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Abstract

We prove a model-independent non-linear time lower bound for a slight generalization of the
quantified Boolean formula problem (QBF). In particular, we give a reduction from arbitrary
languages in alternating time t(n) to QBFs describable in O(t(n)) bits by a reasonable (polyno-
mially) succinct encoding. The reduction works for many reasonable machine models, including
multitape Turing machines, random access Turing machines, tree computers, and logarithmic-
cost RAMs. By a simple diagonalization, it follows that the succinct QBF problem requires
superlinear time on those models. To our knowledge this is the first known instance of a non-
linear time lower bound (with no space restriction) for solving a natural linear space problem
on a variety of computational models.
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1 Introduction

While our knowledge of time efficient algorithms has grown to a good level of sophistication, when
it comes to proving time lower bounds we still have a long road ahead of us. It seems that we are
far from settling frontier separation problems like P 6= PSPACE, although some modest progress
has been made on LOGSPACE 6= NP in the form of time-space tradeoffs for satisfiability (see
e.g. [vM07, Wil07] for recent overviews of this line of work). However, these time-space tradeoff
lower bounds critically rely on tiny space bounds. Even the task of proving non-linear time lower
bounds for natural problems within PSPACE has become a surprisingly formidable challenge. Since
the seminal result of Paul-Pippenger-Szemeredi-Trotter in FOCS’83 that DTIME[n] 6= NTIME[n] for
multitape Turing machines [PPST83], not much progress has been made on proving non-linear time
lower bounds for NP problems. Progress has also stalled on lower bounds for PSPACE problems as
well. For more details, see the survey by Regan [Reg95] (which is still up-to-date today).

In this paper we establish a non-linear time lower bound on a variant of the canonical PSPACE-
complete problem: that of determining if an arbitrary quantified Boolean formula is true (abbrevi-
ated as QBF). Our result holds for a variety of computational models, both sequential-access and
random-access. The proof interleaves several diagonalization-based components from prior work,
and it yields new insight into how we can prove lower bounds on natural problems by bootstrap-
ping from lower bounds for artificial problems (for example, those arising from a time hierarchy
theorem). Such results are interesting since lower bounds for artificially constructed problems are
plentiful, while bounds for natural well-studied problems are rare.

Here we give a reduction-based approach to lower bounds for QBF, by showing that if we choose
a natural, polynomially succinct encoding for formulas, then we can reduce arbitrary languages
in alternating time t(n) to quantified Boolean formulas that use O(t(n)) bits to describe. This
reduction, coupled with the fact that deterministic algorithms can be simulated asymptotically
faster with alternating algorithms, yields a non-linear lower bound for solving these succinct QBFs.
It is important to note that such a reduction is impossible to achieve with QBFs encoded in
the traditional way (in prefix-normal form with a CNF predicate), since in that case the QBF
instances of length n can be actually solved in alternating O(n/ log n) time by machines having
random access to the input.1 Thus the existence of such a reduction would imply ATIME[t(n)] ⊆
ATIME[t(n)/ log t(n)], an absurdity.

Why is this result new? It has been known for many years that deterministic algorithms can
be simulated with faster alternating algorithms [PPR80, DT85, Mak94, Mak97]; in fact, multi-
tape Turing machines can be simulated faster by alternating multitape Turing machines that take
only a constant number of alternations [PPST83]. Clearly these results show that there is some
language in alternating time O(n) that cannot be solved in deterministic time O(n). However,
one cannot conclude a non-linear time lower bound for QBF (even our succinct QBF problem)

1To see this, first note that any formula with N variable occurrences requires Ω(N log N) bits to write down, so a
QBF of length n can have only O(n/ log n) variables under the normal encoding. Secondly, note that a single clause
can be (universally) chosen in O(log n) time, and a single literal of a clause can be (existentially) chosen in O(log n)
time. An alternating algorithm for QBF could then (in O(n/ log n) time) guess bits for all the relevant variables in
its quantifier prefix, universally guess a clause, existentially guess a literal (to be true), existentially guess where the
corresponding variable is located in the quantifier prefix, then check all its guesses.
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because of the overheads in known reductions: the best known reductions from arbitrary alternat-
ing time t(n) languages to quantified Boolean formulas result in QBFs of at least Ω(t(n) log2 t(n))
size [Sch78, Coo88, Rob91]. (Also, one cannot conclude lower bounds for QBF from results like
DTIME[t(n)] ⊆ SPACE[t/ log t] [HPV77], as the best known reduction from SPACE[n] to QBF via
Savitch’s theorem [Sav70] outputs a formula of Θ(n2 log n) bits [SM73].) In this paper, we elimi-
nate the log2 t blowup in these reductions by choosing a good encoding and exploiting the power
of alternation. The result is that we provide a time lower bound for a natural variant of QBF that
allows for groups of log n variables to “address” one of the n variables. (For more details, see the
next section.)

