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Abstract. Motivated by strong Karp-Lipton collapse results in bounded arith-
metic, Cook and Kraj́ıček [7] have recently introduced the notion of proposi-
tional proof systems with advice. In this paper we investigate the following
question: Do there exist polynomially bounded proof systems with advice for ar-

bitrary languages? Depending on the complexity of the underlying language
and the amount and type of the advice used by the proof system, we obtain
different characterizations for this problem. In particular, we show that for a
language L, the above question is tightly linked with the question whether L
has small nondeterministic instance complexity.

1 Introduction

The classical Cook-Reckhow Theorem states that NP = coNP if and only if the
set of all tautologies TAUT has a polynomially bounded proof system, i.e., there
exists a polynomial p such that every tautology ϕ has a proof of size ≤ p(|ϕ|) in
the system. Consequently, showing super-polynomial lower bounds to the proof
size in propositional proof systems of increasing strength, provides one way to
attack the P/NP problem. This approach, also known as the Cook-Reckhow
program, has lead to a very fruitful research on the length of propositional
proofs (cf. [13]).

Motivated by strong Karp-Lipton collapse results in bounded arithmetic,
Cook and Kraj́ıček [7] have recently introduced the notion of propositional
proof systems using advice. This model seems to be strictly more powerful than
classical proof systems, as long-standing open problems, such as the existence
of optimal proof systems, receive affirmative answers in this setting [7, 3].

In the present paper we focus on the question whether there exist polynomi-
ally bounded proof systems with advice. We do not only consider propositional
proof systems, but investigate this question for arbitrary proof systems and
languages. As in the Cook-Reckhow Theorem above, we obtain a series of re-
sults which provide a complete complexity-theoretic characterization for this
question.

In particular, we show a tight connection of this problem to the notion
of nondeterministic instance complexity. Similarly as Kolmogorov complex-
ity, instance complexity measures the complexity of individual instances of
a language [12]. In its nondeterministic version, Arvind, Köbler, Mundhenk,
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and Torán [1] used this complexity measure to show that, under reasonable
complexity-theoretic assumptions, there are infinitely many tautologies that are
hard to prove in every propositional proof system. In the light of our present
contribution, this connection between nondeterministic instance complexity and
proof complexity is strengthened by results of the following form: all elements
of a given language L have small instance complexity if and only if L has a
proof system with advice such that every x ∈ L has a short proof.

To achieve these results, we start in Section 3 by reviewing the notion of non-
deterministic instance complexity of [1]. Nondeterministic instance complexity
is measured by two parameters: the size of the machine and its running time.
The most interesting choice for these parameters seems to allow logarithmic
size programs with polynomial running time. We combine all languages which
admit such programs in the class NIC[log, poly]. Using a proof idea from [12],
we locate NIC[log, poly] between the advice classes NP/log and NP/poly, where
these inclusions are shown to be strict.

In Section 4, we generalize the notion of propositional proof systems with
advice of Cook and Kraj́ıček [7] to arbitrary languages. We classify these proof
systems on whether the advice depends on the proof (input advice) or on the
proven element (output advice). Similarly as in [7], we show that for every
language L, the class of all proof systems for L using logarithmic input advice
contains an optimal proof system.

Our main results follow in Sections 5 and 6 were we examine the question
whether polynomially bounded proof systems with advice exist. In Section 5 we
investigate this problem for arbitrary languages, whereas in Section 6 we focus
on TAUT which presents the most interesting case for practical applications.

For output advice, the classical Cook-Reckhow Theorem generalizes in a
straightforward manner, and thus a language L has a polynomially bounded
proof system with k(n) bits of output advice if and only if L ∈ NP/k(n).

For input advice, which yields a strictly more powerful model, this question
is more intricate. Using a polynomial amount of advice, the difference vanishes:
if a language L has a polynomially bounded proof system with polynomial input
advice, then L already has such a system with output advice.

