Electronic Colloquium on Computational Complexity, Report No. 73 (2008)

Structural complexity of AvgBPP

Dmitry Itsykson *

August 5, 2008

Abstract

We study class AvgBPP that consists of distributional problems that can be solved in av-
erage polynomial time (in terms of Levin’s average-case complexity) by randomized algorithms
with bounded error. We prove that there exists a distributional problem that is complete for
AvgBPP under polynomial-time samplable distributions. Since we use deterministic reduc-
tions, the existence of a deterministic algorithm with average polynomial running time for our
problem would imply AvgP = AvgBPP. Note that, while it is easy to construct a promise
problem that is complete for promise-BPP [Mil01], it is unknown whether BPP contains com-
plete languages. We also prove a time hierarchy theorem for AvgBPP (time hierarchy theorem
is also unknown for BPP). We compare average-case classes with their classical (worst-case)
counterparts and show that the inclusions are proper.

*Steklov Institute of Mathematics at St. Petersburg. E-mail: dmitrits@pdmi.ras.ru. Partially supported by
Russian Science Support Foundation, grant RFBR, 08-01-00640, and the president of Russia grant “Leading Scientific
Schools” NSh-4392.2008.1.

ISSN 1433-8092

Contents

1 Introduction
1.1 Results. e e e e s

2 Preliminaries
2.1 Notation L e e e e e e e e
2.2 Distributions e e e e e e e e e e e e
2.3 Average polynomial time and errorless heuristic schemes
2.4 Heuristic classes L e e e e e e e
2.5 Distributions on inputs of equal lengths 00000,
2.6 Reductions e e e e e e e
2.7 Decreasing the error in AvgBPP

3 Worst-case vs average-case classes

4 Complete problem

5 Complete problem with uniform distribution implies derandomization
6 Time hierarchy theorem

References

10

12

16

17

19

1 Introduction

The existence of complete problems and time (or space) hierarchies are the main structural prop-
erties of complexity classes. The complexity classes are usually defined by computational models.
For example, the class P is defined by polynomial-time deterministic Turing machines, NP, by
nondeterministic ones, and BPP, by randomized two-sided bounded error machines. A time hier-
archy theorem states that a given computational model can decide more languages if it is allowed
to use more time. A complete language is the hardest language in the class; all other languages
can be reduced to it.

Time hierarchies and complete problems are connected, since both of them usually require
efficient enumeration of (correct) machines in the respective computational model. It is unknown
whether BPP has time hierarchy or complete problems under deterministic reductions. The main
obstacle is the absence of efficient enumeration of two-sided bounded error randomized Turing
machines. Barak showed in [Bar(2] that the existence of a BPP-complete problem implies a
time hierarchy theorem for BPP. However, there is a relativized world where BPP# has no
complete languages [HH86]. Note that if P = BPP, then BPP does have a complete problem
since P does. The best current result for time hierarchy is superpolynomial: BPTime[n'°8"] C
BPTime[2"] [KV87], however, we are not able to prove that BPTime[n] C BPTime[n!001%87],
Related results for randomized classes include hierarchies for classes with one bit of nonuniform
advice: BPP/1,ZPP/1,MA/1, etc. [FS07].

In average-case complexity computational problems are supplied with probability distributions
on the instances. We say that distributional problem is solvable in average polynomial time if there
is polynomial-time errorless heuristic scheme that solves this problem [Imp95, BT06]. Polynomial-
time errorless heuristic scheme is an algorithm that depends on two parameters: z (input) and §
(“give up” probability), its running time is bounded by a polynomial in %'; it always outputs the
correct answer or “gives up”; the probability of “give up” (according to some distribution on the
inputs) is bounded by §. This definition is given by Imagliazzo in his influential survey paper on
average-case complexity [Imp95] and it is equivalent to Levin’s definition of average-case tractability
[Lev86]. AvgP is the class of distributional problems that are solvable in average polynomial time,
and AvgBPP is the class of distributional problems that are solvable in randomized average
polynomial time with bounded error.

Heuristic classes are closely connected with average-case classes. HeurP (HeurBPP) is defined
by (randomized) polynomial-time heuristic schemes that in contrast to errorless schemes may give
incorrect answer instead of explicit “give up”. Heuristic algorithms, in contrast to heuristic schemes
may error on some fraction of inputs and the number of errors may not be decreased by increasing
running time. Heurs,)P (Heur;(,,)BPP) is the class of problems that are solvable by (randomized
with bounded error) polynomial-time heuristic algorithms on all inputs except fraction §(n). A time
hierarchy for the class Heur . BPP (with uniform distributions) was proved in [FS04, Per07]. A

complete public-key cryptosystem was constructed using a similar idea in [HKNT05] (see also
[GHPO06]). Such cryptosystem is possible when a decoding algorithm may err with some small
probability.

In this paper we consider only polynomial-time samplable distributions and denote the class of
all polynomial-time samplable distributions as PSamp.

1.1 Results

1. We construct language C and polynomial-time samplable distribution R such that the dis-
tributional problem (C, R) is complete for (AvgBPP,PSamp) under deterministic Turing
reductions. Our construction implies that if this problem belongs to (AvgP,PSamp) (or
even to (Avg%,PSamp)), then (AvgBPP,PSamp) equals (AvgP,PSamp). The same

result is also correct for (HeurBPP, PSamp).

The constructed distribution R is not uniform and is somewhat unnatural samplable. We
give two intuitional ideas why it is very hard problem to construct a complete problem with
uniform (or uniform-like) distribution:

e informally, the reduction usually requires enlarging the input size which decreases the
probability exponentially, which violates the domination condition in case of uniform
distribution.

e formally, we prove that if there exists a complete problem for (AvgBPP,PSamp)
with uniform (or uniform-like) distribution, then there exists partial derandomization
of BPEXP, namely for all languages L € BPEXP distributional problem (L,U) is
solvable by a deterministic algorithm with average exponential running time, where U
denotes uniform distribution.

2. We prove a time hierarchy theorem for the class (AvgBPP,PSamp). Namely, we prove
that for every ¢ > 1 there exists a language L and a polynomial-time samplable distri-
bution D such that (L,D) € AvgBPP and (L,D) ¢ Heur%_%BPTime[nc] (note that
Heur%_%BPTime[nc] 2 Avg%_%BPTime[nc] 2 AvgBPTinme[nc]). Previous results
[FS04, Pgr()?] give a hierarchy for randomized heuristic algorithms with bounded error while
we extend it to a hierarchy for randomized errorless heuristic schemes with bounded error.
Weakness of our result is that the distribution D is not uniform. It is an interesting open
question to prove the same for uniform D.

3. We compare classes AvgP, AvgBPP, HeurP, HeurBPP to their worst-case counterparts
and show the following inclusions (for polynomial-time samplable distributions):

e P C AvgP C HeurP C EXP;
e BPP C AvgBPP C HeurBPP C BPEXP.

