,uy € U on the pathuy, — --- — u, from the root to the leaf,;. We denote the
answer of the prover b (u,) : {0,...,d} — R. We say that it ionsistentvith an assignment
o : U — R, ifindeed it holds tha® (u,)(j) = o(u;) for j =0, ...,d.

The verifier in the Tree-Path game picks uniformly at randaju@stion to the tree prover and a
guestion to the path prover and checks their consisteneyFBgire 12.

We will prove that for any strategy of the tree and path preyiirere exists a short list of possible
assignments to the treg, ..., 0, : U — R, such that almost surely whenever the provers pass the
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Tree-Patf " :
1. Pick uniformly at random a positiane [m].
2. Pick uniformly at random a leaf; € U,.

3. Letuy,...,uq € U denote the nodes on the path from the root.jo The verifier asks
for 7 (i) and’P(u4) and tests that the two provers are consistent on the assigsmoethe
verticesuy, . . ., uq € U, namely, it checks the following equalities:

7(i)(uo) = E(P(ua)(0))i, -~ -, T(i)(ua) = E(P(ua)(d))s

Figure 12: Tree-Path Game Verifier

test, the answer of the path prover is consistent with ong of. ., o;. Note: we could have proved
a similar assertion about the consistency of the tree prithro,, . . ., 0y, but it is not necessary for

us.
We use the following notation:

o TPTP(i,uy): For a positioni € [m] and a leafuy € Uy, we let TPZ7 (i, u,) be 1, if the
verifier's test in the Tree-Path game passes when the vasierthe tree provél question
and the path proveP questionu,, and0 otherwise.

e conp(ug,0): For aleafu; € Uy and an assignment: U — R, we letconp(ugy, o) bel, if
P(ugq) is consistent witlr, and0 otherwise.

The first proposition shows that from any prover strategiescan extract an assignment:
U — R to the nodes of the tree. The assignment is such that we cate tak consistency of the

path prover with the assignment to the probability that gt passes.
We prove an even more general statement. In this staterherg,is a weight functiow : U; —

0, 1] that assigns each leaf, € U, a weightw(u4), and we consider the following:
e Theaverage success probability the test is

E [TPT’P(Z', ug) - w(ug)]

1€[m]ug€ly
e Theaverage consisten®f the path prover with an assignment U — R is

ud]EUd [conp(ug, o) - w(ug)]

We relate the average success probability of the test andwige consistency of the path
prover with the assignment. The relation we show rapidlgdetates with the deptti. However,
as we think ofd as being a small constant, it does not bother us.
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Proposition 17.1. For any Tree-Path game as above, for any leaf weightsU; — [0, 1], for any
prover strategie§ and?P, there exists an assignment U — R, such that

E [conp(ug, o) - w(ug)] > ( E [TPT’P(i,ud) ~w(ud)}) — (27 —1)-¢

uqg€Uy iE[m],udEUd

By applying the proposition iteratively, we can find a shast bf possible assignments to the
treecy,...,0; : U — R, such that almost surely whenever the provers pass thetiesinswer of
the path prover is consistent with onexf . . . , 0;:

Proposition 17.2. Consider a Tree-Path game as above. §gt = 2 - €2 andl,,q.(0) = 52% For
everyo > d,.n, fOr any prover strategieg and P, there exist < [,,,. () assignments, ..., o; :
U — R, such that the following holds:

Pr [TPT7(i,uq) AVj € [l], conp(ug, o) = 0] <&

1€[m],ug€ly

Proof. Fix 6 > 0,,;,. We construct assignmenis, ...,o0; : U — R iteratively. Each time we use
Proposition 17.1 to extract an assignment that is congigtiéimthe path prover on a large fraction of
the leaves. Then, we set the weights associated with thegesi¢o) to eliminate their contribution

to the probability that the test passes, and move to the tezation to extract another assignment:

1. for ug € Uy, setw(uy) < 1
2. 71
3. while Eicpmuev, [TPT7 (1, ua) - w(ua)] >0
(a) Leto; : U — R be an assignment that satisfies

5%
E [conp(ug, o)) - w(ug)] > —
ug€Uy 2
[note that such exists by Proposition 17.1 and the choiee>b,,,;,]
(0) Uy « {uq € Uy | conp(ug, 0;) - w(ug) =1}
(c) for ug € Uy, setw(ug) « 0

d)j—j+1
First note that in Step 3, the following holds:
E [TPT’P(i, ug) - wlug)] =  Pr [TPT’P(i,ud) =1AV1<j <j—1, conp(ug,o5) = 0]

ie[m},udEUd ie[m},udEUd

Thus, when the procedure ends, the assignments ., 0,_; satisfy the statement of the proposi-

tion. It remains to argue that the number of assignments wetnacted is at most,...(0) = 52%

This follows since (i) in different iterationg, # j,, we havel,; N U,;, = ¢; and (i) in every

. . . ~ d
iterationj, we have{ Ua;jl /|Ud| > % O
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Let us prove Proposition 17.1:

Proof. (of Proposition 17.1) The proof will be by induction on theptied of the tree in the Tree-
Path game. Fat = 0, letT consist of a single nodé = {u,}. Take the assignment: U — R that
is consistent with the answer of the path prover, &éuy) = P(ug)(0). Then,conp(ug, o) -w(ug) =

w(up), and we are done sin@@c/,; [TP” (4, uo) ~w(u0)]2o —(2° = 1) - e < w(ug).
Assume that the proposition holds for some natural nunmiben, and let us prove that it holds

for d. Consider a Tree-Path game as above where the tree hasidégtho : U; — [0, 1] give leaf
weights. Fix prover strategies andP.

Observe the nodes in depth- 1. Every such node,_; € U,;_; hask,_; childrenuy, € Uy in
depthd. We consider the sub-game, in which the question to the patlepis chosen among the
children ofu,_; in the tree. Denote,;_; — u, Whenuy is a child ofu,_; in the tree. The average
success probability of this test is given by:

E [TPT’P(Z', ug) - wlug)]

ie[m],udEUd:ud,l—md

Averaging over thei,_; € U;_; gives:

E [ E [TPT’P(’i,Ud)'w(udﬂ] = E _[TP"7(i,uq) - w(ug)]
ug—1€Uq_1 [i€[m],uq€U :uq_1—uq i€[m],ug€ly
Or, equivalently,
E [ E [TPT’P(i,Ud)-w(ud)]] = E [TP"(i,ug) - w(ug)]
ug_1€U4_1,4€[m] |uqg€Uq:uqg—1—uq i€[m],ug€Uy

Since for any random variablE it holds thatk [X?] > (E [X])?, we have that

2
E [( E [TPT’P(Z', Uq) * w(ud)} )
ud,leUdfl,iE[m] udeUd:udfl_’ud

Using the notation;_; — u4, u), to indicate that:; and«/, are both children ofi,_, (possibly the
same child) in the tree, we get

2( E [TPT’P(i,Ud)‘w(Ud)})2

1€[m]ug€ly

ug—1€Uq_1,i€[m] |ug,u,€Ug:uq_1—ug,u;

E [ E [TPTP (i, ua) - w(ua) - TPT7 (i, ugy) - W(U&ﬂ]

2( E [TP’”’(z’,ud)-w(ucz)})2

1€[m],ug€ly

Or, equivalently,

E

ug—1€U4-1

- [ B TP (0 wa) - wlug) - TP (0, ) ~w(um“

ug,uly€Uqug_1—ug,uly |i€[m]
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2
> ( E [TPT’P(i, Ug) - w(ud)})
1€[m],ug€ly

For a path assignmenpt: {0,...,d} — R, we denote the assignment induced on depttts
d—1bypgq:{0,....,d=1} — R(forj =0,....d -1, pq4-1(j) = p(j)). We say that leaves
uq, uly € Uy that have the same fathey_, € U, in the tre€l” agree if on questions:; andu);, the
path prover answers the same on the common path from theregty, i.e., P (uq)ja—1 = P(u})ja-1
(note that the equality is between tftoctiong. We letagr, (uq4, u)) bel if u, andu!, agree, and
otherwise.

