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Abstract

A degree-d polynomial p in n variables over a field F is equidistributed if it takes on each
of its |F| values close to equally often, and biased otherwise. We say that p has low rank if
it can be expressed as a function of a small number of lower degree polynomials. Green and
Tao [GT07] have shown that over large fields (i.e when d < |F|) a biased polynomial must have
low rank. They have also conjectured that bias implies low rank over general fields, but their
proof technique fails to show that. In this work we affirmatively answer their conjecture. Using
this result we obtain a general worst case to average case reductions for polynomials. That is, we
show that a polynomial that can be approximated by a few polynomials of bounded degree (i.e. a
polynomial with non negligible correlation with a function of few bounded degree polynomials),
can be computed by a few polynomials of bounded degree. We derive some relations between our
results to the construction of pseudorandom generators. Our work provides another evidence to
the structure vs. randomness dichotomy.

1 Introduction

Let F be a prime finite field. Let p : Fn → F be a polynomial in n variables over F of degree at most
d. We say that p is equidistributed if it takes on each of its |F| values close to equally often, and
biased otherwise. We say that p has a low rank if it can be expressed as a bounded combination
of polynomials of lower degree, and high rank otherwise. More formally we consider the following
definitions.

Definition 1 (bias). The bias of a function f : Fn → F is defined to be

bias(f) = EX∈Fn [ωf(X)]

where ω stands for the |F| root of unity, i.e. ω = e
2πi
|F| .

We use the bias of f as a measure for the distance from uniformity of f(X) ∈ F when X ∈ Fn

is chosen uniformly. The following simple facts explain why we can do so.

Fact 1. Let X ∈ Fn be chosen uniformly. Then:
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• If f(X) ∈ F is uniform then bias(f) = 0

• If bias(f) ≥ δ > 0 then the statistical distance between f(X) and the uniform distribution
over F is at least δ.

• If the statistical distance between f(X) and the uniform distribution over F is δ, then there
is some c ∈ F, c 6= 0 s.t. bias(cf) ≥ δ′ for δ′ = δ/

√

|F| − 1

Definition 2 (rank). Let p(X) be a degree d polynomial over Fn. rankd−1(P ) is the smallest
integer k such that there exist degree d−1 polynomials q1(X), ..., qk(x), and a function F : Fk → F,
s.t. p(X) = F (q1(X), ..., qk(X)).

Green and Tao [GT07] have shown that over large fields bias implies low rank.

Theorem 2 (Theorem 1.7 in [GT07]). Let p(X) be a degree d polynomial over Fn, where d < |F|.
If bias(p) ≥ δ > 0, then rankd−1(p) ≤ c(F, d, δ).

In their paper, Green and Tao conjecture that the restriction d < |F| can be removed, but
their proof technique breaks down when d ≥ |F|. Note that over large fields things might behave
differently than over small fields. One important example is the Inverse Conjecture for the Gowers
Norm. This conjecture roughly says that if the d-derivative of a polynomial is biased then that
polynomial has a non-negligible correlation with some polynomial of degree d − 1. The Inverse
Conjecture for the Gowers Norm was proven to be true over large fields by [GT07], but was proven
to be false over small fields [GT07, LMS]. One of the main tools used for proving the conjecture
over large fields was Theorem 2, that was proven over large fields.

One could ask what is the case with the above theorem, whether it remains true over smaller
fields or it becomes false there. We show that the [GT07] result is true over general fields. In this
respect, as opposed to the Inverse Conjecture for the Gowers Norm case, large and small fields
behave similarly.

1.1 Our Main Results

Our first main theorem is a worst case to average case reduction for polynomials. It says that a
polynomial that can be approximated by few polynomials of bounded degree, can be computed by
few polynomials of bounded degree. We now move to define this rigorously.

Definition 3 (δ-approximation). We say a function f : Fn → F δ-approximates p(X) if:

|EX∈Fn [ωp(X)−f(X)]| ≥ δ

Theorem 3 (Worst-case to average case reduction for polynomials of bounded degree). Let p(X)
be a polynomial of degree d, g1, ..., gc polynomials of degree k (where d, c, k are constants) and
F : Fc → F a function s.t. the composition G(x) = F (g1(X), ..., gc(X)) δ-approximates p. Then
there exist c′ polynomials h1, ..., hc′ and a function F ′ : Fc′ → F s.t.

F ′(h1(X), ..., hc′ (X)) ≡ p(X)

Moreover, c′ = c′(F, d, c, k, δ) (i.e. independent of n) and each hi is of the form p(X + a) − p(X)
or gj(X + a) for a ∈ Fn. In particular, if k ≤ d − 1 then also deg(hi) ≤ d − 1.



Our first main theorem is obtained as a corollary from our second main theorem, Theorem 4.
This theorem shows that bias implies low rank over general fields.

Theorem 4 (Bias implies low rank for general fields). Let p(X) be a degree d polynomial over Fn,
s.t. bias(p) ≥ δ > 0. Then rankd−1(p) ≤ c(F, d, δ). That is, there exist degree-(d − 1) polynomials
q1(X), ..., qc(x), and a function F : Fc → F, s.t. p(X) = F (q1(X), ..., qc(X)), and c = c(F, d, δ).
Moreover, q1, ..., qc are derivatives of the form p(X + a) − p(X) where a ∈ Fn.

Most of the technical part of the paper is dedicated to proving Theorem 4. The proof is by
induction on the degree d of p(X). Notice that for d = 1 it holds trivially. So, we assume Theorem 4
to hold for all degrees smaller than d, and prove it for degree d.

2 Significance of Results

Worst case to average case reductions for polynomials. Our first main theorem (Theo-
rem 3) shows that every polynomial, not necessarily biased, that is approximated by few other
bounded degree polynomials, can be computed by few bounded degree polynomials. We view this
result as a worst case to average case reduction for polynomials. I.e. in order to show that a
polynomial can not be approximated by few bounded degree polynomials, it would be sufficient
to show that the polynomial can not be computed by few bounded degree polynomials. That
later task might be easier. An example when such a scenario is relevant is the following. The
papers [GT07, LMS] that disprove the Inverse Conjecture for the Gowers Norm needed to show
that the symmetric polynomial S4 over F2, i.e. S4(x1, ..., xn) =

∑

i<j<k<l xixjxkxl cannot be ap-
proximated by a degree 3 polynomial. Given the current result it could be sufficient (and maybe
easier?) to show that S4 can not be computed by a constant number of degree 3 polynomials.

Proof of the Green Tao Conjecture. Our second main theorem (Theorem 4) shows that over
general fields there is a phenomena that bias implies low rank. Green and Tao [GT07] proved this
for large fields. They conjectured it to hold also over small fields. We answer their conjecture
affirmatively, by showing that the ”bias imply low rank” phenomena is robust and holds for all
fields.