Organization of the paper. In Sect. 2 we define rigorously the notions we use. In Sect. 3
we prove proper inclusions between average-case and worst-case classes, in Sect. 4 we give a con-
struction of a problem complete for (AvgBPP,PSamp), in Sect. 5 we show that the existence
of complete problem with uniform distribution implies derandomization, and in Sect. 6 we prove a
time hierarchy theorem for (AvgBPP,PSamp).

2 Preliminaries

2.1 Notation

We restrict ourselves to the binary alphabet {0,1}, we denote the set of all binary words as {0, 1}*.
A language is any subset of {0,1}*. We identify language and its characteristic function: z €
L << L(z) =1

Recall that the complexity class P contains all languages L such that there exists polynomial-
time deterministic Turing machine M such that Yz L(z) = M(z). Complexity class BPP contains
all languages L such that there exists polynomial time randomized Turing machine M such that
Ve Pr{M(z) = L(z)} > 2. If we substitute the polynomial-time restriction by exponential-time
restriction (running time is exponential if it is bunded by 2¢(") where p is polynomial and n is
length of the input), we get the definition of classes EXP and BPEXP.

Let f,g: X — Ry be two functions. We say that f(z) = poly(g(x)) if there exists a polynomial
p(z) such that for all z € X f(x) < p(g(x)).

2.2 Distributions

In the average-case complexity theory computational problems are supplied with distributions on
their instances. There are two ways of understanding the notion of distribution on binary strings.
The first approach [Lev86, BDCGL92] is to define the probability distribution as a probabilistic
measure on the set of all binary strings. The second approach [Imp95, BT06] is to define the
distribution as a family of probabilistic measures with a finite support. These two approaches are
equivalent in the sense of average-case complexity (see [Imp95, BT06]). We choose the second
approach.

The ensemble of distributions D is the family of functions {D,}>%,, where D,, is a mapping
{0,1}* — [0,1] and there exists a finite set X,, C {0,1}* such that } . Dn(z) =1, Dy(z) > 0
for all z € X,,, and D,(z) = 0 otherwise. The set X,, is called the support of D, and denoted
as supp Dy; supp D = Upensupp D,. A distributional problem is pair (L, D) of language L and
ensemble of distributions D.

Let B be the class of distributional problems and © be the class of distributions. (3,9D) =
{(Z,D)|(L, D) € B, D € D).

In this paper we consider only polynomial-time samplable distributions. The ensemble of dis-
tributions D is called polynomial-time samplable if there exists a polynomial-time randomized
algorithm (sampler) S such that outputs of S(1™) are distributed according to D,,. The set of all
polynomial-time samplable distributions is denoted by PSamp.

It is easy to see that lengths of strings from the support of D,, are bounded by poly(n) if D is
polynomial-time samplable. We think of D,, as a distribution on strings of size approximately n.
In Section 2.5 we show that w.l.o.g. we may consider D,, with supp D,, C {0,1}".

By uniform distribution U we mean the ensemble of distributions U,,, where U, is the uniform
distribution on {0, 1}". In what follows we always mean an ensemble of distributions whenever we
use the word distribution.

2.3 Average polynomial time and errorless heuristic schemes

The first notion of average-case tractability was given by Levin in [Lev86]. Function ¢ : {0,1}* x
N — N (with distribution D) is called polynomial on the average® if there exists ¢ > 0 such that
Eyzep, t(z;n) = O(n). The distributional problem is solvable in average polynomial time if there
exists an algorithm that solves it with average polynomial running time.

The equivalent definition of the average-case tractability was given by Impagliazzo [Imp95).
Distributional problem (L, D) is solvable in polynomial on the average time if there exists algorithm

!The naive approach is to define that ¢(z;n) to be polynomial on the average if the expectation of t(z;n) is
polynomial. But this naive definition is not closed under some natural operations. For example, it is easy to
construct ¢t(z;n) such that the expectation of ¢(z;n) is polynomial but the expectation of ¢>(x;n) is exponential (see
[BT06]).

A(z;n,d) (following [BT06] we call such algorithm errorless heuristic scheme) that may explicitly
“give up” (output L) such that the following conditions are satisfied:

e (Effectiveness) The running of A(z;n, §) is bounded by poly(%);
e (Correctness) for all z in the support of D, A(z;n,d) € {L(z), L};
e (Usefulness) Pry p, {A(z;n,6) =L} < 4.

A formal proof of equivalence is given in [Imp95, BT06]. The answer L in Impagliazzo’s defini-
tion corresponds to manual interruption of the algorithm from Levin’s definition.

The set of all distributional problems that can be solved in average polynomial time is denoted
by AvgP.

Both these definitions may be extended for bounded error randomized algorithms. We say
that randomized algorithm A solves (L, D) with bounded error if for all z in the support of D,
Pr{A(z;n) # L(z)} < 1. When using Levin’s definition we define the running time of the algorithm
A on the input = as min{t| Pr{A(z) stops in ¢ steps} > 2}.

The Impagliazzo-style definition is as follows:

Definition 2.1 ([BT06, Definition 2.13]). The distributional problem (L, D) is solvable in
randomized average polynomial time with bounded error if there exists an algorithm (we call such
algorithm as randomized errorless heuristic scheme) A(x;n,d) such that the following conditions
are satisfied:

o (Effectiveness) The running of A(x;n,d) is bounded by poly(%);

e (Correctness) for all z in the support of D, Pr{A(z;n,é) ¢ {L(z),Ll}} < %, where the
probability is taken over random bits of algorithm A.

e (Usefulness) Pryc p, {Pr{A(z;n,8) =L} > 1} < §, where the inner probability is taken over
the random bits of algorithm .A.

The class AvgBPP consists of all problems that are solvable in randomized average polynomial
time with bounded error.

For every function g(n), we define classes AvgTime[g(n)] and AvgBPTime[g(n)]; the defini-
tions are the same as definitions of AvgP and AvgBPP but effectiveness conditions are substi-
tuted by the following: the running time of A(z;n, §) is bounded by O(g(%)). We also define class

AvgEXP = J,., AvgTime[2"].

2.4 Heuristic classes

Similarly to errorless heuristic schemes it is possible to define general heuristic schemes. In the
deterministic case we say that distributional problem (L, D) is solvable by polynomial time heuristic
scheme A(xz;n,d) if

o (Effectiveness) The running of A(z;n, §) is bounded by poly(%);
o (Usefulness) Pry p,{A(z;n,d) # L(z)} < 4.

In the randomized case the usefulness condition is formulated as follows:

e (Usefulness) Pryc p, {Pr{A(z;n,d) # L(z)} > 1} < §, where the inner probability is taken
over the random bits of algorithm A.