Descending to logarithmic advice, we establish the connection to nondeter-
ministic instance complexity: a language L has a polynomially bounded proof
system with logarithmic input advice if and only if L ∈ NIC[log, poly]. Because
NIC[log, poly] and NP/log are different classes, there exist languages that have
a polynomially bounded proof system with logarithmic input advice, but do
not have a system of this kind with output advice. Surprisingly, for TAUT the
equivalence between input and output advice is again valid at the logarithmic
level. Moreover, if TAUT actually has such a polynomially bounded system,
i.e., if TAUT ∈ NP/log, then the advice is computable in FPNP[log].

Reducing the amount of advice even further to constantly many bits, the
equivalence between input and output advice seems to fail for TAUT, as it im-
plies unlikely collapse consequences. Finally, we show that the actual existence
of polynomially bounded advice proof systems for TAUT produces different
collapses of the polynomial hierarchy.
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2 Preliminaries

We assume familiarity with standard complexity classes (cf. [2]). In the fol-
lowing, we just mention a few classes which occur in this paper. The Boolean
hierarchy BH is the closure of NP under union, intersection, and complementa-
tion. The levels of BH are denoted BHk, where BH2 is also known as Dp. The
Boolean hierarchy coincides with PNP[O(1)], consisting of all languages which can
be solved in polynomial time with constantly many queries to an NP oracle. If
we allow O(log n) adaptive queries we get the presumably larger class PNP[log].

Complexity classes with advice were first considered by Karp and Lipton
[9]. For each function h : N → Σ∗ and each language L we let L/h = {x |
〈x, h(|x|)〉 ∈ L}. If C is a complexity class and F is a class of functions, then
C/F = {L/h | L ∈ C, h ∈ F}.

Cook and Reckhow [8] defined the notion of a proof system for an arbitrary
language L quite generally as a partial polynomial-time computable function f
with range L. A string w with f(w) = x is called an f -proof for x ∈ L.

Proof systems are compared according to their strength by simulations as
introduced in [8] and [10]. If f and g are proof systems for L, we say that g
simulates f (denoted f ≤ g), if there exists a polynomial p such that for all
x ∈ L and f -proofs w of x there is a g-proof w′ of x with |w′| ≤ p (|w|). If
such a proof w′ can even be computed from w in polynomial time, we say that
g p-simulates f and denote this by f ≤p g. If the systems f and g mutually
(p-)simulate each other, they are called (p-)equivalent. A proof system for L
is called (p-)optimal if it (p-)simulates all proof systems for L. For a function
t : N → N, a proof system f is t-bounded if for all x ∈ L there exists an f -proof
of size at most t(|x|). If t is a polynomial, then f is called polynomially bounded.

3 Nondeterministic Instance Complexity

While Kolmogorov complexity studies the hardness of individual strings (cf. [11]),
the notion of instance complexity was introduced by Orponen, Ko, Schöning,
and Watanabe [12] to measure the hardness of individual instances of a given
language. The deterministic instance complexity of [12] was later generalized to
the nondeterministic setting by Arvind, Köbler, Mundhenk, and Torán [1].

As required for Kolmogorov complexity and instance complexity, we fix a
universal Turing machine U(M,x) which executes nondeterministic programs
M on inputs x. In the sequel, we refrain from always mentioning U explicitly.
Thus we simply write statements like “M is a t-time bounded Turing machine”,
with the precise meaning that U always spends at most t(n) steps to simulate
M on inputs of length n. Likewise, to “simulate a machine M on input x”
always means executing U(M,x).

A nondeterministic Turing machine M is consistent with a language L (or
L-consistent), if L(M) ⊆ L. We can now give the definition of nondeterministic
instance complexity from [1].

Definition 1 (Arvind et al. [1]). For a set L and a time bound t, the t-time-
bounded nondeterministic instance complexity of x with respect to L is defined
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as

nict(x : L) = min{ |M | : M is an L-consistent t-time-bounded

nondeterministic machine, and

M decides correctly on x } .