On the power of induction and relation to pseudorandom generators. Pseudorandom
generator for polynomials of degree-d is an efficient procedure that stretches s field elements into
n � s field elements that can fool any polynomial of degree d in n variables. Pseudorandom
generators are mostly interesting over small fields. One can use our second main theorem to
provide an alternative proof to the correctness of the pseudorandom generators of [BV] that fools
degree d polynomials. Specifically, the generator of [BV] is a XOR of d copies of the generator of
Naor and Naor that fools linear functions. The proof of correctness of the [BV] generator of [V]
is by induction. The proof assumes the existence of a pseudorandom generator that fools degree
d − 1 polynomial and constructs from it pseudorandom generator that fools degree d polynomial.
The proof of the induction step is based on the following. Either the polynomial is unbiased, and
hence the generator could fool it. Alternatively, it is biased, and hence again [V] shows that it
can be fooled. By our result here, if the polynomial is biased then it has low rank. One can use
the property that a generator that can fool a function in the class can fool any composition of
few functions from the class to complete the induction step. This proof method is inspired by



the original argument of [BV] the relied on the Inverse Conjecture for the Gowers Norm which
turned out to be false. The proof of correctness of Viola [V] is clearly more direct. However, we
still feel that the original proof strategy of [BV] sheds light on the relations between structure and
pseudorandomness in the realm of low degree polynomials.

The ”bias imply low rank” idea suggests a robust way to construct pseudorandom generators
for some complex function classes based on pseudorandom generators for simpler function classes.
This would be done in the spirit of the induction above. Either a function is unbiased , in which
case it should be easy to claim that it could be fooled based on the induction assumption, or it is a
function of few functions of lower complexity. Use now a property that a generator that can fool a
function in the class can fool any composition of few functions from the class. Hence, by induction
we obtain a construction of pseudorandom generator for functions of higher complexity classes (e.g.
degree d polynomials) given pseudorandom generators for functions of lower complexity classes (e.g.
linear functions).

Extension to tensors Let L(x, y) be a bilinear form over Fn, i.e. a function of the form

L(x, y) = xtAy

where x, y ∈ Fn and A is a matrix. There is a close connection between the rank of the matrix
and the bias of L. Dixon’s Theorem ([MS]) tells us that the bias of L (and in fact, all non-zero
Fourier coefficients of L) has absolute value c(F)−rank(A+At). The theory of higher dimensional
multilinear forms, i.e. tensors, is much less understood. In particular, there is no single notion of
tensor rank. We prove, as a direct corollary of Theorem 4, that if we define the rank of a tensor as
minimal number of lower degree multilinear forms needed to compute it, then bias imply low rank
for tensors.

Theorem 5. Let L(X1, ...,Xd) be a multilinear form of degree d s.t. bias(L) ≥ δ > 0. Then, there
exist degree-(d − 1) multilinear forms q1, ..., qc, each operating on d − 1 variables out of X1, ...,Xd,
and a function F : Fc → F, s.t.

L(X1, ...,Xd) = F (q1(X1, ...,Xt1−1,Xt1+1, ...,Xd),

...,

qc(X1, ...,Xtc−1,Xtc+1, ...,Xd))

and c = c(F, d, δ). Moreover, q1, ..., qc are derivatives of L.

Proof. We use Theorem 4 on L as a degree d-polynomial, and observe that derivatives of L are
sums of d degree-(d − 1) multilinear forms in d − 1 variables of X1, ...,Xd.

2.1 Proof Overview

We will prove that if a degree-d multivariate polynomial over a finite field can be approximated by
a function of a constant number of lower degree polynomials, then it in fact be exactly computed
by a function of a (larger) constant number of lower degree polynomials. Here and in the paper,
constant means independent in the number of variables. In fact, we think of the number of variables
as going to infinity, where the rest of the parameters (field size, degree, number of approximating
polynomials) as constants. We denote by p(X) a multivariate polynomial, where X = (x1, ..., xn) ∈
Fn.



First we reduce the problem to showing that if a polynomial p(X) is biased, then it can be
computed by a function of constant number of lower degree polynomials. The reduction is straight-
forward: if p(X) can be approximated by a function F (g1(X), ..., gk(X)), where deg(gi) < deg(p)
for all i, then there is some linear combination of the gi’s s.t. p(X) + a1g1(X) + ... + akgk(X) is
biased, and thus can be computed by a constant number of lower degree polynomials.

We now describe the proof of the main technical part of the paper, that is, if a degree d polyno-
mial p(X) is biased, then it can be calculated by a constant number of degree d−1 polynomials (the
constant depending only on the field, the degree d, and the bias of p). The proof is by induction
on d. We note that the case d = 1 is trivial.

Green and Tao prove the same result [GT07], when the degree d is bounded by the field size,
d < |F|. The main contribution of this work is extending this proof for all constant degrees. We
will follow closely the proof structure of Green and Tao, and we make one significant divergence
which allows us to make the result hold for all constant degrees.

The proof starts, as in the case of the work of Green and Tao, with a lemma of Bogdanov and
Viola. Bogdanov and Viola [BV] prove that if a degree-d polynomial p(X) has bias, then it can be
well approximated by a constant number of lower degree polynomials. Formally, for every constant
ε > 0, there is a function Fs and degree d − 1 polynomials b1, ..., bs s.t.

PX∈FN [p(X) = Fs(b1(X), ..., bs(X))] ≥ 1 − ε

where s depends only on the field F, the degree d and the required approximation error ε. Impor-
tantly, s doesn’t depend on the number of variables. Bogdanov and Viola in fact show an explicit
construction of such a function F and polynomials b1, ..., bs.

The technical heart of this paper, as well as in the work of Green and Tao [GT07], is to show
that when the approximation is good enough, it can in fact be made into an exact computation.
Note that we can’t use the lemma of Bogdanov and Viola directly, since choosing ε < |F|−N would
result in a non-constant s.

Consider the following partition of Fn given by the joint distribution of the polynomials (b1, ..., bs).
For every c = (c1, ..., cs) ∈ Fs, define the region

Rc = {x ∈ Fn : ∀i bi(x) = ci}

The function Fs assigns a value to each region. We say that the joint distribution of (b1, ..., bs)
is close to uniform, if all the regions are roughly of the same size. That is, given γ(s) > 0, for every
c = (c1, ..., cs) ∈ Fs,

|Rc| =
|F|n
|F|s (1 ± γ(s)).

Green and Tao [GT07] show that a set of polynomials (b1, ..., bs) that approximates p in the
above sense, can be transformed into a larger set of polynomials called a regular set (g1, ..., gt)
that approximates p and such that the joint distribution of (g1, ..., gt) is close to uniform, where t
depends only on the field F, the degree d and the required approximation error γ(t).

Consider now the regions defined by the polynomials (g1, ..., gt). Using averaging arguments the
polynomial p is almost constant on most regions. We would like to show that in fact p is constant
on all regions. We first show that if p is almost constant on a region, it must be constant on all
the region. We then extend this to all regions, assuming p is constant on most regions.