The set of all distributional problems solvable by polynomial-time (randomized) heuristic
schemes is denoted by HeurP and HeurBPP.

We say that problem (L, D) is solved by §(n)-heuristic algorithm A if for every n, it holds that
Pryep,{A(z;n) # L(z)} < §(n). We say that (L, D) is solved by errorless §(n)-heuristic algorithm
if A is 6(n)-heuristic and A(z;n) € {L(z), L} for all z and n.

The set of problems solvable by polynomial-time (errorless) d-heuristic algorithms is de-
noted by Heurs,,)P (resp. Avg;,)P). The classes Heur;,,)BPP and Avg,,)BPP are de-
fined similarly. The classes Heurs,) Time[g(n)], Avgs,)Time[g(n)], Heurs,)BPTime[g(n)],
Avg;,)BPTime[g(n)], HeurTime[g(n)], HeurBPTime[g(n)] are defined in a natural way.

2.5 Distributions on inputs of equal lengths

In this section we show that every distributional problem (L, D) with polynomial-time samplable
distribution D is equivalent (in sense of average-case hardness) to some distributional problem
(L', D') with polynomial-time samplable D’ such that supp D!, C {0,1}" for all n € N.

Let S be an n*-time sampler that generates the distribution D. We define sampler S’ that
generates distribution D’ as follows:

1. Input: 1™.
2. If 3n: m =n* + 1, then
o s S(1M);
e Return 1" 151-10s.
3. Otherwise, return s < U({0,1}™).
We define language L' = UneN{lnk_‘z‘Oﬂm € LNsuppD,}.

Proposition 2.1. (L, D) € AvgP (resp. AvgBPP,HeurP, HeurBPP) if and only if (L', D) €
AvgP (resp. AvgBPP HeurP,HeurBPP)

Proof. Suppose that algorithm A(z;n,d) solves (L, D) in AvgP. We define algorithm A’(z; §) that
solves (L', D') in AvgP as follows:

1. If (3n:m =nF + 1 and & = 1™~15/710s), then return A(s;n,d);
2. Otherwise, return 0.

Suppose that A'(z;d) solves (L', D') in AvgP. Then the following algorithm A(z;n, d) solves
(L, D) in AvgP as follows:

1. If |z| > n*, then return 0.
2. Otherwise, return A’(l"k_|m|01, d).
One can easily check that the described transformations satisfy all necessary properties. O

In what follows for technical reasons we restrict ourselves only to polynomial-time samplable
distributions with supports of the same lengths. We do not write the parameter n explicitly and
use D(r) instead of D, (z).

2.6 Reductions

In this section we define deterministic Turing reductions between distributional problems. We dis-
tinguish errorless and heuristic reductions since average-case classes and heuristic classes use differ-
ent computational models. Our definition is very similar to [BDCGL92] but here we use Impagliazzo
style definition (and computational model) and ensembles of distributions while [BDCGL92] used
Levins definition and distributions on the set of all binary strings.

Definition 2.2 (cf. [BDCGL92]). Distributional problem (L, D) is errorless reducible to problem
(L', D), if there exists a deterministic algorithm with oracle 7% (z; §) with the following properties

||

1. (Effectiveness) Running time of 7% (z;6) is poly(:Z).
2. (Correctness) T (x,0) € {L(z), L} for all z in the support of D.
3. (Usefulness) Pry p, {T" (z,8) =L} < § for all n € N.

4. (Domination) There exists polynomial p(n) and subset E, C {0,1}" of small measure
Dy (En) < 6 such that 37 ¢ g 1yn\ g, Ask7,6(2,y)Dn(z) < p(§)D'(y), where Asky4(z,y) =1
if 7% (x,6) asks oracle for string y and Askq s(z,y) = 0 otherwise. Informally speaking, E,
is the small set where 7 makes “incorrect” requests to the oracle.

We say that the distributional problem (L, D) is heuristically reducible to (L', D"), if we eliminate
the correctness condition and substitute the usefulness condition by

e (Usefulness) Pryp {T% (z,0) # L(x)} < 6.
The following lemma shows that the reductions defined above are reasonable.

Lemma 2.1. (1) If (L, D) is errorless reducible to (L', D') and (L',D') € AvgP, then (L,D) €
AvgP.
(2) If (L, D) is heuristically reducible to (L', D') and (L', D') € HeurP, then (L, D) € HeurP.

Proof. (1) Let (L', D') be solvable by algorithm A’(z,d) in AvgP and T (z,) is errorless reduc-
tion of (L, D) to (L', D'). Running time of A'(z,d) is bounded by polynomial q(%), the number
of lengths of oracle queries of 7% (z,) is bounded by polynomial f(%). Consider the sequence of
lengths of queries on the input length n: ki, ko, ..., kf(%).

We define algorithm A(z, 6): it executes T (z, g) and simulates A'(y, €(z,y)) instead of oracle
request y, where €(n) = st(%). If A" outputs L, then A(z,d) returns L. The probability of

answer L of the resulting algorithm is estimated as follows:

Pr {A(z,d) =1} <

x D,
1,0
P A{TH (@ 3) =1} 4 DalBn) + - 3 Y. Askrg(z,y)Da(z) <
z€{0,1}"\E, ye{0,1}*
Al(y,e(n))=L
(%) o
5 6 (Domination)
3 + 3 + Z Z Z Askr (%, y)Dn(z) <
ze{0,1}"\BEy =1 yef0,1}ki
Al(y,e(n))=L
95 f(%) n 9 f(%) n
THY Y D) =%+ p(5) Pr {Aye(n) =1} <
1=1 yE{O,l}ki 1=1 i
A'(y,e(n))=L
f(%)
26 24 n, 6
— — = — — = 4.
5+ 2P = 3+ 1G5
(2) The proof is much the same as the proof of (1). O

We can make a tighter statement.

Corollary 2.1 (from the proof of Lemma 2.1). Let (L, D) be (1) errorless; (2) heuristically

reducible to (L', D') by means of reduction 7% (z,4), the number of query lengths of T (z,) on

input of size n is bounded by polynomial f (%'); p(%) is polynomial from the domination condition.
. . . . 1 L _ 4

All oracle queries y satisfy the inequality |y| > [(W)c], where €(n,) = TN EIL Then (1) If

(L',D") e Avg. P, then (L,D) € AvgP. (2) If (L', D") € Heur 1 P, then (L,D) € HeurP.
Proof. The proof resembles the proof of Lemma 2.1, the difference is as follows. The prob-

lem (L', D') is solvable by algorithm A’(y). For all queries y made by T%'(z,d), the inequality
PryeD1 |{A’(y) =1}< ﬁ < €(|z|,0) is satisfied. O
Yy

Corollary 2.2 (from the proof of Lemma 2.1). Let (L, D) be errorless reducible to (L', D")
by means of reduction T (z,d). Let the size of all oracle requests made by 7% (z,§) be bounded
by 7(|z|, %) for all z € {0,1}" \ E,, where 7 is some polynomial-time computable function, and
(L',D") € AvgTime[r(n)]. Then there exists errorless heuristic scheme A(z,¢) for (L, D) with

1
running time bounded by poly(%),r(vr(lﬂglﬁé)).