Similarly as in the deterministic case in [12], we collect all languages with
prescribed upper bounds on the running time and nondeterministic instance
complexity in a complexity class.

Definition 2. Let F1 and F2 be two classes of functions. We define

NIC[F1, F2] = {L : there exist s ∈ F1 and t ∈ F2 such that for all x ∈ Σ∗

nict(x : L) ≤ s(|x|)} .

A particularly interesting choice for the classes F1 and F2 is to allow poly-
nomial running time, but only logarithmic descriptions for the machines. This
leads to the class NIC[log, poly] which plays a central role in this paper. Sim-
ilarly as in the deterministic case (cf. [12]), the next proposition locates this
class between the advice classes NP/log and NP/poly.

Proposition 3. NP/log ⊆ NIC[log, poly] ⊆ NP/poly.

Proof. For the first inclusion, let L ∈ NP/log. Let M be a nondeterministic
Turing machine with logarithmic advice that decides L and let an be the advice
given to M for inputs of length n. We define a collection of programs Mn,an

for
L as follows. On input x the machine Mn,an

first checks, whether the length of
the input is n. For this we need to code the number n into Mn,an

. If |x| 6= n,
then Mn,an

rejects. Otherwise, Mn,an
simulates M on input x with advice an

which is also coded into Mn,an
. Essentially, the machines Mn,an

are constructed
by hardwiring n and an into M , and thus the size of Mn,an

is logarithmic in n.
Therefore L ∈ NIC[log, poly].

For the second inclusion, let L ∈ NIC[log, poly]. Then there exist a constant
c and a polynomial p such that for all x we have nicp(x : L) ≤ c log |x| + c. We
construct a nondeterministic Turing machine M with polynomial advice that
accepts exactly L. The advice of M for length n consists of all nondeterministic
Turing machines M1, . . . ,Mm of size at most c log n + c which are consistent
with L. Note that for each input length n, there are only polynomially many
machines of the appropriate size ≤ c log n+ c. Hence polynomial advice suffices
to encode the whole list M1, . . . ,Mm. On input x, the machine M simulates
each Mi on x for at most p(|x|) steps. If any of the Mi accepts, then M accepts
as well, otherwise it rejects.

We claim, that L(M) = L. For, if x ∈ L, then there is a nondeterministic L-
consistent Turing machine Mi such that Mi(x) accepts and |Mi| ≤ c log |x|+ c.
Thus, also M(x) accepts. If, on the other hand, M accepts x, then so does some
Mi which is consistent with L. Therefore, x ∈ L because L(Mi) ⊆ L. ut

In fact, the inclusions in Proposition 3 are proper as we will show in The-
orem 5 below. For the proof we need the notion of nondeterministic decision
complexity of a string.
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Definition 4 (Buhrman, Fortnow, Laplante [5]). For a time bound t, the
nondeterministic decision complexity of x is defined as

CND t(x) = min{|M | : M is a t-time-bounded nondeterministic

Turing machine with L(M) = {x} } .

As already noted in [1], the CND measure provides an upper bound to the
nic measure, i.e., for any language L and time bound t there is a constant c > 0
such that nict(x : L) ≤ CNDt(x) + c for all x ∈ Σ∗. By a simple counting
argument, it follows that for any length n there exist strings x of length n with
CND(x) ≥ n, where CND(x) denotes the time-unbounded nondeterministic
decision complexity of x.

Inspired by a similar result in [12], we now prove the following separations:

Theorem 5. 1. For every constant c > 0, NP/nc 6⊇ NIC[log, poly].
2. NIC[log, poly] 6⊇ P/lin.