In order to show this, we first recall basic facts regarding derivatives. For a variable Y ∈ Fn, we
define the (discrete) derivative of p(X) in direction Y to be pY (X) = p(X + Y ) − p(X). It is easy



to see that the degree of X strictly reduces when taking derivatives. We define inductively taking
multiple derivatives. For Y1, ..., Yd+1 ∈ Fn, consider the derivative of p(X) in directions Y1, ..., Yd+1:

pY1,...,Yd+1
(X) =

∑

I⊆[d+1]

(−1)d+1−|I|p(X +
∑

i∈I

Yi)

since p is a degree d polynomial, this derivative is identically zero. This will play an important role
in the proof.

Let Rc be some region on which p is almost constant, and fix some x0 ∈ Rc. Let F|Rc
be the

value that F assigns to that region. We will show that if Y1, ..., Yd+1 are chosen uniformly and
independently, then there is a positive probability that x0 +

∑

i∈I Yi ∈ Rc for all I ⊆ [d + 1].
Moreover, since almost all points in x′ ∈ Rc are ”good”, i.e. p(x′) = F|Rc

, there is in fact a positive
probability that they all fall in the ”good” part of Rc, i.e. that p(x0 +

∑

i∈I Yi) = F|Rc
for all I 6= φ.

Plugging this into the derivative equation, and using the fact that it is identically zero, will give
that also p(x0) = F|Rc

. That is, if a region is almost constant, then it must be fully constant.
So, we need to prove that if Y1, ..., Yd+1 are chosen uniformly, there is a positive probability for

all x0 +
∑

i∈I Yi to fall in Rc and in fact to behave like a uniform point in Rc. In order to do so,
we need to use the definition of the region Rc.

Consider the joint evaluation of all the polynomials g1, ..., gt on all points (x0 +
∑

i∈I Yi), i.e.

the joint distribution in F(2d+1−1)t of:

(

gj(x0 +
∑

i∈I

Yi) : j ∈ [t], I ⊆ [d + 1], I 6= φ

)

where Y1, ..., Yd+1 are uniform and independent in Fn. (Notice we disallow I = φ, because it
corresponds to the evaluations {gj(x0)}, which are fixed since they do not depend on any Yi.)

If this distribution was uniform (over F(2d+1−1)t), or even close enough to uniform, there was a
positive probability that for all j ∈ [t] and I ⊆ [d + 1],

gj(x0 +
∑

i∈I

Yi) = gj(x0)

Hence, all points x0 +
∑

i∈I Yi would belong to Rc as required.
However, there is no reason why the joint distribution of {gj(x0 +

∑

i∈I Yi)} should be close to
uniform. One obvious reason is that each polynomial gj is itself a low degree polynomial, of degree
at most d − 1. Thus, for any K ⊆ [d + 1] s.t. |K| > deg(gj), deriving gj in directions {Yk : k ∈ K}
yields the zero polynomial, and thus we have the following linear relation:

∑

I⊆K

(−1)|K|−|I|gj(x0 +
∑

i∈I

Yi) ≡ 0

Another reason for correlation is that different polynomials among g1, ..., gt can be correlative.
For example, we could have that g5 = g1g2 + g3g4.

Green and Tao solve this problem by showing that if there are correlations between the polyno-
mials, apart from the aforementioned linear relations, then using interpolation over F there must
exist a linear functional over a1g1(X) + ... + atgt(X) which is biased. This contradicts the fact,
achieved in the construction of the gi’s, that the joint distribution of (g1(X), ..., gt(X) : X ∈ Fn)



is extremely close to uniform. They then show that the linear relations can in fact be dealt with.
However, their use of interpolation requires that d < |F|.

We solve the problem in a different way, which allows us to make the result hold for all constant
degrees. We transform our original set of polynomials b1, ..., bs into a strongly-regular set of low
degree polynomial h1, ..., ht, in which we can control all the correlations without using interpolation.
The basic idea is that every hj has an effective degree ∆(hj) ≤ deg(hj), s.t. in the set

{hj(X +
∑

i∈I

Yi) : j ∈ [t], I ⊆ [d + 1], |I| ≤ ∆(hj)}

there are no significant correlations, and any hk(X +
∑

i∈K Yi) for |K| > ∆(hk) can be calculated
by a function of {hj(X +

∑

i∈I Yi) : j ∈ [t], I ⊆ K, |I| ≤ ∆(hj)}.
This definition in fact allows us to prove several results showing that certain sets of evaluations

are close to uniform, which are required for the proof.

2.2 Organization

The rest of the paper is organized as follows. We define required notation in Section 3. We define
and analyze regularity and strongly regularity of polynomials in Section 4. We prove Theorem 3
and Theorem 4 in Section 5.

3 Preliminaries

F if a fixed prime field. We work with constant degree polynomials over Fn. We denote by capital
letters X,Y, ... variables in Fn, and by small letters x, y, a, ... values in Fn. We use the notation P

for probability measure. Degree of a polynomial will always mean total degree. Unless otherwise
specified, when we speak of a degree d polynomial, we mean in fact a polynomial of total degree at
most d. For a set of variables Y1, Y2, ... ∈ Fn we denote by YI =

∑

i∈I Yi, and similarly for a set of
values y1, y2, ... ∈ Fn. We write u = v(1± ε) for u ∈ [v(1− ε), v(1 + ε)]. When we speak of a growth
function, we mean any monotone function F : N → N (for example, F(n) = 2n2

). We shorthand
the set {1, 2, ..., t} by [t].

Definition 4 (close to uniform). The joint distribution of the polynomials (g1, ..., gs) is γ-close to
uniform/almost independent, for γ = γ(s) > 0, if for every (c1, ..., cs) ∈ Fs,

PX∈Fn(∀i ∈ [c], gi(X) = ci) = (1 ± γ(s))
|F|s
|F|n .

4 Regularity of polynomials

As we discussed in the introduction, the notion of regularity plays a major role in our proof.
Green and Tao in [GT07] suggested one notion of regularity (we refer to it henceforth as regularity)
which limited their proof to work only for large fields (i.e. d < |F|). We suggest a stronger
notion of regularity (noted henceforth as strong regularity). This new notion of strong regularity is
essential for obtaining a result for general fields. In the following we review the regularity definitions
given by Green and Tao. Then, we present the notion of strong regularity and show that every
set of polynomials which approximates a polynomial p can be transformed into a larger set that



approximates p and is also strongly regular. We end this section by showing that strong regularity
implies almost independence for sets of variables that forms some specific structures. This almost
independence is the crux of the proof of Theorem 4.

Definition 5 (Regularity of polynomials). Let F be any growth function. A set of polynomials
{g1, ..., gm} is called F-regular if any linear combination α1g1(X)+ ...αmgm(X) cannot be expressed
as a function of at most F(m) polynomials of degree k − 1, where k = max{deg(gi) : αi 6= 0} (i.e.
k is the maximal degree of gi appearing in the linear combination).

Notice we use a growth function F(m) instead of a specific number. The reason is that in the
application we would not be able to control the number m, and would only care about the relation
between the number of polynomials (m) and the strength of the regularity of the set (F(m)).