Proof. The proof is straightforward calculation of running time of algorithm A(z,) presented in
the proof of Lemma 2.1. The only modification: A(z,d) should answer L if size of oracle request
of T (z,6) is more than 7(|z|, %) (therefore = € Ey,).

O

2.7 Decreasing the error in AvgBPP
In this section we show that the constant % in Definition 2.1 may be exponentially decreased.

Proposition 2.2 (Chernoff-Hoefding bound). For X;, Xs,..., Xy identically and indepen-
N .
dently distributed such that X; € [0, 1] and E[X;] = p, it holds that Pr{\#—u\ > ¢} < 2e 27,

9

Lemma 2.2 ([BT06]). Distributional problem (L, D) is contained in the class AvgBPP if and
only if there exists algorithm B with two parameters (z, §), such that the following properties hold:

e (Effectiveness) The running of B(z, d) is bounded by poly(%);

e (Correctness) for all z in the support of D, Pr{A(z;n,d) ¢ {L(z), L}} < 2= where the
probability is given over random bits of algorithm B.

e (Usefulness) Pryp {Pr{B(z,6) =1} < 2™} > 1—§, where the inner probability is taken
over random bits of algorithm A.

Proof. Let (L, D) be contained in AvgBPP and solvable by A(z,) according Definition 2.1. We
construct the algorithm B as follows: we repeat n = |z| times the algorithm A(z, §) and return L
if at least § answers equal L. If less than T answers equal L, then we output the most frequent
answer.

We split all binary strings of length n into 3 sets:

o X; = {z€{0,1}"|Pr{A(z,d) =1} < 1},

o Xy ={z€{0, 1}”& < Pr{A(z,d) =1} < % + 11_0},
e X5={z€{0,1}"| Pr{A(z,0) =L} > % + %0}

If £ € X1, then Chernoff bound implies that less than % fraction of answers of A equals L
with probability 1 — 2=*™). Since Pr{A(z,0) = 1 — L(z)} < %, Chernoff bound implies that
L(z) is the most frequent answer given by A with probability at least 1 — 2-n) Therefore,
Pr{B(z,d) = L(z)} > 1 — 2 "),

If z € X5, then since Pr{A(z,8) = 1 — L(z)} < 1, Chernoff bound implies that 1 — L(z) is not
the moszc grequent answer given by A with probability at least 1 — 2", Pr{B(z,0) #1—L(z)} >
1—2%n),

If z € X3, then Chernoff bound implies Pr{B(z,d) =1} > 1 —27%n),

Definition 2.1 implies D(X2 U X3) < 4, and for z € X; it holds that Pr{B(z,d) = L(z)}
1 — 29", Hence, Pry p, {Pr{B(z,8) =1} <2~} >1 4.

v

3 Worst-case vs average-case classes

It is easy to see that AvgP C HeurP. Indeed it is sufficient to modify AvgP algorithm as
follows: output 0 instead of answer L. The similar modification and Lemma 2.2 imply AvgBPP C
HeurBPP. Whether these inclusions are proper or not is an important open question [Imp95].

Definition 3.1. Let € be the class of languages and © be the class of distributions. (€,D) =
{(L,D)|D € ®,3L' € € :Vz € supp D L(z) = L'(z)}.

Lemma 3.1. Let f and g be time-constructible functions? satisfying f(n)log®f(n) = o(g(n)). Then
there exists unary (i.e., a subset of {0}*) language L that separates DTime[f(n)] and DTime[g(n)].

Proof. We enumerate all deterministic Turing machines with running time bounded by f(n)log f(n)
in such a way that every Turing machine appears in this enumeration infinitely many times: M;.
We consider language L = {0°|M;(0") = 0}. L € DTime[g(n)] since it can be solved using a

2f(m) is called time-constructible if the value of f(n) can be computed in O(f(n)) steps.

10

simulation. Suppose that L is solved by O(f(n))-time Turing machine that has number & in our
enumeration. We consider 2 cases: let 0F € L, then M}, (0*) = 1 since My, solves L, on other hand
by definition of L it should be M}(0F) = 0, contradiction. Let 0¥ ¢ L, then My (0%) = 0 since My
solves L, on other hand by definition of L it should be M(0*) = 1, contradiction. O

Theorem 3.1. The following inclusions hold:
1. (P,U) ¢ (AvgP,U) C (HeurP,U);
2. (HeurP,PSamp) C (EXP,PSamp);

3. There exists language Lrxp € EXP such that for any distribution D € PSamp, distribu-
tional problem (Lgxp, D) is not contained in (HeurP, PSamp).

Proof. 1. Lemma 3.1 implies that there exists the unary language L, that separates DTime[2"/?]
and DTime[2"]. (Lp,U) ¢ (P,U) since L ¢ DTime[2"/2].

Now we show that (L,,U) € AvgP. Algorithm A(z,d) returns 0 if z # 0". If z = 0" and
o > 2%, then A(z,d) returns L, and if § < 2% it simulates the machine M that solves Lp in
DTime[2"] on input 0" and inverts the result. The running time of A(z,d) is bounded by O(3%)
(if § < 27", then A(z,) may work for 22" steps).

2. Let distributional problem (L, D) € (HeurP,PSamp) be solved by algorithm A(z, §), the
distribution D is generated by sampler S with running time bounded by polynomial g(n). Note that
every positive value of D on {0,1}" is at least 2-9(™). Algorithm A(z, m) works exponential
time and solves L N supp D without errors.

3. We enumerate all deterministic Turing machines with running time bounded by 2" in such a
way that every Turing machine appears in this enumeration infinitely many times: M;. We consider
language Lpxp = {z\Mm(z) = 0}. Using just simulation we get Lgxp € EXP. Assume that
there exists some distribution D such that (Lgxp, D) is solved in HeurP by algorithm A(z, §).
We consider a Turing machine that corresponds to the algorithm A(z, %); it has number k in our
enumeration. Since Pry p,{M(z) = A(z,15) = Lexp(z)} > 0.9, there exists zo € {0,1}* such
that My(zo) = Lexp(zo), it contradicts the definition of the language Lgxp.

]

Now we prove a similar theorem for randomized classes:
Theorem 3.2. The following inclusions hold:

1. (BPP,U) C (AvgBPP,U) C (HeurBPP,U);

2. (HeurBPP,PSamp) C (BPEXP,PSamp);

3. There exists L € BPEXP such that for every distribution D € PSamp, the distributional
problem (L, D) is not contained in (HeurBPP,PSamp).