Proof. For the first item, let 0 < c < d be natural numbers. Diagonalizing
against all NP machines and all advice strings, we inductively define a set A
with A ∈ NIC[log, poly], but A 6∈ NP/nc. Let (Ni)i∈N be an enumeration of
all NP machines, in which every machine occurs infinitely often. In step n we
diagonalize against the machine Nn and every advice string of length ≤ nc which
Nn might use for length n. Let x1, . . . , x2n be the lexicographic enumeration of
all strings in Σn and let Sn = {x1, . . . , xnd} ⊆ Σn. For each string w of length
at most nc, let Aw = {x ∈ Sn : Nn(x) accepts under advice w}. Since there

are only 2nc

such sets, but 2nd

subsets of Sn, there must be one which is not
equal to any Aw. For every n, let An be one such set, and let A =

⋃
n An. By

construction, A 6∈ NP/nc.
We still have to show A ∈ NIC[log, poly]. For each string s, let s̃ be the

substring of s which has all leading zeros deleted. For each n and each a ∈ An,
let Mn,ea be the following machine: on input x, the machine Mn,ea checks whether
|x| = n and x̃ = ã. If this test is positive, then Mn,ea accepts, otherwise it rejects.
The machine Mn,ea is of size O(log n), as both n and ã are of length O(log n)
(Observe that the first nd elements in the lexicographic order of Σn have no 1’s
appearing before the last log nd bits). Thus A ∈ NIC[log, poly].

For the second item, let A be a set that contains exactly one element x per
length with CND(x) ≥ |x|. Obviously, A ∈ P/lin because A contains exactly one
string per length and this element can be given as advice. On the other hand,
A 6∈ NIC[log, poly]. Assume on the contrary, that A ∈ NIC[log, poly]. Then there
are a constant c and a polynomial p, such that for each x ∈ A, there is an A-
consistent p-time-bounded machine Mx of size ≤ c log |x|+c which accepts x. We
modify Mx to a machine M ′

x such that L(M ′
x) = {x} and |M ′

x| ≤ c′ log |x|+c′ for
some constant c′. This machine M ′

x works as follows: on input y, the machine
M ′

x first checks, whether |y| = |x|. If not, it rejects. Otherwise, it simulates
Mx(y). Thus for all x ∈ A, we get CND(x) ≤ c′ log |x| + c′, contradicting the
choice of A. ut

From Theorem 5 we infer that both inclusions in Proposition 3 are strict:

Corollary 6. NP/log ( NIC[log, poly] ( NP/poly.
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4 Proof Systems with Advice

Our general model of computation for proof systems f with advice is a polynomial-
time Turing transducer with several tapes: an input tape containing the proof
π, possibly several work tapes for the computation of the machine, an output
tape where we output the proven element f(π), and an advice tape containing
the advice. We start with a quite flexible definition of proof systems with advice
for arbitrary languages, generalizing the notion of propositional proof systems
with advice from [7] and [3].

Definition 7. Let k : N → N be a function on natural numbers. We say that
a proof system f for L uses k bits of advice, abbreviated f is a ps/k for L,
if there exists an advice function h : N → Σ∗ and an advice selector function
` : Σ∗ → 1∗ such that

1. ` is computable in polynomial time,
2. f(π) is computable in polynomial time with advice h(|`(π)|), i.e., for some

fixed polynomial-time computable function g, f(π) = g(π, h(|`(π)|)), and
3. for all π, the length of the advice h(|`(π)|) is bounded by k(|π|).

For a class F of functions, we denote by ps/F the class of all ps/k with k ∈ F .

We say that f uses k bits of input advice if ` has the special form `(π) = 1|π|.
On the other hand, in case `(π) = 1|f(π)|, then f is said to use k bits of output
advice. Note that the latter notion is only well-defined if we assume that the
length of the output f(π) (in case f(π) is defined) does not depend on the
advice.

We note that proof systems with advice are a quite powerful concept, as for
every language L ⊆ Σ∗ there exists a proof system for L with only one bit of
advice. In contrast, the class of all languages for which proof systems without
advice exist coincides with the class of all recursively enumerable languages.