Green and Tao also define the notion of a refinement of a set of polynomials. Informally, a set
{g1, ..., gm} is a refinement of {f1, ..., fs} if for any i ∈ [s], fi(x) can be computed given the values
of {g1(x), ..., gm(x)}.

Definition 6 (Refinement). A set of polynomials {g1, ..., gm} is a refinement of {f1, ..., fs} if for
any i ∈ [s] there exists a function Fi : Fm → F s.t.

fi(X) = Fi(g1(X), ..., gm(X))

Green and Tao prove that for any growth function F , any set of polynomials F = {f1, ..., fs}
can be refined to a F-regular set {g1, .., gm}, s.t. m depends only on s, F and the maximal degree
in F . Importantly, m is independent of n.

We now discuss the way Green and Tao use the regularity condition, and why it fails to work
when d > |F|. We will then introduce our definition for strong regularity, which overcomes this
obstacle.

As we discussed in the proof overview, if {g1, ..., gm} are F-regular for a large enough F , then
the joint distribution of

{g1(X), ..., gm(X) : X ∈ Fn}
is close to uniform. Green and Tao need in fact a strong condition from the polynomials g1, ..., gm

in the process of their proof. Let Y1, ..., Yd+1 ∈ Fn be new independent chunks of variables. They
require that for any x0 ∈ Fn,the joint distribution of

{gi(x0 +
∑

i∈I

Yi) : |I| ≤ deg(gi)}

is also close to uniform. They prove this is true if the field is large (|F| > d). However, over small
fields, this doesn’t hold in general, as the following example shows.

Example 6. Consider the symmetric polynomial S4 over F2, i.e.

S4(x1, ..., xn) =
∑

i<j<k<l

xixjxkxl

Consider the fourth derivative of S4, i.e. the polynomial in X,Y1, ..., Y4

G(X,Y1, ..., Y4) =
∑

I⊆[4]

S4(X +
∑

i∈I

Yi)



This polynomial corresponds to the 4-th Gowers Norm of S4, and as was shown in [GT07] and
[LMS], it has bias 1/8. Thus, the joint distribution of the set

{S4(x0 +
∑

i∈I

Yi) : |I| ≤ deg(S4)}

is not close to uniform. This stands in contrast to the fact that S4(X) is equidistributed over F2.

Our definition for strong-regularity avoids this obstacles by allowing to effectively reduce the
degree of a polynomial, if it’s high-order derivatives can be calculated from lower-order ones. In
fact, for any polynomial gi we declare an effective degree ∆(gi) ≤ deg(gi). We require that the set

{gi(X +
∑

i∈I

Yi) : i ∈ [m], |I| ≤ ∆(gi)}

is almost uniform, while for every gk and K s.t. |K| > ∆(gk), gk(X +
∑

iinK Yi) can be calculated
by a function of {gi(X +

∑

i∈I Yi) : i ∈ [m], I ⊆ K, |I| ≤ ∆(gi)}
We now move to formally define our notion of strong regularity, and to show it implies the

almost independence/total dependence structure we have just described. We first define the notion
of a derivative space.

Definition 7 (Derivative space). For a set of polynomials F = {f1(X), ..., fs(X)} we define:

Der(F ) = {fi(X + a) − fi(X) : i ∈ [s], a ∈ Fn}

Similarly, for a set of polynomials in several variable chunks F = {f1(Y1, ..., Yk), ..., fs(Y1, ..., Yk)}
(Y1, ..., Yk ∈ Fn) we define:

Der(F ) = {fi(Y1 + a1, ..., Yk + ak) − fi(Y1, ..., Yk) :

i ∈ [s], a1, ..., ak ∈ Fn}

Notice that if the maximal degree of polynomials in F is k, then the maximal degree of poly-
nomials in Der(F ) is at most k − 1. We now formally define strong regularity. We recall that for
a set of variables Y1, Y2, ..., we shorthand YI =

∑

i∈I Yi.

Definition 8 (Strong regularity of polynomials). Let F be any growth function. Let G = {g1, ..., gm}
be a set of polynomials and ∆ : G → N be a mapping from G to the natural numbers. We say the
set G is strongly F-regular with effective degree ∆ if:

1. For any i ∈ [m], 1 ≤ ∆(gi) ≤ deg(gi).

2. For any i ∈ [m] and r > ∆(gi), let X and Y1, Y2, ..., Yr be variables in Fn. There exist a
function Fi,r s.t.

gi(X + Y[r]) =

Fi,r (gj(X + YJ) : j ∈ [m], J ⊆ [r], |J | ≤ ∆(gj))



3. For any r ≥ 0, let X and Y1, ..., Yr be variables in Fn. Let {αi,I}i∈[m],I⊆[r],|I|≤∆(gi) be any
collection of field elements, not all zero. Let a(X,Y1, ..., Yr) stand for the linear combination:

a(X,Y1, ..., Yr) =
∑

i∈[m],I⊆[r],|I|≤∆(gi)

αi,Igi(X + YI)

Let G′ ⊆ G be the set of all gi’s which appear in a, i.e.:

G′ = {gi ∈ G : ∃I αi,I 6= 0}

There does not exist polynomials h1, ..., hl ∈ Der(G′), l ≤ F(m) s.t. a(X,Y1, ..., Yr) can be
expressed as:

H(h1(X + YI1), ..., hl(X + YIl
))

for I1, ..., Il ⊆ [r] and some function H : Fl → F.

If the set G satisfies only (1) and (2), we say G is pre-strong-regular (notice that F appears
only in (3)).

We first prove, similar to the proof in [GT07], that any set of polynomials can be refined to a
strong F-regular set, where the size of the resulting set depends only on the size of the original
set, and the maximal degree of polynomials in it. Also, the refining set is contained in the space of
iterated derivatives of the original polynomials.

We now formally define the space of iterated derivatives.

Definition 9 (Space of iterated derivatives). For a polynomial set F , we define its iterated deriva-
tive set DerC to be the set of taking at most C derivatives of F , i.e.

Der0(F ) = F

DerC(F ) = Der(DerC−1(F )) ∪ DerC−1(F )

Lemma 7 (Strong-Regularity Lemma). Let F be any growth function. Let F = {f1, ..., fs} be a
set of polynomials of maximal degree k. There exist a refinement G = {g1, ..., gm} of F s.t.

1. The maximal degree of polynomials in G is also at most k

2. The set G is strong F-regular.

3. The size m of G is a function of only F , s and k. Importantly, it is independent of n.

4. There exists C = C(F , s, k) s.t. G ⊆ DerC(F )

Proof. We will start by defining a pre-strong-regular set G from F , and will keep refining it until
we reach a strong F-regular set. Our set G will also be in Deri(F ) at the i-th iteration. We will
finish by showing that the refinement process must end in a finite number of steps.