Proof. 1. In order to prove (BPP,U) C (AvgBPP,U), it is sufficient to show that there exists a
unary language (i.e., a subset of {0}*) that separates classes BPP and BPTime|[2"]. Prefix u- to
complexity class € means the set of unary languages from €.

The proof uses ideas from the proof of BPP # BPTime[2"] from [KV87].

Assume that u-BPP = u-BPTime|[2"], then u-BPP = u-BPTime[n'°¢"] = u-BPTime[2"].

11

Lemma 3.2 (cf. [KV87, Lemma 3]). Let f(n),g(n),h(n) be time-constructible func-
tions, f(n),g(n) > logn, h(n) > n is strictly increasing function. Then u-BPTime[f(n)] C
u-BPTime[g(n)] implies u-BPTime[f(h(n))] C u-BPTime[g(h(n))].

Proof. Let language A be solved in O(f(h(n))) steps by algorithm M, we consider padded version
of language A: AP = {z0M#)-I2l|z € A}. The language AP* can be solved in time O(f(n))
as follows: given the input y, we use binary search to find such z that y = z0M{()—lzl (in time
O(log |y|)). After that we execute M on the input z, the resulting time complexity is O(log |y| +
f(z])) = O(f(|Jy|)). Hence the language AP** may be solved in O(g(|y|)) steps, therefore language
A may be solved in O(g(h(n))) steps. O

Suppose that u-BPTime[n!®8"] = u-BPTime[2"], consider the following sequence of inclu-
sions:

210gn]

QIOM] Lem%a 3.2

u-DTime[2" C u-BPTime[2"
u-BP Time[(n21°87)108("***™)] C 4.BPTime[2"] C

u-BPTime[n'%"] C u-DTime[2" "]

Lemma 3.1 implies u-DTime[2" "] C u-DTime[2""'*"], we get a contradiction. Be-
sides we may conclude that either Lgpp or its padded version separates u—BPTime[nlOg”] and
u-BPTime[2"].

2. The inclusion (HeurBPP,PSamp) C (BPEXP,PSamp) has almost the same proof as the
second claim of Theorem 3.1. However, in the randomized case we have one additional problem: the
resulting BPEXP algorithm should works correctly (with bounded error) even on zero probability
inputs. It is possible to compute the probability of input in exponential time (since the distribution
is polynomial-time samplable), hence BPEXP algorithm can reject all such inputs.

3. Let L' be unary language that separates u-BPTime[n'°¢"] and u-BPTime[2"] (the existence
of I' was proved in the claim 1 of this Theorem). We define a new language L = {z[0I* ¢
L'}. L' € BPTime[2"] implies that L € BPTime[2"]. Assume that (L,D) € HeurBPP for
some polynomial-time samplable distribution D. Let (L, D) be solved by algorithm A(z,d) and
the distribution D be generated by sampler S. We will show that L' € BPP and it will be a
contradiction.

Consider the following randomized algorithm that solved L': If z # 0", then reject. Otherwise
generate y < S(1") and return A(y, 11—0) The error probability of the described algorithm is
bounded by % (the probability that A(y, %) has unbounded error) +% (the error probability of
A(y, &)). That is, L' € BPP, which contradicts the construction of L. O

Note that classes AvgP, HeurP, AvgBPP and HeurBPP are not closed under changing the
distribution. Indeed in the proofs of Theorem 3.1 and Theorem 3.2 we prove the existence of unary
language Lp such that (Lp,U) separates P and AvgP, and Lgpp such that (Lgpp,U) separates
BPP and AvgBPP. If we consider distribution D such that D,,(0") = 1, then (Lp, D) ¢ HeurP
and (Lppp, D) ¢ HeurBPP.

4 Complete problem

In this section we construct a distributional problem that is complete for (AvgBPP,PSamp)
under errorless reductions and is complete for (HeurBPP,PSamp) under heuristic reductions.

12

The way tuples are encoded to be an input of an algorithm is important in average-case com-
plexity. We may use only logarithmic number of extra bits in encoding, because in this case the
uniform probability of a string decreases only polynomially. Now we describe the way we encode
tuples:

Remark 4.1. Let z and y be two bit strings. One can encode the pair (z,y) as 0118 12[11|z|,zy,
where |z|2 is the length of the string = written in binary. It is easy to see that |(z,y)| = |z| + |y| +
2[log |z|] + 1. An m-tuple z = (z1,%2,...,Zm) can be encoded as (z1, (z2, (z3,. .. (Tm—1,Zm)---)-
In this case |z| = 7 |z +2 327 log |zi|]+m—1 < 327, |ai|+2(m—1)[log(|2| — |zm|)] +m—1.

We will use Chernoff bound (Proposition 2.2) for several times, for this purpose we fix such

a number N; that 26’1%% < 0.001. Each time we apply Chernoff bound the number of random
variables should be at least Nj.

We construct a distributional problem (C, R), where C' is a language and R is a polynomial-time
samplable distribution. The language C will be defined by the algorithm A(z,d), the distribution
R will be defined by the sampler R. We will show that the distributional problem (C,R) is
in AvgBPP (therefore in HeurBPP) and that (C, R) is complete for AvgBPP under errorless
reductions (in a similar way it is possible to prove that the distributional problem (C, R) is complete
for HeurBPP under heuristic reductions).

We assume that all Turing machines output only an element from the set {0,1, L}. Technically
we may look on the first 2 bits of the first tape and interpret “00” as 0, “11” as 1, “01” and “10”
as 1.

Let us consider the auxiliary algorithm B:

Algorithm 4.1. Algorithm B(z,§):

1. Test input z to be a string of the form (M,y,1™,b), where m > |y| + No, b € {0,1}. If no,
then reject. (Here M is an encoding of a randomized Turing machine, y is an input of a
Turing machine, m is a number of steps that M is allowed to do, b is an answer that would
be outputted instead of an answer L of the machine M).

2. o If§ > QLm, then execute the machine M on y for m steps for 200m? times. If there exists
c € {0,1} that appears at least 80% times, then return ¢, otherwise return L.

o If § < zim’ then go through all sequences of random bits of M and execute M on y
for m steps. If the fraction of answers that are equal to L is at least i, then return b.
Otherwise return the most frequent answer from {0,1}.

3. Return L.

Note that algorithm B(z, ﬁ) is deterministic and it recognizes some language B.