2 Preliminaries

We use the abbreviations: TM for “Turing machine”, ATM for “alternating Turing machine”, RAM
for “random access machine”, and ARAM for “alternating random access machine.” In this paper,
all our TMs are allowed to have access to multiple input tapes. We refer to a one-tape TM as
a Turing machine that is allowed random access and two-way access to multiple read-only input
tapes, and one read-write tape that is two-way sequentially accessed. The random accesses can be
up to polylogarithmic cost. A very similar model has been studied before in context of time lower
bounds [vMR05].

Related Work. In the past, there have been several demonstrations of time lower bounds for
natural problems with no space restriction. Adachi et al. [AIK84] showed that a problem called
the cat and k-mouse game requires at least nΩ(k) time (infinitely often) to solve on a multitape
TM, using a reduction from DTIME[nk] to the game. Grandjean [Gra88, Gra90] applied the result
that DTIME[n] 6= NTIME[n] for multitape TMs [PPST83] to prove that a satisfiability problem
over the natural numbers and the NP-complete problem Reduction of Incompletely Specified Au-
tomata ([GJ79], Problem AL7) both require non-linear time on a multitape TM. While the above
work also uses reductions to obtain their results, our work differs significantly in both techniques
and implications: we utilize alternations in a novel way to keep our reduction’s runtime low, and
as a result, our reduction works for many more computational models than multitape TMs.

Our Encoding of QBFs. Let us describe one encoding of Boolean formulas that suffices for
our results. We restrict ourselves to QBFs in prenex normal form, where the underlying Boolean
formula F is written in conjunctive normal form, for example

(∃ x1)(∀ x2) · · · (∃ xn)F.

Here our atoms shall be the literals (variables xi and their negations ¬xi) as well as the address
functions X(xj1 , . . . , xjdlog ne

), where j1, . . . , jdlog ne ∈ [n]. For binary values vjk
, the meaning of

X(vj1 , . . . , vjdlog ne
) is the variable xi, where the bit string vj1 · · · vjdlog ne

represents the binary en-
coding of i. The X-function allows us to refer to a range of variables without actually writing down
all of their indices. For example, the following is a QBF in our encoding:

(∃x1)(∀x2)(∃x3)(∃x4)[X(x2, x1) ∨ X(x4, x3)].
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The formula is true, since by setting x1 = 1, x3 = 1, and x4 = 1, X(0, 1) = x1 and X(1, 1) = x4

are both true.

It is important to observe that formulas encoded with the X-function are only “polynomially
succinct” representations, and not exponentially succinct: any instance of the X-function can
be replaced by a collection of O(n) clauses that encode a circuit for the storage access function
SAn(a0, . . . , ak−1, x0, . . . , x2k−1) = xa. We remark that our use of X could be exchanged for other
encoding mechanisms as well. For example, Gurevich and Shelah [GS89] have defined generalized
Boolean formulas, which also use a form of variable addressing. Quantified versions of generalized
Boolean formulas would also be amenable to our reduction.

For a QBF in prenex normal form, we use O(n) bits to describe the variable prefix, where the
ith bit describes the quantification of variable xi. For a formula F with ` occurrences of literals
(as atoms) and at most O(`/ log n) occurrences of the X-function, we use O(n + ` log n) bits to
describe F , taking O(1) bits to write ORs and ANDs, O(log2 n) bits to write down an instance of
the X-function (as it takes O(log n) literals as input), and O(log n) bits to write variables and their
negations.

The Models Studied. We assume the reader is familiar with the multitape Turing machine
model. This work also discusses a few more models that may require a brief recollection:

• Logarithmic-Cost RAM: Here we have a random access machine with the usual addition,
load/store, and simple branching instructions. The memory storage is a collection of registers,
each holding an integer. Any operations on a register holding integer i take Θ(log i) steps, so
e.g. a random access to a location among s registers takes O(log s) steps.