We start by defining ∆ : F → N by ∆(fi) = deg(fi), and set the initial value of G to be
F . To show that the initial G is pre-strong-regular with effective degree ∆, observe that for any



r > deg(fi), deriving fi r-times yields the zero polynomial. Thus, if Y1, ..., Yr are variables, we have
the identity:

fi(X + Y[r]) =
∑

I([r]

(−1)r−|I|+1fi(X + YI)

Since we can do this for any r > deg(fi), we can continue and express fi(X + Y[r]) as a linear
combination of {fi(X + YI) : I ⊆ [r], |I| ≤ deg(fi)}. Thus, G is pre-strong-regular with effective
degree ∆.

We will continue to refine G as long as it is not strong F-regular. Assume G = {g1, ..., gm}
at some iteration is not strong-F-regular. By definition, there is some r ≥ 0 and coefficients
{αi,I}i∈[m],I⊆[r],|I|≤∆(gi) s.t. the linear combination:

a(X,Y1, ..., Yr) =
∑

i∈[m],I⊆[r],|I|≤∆(gi)

αi,Igi(X + YI)

can be expressed as a function of l ≤ F(m) polynomials h1, ..., hl ∈ Der(G′), where G′ = {i ∈ [m] :
∃I αi,I 6= 0} is the set of all gi’s participating in the linear combination.

Let gi0 be a polynomial of maximal degree k in G′ and let I0 be a maximal I in respect to
inclusion s.t. αi0,I0 6= 0. Notice that we must have that |I0| ≤ ∆(gi0). We have:

∑

i∈[m],I⊆[r],|I|≤∆(gi)

αi,Igi(X + YI) =

H(h1(X + YJ1), ..., hl(X + YJl
))

for some function H : Fl → F.
Notice first that deg(hi) ≤ k − 1 for all i ∈ [l]. Substitute in the expression Yi = 0 for all

i /∈ I0. We get that gi0(X + YI0) can be expressed as a function of {gi0(X + YJ) : J ( I0},
{gj(X + YJ) : j 6= i0, J ⊆ I0, |J | ≤ ∆(gj)} and {hj(X + YJ) : J ⊆ I0, |J | ≤ deg(hj)}. Thus, if we
add the polynomials h1, ..., hl to G (and set ∆(hi) = deg(hi)), we can reduce ∆(gi0) to |I0| − 1. If
we reduced it to zero, we can remove gi0 entirely from G. The resulting G will be our set for the
next iteration.

In order to prove that the refinement process ends after a finite number of iterations (depending
on the initial size of F and its maximal degree), notice that at each iteration, the sum of ∆(gi) for
all gi ∈ G with some degree d′ reduces by at least 1, where the new polynomials added are all of
degree strictly smaller than d′, and their number is bounded (as a function of F and the size of G at
the beginning of the iteration). So the total number of iterations is some Ackermann-like function
of the initial number of polynomials, their maximal degree and the growth function F .

4.1 Almost independence by strong regularity

We continue by showing that strong regularity induces almost independence/total dependence
structure over general sets of variables. The lemmas we derive are the main technical building
blocks in the proof of Theorem 4.

We start with a lemma correlating applications of gi on sums below the effective degree ∆ to
all sums over a set of variables.



Lemma 8. Let G = {g1, ..., gm} be a strong-regular set with effective degree ∆. Let x, x′ ∈ Fn be
two points s.t. gi(x) = gi(x

′) for all i ∈ [m]. Let y′1, ..., y
′
k ∈ Fn be values for some k ≥ 1, and let

Y1, ..., Yk ∈ Fn be k random variables. Then the following two events are equivalent:

1. A = [gi(x + YI) = gi(x
′ + y′I) for all i ∈ [m] and I ⊆ [k]]

2. B = [gi(x + YI) = gi(x
′ + y′I) for all i ∈ [m] and I ⊆ [k] s.t. 1 ≤ |I| ≤ ∆(gi)]

Proof. It is obvious that if A holds then also B holds. Assume that B holds, i.e. that

gi(x + YI) = gi(x
′ + y′i)

for all i ∈ [m] and I ⊆ [k] s.t. |I| ≤ ∆(gi). Take some I s.t. I > ∆(gi). We need to show that also
gi(x + YI) = gi(x

′ + y′I). Since |I| > ∆(gi) we know by the strong regularity of G that there is a
function Fi,I s.t.

gi(X + YI) =

Fi,I (gj(X + YJ) : j ∈ [m], J ⊆ I, |J | ≤ ∆(gj))

By first substituting X = x to compute g(x + YI), and then substituting X = x′ and Yj = y′j to
compute g(x′ + y′I), and using that both gj(x) = gj(x

′) for all j ∈ [m] and the assumption that B
holds, we get that also gi(x + YI) = gi(x

′ + y′I).

Our next lemma shows that certain evaluations of the polynomials g1, ..., gm on linear combi-
nations of the inputs are almost independent, assuming the linear combinations don’t have too
many non-zero entries. Remember that we are in the process of proving Theorem 4 for degree d
by induction. Thus, we assume it to hold for all degrees d′ < d, and in particular to all linear
combinations of g1, ..., gm.

Lemma 9. Let γ = γ(m) be an error term. Let Y1, ..., Yk ∈ Fn be random variables for some
k ≥ 1. Assume F is large enough (as a function of γ and k). Assume g1, ..., gm are strong
F-regular with effective degree ∆. For any non-empty I ⊆ [k] let xI ∈ Fn be some point, and

a(I) = (a
(I)
1 , ..., a

(I)
k ) ∈ Fk s.t.

• a
(I)
i 6= 0 for all i ∈ I

• a
(I)
i = 0 for all i /∈ I

Then the joint distribution of

(

gi(xI +
∑

i∈I

a
(I)
i Yi) : i ∈ [m], I ⊆ [k], 1 ≤ |I| ≤ ∆(gi)

)

is γ-close to the uniform distribution on F
∑m

i=1

∑∆(gi)
j=1 (k

j).

We need the following simple lemma for the proof of Lemma 9. It states that a random derivative
of a biased polynomial is also biased.



Lemma 10. Let h(Y1, ..., Yk) be a polynomial with bias δ. Let h′ be the derivation of h in variables
Y1, ..., Yr along the directions Z1, ..., Zr, (r ≤ k) i.e.

h′(Y1, ..., Yk, Z1, ..., Zr) =
∑

w∈{0,1}r

(−1)|w|h(Y1 + w1Z1, ..., Yr + wrZr, Yr+1, ..., Yk)

where |w| denotes the Hamming weight of w. Then bias(h′) ≥ δ2r

.

Proof. We apply Cauchy-Schwarz. It’s enough to prove for k = 2 and r = 1 because we can group
variables.

bias(h′) =EY1,Y2,Z1∈Fn [ωh(Y1,Y2)−h(Y1+Z1,Y2)] =

EY2∈Fn [
(

EY1∈Fn [ωh(Y1,Y2)]
)2

] ≥
(

EY1,Y2∈Fn [ωh(Y1,Y2)]
)2

= δ2

Proof. (of Lemma 9) We start by using the well known fact, that if a distribution over Fr is not
uniform, it must have some biased functional. If the distribution we study is γ-far from uniform,

then there must be a linear functional on {gi(xI +
∑

i∈I a
(I)
i Yi) : i ∈ [m], I ⊆ [k], |I| ≤ ∆(gi)}

with some non-negligible bias depending on γ. We will prove that if we assume that, we reach a
contradiction.