The above definition of a proof system with advice allows a very liberal use of
advice, in the sense that for each input, the advice string used is determined by
the advice selector function `. For L = TAUT this general definition coincides
with our definition of propositional proof systems with advice from [3]. In [7]
and [3], concrete proof systems arising from extensions of EF were investigated,
which indeed require this general framework with respect to the advice.

In the next proposition we observe that proof systems with input advice are
already as powerful as our general model of proof systems with advice.

Proposition 8. Let k : N → N be a monotone function, L ⊆ Σ∗, and f be a
ps/k for L. Then there exists a proof system f ′ for L with k bits of input advice
such that f and f ′ are p-equivalent.

Proof. We choose a polynomial-time computable bijective pairing function 〈·, ·〉
on N such that 〈n1, n2〉 ≥ n1 + n2 for all numbers n1 and n2. Let f be a ps/k
for L with advice function h and advice selector `. We define a proof system f ′

for L with input advice as follows: on input π′ of length n the function f ′ first
computes the two unique numbers n1 and n2 such that n = 〈n1, n2〉. It then
interprets the first n1 bits π′

1 . . . π′
n1

of π′ as an f -proof π and checks whether
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`(π) = 1n2 . If this is the case, f ′(π′) = f(π), otherwise f ′(π′) is undefined.
Obviously, f ′(π′) is computable with advice h(|`(π)|) = h(n2) whose length is
bounded by k(n1) ≤ k(n). This shows that f ′ is a ps/k for L with input advice.

The p-simulation of f by f ′ is computed by the function π 7→ π′ = π1m

where m = 〈|π|, |`(π)|〉 − |π|. The converse simulation f ′ ≤p f is given by

π′ 7→

{
π = π′

1 . . . π′
n1

if |π′| = 〈n1, n2〉 and `(π) = 1n2

π0 otherwise

where π0 is a fixed input on which f is undefined. ut

Cook and Kraj́ıček [7] showed, that TAUT has a ps/1 with input advice
which p-simulates every ps/log for TAUT, where the p-simulation is computed
by a polynomial-time algorithm using O(log n) bits of advice. The proof of this
result easily generalizes to arbitrary languages L, thus yielding:

Theorem 9. For every language L there exists a proof system P with 1 bit of
input advice such that P simulates all ps/log for L. Moreover, P p-simulates
all advice-free proof systems for L.

Proof. Let 〈·, . . . , ·〉 be a polynomial-time computable tupling function on Σ∗

which is length injective, i.e., |〈x1, . . . , xn〉| = |〈y1, . . . , yn〉| implies |xi| = |yi|
for i = 1, . . . , n. We define the proof system P as follows. P -proofs are of the
form w = 〈π, 1T , 1a, 1m〉 with π, T, a ∈ Σ∗ and m ∈ N (here 1T and 1a denote
unary encodings of T and a, respectively).

The proof system P uses one bit h(|w|) of advice, where h(|w|) = 1 if and
only if the transducer T with advice a only outputs elements from L for inputs
of length |π|. Note that by the length injectivity of 〈·, . . . , ·〉, the advice bit can
in fact refer to T , a, and |π|. Now, if h(|w|) = 1 and T on input π with advice a
outputs y after at most m steps, then P (w) = y. Otherwise, P (w) is undefined.

In case Q is a proof system computed by some polynomial-time transducer T
without (i.e. zero bits of) advice, then Q is p-simulated by P via the polynomial-
time computable function π 7→ 〈π, 1T , 1ε, 1p(|π|)〉, where p is a polynomial bound
for the running time of T (and ε is the empty string). On the other hand, if T
uses advice h(|`(π)|) of at most logarithmic length, then Q is simulated by P
via the function π 7→ 〈π, 1T , 1h(|`(π)|), 1p(|π|)〉. ut

In contrast, it seems unlikely that a similar result holds for output advice
(cf. [3] where we investigated this problem for propositional proof systems).