• Random Access TM: Same functionality as the multitape TM, except that accesses to each
tape are performed by writing bits to a special sequential “index tape” of O(log t) length,
after which the tape head jumps to the location specified by the index tape content.

• Tree Computer: The auxiliary tapes of a multitape TM are replaced with binary trees. Each
node of the tree contains a single symbol (like a tape cell), and the finite control’s directions
specify whether to move to the parent, left child, or right child of the current node.

• Multi-dimensional TM: The auxiliary tapes are replaced by k-dimensional cubes, for a fixed
constant k. Finite control directions specify which of 2k directions to move to, from the
current cell of the cube.

We assume all the above models receive their input on an initial tape of n separate cells (so
that every non-trivial problem requires at least linear time to solve). We remark that, on any of the
alternating computational models that we study, our succinct QBFs can be solved in linear time.

2.1 Tools We Need

Three prior results are utilized in our reduction. The first says that we can speed up the simulation
of a one-tape TM by introducing alternations.
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Theorem 2.1 (Maass-Schorr [MS87], Van Melkebeek-Raz [vMR05]) Every deterministic
linear time one-tape TM M can be simulated by a Σ2 random access TM that runs in O(n2/3 log2 n)
time. In particular, the Σ2 computation works by first existentially guessing O(n2/3 log n) bits on an
auxiliary tape T , universally writing O(log n) bits to T , then executing a deterministic O(n2/3 log2 n)
time computation on a one-tape TM that takes the original input tapes of M and T as its own
(random-access, read-only) input tapes.

Proof. (Sketch) We combine a crossing sequence argument with a result that shows how to
speed up small space computations with an alternating machine. Let M fit the conditions of the
theorem statement and let x be an input. Let CS(x) be the set of crossing sequences for M(x)
on its read-write sequential tape. We associate each sequence with a cell of the tape. Notice that
each element of a crossing sequence for a particular cell is of O(log n) size (by storing the current
position of the input heads in each element).

For every i = 1, . . . , n1/3, define CS(x, i) to be the subset of sequences from CS(x) that range
over the tape cells numbered i + k · n1/3, for k = 0, 1, . . . , n2/3 − 1. Observe that the union of all
CS(x, i) is exactly CS(x), and that CS(x, i) ∩ CS(x, j) = ∅ for i 6= j. Since the total sum of the
lengths of all crossing sequences for M(x) is O(n), there is a j where the total length (in bits) of all
crossing sequences in CS(x, j) is at most O(n2/3 log n). If we existentially guess CS(x, j) upfront
(on a tape T ), then our computation of M(x) reduces to an O(n log n) time and O(n1/3 log n) space
one-tape TM computation which checks that the computation between the crossing sequences of
CS(x, j) is valid and accepting.

We have now a nondeterministic computation that guesses O(n2/3 log n) bits, then runs an
O(n log n) time and O(n1/3 log n) space one-tape TM computation. To obtain a Σ2 random access
TM of the desired form, we use a fast simulation of space-bounded computation that dates back
to Kannan [Kan84]. Start by existentially guessing a list of O(n1/3) configurations of the one-tape
TM on input x. Such a guess can be written down on the tape T using O(n2/3 log n) bits. We
then universally choose a pair of adjacent configurations on the list, by writing O(log n) bits on T .
Finally, we move the tape head to the guessed pair, and verify that from the first configuration in
the pair, the second configuration can be reached within O(n2/3 log n) steps, on the one-tape TM
with input x. On a one-tape TM, this simulation will have O(log n) running time overhead for each
simulated step. 2

The second result we use expresses multitape TM computations as short instances of the satis-
fiability problem.

Theorem 2.2 (Cook [Coo88]) Let M be a t(n) time bounded multitape Turing machine. For
each input x there is a CNF F having O(t(n) log t(n)) literals such that F is satisfiable if and only
if M(x) accepts. Moreover, the CNF can be constructed in O(t(n) log2 t(n)) time on a multitape
TM.

Cook actually proves the result for nondeterministic Turing machines, pointing out that Pip-
penger and Fischer’s O(t(n) log t(n))-size circuits for time t(n) machines [PF79] yield the result
easily. The idea behind the construction of the circuits is to take an arbitrary time t(n) Turing
machine and make it oblivious to its inputs: that is, the tape head movements of the Turing ma-
chine on an input x depends only on |x|, the input length. The oblivious simulation yields a Turing
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machine that runs in O(t(n) log t(n)) time.