By the distance of the code corresponding:tofor any leaves:,, v/, € U, that have the same
fatheru,_, € U, in the treel” but do not agree, i.eagrp(uq, u);) = 0, it holds that:

E [TP77(i,uq) - TPTP(i,u))] < e

1€[m]
Hence,
E E [ [TPTP (i, uq) - w(ug) - TPTP (i, u) - w(u)) - agrp(ua, UMH
ud—1€U4-1 |ug,ul;€Ugiug_1—ug,ul, [i€[m]

> (,E[ E [TPT’P(i,ud)-w(ud)})Q—e

ml],ug€Uy

Or, equivalently,

E

uq—1€Uq—1

E [TPTP (i, uq) - w(ug) - TP (i, ug) - w(ug) - agrp (ua, u&)}]

iE[m},ud,u&EUd:ud,laud,u&

2
> ( E [TPT’P(i, Ug) - w(ud)}) —€
i€[m],uqgeUy

Consider the tre&” of depthd — 1 that is obtained from the treE by discarding the nodes in
depthd. LetU’ = Uf;ol U;. Let 7T’ be the tree prover induced [y for 7". For a path assignment
p:40,...,d—1} — R, for a position; € [m| and a node:;_; € U,_, IetTPT"”(z’,ud_l) be0 or
1, depending on whether the test of the Tree-Path game padses,the tree i§”, the tree prover
is 7" and the path prover answersLet Inp ,,(p) bel if p isinduced by the path assignmentig
i.e.,P(ug)ja—1 = p, and0 otherwise.

We have that

E > E P72 (0, g 1) 0p 0, (p) + w(uta) - I (p) - (it

ug_1€U4_ i€[m],ug,u’,€Ugiug_1—uqg,u’
a-1€Ua-1 | g © d_l}_>R[Ld7d diUg—1 UG,

> <E[ E [TPT7 (i, ug) - w(ud)})Q —€

m|,uq€Uy
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Stated differently,

E Z E [TPT/’p(i,ud—l)] : ( E [Inp ., (p) 'w(ud)])2

ug—1€U4-1 {0, d-1}—R i€[m] ug€Ugiug_1—uq

> (ie[m}E [TPT’P(i,ud)-w(ud)])z — €

yug€lyg

We define a path prove?’ for the Tree-Path game dif as follows: For every node,_, € U;_4,
let P’ (uq_1) be an assignment: {0,...,d — 1} — R that maximizes

E TP ()] B (Inp(p) - wlu)

ze[m} udGUd:ud,l—md

Forug_, € Uy, denote this maximum by/Z,, .. Then, it follows from what we showed that

E My ) B [Inpu,(p) - w(ud)
Ug—1€Vd—1

ug€Ug:iug_1—u,
p{0,.. d—1} R 4T dHd—1Td

> (ie[m}E [TPT’P(i,ud)-w(ud)])2 —€

yug€lyg

Since for everyus_1 € Uy, it holds that}_
we have

d—1}—R EueUgug—1—uq [Inpﬂm(p) ) w(ud)] < 1,

-----

E [M,,]> ( E  [TPT7(i,uq) .w(ud)})z —€

ug—1€U41 i€[m],uqg€ly

Or, equivalently,

E {TPT’vP’(i,ud_l)- E [Inp,ud(P'(ud_l))-w(ud)]}
i€[m]ug_1€Uq_1 ug€Uqiug—1—uq
2
Z( E [TPT’P(i,ud)-w(ud)D —€ 3)
i€[m],uqg€Uy

Define a weight function’ : U;_; — [0, 1] by assigning every,_, € U,_, weight

w'(ug-1) = E [Ny (P’ (1a-1)) - w(ug)]

ug€Ug:ug_1—ug

By the induction hypothesis on the Tree-Path game on theltreédepthd — 1, we get that there
exists an assignment : U’ — R, such that

E [conp(ug—1,0") - w'(ug-1)]
uq—1€Uq—1
2d71
> < E [TPT’””(z',ud_l) : w’(ud_l)D — (27— 1) e (4)
i€[m],ug—1€U 1
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Leto : U — R be the assignment that identifies withon U’ and assigns eachy, € U, the value
P(ugq)(d). Then,

E [conp(ug,0) - w(ug)] > E  [conp(ug_1,0") - w'(ug-1)] (5)
uq€lUy ug—1€Uq_1

Let us lower bound the right hand side of inequality (4). Bgqnoality (3),

2d71

( E [TPT’J” (i, ug—1) - w'(ud_l)]) B

i€[m],ug_1€Uq-_1

2d71

TP (G ug) - wlu 2—6 — (27— 1) €
2((@ E [TP* (4, ua) (dﬂ) ) (2 1)

m|,uq€Uy

> ( E  [TPT7(i,uq) ~w(ud)}>2d —2 e — (24— 1) €

1€[m],uqg€ly

= ( E [TPT’P(i,ud) -w(ud)}) —(2¢9-1)-¢

1€[m]ug€lUy

Therefore, from inequality (4) and equality (5), we get
2d
E [conp<ud,a>~w<ud>]z( E [TPT%ud»w(udﬂ) — (21 1) ¢
uq€Uy 1€[m],uqg€ly

The inductive claim follows. O

18 Composition of Reed-Muller Right Reader and RMHad Left
Reader Construction Algorithms

In this section we show how to compose RM-RR andd®Md-LR construction algorithms, thus
proving Lemma 8.9.

1. LetD = (F™ F, D.,., Ds.) be a Reed-Muller domain defined by a finite fi&élda dimension
m, an encoding degreéand a decoding degre&

2. LetDy = (F*,F, Di ene, D1 aec) be @ Reed-Muller domain defined by the fi&lda dimension
w, an encoding degreg and a decoding degrek.

3. LetD® = (F" x L7, L, D¢, ., DS..) be a RMHad domain associated with, whereL is a

enc?

subfield ofF and the extension degreeris= [F : L].