We define an algorithm .4 by means of the algorithm B; A applies B to some part of the input
and ignores the rest of the input.
Algorithm 4.2. Algorithm A(z, §):

1. Test input z to be a string of the form (M,y,1™,b, S, 1%), where b € {0, 1}. If no, then reject.

2. Return B((M,y,1™,b),).

13

Since algorithm B(z, 2|—1z|) is deterministic, A(z, 5~) is also deterministic and it recognizes some

language C'; we are going to construct a distribution R such that the resulting distributional problem
(C, R) is complete for AvgBPP. Informally speaking, if machine M accepts y for m steps, then
C contains strings (M,y,1™,b,5,1%) for all b € {0,1}, S and s; if M outputs L on input y for m
steps, then exactly one string from {(M,y,1™,0, S,1%), (M,y,1™,1,5,1°)} is contained in C. If M
has unbounded error on the input ¥, then the result may be arbitrary, but the probability of such
bad inputs is small because of the choice of the distribution R.

The next Lemma shows conditions on the distribution H under which the problem (C, H) is
solvable by algorithm A(z,d) in AvgBPP.

Lemma 4.1. Let distribution H satisfy the following property: for every Turing machine M, if the
probability of the most frequent answer from {0,1} of M on input y for m steps is at most 0.85,
then H(M,y,1™,b,5,1%) < 2¢ ™, where n = |(M,y,1™,b,5,1%)|. Then (C,H) € AvgBPP.

Proof. o (Effectiveness) If § > &, then running time of A is bounded by O(n?*). If § < 5,
then running time of A is bounded by O(35).

e (Correctness) Let & > 2%” (otherwise the algorithm A works deterministically and al-
ways outputs the correct answer). If the probability of the most frequent answer from
{0,1} of M on y for m steps is not greater than 0.75, then Chernoff bound implies
Pr{A((M,y,1™,b,5,1%),6) =L} > 0.99. Otherwise, if the probability of the most frequent
answer ¢ € {0,1} is greater than 0.75, then ¢ = C(M,y,1™,b,5,1°). In this case Chernoff

bound implies Pr{A((M,y,1™,b,S5,1),6) =1 —-C(M,y,1™,b,S,1%)} < 0.01.

e (Usefulness) Let § > 5= (otherwise the algorithm A works deterministically and does not
output L). If the probability of the most frequent answer from {0,1} of M on y for m steps
is greater than 0.85, then Chernoff bound implies Pr{A((M,y,1™,b,5,1%),§) =L} < 0.01.
Otherwise by the statement of the Lemma H (M, y,1™,b,S,15) < 2¢~"". The total probability
of all such inputs Z may be estimated as follows: H(z) < e ™ 27t1 <27 < § (for n > N).

]

We define the distribution R by the sampler R (this distribution will be used in our complete
problem).

Algorithm 4.3. Sampler R(1"):

1. Generate string w of length n. If it is not of the form (M,y,r,b,S,0), where b € {0, 1}, then
return w.

2. Execute sampler S on the input 1%/ for |o| steps. Let z denote the result of S.

3. Execute M on z for |r| steps for 200n? times. If each answer from {0,1} appears less than
90% times, return 1". (Note that by Remark 4.1 the string 1" does not encode any tuple.)

4. Return (M, z,1"b, S, 1l°1).

Lemma 4.2. Let sampler S correspond to a distribution D. Let z = (M,z,1™,b,5,1°%), n = |z|.
(1) If machine M on input z for m steps outputs some answer from {0, 1} with probability not less
than 0.95, then R(z) > (1—2¢ ") D(z)2~10l08(n=5)=5.9=IM|=[S| (2) If machine M on input z for m
steps outputs some answer form {0, 1} with probability not greater than 0.85, then R(z) < 2e .

14

Proof. (1) With probability at least 2710log(n=lel)=5 . 9=IMI=|S| the sampler R generates string
(M,y,rb,S,0) on the first step, where |y| = |z|, |r| = m,|o| = s,b € {0,1}. (By the Remark 4.1 at
most 101log(n —|o|) —5 of bits are used to determine the lengths of tuple’s items). With probability
D(z) the sampler S outputs z on the second step of the sampler R. Chernoff bound implies that
the test on the third step of the sampler R will be passed with probability at least (1 — 26_"2).
(2) Chernoff bound implies that the test on the third step of the sampler R will be passed with
probability at most 2e". O

The claim (2) of Lemma 4.2 implies that the distribution R satisfies the condition of Lemma 4.1.
Theorem 4.1. (C,R) € AvgBPP.
Proof. The theorem follows from the claim (2) of Lemma 4.2 and Lemma 4.1. O

Remark 4.2. Assume that the Turing machine M has two inputs: the string # and the rational

number § € (0,1). Let My be the Turing machine that simulates M with the value of the second

parameter being equal to ﬁ We may encode M; as the pair (M, [5]), where [§] is written in
é

binary. By Remark 4.1 |(M, [1])| = |M|+[log[3]]+2[log |M[]+1, and hence 2 M5/ < 2/M+3772(14
1).

Theorem 4.2. (C, R) is a complete problem for (AvgBPP,PSamp) under errorless reductions.

Proof. Let us consider distributional problem (L, D) from AvgBPP. It is solvable by a machine
M which running time is bounded by polynomial g(%). (We assume that the both constants in
the Definition 2.1 are decreased to 0.01 by Lemma 2.2). Let distribution D be generated by the
sampler S with running time bounded by polynomial g(n).

We describe a reduction in terms of Definition 2.2. The reduction 7¢(xz,§) makes 2 requests
to the oracle: zy = (M5,w,lg(%)+N°,O, S,19020)) and 2 = (Mj,z, 19(%)4'%,1,8, 19020y, If the
answers of the oracle are different, then return L. Otherwise return the answer of the oracle.

Let us verify all conditions of a reduction:

|z|

1. (Effectiveness) follows from the fact that strings zp and 21 have lengths bounded by poly(%5').

2. (Correctness) If C(z) # C(z1), then TC(z,8) =L. If C(z) = C(z1), then Pr{M;s(z) =1} <
1. By Definition 2.1 (with the decreased constants) Pr{M;(z) € {L(z),L}} > 0.99, hence
Pr{M;(z) = L(z)} > 0.74. By construction C(zp) is the most frequent answer of M; on input
z for g(%) steps, therefore C(z9) = L(z) and T%(z,6) = L(z).

3. (Usefulness) Pryep, {7 (z,0) =L} = Prye p, {Pr{Ms(z) =L} > 1} < 4.

4. (Domination) Let E, = {z € {0,1}"|Pr{M;s(xz) =L} > 0.01}. By definition of Ms we have
D(E,) < 4. If § is fixed, then z is uniquely determined by zy and z;. By correctness of
Mj; for every z € {0,1}", Pr{Ms(z) = 1 — L(z)} < 0.01 and for every z € {0,1}" \ E,,
Pr{M;(z) =1} < 0.01, therefore for every = € {0,1}" \ E,, Pr{M;(z) = L(z)} > 0.98. By
the claim (1) of Lemma 4.2 for z € {0,1}" \ E,, we have

R(z;) > 0.99D(z)2~%0s(n'=a(|z)) =10 . 9—[Ms|—|5|
where n’' = 29| = |21, 2 € {0,1}. The last inequality proves the domination condition, since

S| is a constant and 2/Msl < 2IM+3772(1 4 1) by Remark 4.2.