The third result we require is that, in the alternating machine setting, many different storage
structures can be reduced to a one-tape TM with no asymptotic loss in time efficiency, by introduc-
ing more alternations. (This is similar to the space bounded case, where most storage structures
that use O(s) space can be efficiently simulated using only a sequential tape of O(s) cells—this is
the so-called Invariance Thesis [vEB90].) For example, Paul, Prauss and Reischuk show that one
only needs to introduce a constant number of new alternations in order to simulate a multitape
ATM with a one-tape ATM.

Theorem 2.3 (Paul-Prauss-Reischuk [PPR80], Theorem 1) Multitape ATMs running in time
t(n) can be simulated by one-tape ATMs in time O(t(n)). In particular, if the multitape ATM uses
k alternations, then the one-tape ATM uses ck alternations, for some universal constant c ≥ 1.

The above can be used to simulate several stronger ATM models. Mak claimed the following
but only gave a scant proof outline.

Theorem 2.4 (Mak [Mak94]) Every alternating tree computer, alternating logarithmic-cost RAM,
random access ATM, and k-dimensional ATM that runs in t(n) time can be simulated by a one-tape
ATM in O(t(n)) time.

We sketch how to obtain Theorem 2.4. As far as we know, the following argument is new. It
draws from ideas in Paul, Prauss, and Reischuk’s proof of Theorem 2.3, as well as the author’s
prior work on parallelizing algorithms [Wil05].

Proof. (Sketch) Let M be a machine of one of the above kinds, and let x be an input. By
Theorem 2.3, it suffices to give a simulation of M with a multitape ATM M ′. The simulation
has basically two phases. First, M ′ uses alternations to build a chronological list L of the instruc-
tions/transitions executed on a particular run of M(x). For every block of log t transitions in list
L, the head positions (requiring Θ(log t) bits) after those transitions are also stored. Such a list L
can be easily stored with O(t) bits. Secondly, M ′ verifies that the list L corresponds to a valid run
of M(x) on a fixed sequence of existential and universal choices.

The list L is generated as follows. Let s be the number of transitions in L so far. M ′ existentially
guesses the bits b1, . . . , bk that are read in the (s+1)st step, and writes them to the end of L. If M
is in a universal/existential mode, then M ′ switches to a universal/existential mode and writes one
of the possible transitions according to the bits read and the current state of M . For every block of
log t transitions written, the head positions h1, . . . , hk are existentially guessed and written to L.

Now that a list of transitions (and t/ log t different head positions) have been written to tape,
M ′ verifies the list’s correctness. It universally guesses an integer s ∈ [t] and intends to verify that
the sth transition in L is correct: namely, that the state and read bits b1, . . . , bk asserted for the
transition are valid. (If s = t, then M ′ accepts iff the final state of that step is accepting and the
transition is correct.)

To verify that the sth transition is correct, M ′ universally branches into k threads where each
thread verifies that bi is the correct bit read by the ith head of M at step s. Each such thread can
be implemented quickly as follows. For a particular i = 1, . . . , k, M ′ existentially guesses hi, the
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position of the ith head of M at step s, as well as the most recent step ti < s in which hi was the
ith head’s position, and universally performs two computations:

• The first examines the block of O(log t) transitions of L in which step ti occurs, determinis-
tically verifying that hi is last accessed during this block at step ti, and the last bit written
at position hi was bi. On a multi-tape TM, this takes O(poly(log t)) time for all of the above
models.

• The second computation checks that all steps prior to ti do not have hi as the ith head’s
position. This is done by universally guessing an integer u in [ti + 1, s], and using the head
position information stored in L, verifying that hi is not the head position in the uth time
step.

Since each of these threads simulate at most O(log t) steps of the original machine M , each of them
can be performed easily in O(poly(log t)) time. 2

Note the proof introduces a constant factor of new alternations into the computation. In
principle, the technique above can be applied to any model of computation that reads and writes
at most a constant number of bits in each step, and has finite size programs.

Corollary 2.1 (Of Theorems 2.3 and 2.4) Random access ATMs, multitape ATMs, tree com-
puters, log-cost ARAMs, and k-dimensional ATMs can be simulated by a one-tape ATM in O(t(n))
time.