5 Polynomially Bounded Proof Systems with Advice

In this section we investigate the question whether there exist polynomially
bounded proof systems with advice for arbitrary languages L. We obtain dif-
ferent characterizations of this question, depending on

– whether we use input or output advice,
– which amount of advice the proof system may use, and
– the complexity of the proven language L.
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We first consider proof systems with output advice. Similarly as in the
classical result by Cook and Reckhow [8], we obtain the following equivalence:

Theorem 10. Let L ⊆ Σ∗ be a language and let k : N → N be a function. Then
L has a polynomially bounded ps/k with output advice if and only if L ∈ NP/k.

Proof. For the forward implication, let P be a polynomially bounded ps/k with
output advice for L and let p be a bounding polynomial for P . We construct
an NP/k machine M which uses the same advice as P and decides L. On input
x, the machine M guesses a P proof w of size ≤ p(|x|) and checks whether
P (w) = x. If so, M accepts, otherwise M rejects.

For the backward implication, let N be an NP/k machine deciding L with
advice function h. We define a proof system P for L with k bits of output
advice. Again, both P and N use the same advice. On input π = 〈w, x〉 the
proof system P checks, whether w is an accepting computation of N on input
x with advice h(|x|). If so, then P (π) = x. Otherwise, P (π) is undefined. ut

Given this result, we can now concentrate on input advice. In view of The-
orem 9, input advice appears to be a stronger concept than output advice.
Surprisingly, the advantage of input advice seems to vanish when we allow a
polynomial amount of advice.

Theorem 11. Let L ⊆ Σ∗ be any language. Then L has a polynomially bounded
ps/poly with output advice if and only if L has a polynomially bounded ps/poly

with input advice.

Proof. The forward direction is a simple application of Proposition 8.
For the backward implication, let fin be a ps/poly with input advice for

L bounded by some polynomial p. Let an be the polynomially length-bounded
advice used by fin on inputs of length n.

We define a polynomially bounded ps/poly fout for L with output advice as
follows. Inputs x for fout are interpreted as pairs x = 〈π, y〉. If |π| ≤ p(|y|) and
fin(π) = y, then fout(x) = y. Otherwise, fout is undefined. The computation of
fout uses all advice strings for fin up to length p(|y|) as advice. This still results
in polynomial-size output advice for fout.

The system fout is correct, because fin is correct. It is complete, because
every y ∈ L has a proof πy with |πy| ≤ p(|y|), implying that fout(〈πy, y〉) = y.
Hence, fout is a polynomially bounded ps/poly with output advice. ut

By Theorems 10 and 11, the existence of polynomially bounded ps/poly

with input advice for L is equivalent to L ∈ NP/poly. Next, we consider proof
systems with only a logarithmic amount of advice. In this case, we get a sim-
ilar equivalence as before, where the class NP/poly is replaced by the instance
complexity class NIC[log, poly].

Theorem 12. For every language L the following conditions are equivalent:

1. L has a polynomially bounded ps/1 with input advice.
2. L has a polynomially bounded ps/log with input advice.
3. L ∈ NIC[log, poly].
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Proof. The implication 1 ⇒ 2 follows by definition.
To prove the implication 2 ⇒ 3, let f be a polynomially bounded ps/log

with input advice and bounding polynomial p. For each x we have to construct
a program M which is consistent with L and correctly decides x. If x 6∈ L, then
M can just always reject. If x ∈ L, then there exists an f -proof π of x of length
≤ p(|x|). Let a be the advice for f on inputs of length |π|. To construct the
machine M for x, we hardwire the values of |x|, |π|, and a into M . On input y
the machine M checks, whether |y| = |x|. If not, it rejects. Otherwise M guesses
an f -proof π′ of length |π| for y and verifies that f(π′) = y using the advice a.
If this test is positive, then M accepts, otherwise M rejects. Clearly, M accepts
exactly all elements from L of length |x| which have f -proofs of length |π|. In
particular, M accepts x. Additionally, M is a polynomial-time nondeterministic
program of length at most c+log |x|+log |π|+|a| for some constant c. Therefore
L ∈ NIC[log, poly].