15

Corollary 4.1. If (C, R) € AvgP, then (AvgP,PSamp) = (AvgBPP,PSamp).
Proof. Follows from Theorem 4.2 and Lemma 2.1. O
Theorem 4.3. If (C; R) € Avg 1 P, then (AvgP,PSamp) = (AvgBPP,PSamp).

Proof. The proof resembles the proof of Theorem 4.2. We manually increase the size of the oracle

requests in order to use Corollary 2.1.

In terms of the proof of Theorem 4.2 we denote k = |(Mj, z, 19(%)“'%, 0,5,1)|—1 and p(k,d) =
559 D ()25 108k HMs |+ SI1+9 (k. §) is bounded by poly(‘%'). Note that p(k,d) is the polynomial
from the proof of the domination condition in Theorem 4.2.

We increase the size of the oracle request by adding [(E(l—n))%] ones to the running time of

sampler S, where e(n) = m. (If S is a correct sampler, then it stops when it should

Q=

stop). Here are the new oracle requests: zp = (Mg,x,lg(§)+N°,0, S, 1q(‘z‘)+[(f(l_"))]), z1 =
(M, 2,195+ 1, g, 19050+ (e 1y

In order to use Corollary 2.1 it is left for us to note that for given ¢ and |z| the size of the oracle
requests is uniquely determined. The polynomial p(k,d) in the domination condition does not

depend on the last element of z; (and therefore it is the same as in the proof of Theorem 4.2). [

Corollary 4.2. If (AvgBPP,PSamp) C (Avg%P,PSamp), then (AvgP,PSamp) =
(AvgBPP,PSamp).

Theorem 4.4. 1. Distributional problem (C, R) is complete for (HeurBPP,PSamp) under
heuristic reductions.

2. If (C,R) € HeurP, then (HeurP,PSamp) = (HeurBPP,PSamp)

3. If (C,R) € Heur 1 P, then (HeurP, PSamp) = (HeurBPP, PSamp).

4. If (HeurBPP,PSamp) C (Heur.P,PSamp), then (HeurP,PSamp) =
(HeurBPP,PSamp).

Proof. The proof is analogous to the proofs of Theorem 4.2, Corollary 4.1, Theorem 4.3 and Corol-
lary 4.2. O

Note that classes (AvgBPP,PSamp) and (HeurBPP,PSamp) have the same com-
plete problem (although under the different reductions). In particular, it means that
if (AvgBPP,PSamp) C (HeurP,PSamp), then (C,R) € (HeurP,PSamp) and
(HeurP,PSamp) = (HeurBPP,PSamp). If (AvgP,PSamp) = (AvgBPP,PSamp), then
since AvgP C HeurP, we get (HeurP,PSamp) = (HeurBPP, PSamp).

5 Complete problem with uniform distribution implies derandom-
ization

In this section we give some intuition why the resulting complete problem for (AvgBPP, PSamp)
is not hard with respect to the uniform distribution, but is hard with respect to somewhat unnatural

16

samplable distribution. We use ideas from [Gur91], where Gurevich shows that the existence
of a complete problem in the distributional NP with uniform distribution under deterministic
reductions implies EXP = NEXP. Gurevich used this argument as a motivation for the usage
of randomized reductions (but a complete problem for AvgBPP under randomized reduction is
trivial and useless).

Definition 5.1 ([Gur91]). Distribution D is called flat if there exists € > 0 such that for every
z € {0,1}*, D(z) < 2.

Theorem 5.1. If there exists a problem (L, D) with flat distribution D that is complete for
(AvgBPP,PSamp) under errorless reductions, then (BPEXP,U) C AvgEXP.

Proof. Consider a problem (X,U) € (BPEXP,U) that is solvable in BPTime[2"]. We define the
padded version of language X: XP% = {(z, 12lmlc)|x € X)}. Tt is easy to see that XP% ¢ BPP. We
also define the distribution UP% such that UP*¢(z, 12|w|c) = 272); it is obviously polynomial-time
samplable. Since (XP% UP*) ¢ (BPP,U) C (AvgBPP,U) there is a reduction T of (XP¢, yrad)
to (L, D). Let p(%) be the polynomial from the domination condition. We fix some ¢ € (0,1). Let
7Ts make up to f(’) requests to the oracle, where n is the length of the input and f is a polynomial.

We consider y = (z, 12|m|0) and the set of requests of 7 (y,6): 21,22,...,2, where k < f(%). For

9—|z|

p(l2h

every 1,1 <1i <k, for every y € {0,1}" \ E,, the domination condition implies D(z;) > . Since

|5

2 is flat, 211> 2o hence [=i] < (|| logp(§)) < < poly(lz|log 3).
o

s
Let (L, D) be solvable in AvgBPP by an algorithm A(z,) with running time bounded by a
polynomial g(%). We may derandomize A(z,d) in time 2roly(5) By Corollary 2.2, (XPad yrad)
is solvable by deterministic errorless heuristic scheme B(y,d) with running time bounded by

oly(|z| log §) @ @ 2|
poly(%)?“"’lyﬁ#é_)) :poly(%)%’"ly(%) = groly(5h), Finally B'(z,0) = B((x,lQ‘ |), d) solves
(X,U) in AvgEXP. O

6 Time hierarchy theorem

In this section we modify techniques from [Per07] to prove a time hierarchy for
(AvgBPP,PSamp).

We consider a sequence n; such that ny = 1, nj1; = 22"*. We split all natural numbers into the
segments from n; to n;‘ =n;y — L.

For every randomized Turing machine M we denote by M such a machine that on input z
executes M (x) for |z|? times and outputs the most frequent answer. (Here we assume that all
Turing machines return only one bit).

We enumerate all Turing machines with the time bound n
machine appears in this enumeration infinitely many times: M;.

We describe a language L that will be used in the proof of a time hierarchy. On lengths form
the i-th segment L depends on the Turing machine M;. If n; < |z| < n], then we identify z and a
real number between 0 and 1. We define 0, = 3 + (z — 3) L. Let m, = PryeU({0,1}n+1){]\/4\i(y) =1},

na

where probability is taken over y and the random bits of M;; x € L <= 6, > m,. If |z| = n},

¢+l in such a way that every Turing

thenz € L <— PryeU({O,l}ni){J\/Zi(y) =1} < %, where probability is taken over ¢y and the random
bits of M;.

We introduce the probability distribution D, that will help us to solve the language L in
AvgBPP. The most hardest instance of L is x with 8, =~ m,. We define distribution D in such a

17

way that such z will have very small probability, therefore AvgBPP algorithm will have enough
time to solve this instance.
We define the distribution D by the sampler D.