The corollary implies that, in order to establish the initial claim of the abstract, it suffices to
give a linear reduction from arbitrary languages accepted by one-tape ATMs to quantified Boolean
formulas.

3 Reduction to Succinct QBF

We are ready to give a linear time reduction from alternating time t(n) to succinct QBFs of size
t(n). After the reduction, the lower bound follows readily.

Theorem 3.1 For every language L recognized in alternating time t(n) by any tree computer, k-
dimensional TM, random access TM, multitape TM, or logarithmic-cost RAM, there is a linear time
reduction from L to quantified Boolean formulas (QBF) describable in O(t(n)) bits. The reduction
can be performed on any of the above models.

Let us first outline some of the subtleties involved. The typical reduction from an alternating
time machine to a QBF would need at least Ω(t(n) log2 t(n)) size. One log t(n) factor comes from an
overhead in reorganizing the machine’s reads and writes (for multitape TMs, the machines are made
oblivious in the sense of Theorem 2.2; for RAMs, cf. Van Melkebeek’s survey [vM07, p.14–15] for
details). Another log t(n) factor comes from the simple fact that, without any form of compression,
any variable in a formula of O(t) variables requires Θ(log t(n)) bits to write down, so any reduction
that has at least one variable for each step of a time t computation would have to require Ω(t log t)
bits with a typical encoding. Hence there are at least two obstacles to overcome.
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The first obstacle is circumvented by exploiting properties of alternating machines: in particular,
with Corollary 2.1, we can reduce all the alternating models mentioned in the theorem statement
to one-tape alternating machines with essentially the same running time. This reduction is very
powerful, as it allows us to exploit the restrictiveness of a one-tape machine. That is, we can
draw on arguments along the lines of the time-space tradeoff literature, speed up a deterministic
portion of the one-tape computation with Theorem 2.1, and then make that fast deterministic
portion oblivious. In that way, the log t(n) slowdown incurred by obliviousness is only applied to
an asymptotically small portion of the computation. The second obstacle, that of representing
each of t variables with Θ(log t) bits, is inherently more difficult to overcome. We can obviate this
hindrance using the X-function, which allows us to refer to a range of variables (over an appropriate
range of quantified variables) without having to explicitly write down all variables in the range.

Proof of Theorem 3.1. By Corollary 2.1, it suffices for us to give the reduction for an alternating
one-tape machine M that runs in t time. For notational convenience, we assign ` = ct2/3 log t for a
sufficiently large constant c ≥ 1 in the following. Let x be an input. We may assume without loss
of generality that M first guesses one bit b1 existentially, then one bit b2 universally, then one bit
b3 existentially, and so on, for O(t) steps, then M runs a deterministic O(t) time one-tape TM M ′

that reads input 〈x, b1b2 · · · bct〉. By Theorem 2.1, M ′ can be replaced by a Σ2 machine M ′′ that
existentially guesses a string y of ` bits, universally guesses a c log t bit string z, then executes a
deterministic ` log t time one-tape TM M ′′′ that takes 〈x, b1b2 · · · bct, y, z〉 as its (randomly-accessed)
inputs.

We are now ready to convert the computation on x into a succinct quantified Boolean for-
mula. First we hardcode the input bits x = x1 · · · xn into the CNF formula, by including the
clauses (xi) or (¬xi) depending on the sign of the ith bit, and including x1, . . . , xn as existentially
quantified variables in the prefix. Converting the guesses b1b2 · · · bct is straightforward: each (ex-
istential/universal) bit bi is represented by an (existentially/universally) quantified variable xn+i.
Similarly, we have existential variables xn+ct+1, . . . , xn+ct+` for the bits of y, universal variables
xn+ct+`+1, . . . , xn+ct+`+c log t for the bits of z, and the initial prefix of the QBF is described in O(t)
bits. All in all, we have m = n + ct + ` + c log t variables of the form xi.