Denote by Y ′
I =

∑

i∈I a
(I)
i Yi, and notice it depends on exactly the same set of variables from

Y1, ..., Yk as YI . By our assumption, there exist coefficients {αi,I}, not all zero, s.t. the polynomial

h(Y1, ..., Yk) =
∑

i∈[m],I⊆[k],|I|≤∆(gi)

αi,Igi(xI + Y ′
I )

has bias at least ρ, where ρ is a function of γ, k and m only (and not of n).
Fix I0 maximal with regards to inclusion s.t. not all αi,I0 are zero. Since we just care about the

bias of h under random Y1, ..., Yk, we can multiply each Yi by some non-zero coefficient. We thus

assume w.l.o.g that a
(I0)
i = 1 for all i ∈ I0. Let |I0| = r. We assume w.l.o.g that I0 = {1, 2, ..., r}.

Notice that Y ′
[r] = Y[r]. We also shorthand x = x[r].

Let gi0 be a polynomial with maximal degree d′′ ≤ d′ < d s.t. αi0,I0 6= 0.
We derive now once each of the variables in Y1, ..., Yr. Let {Zi}i=1..r be new variables in Fn,
and consider:

h′(Y1, ..., Yk, Z1, ..., Zr) =
∑

w∈{0,1}r

(−1)|w|h(Y1 + w1Z1, ..., Yr + wrZr, Yr+1, ..., Yk)

First, by Lemma 10, h′ has bias at least ρ′ = ρ2k

.
Now, consider what happens to a term gi(x + Y ′

I ) in h after the derivation. If I 6= [r], by the
maximality of I0 there must exist i′ ∈ [r] s.t. i′ /∈ I. Thus, deriving Yi′ zeroes out gi(x + Y ′

I ).



So, the only terms remaining in h′ come from terms in h of the form gi(x + Y[r]). Thus, h′

does not depend on Yi for i /∈ [r], and also all the gi’s remaining must have ∆(gi) ≥ r (because
gi(x + Y[r]) appeared in h with non-zero coefficient). Thus we can write:

h′ =h′(Y1, ..., Yr, Z1, ..., Zr) =
∑

i∈[m]

αi,[r]

∑

w⊆[r]

(−1)|w|gi(x + Y[r] + Zw)

We now make an important observation. Notice that h′ depends only on the sum Y[r], and not
on the individual Y1, ..., Yr. So we can substitute W = x + Y[r] and get:

h′ =h′(W,Z1, ..., Zr) =
∑

i∈[m]

αi,[r]

∑

w⊆[r]

(−1)|w|gi(W + Zw)

We have assumed that G is strong F-regular. We will show now that if we choose F large
enough, we have already reached a contradiction. Notice the polynomials gi(W + Zw) are exactly
those which appear in the regularity requirements ( where X is replaced here by W , and Y1, Y2, ...
by Z1, Z2, ...). Let G′ denote the set of gi’s s.t. gi appear in h′ with non-zero coefficient.

We assume by induction that Theorem 4 holds for d′′ < d and for all n. Since all polynomials
gi ∈ G have degree at most d− 1, then also deg(h′) ≤ d− 1, and so we can apply Theorem 4 on h′.
So, since h′ has bias ρ′, there must exist polynomials q1, ..., qt ∈ Der(h′) s.t.

h′(W,Z1, ..., Zr) =

Q(q1(W,Z1, ..., Zr), ..., qt(W,Z1, ..., Zr))

for some function Q : Ft → F, s.t. t = t(ρ′, d′′). Moreover, since every polynomial qi is of the form
h′(W + a0, Z1 + a1, ..., Zr + ar) − h′(W,Z1, ..., Zr) for some constants a0, ..., ar ∈ Fn, and h′ is the
sum of gi(W + Zw), we can decompose each qi to a sum of at most 2r polynomials of the form
gi(W + Zw + a) − gi(W + Zw) ∈ Der(G′) for w ⊆ {0, 1}r . Let q′1, ..., q

′
t′ ∈ Der(G′) denote these

decomposed polynomials. We thus have that:

h′(W,Z1, ..., Zr) = Q′(q′1(W + ZI′1
), ..., q′t′(W + ZI′

t′
))

for some function Q′ : Ft′ → F, t′ = 2rt and I ′1, ..., I
′
t ⊆ [r]. We got that we can compute

h′(W,Z1, ..., Zr) =
∑

i∈[m]

αi,[r]

∑

w⊆[r]

(−1)|w|gi(W + Zw)

as a function of t′ polynomials of degree strictly smaller than d′′. If we have F(m) > t′ this is a
contradiction to the strong F-regularity of g1, ..., gm.

Summarizing, there can be no linear combination of {gi(x + YI) : I ∈ S, 1 ≤ |I| ≤ ∆(gi)} which
has bias more than ρ, and so the distribution is γ-close to uniform.

A Useful corollary of Lemma 9 and Lemma 8 is the following.

Corollary 11. Let x, x′ ∈ Fn be two points s.t. gi(x) = gi(x
′) for all i ∈ [m]. Let y′1, ..., y

′
k ∈ Fn be

values for some k ≥ 1, and let Y1, ..., Yk ∈ Fn be k random variables. Then

P
[

gi(x + YI) = gi(x
′ + y′I) ∀ i ∈ [m], I ⊆ [k]

]

=

|F|−
∑m

i=1

∑∆(gi)
j=1 (k

j)(1 ± γ)



5 From approximation to computation: Proof of Theorems 3 and 4

In this section we prove Theorem 3 and Theorem 4. We start with the proof of Theorem 3
which follows directly from Theorem 4. Assume F (g1(X), ..., gc(X)) δ-approximates p(X). Develop
ωF (z1,...,zc) : Fc → C in the Fourier basis. If F (g1(X), ..., gc(X)) δ-approximates p(X), there must
exist some Fourier coefficient which δ′-approximates p , where δ′ ≥ δ|F|−c. That means, there exist
α1, ..., αc ∈ F s.t. the polynomial

p′(x) = p(x) − (α1g1(x) + ... + αcgc(x))

has bias at least δ′. Using Theorem 4 we get that there must exist at most c′ derivatives of p′ which
computes it exactly. We can now use them and α1g1 + ...αcgc to compute p.

In the remaining of this section we prove Theorem 4. The proof will be by induction on the
degree d of the polynomial (notice that for d = 1 Theorem 4 is trivial). Let p(X) stand for a degree
d polynomial with bias δ. The proof starts by a lemma of Bogdanov and Viola [BV], showing that
if a polynomial is biased, then it can be well approximated by a function a small number of degree
d − 1 polynomials. This was also the starting point in the work of Green and Tao:

Lemma 12 (Bias imply approximation by few lower degree polynomials). Let p(X) be a polynomial
of degree d with bias δ. For any ε > 0 there exist polynomials f1(X), ..., fs(X) of degree at most
d − 1 and a function F : Fs → F s.t.