For the remaining implication 3 ⇒ 1, let us assume that there are a polyno-
mial p and a constant c, such that for every x, nicp(x : L) ≤ c · log(|x|) + c. We
define a polynomially bounded ps/1 f for L with input advice as follows. Proofs
in f take the form π = 〈x,w, 1M 〉, where 〈·, . . . , ·〉 is a polynomial-time com-
putable and length-injective tupling function. The advice for f certifies whether
or not M is a polynomial-time Turing machine that is consistent with L. If this
is the case and w is an accepting computation of M on input x, then f(π) = x.
Otherwise, f(π) is undefined.

Now, since L ∈ NIC[log, poly], for every x ∈ L there is an L-consistent Turing
machine Mx with running time p which accepts x and |Mx| ≤ c · log |x| + c.
Thus every element x ∈ L has a polynomial-size f -proof 〈x,w, 1Mx〉 where w is
an accepting path of Mx(x). ut

In fact, we can prove a more general version of the preceding theorem, where
we replace polynomial upper bounds for the proof length by arbitrary upper
bounds. In this way we obtain:

Theorem 13. For any language L and any function t : N → N, t ∈ nΩ(1), the
following conditions are equivalent:

1. L has an O(t)-bounded ps/1 with input advice.
2. L has an O(t)-bounded ps/O(log t) with input advice.
3. L ∈ NIC[O(log t), O(t)].

For a language L we now consider the following three assertions:

A1: L has a polynomially bounded ps/log with output advice.
A2: L has a polynomially bounded ps/log with input advice.
A3: L has a polynomially bounded ps/poly with output advice.

By our results so far, assertions A1, A2, and A3 are equivalent to the state-
ment that L is contained in the classes NP/log, NIC[log, poly], and NP/poly,
respectively. As these classes form a chain of inclusions by Proposition 3, we
get the implications A1 ⇒ A2 ⇒ A3 for every L. Moreover, by Corollary 6, the
inclusions NP/log ( NIC[log, poly] ( NP/poly are proper. Hence we obtain:

Corollary 14. There exist languages L for which A2 is fulfilled, but A1 fails.
Likewise, there exist languages L for which A3 is fulfilled, but A2 fails.
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6 Polynomially Bounded Proof Systems for TAUT

From a practical point of view, it is most interesting to investigate what precisely
happens for L = TAUT (or more generally for problems in coNP). Even though
by Corollary 6, NP/log and NIC[log, poly] are distinct, they do not differ inside
coNP, as the next theorem shows.

Theorem 15. Let L ∈ coNP. Then L ∈ NP/log if and only if L ∈ NIC[log, poly].
Moreover, if L ∈ NP/log, then the advice can be computed in FPNP[log].

Proof. By Proposition 3 we only have to prove the backward implication. For
this let L be a language from coNP. Assuming L ∈ NIC[log, poly], there exists
a polynomial p and a constant c such that nicp(x : L) ≤ c log |x| + c for all
x ∈ Σ∗. Let Πn be the set of all p-time bounded nondeterministic machines
M with |M | ≤ c log n + c. Let further an be the number of machines from Πn

that are not consistent with L ∩ Σ≤n. As the cardinality of Πn is bounded by
a polynomial in n, the length of the number an is logarithmic in n.

We now construct a nondeterministic Turing machine N that uses c log n +
c bits of advice for inputs of length n and decides L. The advice of N for
input length n will be the number an. On input x of length n, the machine N
nondeterministically chooses an pairwise distinct machines M1, . . . ,Man

∈ Πn

and strings x1, . . . , xan
∈ Σ≤n. Next, N verifies that x1, . . . , xan

do not belong
to L. As L ∈ coNP, this can be done in nondeterministic polynomial time.
Then N checks whether for each i = 1, . . . , an the machine Mi accepts the
input xi. If any of the tests so far failed, N rejects. Otherwise, if all these tests
were positive, we know that every machine in Πn \{M1, . . . ,Man

} is consistent
with L ∩ Σ≤n. After this verification has successfully taken place, N simulates
all remaining machines M ∈ Πn \ {M1, . . . ,Man

} on input x. If one of these
simulations accepts, then also N accepts x, otherwise N rejects.