To convert the one-tape computation M ′′′(〈x, b1b2 · · · bct, y, z〉) into a short CNF formula, we
use the X-function, and include some additional existentially quantified variables. For convenience
in notation (though we intend for all variables to be of the form xi) we give these new variables
the names:

uj
1, . . . , u

j
log m, U j,

vj
1, . . . , v

j
log m, V j ,

and wj
1, . . . , w

j
log m, W j,

for all j = 1, . . . , ` log t. The capital-letter variables U j , V j and W j shall represent the bits of x,
b1 · · · bct, and yz (respectively) that are read during the jth step of the computation of M ′′′, and
the lowercase-letter variables represent the appropriate indices (among x1, . . . , xm) of those bits.
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For all j = 1, . . . , ` log t, we include the clauses:

(¬X(uj
1, . . . , u

j
log m) ∨ U j) ∧ (X(uj

1, . . . , u
j
log m) ∨ ¬U j)

(¬X(vj
1, . . . , v

j
log m) ∨ V j) ∧ (X(vj

1, . . . , v
j
log m) ∨ ¬V j)

(¬X(wj
1, . . . , w

j
log m) ∨ W j) ∧ (X(wj

1, . . . , w
j
log m) ∨ ¬W j)

The above clauses can be represented with O(log2 t) bits each, so in total these clauses contribute
only O(t2/3 log4 t) bits to the length of the QBF. The above clauses guarantee that the variables
U j , V j, and W j correspond to the appropriate bits of x, b1 · · · bct, and yz, respectively. Therefore
the remaining CNF formula capturing the computation of M ′′′ can be expressed solely over the
O(t2/3 log2 t) variables U j , V j, and W j. Note M ′′′ reads the bits (U1, V 1,W 1), (U2, V 2,W 2), . . .,
(U ` log t, V ` log t,W ` log t) in precisely that order (after having written uj

1, . . . , u
j
log m,vj

1, . . . , v
j
log m, and

wj
1, . . . , w

j
log m on its input index tapes).

We claim that the computation of M ′′′ can be expressed as a fast multitape TM computation.
Let ûj = uj

1, . . . , u
j
log m, and define v̂j and ŵj analogously. Our multitape TM has the following

content on the input tape T0:

(U1, V 1,W 1, û1, v̂1, ŵ1), (U2, V 2,W 2, û2, v̂2, ŵ2), . . .

and the input is read by sweeping the head from left to right. There is also a O(log t) length tape
T1 that keeps track of the indices that the original one-tape M ′′′ would have kept, and there is an
additional read-write tape used just as M ′′′ would use it. Performing this simulation on a multitape
TM takes at most O(` log2 t) time: there are O(` log t) steps to simulate, and each simulation of a
step in M ′′′ is done in O(log t) time, by checking that the addresses claimed on T0 match those on
T1 and updating the states and tapes appropriately.

Recall Theorem 2.2 says that a multitape TM computation taking T time can be written as
an instance of satisfiability, taking O(T log2 T ) bits to describe. It follows that the computation of
M ′′′ can be expressed with a CNF formula of size O(` log2 t · log(` log2 t)2) ≤ O(t2/3 log4 t) ≤ O(t)
that introduces at most that many new existentially quantified variables. Finally, observe that
every component of the above reduction can be performed in O(t + t2/3poly(log t)) time on a tree
computer, k-dimensional TM, random access TM, multitape TM, or logarithmic-cost RAM. Note
all of the models can simulate a time t multitape TM in at most t · poly(log t) time. 2

Remark 1 In the above, we introduce O(t2/3 log2 t) occurrences of the X-function, so the most
näıve description of our formula without the X-function would have Õ(t5/3) size. While this may
appear unsettling, it is important to note that other succinct encodings are also possible. Essentially
we just require an encoding which can efficiently state (in o(t) bits) that a particular subset of Õ(t2/3)
bits from 〈x, b1b2 · · · bct, y, z〉 corresponds to the Õ(t2/3) subset read by M ′′′.

Following the proof of the above theorem and applying Theorem 2.3 instead of Corollary 2.1,
we also obtain a linear time reduction from bounded-alternating time to bounded-quantifier QBFs
in the multitape setting, with a constant factor increase in the number of new quantifiers.

Corollary 3.1 There is a constant c ≥ 1 such that for all k ≥ 1 and for every language L recognized
by a alternating multitape TM in t(n) time taking at most k alternations, there is a linear time
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reduction from L to quantified Boolean formulas describable in O(t(n)) bits, having at most ck
quantifier blocks.

4 The Lower Bound

For an assortment of algorithm models, one can show that deterministic algorithms in that model
running in time O(t) can be simulated by alternating one-tape TMs that run in time t/β(t), for
some unbounded function β(n). This observation stems from a result of Mak:

Theorem 4.1 (Mak [Mak94]) Any deterministic tree computer running in time t(n) can be sim-
ulated by an alternating one-tape TM in time O(t(n)/ log t(n)).