4. LetDy = (F* x L7, L, DY ..., D7 4..) be a RMHad domain associated with, .

l,enc’
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Assume that we have outer and inner construction algoritsrisllows:

e A, (D, k, N)-RM-RR construction algorithm with structural parameters

(sizeout, blockeyt, deglefto,:, degrightoy:, deptho, ) reducingD — Dy, where the deptlepth,,:
is constant and smaller thalf.

o A,.: (DS, deglefty,: - k+depthoy+1, \F|w+1)-RM<>Had-LR construction algorithm with struc-
tural parameterssize;,, block;,, degleft;,, degright;,) that is uniform in the tuple association
and in the encoding and list decoding. The algorithm outpgtd regular RMHad-LRs.

We design a composed algorithdh The algorithmA is a (D¢, k, N)-construction algorithm that
outputs edge reading bipartite locally decode/reject sodene algorithm has structural parame-
ters (size, block, degleft, degright) for size < size,, - sizej,, block < deglefty,: - block;,, degleft <
degleft,,: - degleft;,, degright < degright,,. - degright;,:

Assume that the input to the construction algorittdnis a collection ofk-tuples of points
{Zi1,Tin)y - (Tin, Uin)) € (F™ x L7)k for i € [N]. The construction algorithm constructs
an edge reading bipartite locally decode/reject code

G=(G=(A,B,E),Q X4, %g,satg, labelg, projg, tupg, evalg)

as follows:

1. Outer construction. Invoke construction algorithn,,,; on the input:

—

<f1’1, .. .,J}Lk>, ceey <fN’1, o ,fN,k> € (Fm)k

Obtain an RM-RR

gout = <G0Ut7 ‘/;Ut = BOUt7 QOUt? 2Aout7 Dl? Sathut? labelgout ? proj(_;out? tuonut? evalQout)

WhereGout == (Aoutu Boutu Eout) andzA == <Qout7 Dl,dem EAout,enm 2Aout,dec>-

out

2. Queried points.  Setk’ = (deglefto, - k + depthoy + 1). For a vertex-label paif =
(@outy Eout) € Aout X Qo We define a collection of sizlé"‘|erl of k’-tuples of points iff” x L.".
We call these pointgueried pointsEachk’-tuple is indexed by a paifr, 7/) € F* x 7. The
tuple consists of the following’ points inF* x IL":

e \ertex queried pointsdégleft,.: - k£ points; k& points for every neighbor of,,;): These
points depend only on the vertey,;. Let e, = (aout, bout) € Four b€ @an edge coming
out of a,,;. The vertex queried points associated with this edge arellasvt.

Assume that the tuple associated Witly is tupg,,, (bout) = (Zi1, ..., Ziy) fori € [N].

If p1,...,p, € F¥ are the points such that for every vertgx; € B,.; and assignment
Obyus € D1.aec it holds thatevalg,,, (bout, Oby0) = (Obyu (D1), - - -5 6,0, (D)) (SUCh poINts
exist by the definition of RM-RRS), thel\, 4; 1), . . ., (Pk, Uix) € F x L7 are the vertex
queried points ofa,.:, £,..) associated witl,,;. Note that these points do not depend
oNn (&, 1) or ON&,yy.
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e Path queried pointsdepth,,: points): Recall that for every vertex,.;, € A,.; there are
satisfiability constraints ig,,; given by a tred’,_ , whose leaves are the elementSiy;
and by ancestors point specification functidd, . ¢,.. }¢,.,cq,,, (S€€ the discussion in
Section 7.5). A paifp, ) € F* x L™ is a path queried point G(hom, Eout), If P'is one of
the points along the path frof,; to the root of the satisfiability tre€, ., i.e., there is
adepthi € {0,...,depthe, — 1} such that, , ¢ .. (1) = p.

e Random point{ point): the point(zZ, i) € F* x L".

out!

We assume that eaéfrtuple is ordered as above.

. Inner construction. Let I = (aou, out) € Aour X Qoue- We define a RMHad-LR whose
purpose is to read the queried pointgof

The algorithmA,,, is uniform in the tuple association, and, in particularfamn in structure.
Let A, Bin, Qin, X4, andXp, be such thatd;, is uniform in structure(A;,, Bi,, Vi, =
Aina Qina ZAmv Zan)

Invoke A;,, on the collection of queried points éf Obtain the RMHad-LRG! :

gzIn = <GI ‘/Znu Qi?’w EA

m?

in? EB’L’R ?

satgr = true, labelgifn ,projgr s tupgr e’UCngiIn>

whereG! = (Aj,, Bin, EL). Lettupi;, : A;, — F* x L7 be the uniform tuple associator
(where we use the indexing introduced for the queried pa@ibtwe).

. Composed graph. To construct the composed graph for each vertexi,,; € A, We
produce a copy ofi;,,, and for each vertek,,; € B,.:, we produce a copy aB;,. Thatis, we
take:

A = {<aout7 ain> ‘ Qout € Aout A Ain € Azn} ) B = {<bout7 b2n> ‘ bout € Bout A bzn S Bm}

For every edge .. = (aout, bout) € Eoue With labelé,; = labelg,,,(e..:) @and an edge;, =
(Ain, bin) € EL wherel = (a,ut,Eout), We put an edge € E between(aoy, a;,) € A and
<bout7 bm) S B

Note that the composed graph is left regular with left degkegeft,,. - degleft;, and right
regular with right degredegright,, - degright;,. The size of the composed graph is less than
Sizegyt - SIZ€p.

. Labels. We letQ = Q,.; x Q;,. If an edgeec € E corresponds to the outer edgg; =
(Gouts bout) € Fous, labeled byé,,; = labelg,,, (eou:), and the inner edge;,, € E! , where
I = (aout, Eour)s thenlabelg(e) is the pair(&,u, &in) € 2, whereg;, is the label of the inner
edgee;, inG! ie. &, = labelgr (ein).

. Alphabets. We letX 4 = (Qout, X4, decs 2 A.enc, 2a.dec),» Where the encoded domain consists
of all possible functions frorf,,; to the encoded domain @f,, , i.e.,

ZA,enc = {f | f . Qout - ZAm,enc}
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and the decoded domain consists of all possible functiams ft,,,; to the decoded domain of
XA ie.,

in?

ZA,dec = {f | f . Qout - ZAm,dec}

We letXpz = X5, . The projectiorprojg is defined in the natural way, by assigning every
vertexa = (aout, ain) € A, assignment, : Qour — La,, dec and labels = (Eour, &) € Q,
wherel = {(ayut, Eour), the projection

pTOjg(C% Oq, 5) = pTOjgifn (a'ina O-a(gout)a gzn)

Note that the block length is at masigleft,,. - block;, (note that we can assume without loss
of generality that(2,,;| < degleftoy.).

. Evaluation. Lete = (a,b) € E be an edge, where = (ayu, ain) andb = (bous, bin). Let
Cout = (Qout, bout) @NM leté,,, = labelg, , (e.:) e the label of the outer edge.