Since there are only consistent machines left after an machines have been
deleted, N never accepts any x 6∈ L. On the other hand, the assumption L ∈
NIC[log, poly] guarantees that for every x ∈ L there is a machine in Πn which
is consistent with L and accepts x. Therefore N correctly decides L, and thus
L ∈ NP/log, as claimed.

For the additional claim in the theorem, it suffices to observe that using
binary search we can compute the advice an with at most logarithmically many
queries of the form “Do there exist at least m logarithmic-size machines which
are inconsistent with L ∩ Σ≤n?” As this is an NP question, the advice can be
computed in FPNP[log]. ut

By Theorem 11 we already know that TAUT has a polynomially bounded
ps/poly with input advice if and only if it has a polynomially bounded ps/poly

with output advice. As a corollary to Theorem 15 we obtain the same equiva-
lence for logarithmic advice.

Corollary 16. TAUT has a polynomially bounded ps/log with input advice if
and only if TAUT has a polynomially bounded ps/log with output advice.

Descending to constant advice, this equivalence seems to fail, as we show
below. For this we use a result of Buhrman, Chang, and Fortnow [4]:
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Theorem 17 (Buhrman, Chang, Fortnow [4]). For every constant k ≥ 1,
coNP ⊆ NP/k if and only if PH ⊆ BH2k .

Using this result we obtain:

Proposition 18. Assume that TAUT having a polynomially bounded ps/1 with
input advice implies that TAUT has a polynomially bounded ps/1 with output
advice. Then PH ⊆ BH already implies PH ⊆ Dp.

Proof. If the polynomial hierarchy collapses to the Boolean hierarchy, then PH

in fact collapses to some level BHk of BH. By Theorem 17, this means that
coNP ⊆ NP/k′ for some constant k′. Hence by Theorem 10, TAUT has a poly-
nomially bounded ps/k′ P with output advice. By Theorem 9, this proof system
P is simulated by a proof system P ′ which only uses 1 bit of input advice. As
P is polynomially bounded, this is also true for P ′. By our assumption, TAUT
also has polynomially bounded ps/1 with output advice. By Theorem 10 this
implies coNP ⊆ NP/1 and therefore PH ⊆ Dp by Theorem 17. ut

So far we have provided different characterizations of the question whether
polynomially bounded proof systems with advice exist. At this point it is natural
to ask, how likely these assumptions actually are, i.e., what consequences follow
from the assumption that such proof systems exist. For TAUT we obtain a
series of collapse consequences of presumably different strength as shown in the
following table.

Assumption Consequence
if TAUT has a polynomially bounded . . . then PH collapses to . . .

ps/poly (input or output advice) SNP
2 ⊆ Σ

p
3

ps/log (input or output advice) PNP[log]

ps/O(1) (input advice) PNP[log]

ps/O(1) (output advice) PNP[O(1)] = BH

ps/0 (no advice) NP

The first line in the above table follows from Theorems 10 and 11 and a
result of Cai, Chakaravarthy, Hemaspaandra, and Ogihara [6], who have shown
that coNP ⊆ NP/poly implies PH ⊆ SNP

2 .
For the second line, the distinction between input and output advice is again

irrelevant (Corollary 16). Here we use a result of Arvind, Köbler, Mundhenk,
and Torán [1], who showed that TAUT ∈ NIC[log, poly] implies PH ⊆ PNP[log].

Finally, the constant-advice case (lines 3 and 4), follows from Theorem 17
in conjunction with Theorems 10 and 12. In comparison, the classical Cook-
Reckhow Theorem states that TAUT has an advice-free polynomially bounded
proof system if and only if PH ⊆ NP (line 5).
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