Algorithm 6.1. Sampler D(1"):

1. If n = n}, then return z + U({0,1}");

2. Execute J\/ZZ on the random input of length n+1 for 109n2¢+¢+10 times and calculate frequency
Tn, of answer 1.

3. We call a string z bad if |0, — 7| < e = and we call it good otherwise.

_1
100ne

c+4

4. Repeat n®T* times:

e Generate z < U({0,1}");

e If z is good, return z;
5. Return z + U({0,1}").
Now we verify that distribution D has two desired properties:

Lemma 6.1. Let n; < n < n}. (1) For all z € {0,1}" D(z) < 27"X-, where a =
|0, — 7| < o, then D(z) <277,

mars (2) If

Proof. (1) The probability that uniformly generated random string is bad is less than 2e = ﬁ <
a= n+4—2 The probability that a string z is generated in the first iteration of step 4 of sampler D
is 27"; the probability that x is generated on the second iteration is less then a27"a, and so on.
Totally D(z) <2 "(1+a+a®+...) <2 "

(2) The probability that |, — 7| < § is at least 1 —2e72"""" >1—2""""" by Chernoff bound.
Therefore if |0, — m,| < 5, then with probability at least 1 — 2e~2n"1% > 1 — 271" the string z

is bad and D(z) < 277" 4 9-nt? < g-net?

c+10 c+3

U
Now we prove that (L, D) € AvgBPP and (L, D) ¢ Heur%_n%BPTime[nc].
Theorem 6.1. (L,D) € AvgBPP
Proof. We show that distributional problem (L, D) is solvable by L(z,) in AvgBPP:

1. If |z| = n}, then execute J\//fZ on all inputs of length n; and with all sequences of random bits
and return the most infrequent answer.
Now n; < |z| < nj.
2. If§ > 27"
| i
compute 7, that is the frequency of answer 1.
(b) If 6, > 7, + ﬁ, return 1.
(C) It 058 S %n -
(d) Return L.

(a) If n; < |z| < nf, then execute M; on K = 1024’;—; random inputs of length n + 1 and

#, return 0.

18

3. If§ < 2_”C+2, then compute 7, deterministically, that is execute J/V.f\n on all inputs of length
n + 1 with all sequences of random bits. If 6, > m,, return 1, otherwise return 0.

lz]

The running time of £(z,d) is poly(+5 3]). If 0, > mp + %, then Chernoff bound implies that

with probability at least 0.99 (for large enough n) L(z,d) outputs 1 = L(z). If 0, < mp — g5 0_ then
Chernoff bound implies that with probability at least 0.99 (for large enough n) L(z,d) outputs
0 = L(x). If 6, > m,, then by Chernoff bound the probability of the answer 0 is at most 0.01 and
if 8, < m,, then the probability of the answer 1 is at most 0.01.

If § > 2,} +, then the probability of the answer | may be estimated as: Pry.p, {L(z,d) =L
1+2

} < i < 4. If C+2 <6< 2n -1, then s_a -neighbourhood of 7rn contains at most one number
0 and by the claim (2) of Lemma 6.1 D(z) < 27" < 4. If § < C+2, then L(z,d) #L. O

Theorem 6.2. (L,D) ¢ Heur%_%BPTime[nc].

Proof. Proof by contradiction. Suppose that problem a (L, D) is solvable by a Turing machine Mj,
in Heur: 1 BPTime[n®].
2 n@

The claim (1) of Lemma 6.1 implies that for every subset S C {0,1}", D(S) < ’{Esa) = :,2({(5).
Hence the machine M} correctly solves L on a set of inputs with uniform measure at least (% +
1yno41 _ (1 1
we)parz = (3 tze)

For every = € {0,1}", L(z) = a € {0,1} . Since M}, solves L on 3 + 51 fraction of inputs,

and machine My has probability of error at most e~ on such inputs, we may conclude that for
every z € {0,1}" !, L(z) = a. If we continue this reasoning we get that for every = € {0,1}",
L(z) = a. Hence a is the most frequent answer of My, on z € {0, 1}"*; it contradicts with the choice

of a. 0

Note, that Heur1 L BPTime[n‘ D Avg1 1 BPTime[n] O AvgBPTime[n]. It com-
pletes the prove of the tlme hierarchy theorem for (AvgBPP PSamp).

Acknowledgments. The author thanks Dima Grigoriev for bringing his attention to the problem
and Edward A. Hirsch for fruitful discussions. The author also thanks Alexei Pastor, Ilya Posov
and Kirill Shmakov for useful comments.

References

[Bar(2] Boaz Barak. A probabilistic-time hierarchy theorem for “slightly non-uniform” algo-
rithms. In RANDOM ’02: Proceedings of the 6th International Workshop on Random-
ization and Approximation Techniques, pages 194-208, London, UK, 2002. Springer-
Verlag.

[BDCGLY2] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the theory of
average case complexity. J. Comput. Syst. Sci., 44(2):193-219, 1992.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundation and
Trends in Theoretical Computer Science, 2(1):1-106, 2006.

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial
time. In FOCS, pages 316-324, 2004.

19

[FS07] Lance Fortnow and Rahul Santhanam. Time hierarchies: A survey. Technical Report
07-004, Electronic Colloquium on Computational Complexity, 2007.

[GHPO6] Dima Grigoriev, Edward A. Hirsch, and K. Pervyshev. A complete public-key cryp-
tosystem. Technical Report 06-046, Electronic Colloquium on Computational Com-
plexity, 2006.

[Gur91] Yuri Gurevich. Average case complexity. In ICALP, pages 615-628, 1991.

[HHS6] Juris Hartmanis and Lane A. Hemachandra. Complexity classes without machines:
On complete languages for up. In ICALP ’86: Proceedings of the 13th International
Collogquium on Automata, Languages and Programming, pages 123-135, London, UK,
1986. Springer-Verlag.

[HKN'05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In EUROCRYPT, pages 96-113,
2005.

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In SCT ’95: Proceedings
of the 10th Annual Structure in Complezity Theory Conference (SCT’95), page 134,
Washington, DC, USA, 1995. IEEE Computer Society.

[KV8T7] Marek Karpinski and Rutger Verbeek. Randomness, provability, and the separation
of Monte Carlo time and space, pages 189-207. Springer-Verlag, London, UK, 1987.

[Lev86] L. Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285—
286, 1986.

[Mil01] Peter Bro Miltersen. Handbook on Randomization, volume II, chapter 19. Derandom-

izing Complexity Classes. Kluwer Academic Publishers, July 2001.

[Per07] Konstantin Pervyshev. On heuristic time hierarchies. In IEEE Conference on Com-
putational Complezity, pages 347-358, 2007.

20

ECCC ISSN 1433-8092

http://eccc.hpi-web.de/