Suppose thatupg,,, (bout) = (Ti1, - .., Tix) € (F™)F fori € [N] (For simplicity, we associate
everyb,,; with a uniquei € [N]). We settupg(e) = ((Zi1,%i1),- - (Tig, Yig)) € (F™ X
IL7)*. Note that each tuple is associated with the same numbegeked

Let o, @ Qowr — a,, dec ANAT = (Gout; Eour). WE letevalg(e, 0,) be evalgr (ain, 0a(€out))
truncated to theé positions corresponding to thevertex queried points associated wit};.

. Tree satisfiability constraints. Recall the definition of tree satisfiability constraints eppng
in Section 7.5.

Leta = (aou; ain) € A. Leto, : Qo — Xa,, 4ec D€ an assignment far. We define a
satisfiability constraintatg(a, o,), whose purpose is to check the tree satisfiability conggain
of a..¢ IN G,,; (recall that the inner reader has no satisfiability constsai The check focuses
on one position in the Hadamard encoding of the evaluati@aah of the nodes. The position
is determined by:;, (here we use the uniformity in the tuple association).

Let the tree satisfiability constraints af,; in G,,; be given by the treq,, , = (U, U
Qout, Ea,..) @nd the ancestors point specification functi¢fs, . ... e, cq,..-

We say that, satisfies: (i.e., satg(a, 0,) = true), if there exists an assignment of elements
in L to the inner nodes of the tree: U,,,, — L, such that the following holds. Letc U,
be a node in the tre€, ,,. Assume that is in depthi € {0,. .., depthy, — 1} in the tree.
Let & € Qo be a leaf in tree which is a descendenwofLetp’ = P, ¢...(h) € F” be
the point specified for in the tree. Lety € L™ be the position in the Hadamard encoding

associated witl,, (i.e., is the second component of the paipi;,, (a;,)).

out

Then,(p, v) is a path queried point df = (a,ut, {out)- SUpPpPOSE it is thg'th queried point for
j € [K']. It should hold thatvalg: (ain, 0a(Eout)); = o (u).
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18.1 Analysis

Lemma 18.1 (Composition).Let0 < dmin.outs Omin.in < 1. L€tlnaz outs lmaz.in : (0,1) — RT be
decreasing functions. Assume that, i (), lmaz.out (§) < 6-°W. For a sufficiently small constant

c> 0, set
d\° 1\°
6min = max {67077,zn ins 6;1271 out’ (_) ) (_> }
’ RN |L|

Then, if Ay OUtPULS(Srmin out; lmaz,out)-RM-RRS, andd;,, outputs(d,,in.in, lmaz,in)-RMeHad-LRs,

then. A outputs(d,..., L. )-€dge reading bipartite locally decode/reject codes, fumel,, .. (6) <
50,

Proof. We will prove encoding and list decoding:

Encoding. Let f € D.,.. We efficiently construct assignmerits : A — X4, andCp : B —
Y B.enc as follows: LetCly,,, 1 Aout — Xa,usenc ANACE, ., * Bowr — D1 enc bE the assignments for
G..: Tollowing from the encoding property fof.

By the uniformity in encoding (and list decoding) &f;,,, for everyb,.; € B,.; we can effi-
ciently construct an assignmefig,, .., : Bin — 2B, enc fOr the concatenation of the Reed-Muller
codewordCp, , (b,,:) With the Hadamard encoding ovér For everyb = (b, bin) € B, let
CB(b) = CBm,buut (bm)

ForI = (aout; Eout) € Aout X Qout, 1€0Ca, 1 @ Ain — X4, ene D the assignment fod;,, in
G! following from the encoding property for the concatenattbprojg, ., (Gout, Ca,,, (Gout); Eout) €
D1 ene With the Hadamard encoding oveer

Leta = (aout; ain) € A. Then,Cy(a) is taken to be the functios, : Q,,; — X4,, ene defined
as follows: FOIE,,: € Qoue, 1011 = (aour, Eoue) @Nd definer, (Eour) = Ca,, 1(ain)-

Lete = (a,b) € E fora = {(apu, aimm) € A andb = (b, bin) € B. Denote the label of by
label(e> = £ = <£out7£in> c . Let]l = <aout7£out> € Aout X Qout- Let Cout = (aoutu bout) € Eou
ande;, = (ain, bin) € El . We have the following properties:

Reading. Assume thatupg(e) = ((Zi1,Yi1), - -, (Tik, Yir)) fOri € [N].

We have thatvalg(e, C4(a)) is thek positions inevalg: (aq,, Ca,, r(a:nrn)) corresponding to the
k vertex queried points associated with,. The edgeemmreads the concatenation 6%, (bout)
with the Hadamard encoding ov&rin G/ underC,, ; andCjg,, 4,..- Thus, for everyj € []
it holds thatevalg(e, Ca(a)); is they; ; symbol ofevalg,,, (bout, Cp,..(bout)); With the Hadamard
encoding oveL. Sincee,,; readsf in G,,; underCy,_, andCp, ,, alsoe reads the concatenation of
f with the Hadamard encoding ovierin G underC'y andC’p.

Projection. We have projection:
p’l“Ojg(a, CA(a)v 5) = pmjgifn (a,m, CAz‘nJ(ain)> Sm) = CBi7L7b0’ut(bin) = CB(b)
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Leta = (aopu, aim) € A, and let us show thatatg(a, Ca(a)) = true. Let the position in the
Hadamard encoding associated with bey = (vy1,...,y.) € L (this is the second component of
the pairtupi;,(a;,)).

Satisfaction. We define an assignmeat: U, , — L of subfield elements to the inner nodes of
T.,... Leto’ : U, — F be the satisfying assignment to the inner nodes of the sttty tree
Ta,.. Of aous IN G,y @s follows fromsatg,,, (aout, Ca,,, (Gout)) = true. Recall that we identiff with

L". For every node € U,,,, leto(u) be the symbol of the Hadamard encodingrtif.) determined

by a;,,. Thatis, ifo’(u) = (01, ...,0,) € L7, theno(u) = >__, y; - 0l.

Next we show that this assignment is indeed satisfyingzletU,  , be a node in the treg,
Assume that: is in depthh € {0, ..., depthy,: — 1} in the tree. Let,; € Q.. be a leaf in the tree
which is a descendant af LetQ;,,, = Ca,..(@out)(&out) € D1 4ec D€ the assignment for this leaf in
the outer RM-RR7,,.;.

Letp' = P, ..c..(h) € F* be the point specified faz in the tree. Letj € L be the second
component of the paitupi;, (a;,). Assume thatp, y) is the;’th queried point ofl = (aout, Eout)
for j € [K']. Then, the inner reader indeed evaluatesdy: (a;,, Ca(a)(&out)); the positiony of
the Hadamard encoding overof Q. (p). "

out "

Listdecoding. LetCp: B — Xp,, 4. Letd < 1. In the course of the proof we will need various

. . 1) Q1) 2\ 2
lower bounds on. All these lower bounds will be quantities that dﬁé J ( ) or

n,in? “min,out’ \ |F]|

Q1) . .
<\Tﬁ\> . We will set,,;,, as to satisfy all these lower bounds.

We use the list decoding properties of the inner and outestoactions to define a list decoding
for the composed construction.