Corollary 4.1 Any deterministic k-dimensional TM running in time t(n) can be simulated by an
alternating one-tape TM in time O(t(n)5k log∗ t/ log n).

Proof. Reishuk [Rei82] showed how to simulate a k-dimensional TM by an O(5k log∗ t(n)t(n)) time
bounded tree computer, so the result follows from Theorem 4.1. 2

Corollary 4.2 Any deterministic multitape TM, random access TM, or log-cost RAM running in
time t(n) can be simulated by an alternating one-tape TM in time O(t(n)/ log t(n)).

Proof. All three can be simulated by tree computers with no asymptotic slowdown, by simulations
of Paul and Reischuk [PR81]. 2

By the reduction of Theorem 3.1, a linear time algorithm for QBF in the appropriate machine
model implies that every alternating algorithm running in t time can be simulated by a deterministic
algorithm in O(t) time. But this deterministic algorithm can be simulated in alternating t/β(n) time
for some unbounded β(n), contradicting the time hierarchy for alternating time in that machine
model. In particular, we have

Theorem 4.2 The succinct QBF problem requires Ω(n log n) time (infinitely often) on multitape
TMs, random access TMs, log-cost RAMs, and tree computers; the problem requires Ω(n log n

5k log∗ t
)

time (infinitely often) on any k-dimensional TM.

Proof. We prove just one instance of the theorem; the others are analogous. Suppose for
contradiction that there is a log-cost RAM M that solves the succinct QBF problem in o(n log n)
time, almost everywhere. Let L be an arbitrary language in ATIME[t(n)] (under the log-cost
RAM model), and let x be an instance. By Theorem 3.1, we know that x can be reduced into a
succinct QBF φx of O(t(n)) size. But φx can be solved in o(t(n) log t(n)) time by M , and in turn,
Corollary 4.2 implies that the computation of M(φx) (for all x) can be simulated by a particular
alternating log-cost RAM in o(t(n)) time. But this implies that ATIME[t(n)] ⊆ ATIME[o(t(n))], a
contradiction with the alternating time hierarchy. 2

We remark that the reduction also implies a non-linear lower bound for succinct quantified
Boolean formulas with k quantifier blocks on multitape Turing machines, for some constant k.

9



Theorem 4.3 There is a constant k such that quantified Boolean formulas with at least k quantifier
blocks requires Ω(n log∗ n) time to solve (infinitely often) on a multitape TM.

Proof. Suppose for every k ≥ 1 that there is an o(n log∗ n) time multitape TM M recognizing the
problem. Then by Corollary 3.1, Π4TIME[n] ⊆ DTIME[o(n log∗ n)], since we can reduce a Π4TIME[n]
computation into a QBF4c instance of size O(n) and running M on it, for some constant c ≥ 1.
But this implies

Π4TIME[n log∗ n] ⊆ DTIME[o(n(log∗ n)2)] ⊆ Σ4TIME[o(n log∗ n)],

where the second inclusion was proved by Paul, Pippenger, Szemeredi, and Trotter [PPST83]. This
contradicts the fact (provable by a simple diagonalization) that Σ`TIME[t] * Π`TIME[o(t)], for all
` ≥ 1. 2

5 Conclusion

We conclude with two related problems of great interest. First, it would of course be desirable
to prove a non-linear time lower bound on the QBF problem, as it is traditionally encoded. As
mentioned in the Introduction, we cannot do this by giving a linear time reduction from ATIME[n] to
QBF in the random access model, since typical encodings of QBF admit an O(n/ log n) alternating
time algorithm. It may be possible to obtain a QBF lower bound by assuming there is a fast QBF
algorithm, and using that to build a fast reduction (leading to a contradiction).

Secondly, our approach cannot reduce nondeterministic O(n) time languages to SAT instances
described in O(n) bits, even those with a succinct encoding, since we relied on the fact that
robust computational models can be optimally simulated by one-tape machines when additional
alternations are introduced. A linear time reduction from arbitrary languages in NTIME[n] to SAT
would imply non-linear time lower bounds for SAT on multitape Turing machines, a long-sought
result.

Acknowledgements. I thank Manuel Blum for interesting and encouraging discussions on this
work.
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