PX∈Fn [F (f1(X), ..., fs(X)) 6= p(X)] < ε

The number s of the polynomials depends only on δ and ε. Moreover, f1, ..., fs ∈ Der(p).

The following lemma is the technical heart of the paper.

Lemma 13 (Approximation by few lower degree polynomials imply computation by few lower
degree polynomials). Let p(X) be a polynomial of degree d, f1, ..., fs polynomials of degree d − 1,
(s = O(1)) and H : Fs → F a function s.t. the composition H(f1(X), ..., fs(X)) εd-approximates p,
where εd = 2−Ω(d) Then there exist s′ polynomials f ′

1, ..., f
′
s′ and a function H ′ : Fs′ → F s.t.

H ′(f ′
1(X), ..., f ′

s′(X)) ≡ p(X)

Moreover, s′ = s′(d, s) (i.e. independent of n) and each f ′
i if of the form p(X + a) − p(X) or

fj(X + a) for a ∈ Fn.

Thus, to complete the proof of Theorem 4, it remains to prove Lemma 13.
In the following we prove Lemma 13. The main technical tool that we will use are Lemmas 8

and 9. We start the proof of Lemma 13 by refining F = {f1, ..., fs} to a strong-regular set. Let
F be a large enough growth function (to be determined later). By Lemma 7 there exists a set
G = {g1, ..., gm} refining F , and an effective degree ∆, s.t. G is strong F-regular with effective
degree ∆. Moreover, there exists a C = C(F , d, δ) s.t. G ⊆ DerC(F ). We know that G also
approximates p(X) at least as well as F does. We will prove that it is in fact computes F completely.
We can then decompose each gi ∈ DerC(F ) as a sum of at most 2C elements in Der(p) to conclude
the result.

Thus, we need to show that G in fact computes p(X) completely. For c = (c1, ..., cm) ∈ Fm,
denote by Rc ⊆ Fn the region

Rc = {x ∈ Fn : ∀i gi(x) = ci}



To show that G computes p(X) is equivalent to showing that p(X) is constant on any region Rc.
Thus, we turn to study the regions Rc.

We first show (Lemma 14) that all regions Rc have about the same volume, i.e. that they form
an almost uniform division of Fn to Fm regions. Since G is a strong regular refitment of F that
εd-approximates p we know that also G εd-approximates p, i.e. there exists some H ′ : Fm → F s.t.

PX∈Fn [H ′(g1(X), ..., gm(X)) 6= p(X)] < εd

For every region Rc, let ηc be the probability that p is different from G on that region (G is
constant on the region).

ηc = PX∈Rc [p(X) 6= G|Rc ]

Since the average of ηc is at most εd, and all regions are almost uniform (Lemma 14) there can
be at most

√
εd|F|m regions on which ηc >

√
εd. We call these the bad regions, and we call the

rest of the regions almost good regions. Next we show (Lemma 15) that the almost good regions
are totally good and p is fixed on them. Last, we use the fact that there are only few bad regions
and p is fixed on the rest to conclude that p is also fixed on the bad regions (Lemma 17). Thus,
p(X) is in fact constant on all regions. To complete the proof of Lemma 13, it remains to prove
Lemmas 14, 15 and 17. The following lemma is a direct implication of Corollary 11.

Lemma 14 (Regions are uniform). Let γ = γ(m) > 0 be a small enough error term. If F is large
enough than |Rc| = |F|n−m(1 ± γ), for all c ∈ Fm.

Proof. Let c ∈ Fm and assume first that Rc is not empty, i.e. there exist some x s.t. gi(x) = ci for
all i ∈ [m]. We apply Corollary 11 with k = 1, x′ = x and y1 = 0 and get:

PY1 [gi(x + Y1) = gi(x), ∀ i ∈ [m]] = |F|−m(1 ± γ)

Substituting Y = x + Y1 proves the result for Rc.
To show that there can be no empty regions, assume otherwise. Thus, there are at most |F|m−1

non-empty cells, and each has volume at most |F|n−m(1+ γ). Thus (|F|m − 1)|F|n−m(1+ γ) ≥ |F|n.
If γ(m) < |F|−m we get a contradiction. Thus, there are no empty regions, and so all regions have
volume |F|n−m(1 ± γ).

Lemma 15 (Almost good regions are good). Let Rc be a region s.t PX∈Rc [p(X) = b] > 1−2−2(d+1),
for some constant b ∈ F. Then p(X) = b for all X ∈ Rc.

Before proving the lemma we need the following counting lemma on the number of hypercubes
and pairs of hypercubes inside a region, similar to one in [GT07]. However, our technique avoids
the need of interpolation.

Lemma 16. Let γ = γ(m) > 0 be small enough error term, and assume F is large enough. For
any point R = Rc and a point x ∈ R we have:

1. Let Y1, ..., Yd+1 be variables in Fn. Then:

PY1,...,Yd+1∈Fn [x + YI ∈ R, ∀I ⊆ [d + 1]] =

|F|−
∑m

i=1

∑∆(gi)
j=1 (d+1

j )(1 ± γ)



2. Let Y1, ..., Yd+1, Z1, ..., Zd+1 be variables in Fn. For any non-empty I0 ∈ [d + 1]:

P [x + YI ∈ R,x + ZI ∈ R, ∀I ⊆ [d + 1]|YI0 = ZI0 ] ≤

|F|m
(

|F|−
∑m

i=1

∑∆(gi)
j=1 (d+1

j )
)2

(1 + γ)

Proof of Lemma 16. In the following we show that the two conditions of the lemma hold.

1. This is a direct application of Corollary 11 for k = d + 1, x′ = x and y1, ..., yk = 0.

2. Assume w.l.o.g that I0 = {1, 2, ..., s} for 1 ≤ s ≤ d + 1. We start by making a linear
transformation on the coordinates to bring YI0 and ZI0 to a single variable. Let Y ′

i = Yi for
i 6= s and Y ′

s = Y1 + ... + Ys, and similarly define Z ′
1, ..., Z

′
d+1. We write YI in the basis of

Y ′
1 , ..., Y ′

d+1. Divide I = Is ∪ Is̄ where Is = I ∩ [s] and Is̄ = I \ Is. We have:

• If s /∈ I, YI =
∑

i∈I Y ′
i

• If s ∈ I, YI = Y ′
s −∑i∈[s]\Is

Y ′
i +

∑

i∈Is̄
Y ′

i

Consider for every I the set TI of indices of Y ′
i which appear in the expansion of YI . Notice

that for any T ⊆ [d + 1] there is exactly one I s.t. TI = T . In particular, in order that
gi(x + YI) = gi(x) for all I, we must have in particular that:

• For any I ⊆ [d + 1] s.t. s /∈ I and |I| ≤ ∆(gi),

gi(x + Y ′
I ) = gi(x)

• For any I ⊆ [d + 1] s.t. s ∈ I and |I| ≤ ∆(gi),

gi(x + Y ′
s − Y ′

I∩[s−1] + Y ′
I∩{s+1,...,d+1}) = gi(x)

Similarly for the Z ′’s, using the fact that the event YI0 = ZI0 translates to Z ′
s = Y ′

s :

• For any I ⊆ [d + 1] s.t. s /∈ I and |I| ≤ ∆(gi),

gi(x + Z ′
I) = gi(x)

• For any I ⊆ [d + 1] s.t. s ∈ I and |I| ≤ ∆(gi),

gi(x + Y ′
s − Z ′

I∩[s−1] + Z ′
I∩{s+1,...,d+1}) = gi(x)

The probability of this event is an upper bound on our required probability. Since our
variables

Y ′
1 , ..., Y

′
d+1, Z

′
1, .., Z

′
s−1, Z

′
s+1, ..., Z

′
d+1

are uniform and independent, we can apply Lemma 9 to show that its probability is the
required upper bound. The number of subsets of size j > 1 in the above events is

(

d+1
j

)

for the event on the Y ′’s, and also
(

d+1
j

)

for the event on Z ′
1, ..., Z

′
s−1, Y

′
s , Z

′
s+1, ..., Z

′
d+1. For



j = 1 however we have intersection (Y ′
s is appearing twice), and so the number of events is

2
(

d+1
1

)

− 1. Thus,by Lemma 9 the probability of the total event is:

|F|m
(

|F|−
∑m

i=1

∑∆(gi)
j=1 (d+1

j )
)2

(1 ± γ)

which upper bounds the required probability.

We now prove Lemma 15 using Lemma 16. Our proof is similar to the one of [GT07].

Proof of Lemma 15. Let B ⊆ R be the set of all ”bad” points x ∈ R on which p(x) 6= b. By our
assumption, |B| < 2−2(d+1)|R|. Assume B is non-empty, and choose some x ∈ B. Let Y1, ..., Yd+1

be random variables in Fn. Fix small enough γ = γ(m). By Lemma 16 (1),

pR =P[x + YI ∈ R, ∀I ⊆ [d + 1]] ≥

|F|−
∑m

i=1

∑∆(gi)
j=1 (d+1

j )(1 − γ)

We now wish to bound the event that when all X + YI are in R, some X + YI is in B, and then
union bound over all possible I.

We start by applying Cauchy-Schwarz to transform the problem to counting pairs of hypercubes.
Fix some non-empty I0 ⊆ [d + 1], and let

pB =P[x + YI ∈ R ∀I ⊆ [d + 1] ∧ x + YI0 ∈ B] =
∑

x0∈B

P[x + YI ∈ R ∀I ⊆ [d + 1] ∧ x + YI0 = x0]

We need to upper bound pB.

p2
B =





∑

x0∈B

P[x + YI ∈ R ∀I ⊆ [d + 1] ∧ x + YI0 = x0]





2

≤

|B|
∑

x0∈B

P[x + YI ∈ R ∀I ⊆ [d + 1] ∧ x + YI0 = x0]
2

Introducing new variables Z1, ..., Zd+1 in Fn, we have.

p2
B ≤ |B|P[x + YI ∈ R ∀I ⊆ [d + 1] ∧

x + ZI ∈ R ∀I ⊆ [d + 1] ∧
x + YI0 = x + ZI0]

Thus we get that:

p2
B ≤ |B||F|−nP[x + YI ∈ R, x + ZI ∈ R ∀I ⊆ [d + 1]|

x + YI0 = x + ZI0]



By claim (2) in Lemma 16 we get that this probability is at most

|B||F|m−np2
R(1 + γ)

By Lemma 14, |R| = |F|nPX∈Fn [X ∈ R] = |F|n−m(1 ± γ). Thus, we have that:

p2
B ≤ |B|

|R|p
2
R(1 ± 2γ) ≤ 2−2(d+1)p2

R

and thus pB

pR
≤ 2−(d+1)(1± 2γ). We can now union bound over all non-empty I0 ⊆ [d + 1]. The

probability that there is some I0 for which x + YI0 ∈ B is at most

(2d+1 − 1)(2−(d+1) + γ) < 1

for small enough γ.
Thus, there must exist y1, ..., yd+1 ∈ Fn s.t.

x + yI ∈ R \ B

for all non-empty I ⊆ [d + 1]. Equivalently, p(x + yI) = b for all such I’s. However, since
p(X)y1,...,yd+1

≡ 0,

p(x) =
∑

I⊆[d+1],|I|>0

(−1)|I|+1p(x + yI)

and so if all p(x + yI) = b, then also p(x) = b, hence x /∈ B. So we have proved that B is empty,
i.e. p is constant on R.

We finish the proof of Lemma 13 by proving that if p(X) is constant over almost all regions,
then it must be constant over any region.

Lemma 17 (If almost all regions are totally good, all are totally good). Assume that the fraction
of regions on which p is constant is at least 1 − 2−(d+2). Then p is constant over any region.

Proof. Let R be any region, and x, x′ ∈ R two points in R. We need to show that p(x) = p(x′).
Choose y′1, ..., y

′
d+1 ∈ Fn randomly. The probability that x′ + y′I falls in a bad region for any non-

empty I ⊆ [d+1] is 2−(d+2) (since regions are almost uniform, see Lemma 14). Thus, applying union
bound over all non-empty I ⊆ [d + 1] we get that {x′ + y′I} fall in good regions for all non-empty I
with probability at least 1/2. Fix some y′1, ..., y

′
d+1 fulfilling this requirement.

Let Y1, ..., Yd+1 ∈ Fn be random variables. Since gi(x) = gi(x
′) for all i ∈ [m] we can apply

Corollary 11:

P
[

gi(x + YI) = gi(x
′ + y′I) ∀ i ∈ [m], I ⊆ [d + 1]

]

=

|F|−
∑m

i=1

∑∆(gi)
j=1 (d+1

j )(1 ± γ)

In particular, for small enough γ we get that

P
[

gi(x + YI) = gi(x
′ + y′I) ∀ i ∈ [m], I ⊆ [d + 1]

]

> 0

Let y1, ..., yd+1 be such assignment to Y1, ..., Yd+1. We thus have that for all non-empty I ⊆ [d + 1]
and for all i ∈ [m], gi(x + yI) = gi(x

′ + y′I). Since the region of x′ + y′I is good for all non-empty I,



we get that for all non-empty I ⊆ [d + 1], p(x + yI) = p(x′ + y′I). We now use the fact that p is a
degree d polynomial. If we derive p d + 1-times in any direction, we will always get zero. We thus
have that for x, y1, ..., yd+1 ∈ Fn:

∑

I⊆[d+1](−1)|I|p(x + yI) = 0. Since the same identity is true for

x′, y′1, ..., y
′
d+1, we get that p(x) = p(x′).
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