We will setd,, in the sequel in a way that,, > §° would hold. Set,,;,, such that;, >
5min,in- Setlm = Uma:v,zn(ézn)J S 5_0(1)- Let bout € Bout- Let CBm,bout : an - 2Bm,dec be
the assignment induced lay defined by letting every;,, € B;, be assigned's({byu:, bin)). Let
Sooue 155 Joouidin € DF 4ec D€ the list decoding guaranteed by the uniform list decodiogerty of
A, for the assignmert’s,, 5., and confidence parametgy, (we pad the list arbitrarily if there are
less than;,, elements in the list decoding). Defing assignment€'s, . 1,...,Chyuiii @ Bout —

D1 qec by assigning, foi € [1;,], every vertex,,. € B,,: to the Reed-Muller codeword associated
with fbout,i'

We will seté,,, in the sequel in a way thak,,, > §°1) would hold, and se#,,;, such that
6out > 6min,out- Setlout = leax,out((sout)J < 6_0(1)- For everyi € [lzn]’ let fi,la SRR fi,luut € Ddec
be the list decoding guaranteed by the property of the RMegiRfor the assignment’s,, ; and
confidence parametéy,,; (we pad the list arbitrarily if there are less thap elements in the list
decoding). In total, we defined a list decoding of dize l,.,; < §~°W.

Fix an assignment’y : A — X4 jee. FOr everyl = (aout, Eout) € Aour X Qout, the assignment
C,4 induces an assignme€ty, ;: A, — X4, 4 t0 A;y in G2 for every vertex;, € A;,, take

in,
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CA,L-”,I(a'in) = CA(<aout7 ain))(gout)-
For somel;, < 6~ defined later, we will construct assignmertts, 1, ..., Ca .0z :
Aoyt — X a,,..dec: SUCH that the following holds:

Proposition 18.2 (Target outer assignments)Pick uniformly at random an edge= (a,b) € E.
Leta = (aouts @in) € A, b = (bouts bin) € B, €out = (Gouts bout) € Eouts Eour = labelg,,, (€out),
I = {aout, Eout) @NAes, = (ain, byn) € EX . With probability at least — O(9):

Either the edge: is not satisfied irg under the assignmenés, andCp, or there areig € [l;,,]
andj, € [I7,], for which: (i) the edge;,, reads the concatenation 6fs,,, ;, (b,.:) With the Hadamard
encoding ovef_ in G/ under the assignments,,, r andCp (ii) the edgee,,; is satisfied in
Gout Under the assignmen€s, andCpg,,,.i-

in 7bout 4

out;Jo

We sets,, > 090 such thab,,, - I;, - I}, = O(J). Note that once we prove Proposition 18.2, we
are done: Let us use the notation of the proposition. The eggés uniformly distributed inZ,,,,;.
Thus, by the list decoding property of the outer construcgig,;, for everyi, € [l;,] andj, € [I7,],
the probability of the following event is at moék(d,.;): (ii) holds, but not (iii) e,,; reads one of
Jiods -« s fiodouw IN Goye UNder the assignmentsy,, ;, andCp,,, ;.- Hence, the probability that this
event happens fasomei, € [l;,] andjy € [I7,] is at mostO(dpus - lin - If,) = O(d). Moreover,
whenever both (i) and (iii) hold, ig underC', andC'z, the edge: reads the concatenation of one of
Jio1s -+ Jioiouw With the Hadamard encoding ovier

Constructing the target outer assignments. For every vertexi,; € A,.:, We construct? assign-
MeNtSoa,,, 15 -+ s Tagye iz, Qout — Didec to a.,;. We identify an assignment : €,,; — Didec
with an assignment,,, — D, 4. that maps eack,,, to the Reed-Muller codeword corresponding
to U(gout) .

The assignment&’s,,,1, - Caputr 0 Aour — a,...dec are defined for every € [I7 ] by
assigning each,,, € A, the function(,,, — D1 4. identified witho,_,,, ;.

For every vertex,,., € A, We construct the assignments,,, 1, . . ., 04,1z, in three steps:

1. Projection step.Setl/,, = |1 - lyaz,in(62)] < 6790, For every vertexi,,, € Aoy, for each
label&o.: € Qout, We construct alista,,, eoue1s - - s faour o, € D 4ec Of candidates fog,.;-
The list satisfies the following property:

Proposition 18.3. Letay; € Apur- Letegwr = (Gour, bout) € Eqe be an edge coming out of
a.y that has labelabelg, , (6out) = Eour- LELT = (Aout, Eout) € Aout X Qout-

When picking uniformly at random an edgg = (a;n, bi,) € E. and setting: = (a,b) € E
for a = (aou, ain) € Aandb = (b, bin) € B, the probability that the following holds is at

mostO(J):

The edger is satisfied inG under the assignments, and C'g, bute;, does not read an
elementin{ fo,...1, - s foourtin } N { favursoursls - - > Sauréowrtr, + iN G1, UNder the assignments
CA’Ln7I andCBinybout'
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For everyi € [I},], for every&,.: € Qoue, defineo,, . i(Eout) = faour€onssic

2. Satisfaction stepUsing our analysis for the Tree-Path game, for every vertgxe A,.; we
construct thej, assignment®,,,, 1, - -, Oapu iz, © Qour — D dee: The assignments corre-
spond to satisfying assignments g, in G,,,. In addition, the property of the assignments
from the previous step would still hold for them:

Proposition 18.4.Letay,; € Aous-

(a) Foreveryi € [I7 ], itholds thatsatg,,, (aout, Oa,.,.:) = true (recall that we identify,,, ;
with an assignment,,; — D1 4e.).

(b) Pick uniformly at random an edgg.: = (dout, bout) € Eour COMING OUt Of1yys IN Gort
Denote its label by,,, = labelg,,, (o). Denotel = (amui, Eour). Pick uniformly
and independently at random an edgg = (a;,, bin) € EL. Sete = (a,b) € E for
a = (Aout, @) € Aandb = (b, bin) € B. The probability that the following holds is
at mostO(J):

The edge- is satisfied inG under the assignments, and Cz, bute;, does not read

an element i fy,...1, - -+ fopuriin } N {Ta0ur1 (Eout)s - - - s Taguriz (Eout) } i GF, under the

assignment€’y, ; andCsg, p,..-

When (in the notation of Proposition 18.4), the edgeaeads an element s, 1, - - -, foourti, J1
{Oapuet (Eout)s - - -y Oapuriz, (Eour) } IN G, under the assignments,,, ; and C, , s,,,, it holds that
for somei, € [l;,] andj, € [I},], the edgee;, reads the concatenation 6f,,, ;, (bou:) With the
Hadamard encoding ovér in G/ under the assignment,, ; andCjy,, 4., and that the edge
eout 1S Satisfied ing,,, underCy,,, j, andCp,,, ;,. Thus, once we prove Proposition 18.4, Proposi-
tion 18.2 is proved as well, noticing that wher= ({a,ut, ain), (bout, bin)) is uniformly distributed
in E, we also have that,,; = (a.ut, bout) iS uniformly distributed among the edges coming out of
Aout IN Gout, and the edge;, = (ain, by ) is uniformly distributed inEZ for I = (aour, Eout)-

Let us turn to the construction.

The projection step (Proof of Proposition 18.3). We will apply Proposition 6.11 that shows a list
decoding for assignments to the left side of a reader andhesertiformly distributed position read
by the inner reader.

Let apur € Aout- Leteos = (aout, bour) € Eoue e an edge coming out af,,, that has label
labelg,,,(€out) = Eout- LELT = (Aout, Eout) € Aout X Qout. ChOOSE),,;,, SUCh thats > /0pin.in-
Let fapurbourts - faouriéounll, € D5 40 D€ the elements following from Proposition 6.11 for the
assignmenCly,, ; : Ain, — Xa4,, 4ec @and the parameter.

Pick uniformly at random an edge, = (a;,,b;,) € E}, and sete = (a,b) € E for a =
<CL0ut, ain> € A andb = <bout7 bzn) € B

Let us bound the probability that the following bad eventggen byO(9) and be done:
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e BAD,: The edge: is satisfied ing under the assignment$, andC, bute;, is not satisfied

or does notread one gf,,. e, - - - » faour,bour,ts,, N G! underCy, ;andCp,, 4,.,-
e BAD,: The edge;, is satisfied and reads an element frdifa,,.c,..1: - - - faouréouett | —
{fbout717 ct fboutylin} In g’lIn under the aSSIQnmer@Aznyl andCBinybout'

Bounding BAD;. Whene is satisfied ing under the assignments, andC'i, we have that;, is
satisfied inG!, under the assignments,, ; andCjp The bound follows from Proposition 6.11.

inybout "

Bounding BAD,. Leti, € [l;,] andj, € [I},] be such thaf,. .. ¢..j0 # foousio- THE probability
that em readsf.,., ¢ujo @Nd fy, ., i IN G under the assignments,,, ; andCsp,, 4., IS at most
m + L (since where,, is uniformly distributed in&’ also the last pair |mupg1 (am) is uniformly
distributed inF* x L™, and by the distance property of the concatenation of thelfRédler code
and the Hadamard code). Thus, for eveyry (17, ] such thatf,, .. c..iio & {foouets -« > Soousiin 1+ thE
probability thate,, readsf,, ., ¢,...jo» @s well as one of,., 1, - - -, foueisn» IN G, under the assign-

mentsCl,, ; andCp, ;... iS at most,,, - (% + Fﬂ)

n,Yout

The probability that;, is satisfied but does not read onef@f, 1, . .., fo,...., IN G, under the
assignment§’y, ;andCp, ,,,, iS at mostO(J;,). In particular, for everyo € [I},], the probability
thate;, is satisfied, readg,,, ¢....;,» but does not read one ¢f Joouwtin IN GLunder the
assignment§’y, ; andCp,, ;.. iS at mostO(d;,).

Hence, the probability that for somg € [I;,,]| such thatf,, ., c.ijo & {foowts -« s foousiiin 1+ thE
edgee;, is satisfied and reads, ,, ¢,...;, in G., under the assignments,, r andCsy,, 4,.,, iS at most
I - <lm . <% + IILI) + O(d;n, )). We set),,, such that’ - ¢;, < ¢ (this also fixed;,). We set), .,

out717 MR

! 1
such that’,, - 1, - <W + W) <.

The satisfaction step (Proof of Proposition 18.4). Leta,,; € A,.:. Letus define a Tree-Path game
corresponding to the constraints on the edges connectitigasa,., a;,) € A to their neighbors
inG.

1. Tree. The treel' is T,

Qout ~ (U
|n gout-

Qout

U Qout, Ea,,,) from the tree satisfiability constraints @f,;

2. Alphabet. The rangeR of the assignments to the nodes of the tree is the Keld

3. Code. The encoding of the assignments to the nodes is a repetitiatHadamard encoding
E : F — LMl defined as follows: Let € F. Let us identify the|A4;,| positions inE(t)
with the vertices in4;,, and focus on a positiom;,, € A,,. Assume that;, is associated with
positiony € L™ in the Hadamard encoding (this is the casg i§ the second component in
the pairtupi;,(a;,)). Then the symbol off(¢) in positiona;, is the symbol of the Hadamard
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encoding of in positiony, namely(t)(y) (whereg is as in the definition of the domain cor-

responding to concatenation of Reed-Muller and Hadamad)e that the code has relative

distancel — ﬁ.

Fix j € [l,]. Let us define the strategies for the tree prover and the patlepinduced by the
assignment’, and the assignment,, ; respectively:

1. Tree prover. Assume that the tree prov@r is given a vertex;,, € A;, corresponding to a
position in the encoding. Denote= (a,u:, ain)-

o If satg(a,Ca(a)) = false, then7 outputs an arbitrary assignment to the nodes of the
treeo : U,,,, U Qo — L.

o If satg(a,Ca(a)) = true, then there is an implied assignment to the inner nedes
U,,.. — L. The tree provef outputs an assignmeat: U, , US2,,; — L thatidentifies
with ¢; onU,,,,, and assigns to the elements if,,;.

2. Path prover. Let{ Py, £, }¢,,,cq,,, D€ the ancestors point specification functions of the tree
satisfiability constraints af,,; in G,.;. Fix a leaf¢,,; € Q,.:. We say that an assignment
{0,...,depth,} — F is consistentvith an assignment,,,, ;(&out) t0 &oue, if the following

holds:

e For0 < h < deptho,—1,letfe, ., € Dy 4. be the Reed-Muller codeword corresponding
t0 0ayr,i(Eout) € DY 4o LELP € F¥ be the point associated with the node in defpth
i.e.,p'= Py, ..c..(h). Then, it should hold that(h) is the evaluation of,,, onp. l.e.,

U(h) = fgout (ﬁ)'
e Forh = depth,,, it should hold that (k) = 0.

Assume that the path provéris given a leaf,,; € Q... Then,P outputs the assignment
o :{0,...,depth,,} — I thatis consistent with,,, ;({ou)-

1 /2depthout
Setdr = li > 6, We setd,,;,, such thaty, > 2 - (ﬁ) (recall thatdepthy,; is

constant). Let;1,...,0;; : Uy, U Qo — F be thel < W < 690 assignments to the
T

nodes of the tree guaranteed fgr and the strategies &f andP by Proposition 17.2. For every
L€ [l],1et0q,, 5. Qour — D7 4. bE defined as follows: &} € Qou-

o If 0,,...i(&ut) iS CONsistent withy; , (thatis, consistent with an assignmég0t. . ., depthe, } —
[F that is consistent with; ,), leto,, ., ;. (§out) = Tague i (Eout)-

e Otherwise, lew,,,, ;.({u:) DE an arbitrary element iR} .. that is consistent withr;, (note
that such exists sinagepth,,: < d)).
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For every. € [l], it holds thatsatg, ., (aout; Ta,...j..) = true (where we identify,, , ;, with an
assignment,,; — D1 gec)-

Pick uniformly at random an edgge,; = (Gout, bout) € Eour COmMing out ofa,,, in G,,;. Denote
its label by¢,.; = labelg,,,(eout). Denotel = (aou, our)- Pick uniformly and independently at
random an edge;, = (ain,bin) € EL. Sete = (a,b) € E for a = (apu, a;m) € A andb =
(bout, bin) € B. Note that¢,,; is uniformly distributed in(2,,;, and thata;, is uniformly distributed
in A;,.

When the edge is satisfied inG under the assignments, and C'z and the edge;, reads
Oapuj(Eout) IN GL underCy, ; andCp, .., it holds that the Tree-Path verifier accepts when the
tree prover? gets the positiorn;,, and the path proveP gets the leat,,;. In addition, when
the answer ofP is consistent withs;, for « € [{], it holds thate,, readso,,,, ;. = 0a,..; IN G},
under the assignments,,, ; andCp,, ;... Hence, by Proposition 17.2, the probability thats
satisfied inG under the assignments, and C, ande;, readso,,,, j(Sou:) In G, underCy,,
andCg,, p,.., but for all. € [l], eithero,,,, ;. (Sout) F# Taousj(Eout), OF the edge;,, does not read
Oapurjn(Eout) = Tagur.j(Eour) IN G, under the same assignments, is at n@&kr). The probability
that this happens for somec [I},] is at mostO(6).

Let:, < 6-°0 be the total number of assignments we defined. Propositighfa@Bows from
Proposition 18.3. O
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A Explicit Construction of Expanders

We will use the following lemma as our starting point. It ggvan explicit construction of expanders
with constant degree and constant eigenvalue. For a prepfaeexample, Corollary 2.4 in [12]:
Lemma A.1l. There are constanta, > 1 and0 < A\ < Ay, such that given a natural number
n, one can construct in time polynomialina Aq-regular graphG = (V, E) with |V| = n whose
adjacency matrix has second largest eigenvalue (in absofaiue)),.

By raising the graph obtained from Lemma A.1 to a sufficietdlsge powerr, we can get
Lemma 5.2:
Corollary 20 (Restatement of Lemma 5.2).There is a constant < 1 and a functiorl” : N — N*
with 7'(A) = ©(A), such that given two natural numbetsand A, one can find in time polynomial
in n and in A an undirected (multi-)grapli = (V, E') with |V| = n, which isT'(A)-regular and
whose adjacency matrix has second largest eigenvalue Galate value) < (7'(A))“.

Proof. We use the notation of Lemma A.1. Take= foogg—gf). LetT : N — N* be the function that
maps every naturah < A, to A, and every naturall > A, to A, wherer > 1 is the natural
number that satisfied? < A < Aj™. Note thatl'(A) = O(A).

Given natural numbers and A, let G, = (V, Ey) be theAy-regular graph withV| = n
obtained from Lemma A.1. Set> 1 to be the natural numbésg, (7(A)). RaiseG, to the power
r to obtain aT'(A)-regular undirected (multi-)grap = (V, E) (i.e., letG be the (multi-)graph
corresponding to raising the adjacency matrixfto ther’th power). Then, the second largest
eigenvalue (in absolute value) 6fs adjacency matrix i9, = (Af)® = (T'(A))“. Note thatG can
be computed in time polynomial imand inA. O

B Low Degree Testing

The test presented in [27] differs from the variant stateBubsection 10.1.

Specifically, the test of [27] assumes accessdetarministicoracle. Ay, assigning polynomials
of degree at most’ to three-dimensionaubspacesn F™ (and not to their basis representation
Z, 11, Y2). Supposedly, the polynomials are the restrictions of élsée functiory to the subspaces.
The notational convention is that for an affine subspace F™, for a pointz” € s, the polyno-
mial assigned ta evaluated ort’ is denotedA4,(s)(Z) (this way there is no need to specify the
representation of).

For a functionf : F™ — T, the test of [27] is as in Figure 13.
We consider a different (yet equivalent) formulation, give Figure 14.

The following follows from what was shown in [27, 26] (The trem was essentially proved in
[27]. In [26] it was shown that the list decoding does not depen.A):

Theorem 21 (Analysis of low degree test, [27, 26]For d > m (’B/Flél + %), for any function
f : F"™ — F, there arel < % polynomials@, ..., Q; : F™ — [ of degree at mosf’, such that
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LDT)

original *

1. Pick uniformly at random three vecto{%, 41, 72) € F™ x K™ x K™. If Z, 1, y» are
linearly dependengccept Otherwise, let denote the three-dimensional linear subspace
spanned by, y1, Y.

2. If Ay(s)(2) = f(%), accept Otherwisereject

Figure 13: The low degree tester of [27]

LDTS " .

equiv *

1. Pick uniformly at random three vecto(s, 7, 7o) € F™ x K™ x K™. If 2,4, 7, are
linearly dependengccept Otherwise, let denote the three-dimensional linear subspace
spanned by, /1, 7.

2. Pick uniformly at randony # 0,¢,t, € F. Setzy = to2 + t151 + tote. If Ao(s)(2) =
f(%b), accept Otherwisereject

Figure 14: The low degree tester of [27]; different formidat

for every oracleA,, the following holds: the probability over the randomne$she tester that
LDT4 accepts, althoughi () ¢ {Q1(%), ..., Qu(Z)}, is at mosO(4).

equiv
Let us show that Theorem 18 from Subsection 10.1 indeedAdslfoom Theorem 21. Recall that
in the tester of Theorem 18, we let the answers of the otddaliepend on the basis representation
of s and on additional randomness.

Assume that for a functiofi : F* — F and for an oracled, the probability, over the randomness
of A and the randomness of the tester, that the tésfsF 4 from Subsection 10.1 accepts, although

(%) € {Q1(%), ..., Qi(%)},is0 <0 < 1.

Let us probabilistically construct an oraclg, for LDTS{]’;“i%. For every subspace such that
there is a positive probability for = span{Z, 7, 7} in LDT/, pick at random a representation
(Z,71,72) € F™ x K™ x K™, and a polynomial of degree at ma&t according to the distribution

of LDT/+, conditioned ors = span{Z, i, 7> }. Let Ay(s) be this polynomial.

Then, the expectation (over the randomness in the constnuait.A,) of the probability, over the
randomness of the tester, that the te&t&7T7“ accepts, althoughi(z,) ¢ {Q:1(%), ..., Qi(Z)},

equiv

is at leasty’ — O(ﬁ). Hence, there exists an orach, such that the probability that the tester

LDT? 2 accepts, althoughi(z) ¢ {Q1(%),...,Qi(%)}, is at least’ — O(Wl‘).

equiv
Theorem 18 follows, noticing that for the choice of parameteade in the construction, it holds

1
thatm < 4.
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C Linearity Testing

In this section we show how the linearity testing theorem tagesl in Section 11.1 follows from the
analysis of the Blum-Luby-Rubinfeld linearity test [11].

We test a folded functiorf : R — F, whereR C F™ is a set of representatives needed for
folding, as in Section 11.1. The folded function defines afiom f : F — [F that respects scalar
multiplication. The Blum-Luby-Rubinfeld test is as in Figul5.

BLRLinTest! -

1. Pick uniformly at random’, i/ € F™.

2. If f(Z+79) = f(2) + f(v), accept Otherwisereject

Figure 15: Blum-Luby-Rubinfeld (BLR) linearity test

Define the agreement of a functigfn R — T with a linear function by
T = P
Lin max {ZEF{” [f(z) ;alzZ] }

It was shown in [19] that large acceptance probability of BidR linearity test implies large
agreement of the function with a linear function. The sanayeis also allows to derive a converse
result: a large agreement of the function with a linear fiomcimplies a (relatively) large acceptance

probability of the BLR tester: B
Theorem 22 (Analysis of linearity test [19]).Let f : R — F.

N\ 3 - .
(me ) < Pr [BLRLmTestf accept% < Lin’

For convenience we repeat below the linearity test fromiGedt1.1.

LinTestf A

1. Pick uniformly at random two vectorg’, y) € F™ x F™. Using the oracle access {o
A, obtain a bi-variate linear functioli(t,,t2) overF for (Z, ) [I* is supposedly the
restriction f (t12' + t27)].

\1%

2. Pick uniformly at random,, t, € F. Setzy = t,2 + toy. If indeedi*(t1,t2) = f(7o),
accept Otherwisereject

Figure 16: Linearity Tester (Projection form) — a copy of dtig 9

From Theorem 22, we conclude that large acceptance prdigatilthe linearity test in the
projection form implies large agreement of the functionhwatlinear function:
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Corollary 23. Letf: R — F and letA be a probabilistic oracle. Then,

Lind > <Pr [LmTestf A accept%)3 -0 (ﬁ)

Proof. For Z, 7 € F™, let the maximal agreement gfwith a linear function within the subspace
spanned by andy be

Linég = max { Pr [f(t12+ t2y) = a1ty + agtg]}

acF? | teF2

Note that

Pr [LmTestf A accept% < E [ngg] (6)

Z,jeFm

Let R, C F? be a set of representatives for the equivalence ratimn F* (as defined in Sec-
tion 11.1). ForZ, y € F™, definefz; : R, — F to be the following restriction of

Feglti,t) = f(01Z + taff)
Let fz; : F? — F be the function defined b;g. Note that for every,, t, € IF, it holds that

fzg(ti t2) = f(t1 2+ t27)

Hence,
Pr | BLRLinTest! accepts > E [Pr [BLRLmTestfw acceptﬂ ) (%) 7)
In addition, inequality 6 gives
Pr [LinTestf A accept% < zg]é:w [mey} (8)

By Theorem 22,

E [Pr [BLRLmTestfw acceptﬂ > B {(me) 3}

5’7 g’e Fm i

By Jensen’s inequality,

Z,yerm

Z,yeFm

E [Pr [BLRLmTestfz"y” acceptﬂ > ( E [meuDg
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Thus, applying Theorem 22 again and using inequalities Bamak get:

Lin! > Pr [BLRLmTestf accept%

> ZngIP‘m [Pr [BLRLmTestfz“ﬂ acceptﬂ -0 (%)

(2. [m]) —o ()
(Pr

[LmTestf A accept%)3 -0 <%)

Vv

We use the list decoding version of this theorem:
Corollary 24 (Restatement of Theorem 19).There are some naturah, and F;, such that for
everym > mg and prime finite field® with |F| > F;, the following holds. Lefz C F™ be the set of
representatives needed for folding as in Section 11.1.

For § > 2/, for any functionf : R — F, there arel <

F™ — IF, such that for every probabilistic oracld:

53 linear functionsL, ..., L; :

The probability, over the randomness4and over the randomness of the tester, Tbﬁifestf’“i
accepts, althoughf (7o) ¢ {L1(%o), ..., Li(Zo)} (Wheref : F™ — T is the function defined by
andz, € ™ is picked by the tester; see Figure 9), is at moOs$t).

Proof. Fixy > 2¢ ﬁ and afunctionf: R — F. Letf : F™ — F be the function defined bf?. Set

8 = 63 and note that’ > 2, /- - LetL,,...,L; : F™ — T be the linear functions corresponding

to thed’-list decoding of (the word corresponding tH)with respect to the Hadamard code. Recall
that by Proposition 5.4, < 5%, Let. 4 be a probabilistic oracle.

Assume on way of contradiction that the probability, ovex tandomness afl and over the
randomness of the tester, thatnTest/ accepts, althouglf(z) ¢ {Li(2),..., Li(2)}, is more
than2j. Letg : R — ™ be a function that agrees with on all pointsz for which f(2) ¢

{L:1(%),...,L,(2)}. To other pointsy assigns a functioa : R — [ that rarely agrees withny
linear function (see Proposition C.1 below):

{ F(Z) f(2) ¢ {Ls(2),..., Lu(2)}

€(2) otherwise

9(2) =

Letg : F — F be the function defined by. Note that by our assumptiohjnTest? accepts with
probability more tharzd. Hence, by Corollary 23, there is a linear functibn F — F, such that

Pr [g(%) = L(Z)] > (20)* — O <%)

zZefFm
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However, by Proposition C.1,

o o~ 1
Pr l9(2) = L(2) A g([2]) = e([2])] \/—— (1+0(1)) + R
Thus, for sufficiently largen and sufficiently large field,
Pr [9(2) = L(2) AG([E) # &) > 86° = —— - (14 0(1)) = & (©)

ZeFm A /|F|

It follows that
Pr [f(2) = L(2)] > ¢

ZeFm
Therefore, there must be< i < [, such that, = L;. On the other hand, returning to inequality 9,
we now have

Pr [f(2) = Li(2) A f(2) ¢ {La(2), ..., La(2)}] > O

which is a contradiction. O

The proposition we needed for the proof is proven below:
Proposition C.1 (Random function rarely agrees with linea). There is some naturahg, such
that for everym > my, the following holds. There exists a functien R — T such that for
any linear functionL : F™ — T, when picking uniformly at randorii € R, the probability that

&%) = L(?) is at most\/E (1+ o(1)).

Proof. Pick a functione : R — T uniformly at random. LeL : F" — F be a linear function. For
every? € R, let X > be an indicator random variable for the event that) = L(z). For every
Z € Ritholds thatPr [ X, > = 1] = IIF\ Let X, = ) .. Xr s By the linearity of the expectation,

it holds that; [X ] = £, By the Chernoff bound, for every > 0,

||
< exp (_&)
|R]

In particular, this holds foh = \/m |R|In|F|. For sufficiently largen, it holds thatué‘ < Wll’
implying that

Pr | X, >E[X]+ A

X 1 1
X L L

Pr
| R| [F] * |F]

< |]F|—2m

Applying a union bound, the probability that for some lindar. F* — [ it holds thatf%| >
\ /ﬁ + Wl‘ is at mostiF| ™. In particular, there exist6: R — F such that for all linear functions

L :F™ — Fit holds that% < - (L+o(1)). O
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